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Abstract

Image registration is a key technique in medical image
analysis to estimate deformations between image pairs. A
good deformation model is important for high-quality es-
timates. However, most existing approaches use ad-hoc
deformation models chosen for mathematical convenience
rather than to capture observed data variation. Recent
deep learning approaches learn deformation models di-
rectly from data. However, they provide limited control over
the spatial regularity of transformations. Instead of learn-
ing the entire registration approach, we learn a spatially-
adaptive regularizer within a registration model. This al-
lows controlling the desired level of regularity and pre-
serving structural properties of a registration model. For
example, diffeomorphic transformations can be attained.
Our approach is a radical departure from existing deep
learning approaches to image registration by embedding
a deep learning model in an optimization-based registra-
tion algorithm to parameterize and data-adapt the regis-
tration model itself. Source code is publicly-available at
https://github.com/uncbiag/registration.

1. Introduction

Image registration is important in medical image analysis
tasks to capture subtle, local deformations. Consequently,
transformation models [21], which parameterize these de-
formations, have large numbers of degrees of freedom,
ranging from B-spline models with many control points, to
non-parametric approaches [30] inspired by continuum me-
chanics. Due to the large number of parameters of such
models, deformation fields are typically regularized by di-
rectly penalizing local changes in displacement or, more in-
directly, in velocity field(s) parameterizing a deformation.

Proper regularization is important to obtain high-quality de-
formation estimates. Most existing work simply imposes
the same spatial regularity everywhere in an image. This
is unrealistic. For example, consider registering brain im-
ages with different ventricle sizes, or chest images with a
moving lung, but a stationary rib cage, where different de-
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Figure 1: Architecture of our registration approach. We jointly
optimize over the momentum, parameterizing the deformation Φ,
and the parameters, θ, of a convolutional neural net (CNN). The
CNN locally predicts multi-Gaussian kernel pre-weights which
specify the regularizer. This approach constructs a metric such that
diffeomorphic transformations can be assured in the continuum.

formation scales are present in different image regions. Pa-
rameterizing such deformations from first principles is dif-
ficult and may be impossible for between-subject registra-
tions. Hence, it is desirable to learn local regularity from
data. One could replace the registration model entirely and
learn a parameterized regression function fΘ from a large
dataset. At inference time, this function then maps a mov-
ing image to a target image [12]. However, regularity of
the resulting deformation does not arise naturally in such an
approach and typically needs to be enforced after the fact.

Existing non-parametric deformation models already yield
good performance, are well understood, and use globally
parameterized regularizers. Hence, we advocate building
upon these models and to learn appropriate localized pa-
rameterizations of the regularizer by leveraging large sam-
ples of training data. This strategy not only retains theoret-
ical guarantees on deformation regularity, but also makes it
possible to encode, in the metric, the intrinsic deformation
model as supported by the data.

Contributions. Our approach deviates from current ap-
proaches for (predictive) image registration in the following
sense. Instead of replacing the entire registration model by
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a regression function, we retain the underlying registration
model and learn a spatially-varying regularizer. We build
on top of a new vector momentum-parameterized stationary
velocity field (vSVF) registration model which allows us to
guarantee that deformations are diffeomorphic even when
using a learned regularizer. Our approach jointly optimizes
the regularizer (parameterized by a deep network) and the
registration parameters of the vSVF model. We show state-
of-the art registration results and evidence for locally vary-
ing deformation models in real data.

Overview. Fig. 1 illustrates our key idea. We start with an
initial momentum parameterization of a registration model,
in particular, of the vSVF. Such a parameterization is impor-
tant, because it allows control over deformation regularity
on top of the registration parameters. For a given source-
target image-pair (I0, I1), we optimize over the momentum
to obtain a spatial transformation Φ such that I0◦Φ−1 ≈ I1.
As the mapping from momentum to Φ is influenced by a
regularizer expressing what transformations are desirable,
we jointly optimize over the regularizer parameters, θ, and
the momentum. Specifically, we use a spatially-adaptive
regularizer, parameterized by a regression model (here, a
CNN). Our approach naturally combines with a prediction
model, e.g., [48], to obtain the momentum from a source-
target image pair (avoiding optimization at runtime). Here,
we numerically optimize over the momentum for simplicity
and leave momentum prediction to future work.

Organization. In §2, we review registration models, re-
lations to our proposed approach and introduce the vSVF
model. §3 describes our metric learning registration ap-
proach and §4 discusses experimental results. Finally, §5
summarizes the main points. Additional details can be
found in the supplementary material.

2. Background on image registration

Image registration is typically formulated as an optimiza-
tion problem of the form

γ∗ = argmin
γ

λ Reg[Φ−1(γ)]+Sim[I0◦Φ−1(γ), I1]. (2.1)

Here, γ parameterizes the deformation, Φ, λ ≥ 0, Reg[·]
is a penalty encouraging spatially regular deformations and
Sim[·, ·] penalizes dissimilarities between two images (e.g.,
sum-of-squared differences, cross-correlation or mutual in-
formation [20]). For low-dimensional parameterizations of
Φ, e.g., for affine or B-spline [36, 29] models, a regularizer
may not be necessary. However, non-parametric registra-
tion models [30] represent deformations via displacement,
velocity, or momentum vector fields and require regulariza-
tion for a well-posed optimization problem.

In medical image analysis, diffeomorphic transformations,
Φ, are often desirable to smoothly map between subjects or

between subjects and an atlas space for local analyses. Dif-
feomorphisms can be guaranteed by estimating sufficiently
smooth [14] static or time-varying velocity fields, v. The
transformation is then obtained via time integration, i.e., of
Φt(x, t) = v ◦ Φ(x, t) (subscript t indicates a time deriva-
tive). Examples of such methods are the static velocity field
(SVF) [42] and the large displacement diffeomorphic metric
mapping (LDDMM) registration models [4, 44, 18, 1].

Non-parametric registration models require optimization
over high-dimensional vector fields, often with millions of
unknowns in 3D. Hence, numerical optimization can be
slow. Recently, several approaches which learn a regression
model to predict registration parameters from large sets of
image pairs have emerged. Initial models based on deep
learning [13, 24] were proposed to speed-up optical flow
computations [22, 3, 8, 7, 49, 40]. Non-deep-learning ap-
proaches for the regression of registration parameters have
also been studied [46, 45, 10, 9, 16]. These approaches typ-
ically have no guarantees on spatial regularity or may not
straightforwardly extend to 3D image volumes due to mem-
ory constraints. Alternative approaches have been proposed
which can register 3D images [35, 38, 12, 23, 2, 15] and as-
sure diffeomorphisms [47, 48]. In these approaches, costly
numerical optimization is only required during training of
the regression model. Both end-to-end approaches [12, 23,
2, 15] and approaches requiring the desired registration pa-
rameters during training exist [47, 48, 35]. As end-to-end
approaches differentiate through the transformation map, Φ,
they were motivated by the spatial transformer work [25].

One of the main conceptual downsides of current regres-
sion approaches is that they either explicitly encode reg-
ularity when computing the registration parameters to ob-
tain the training data [47, 48, 35], impose regularity as part
of the loss [23, 2, 15] to avoid ill-posedness, or use low-
dimensional parameterizations to assure regularity [38, 12].
Consequentially, these models do not estimate a deforma-
tion model from data, but instead impose it by choosing
a regularizer. Ideally, one would like a registration model
which (1) regularizes according to deformations present in
data, (2) is fast to compute via regression and which (3)
retains desirable theoretical properties of the registration
model (e.g., guarantees diffeomorphisms) even when pre-
dicting registration parameters via regression.

Approaches which predict momentum fields [47, 48] are
fast and can guarantee diffeomorphisms. Yet, no model ex-
ists which estimates a local spatial regularizer of a form that
guarantees diffeomorphic transformations and that can be
combined with a fast regression formulation. Our goal is
to close this gap via a momentum-based registration vari-
ant. While we will not explore regressing the momentum
parameterization here, such a formulation is expected to be
straightforward, as our proposed model has a momentum-



parameterization similar to what has already been used suc-
cessfully for regression with a deep network [48].

2.1. Fluid-type registration algorithms

To capture large deformations and to guarantee diffeomor-
phic transformations, registration methods inspired by fluid
mechanics have been highly successful, e.g., in neuroimag-
ing [1]. Our model follows this approach. The map Φ is
obtained via time-integration of a sought-for velocity field
v(x, t). Specifically, Φt(x, t) = v(Φ(x, t), t), Φ(x, 0) = x.
For sufficiently smooth (i.e., sufficiently regularized) veloc-
ity fields, v, one obtains diffeomorphisms [14]. The corre-
sponding instance of Eq. (2.1) is

v∗ = argmin
v

λ

∫ 1

0

∥v∥2L dt+ Sim[I0 ◦ Φ−1(1), I1], s.t.

Φ−1
t +DΦ−1v = 0, and Φ−1(0) = id .

Here, D denotes the Jacobian (of Φ−1), ∥v∥2L = ⟨L†Lv, v⟩
is a spatial norm defined using the differential operator L
and its adjoint L†. A specific L implies an expected defor-
mation model. In its simplest form, L is spatially-invariant
and encodes a desired level of smoothness. As the vector-
valued momentum, m, is given by m = L†Lv, one can
write the norm as ∥v∥2L = ⟨m, v⟩.
In LDDMM [4], one seeks time-dependent vector fields
v(x, t). A simpler, but less expressive, approach is to use
stationary velocity fields (SVF), v(x), instead [35]. While
SVF’s are optimized directly over the velocity field v, we
propose a vector momentum SVF (vSVF) formulation, i.e.,

m∗ = argmin
m0

λ⟨m0, v0⟩+ Sim[I0 ◦ Φ−1(1), I1]

s.t. Φ−1
t +DΦ−1v = 0

Φ−1(0) = id, and v0 = (L†L)−1m0 ,

(2.2)

which is optimized over the vector momentum m0. vSVF
is a simplification of vector momentum LDDMM [44]. We
use vSVF for simplicity, but our approach directly translates
to LDDMM and is motivated by the desire for LDDMM
regularizers adapting to a deforming image.

3. Metric learning

In practice, L is predominantly chosen to be spatially-
invariant. Only limited work on spatially-varying regular-
izers exists [33, 31, 39] and even less work focuses on es-
timating a spatially-varying regularizer. A notable excep-
tion is the estimation of a spatially-varying regularizer in
atlas-space [43] which builds on a left-invariant variant of
LDDMM [37]. Instead, our goal is to learn a spatially-
varying regularizer which takes as inputs a momentum vec-
tor field and an image and computes a smoothed vector

field. Therefore, our approach, not only leads to spatially
varying metrics but can address pairwise registration, con-
trary to atlas-based learning methods, and it can adapt to de-
forming images during time integration for LDDMM1. We
focus on extensions to the multi-Gaussian regularizer [34]
as a first step, but note that learning more general regular-
ization models would be possible.

3.1. Parameterization of the metrics

Metrics on vector fields of dimension M are positive semi-
definite (PSD) matrices of M2 coefficients. Directly learn-
ing these M2 coefficients is impractical, since for typical
3D image volumes M is in the range of millions. We there-
fore restrict ourselves to a class of spatially-varying mix-
tures of Gaussian kernels.

Multi-Gaussian kernels. It is customary to directly spec-
ify the map from momentum to vector field via Gaussian
smoothing, i.e., v = G⋆m (here, ⋆ denotes convolution). In
practice, multi-Gaussian kernels are desirable [34] to cap-
ture multi-scale aspects of a deformation, where

v =

(
N−1∑
i=0

wiGi

)
⋆ m , wi ≥ 0,

N−1∑
i=0

wi = 1 . (3.1)

Gi is a normalized Gaussian centered at zero with standard
deviation σi and wi is a positive weight. The class of kernels
that can be approximated by such a sum is already large2.
A naïve approach to estimate the regularizer would be to
learn wi and σi. However, estimating either the variances
or weights benefits from adding penalty terms to encourage
desired solutions. Assume, for simplicity, that we have a
single Gaussian, G, v = G ⋆ m, with standard deviation σ.
As the Fourier transform is an L2 isometry, we can write∫

m(x)⊤v(x) dx = ⟨m, v⟩ = ⟨m̂, v̂⟩

= ⟨v̂/Ĝ, v̂⟩ =
∫

eπ
22σ2k⊤kv(k)⊤v(k) dk , (3.2)

where ·̂ denotes the Fourier transform and k the frequency.
Since Ĝ is a Gaussian without normalization constant, it fol-
lows that we need to explicitly penalize small σ’s if we want
to favor smoother transformations (with large σ’s). Indeed,
the previous formula shows that a constant velocity field has
the same norm for every positive σ. More generally, in the-
ory, it is possible to reproduce a given deformation by the
use of different kernels. Therefore, a penalty function on the
parameterizations of the kernel is desirable. We design this
penalty via a simple form of optimal mass transport (OMT)
between the weights, as explained in the following.

1We use vSVF here and leave LDDMM as future work.
2All the functions h : R>0 ↦→ R such that h(|x − y|) is a kernel on

Rd for every d ≥ 1 are in this class.



OMT on multi-Gaussian kernel weights. Consider a
multi-Gaussian kernel as in Eq. (3.1), with standard devia-
tions 0 < σ0 ≤ σ1 ≤ · · · ≤ σN−1. It would be desirable to
obtain simple transformations explaining deformations with
large standard deviations. Interpreting the multi-Gaussian
kernel weights as a distribution, the most desirable configu-
ration would be wi̸=N−1 = 0, wN−1 = 1, i.e., using only
the Gaussian with largest variance. We want to penalize
weight distributions deviating from this configuration, with
the largest distance given to w0 = 1, wi ̸=0 = 0. This can
be achieved via an OMT penalty. Specifically, we define
this penalty on w = [w0, . . . , wN−1] as

OMT(w) =
N−1∑
i=0

wi

⏐⏐⏐⏐log σN−1

σi

⏐⏐⏐⏐r , (3.3)

where r ≥ 1 is a chosen power. In the following, we set
r = 1. This penalty is zero if wN−1 = 1 and will have its
largest value for w0 = 1. It can be standardized as

ÔMT(w) =
⏐⏐⏐⏐log σN−1

σ0

⏐⏐⏐⏐−r N−1∑
i=0

wi

⏐⏐⏐⏐log σN−1

σi

⏐⏐⏐⏐r (3.4)

with ÔMT(w) ∈ [0, 1] by construction.

Localized smoothing. This multi-Gaussian approach is a
global regularization strategy, i.e., the same multi-Gaussian
kernel is applied everywhere. This leads to efficient com-
putations, but does not allow capturing localized changes
in the deformation model. We therefore introduce local-
ized multi-Gaussian kernels, embodying the idea of tissue-
dependent localized regularization. Starting from a sum of
kernels

∑N−1
i=0 wiGi, we let the weights wi vary spatially,

i.e., wi(x). To ensure diffeomorphic deformations, we set
the weights wi(x) = Gσsmall ⋆ ωi(x), where ωi(x) are pre-
weights which are convolved with a Gaussian with small
standard deviation. An appropriate definition for how to use
these weights to go from the momentum to the velocity is
required to assure diffeomorphic transformations. Multiple
approaches are possible. We use the model

v0(x)
def.
= (K(w) ⋆ m0)(x)

=

N−1∑
i=0

√
wi(x)

∫
y

Gi(|x− y|)
√

wi(y)m0(y) dy ,

(3.5)

which, for spatially constant wi(x), reduces to the standard
multi-Gaussian approach. In fact, this model guarantees dif-
feomorphisms, as long as the pre-weights are not too degen-
erate, as ensured by our model described hereafter. This fact
is proven in the supplementary material (A.1). Motivated
by the physical interpretation of these pre-weights and by
diffeomorphic registration guarantees, we require a spatial
regularization of these pre-weights via TV or H1. We use

color-TV [6] for our experiments. As the spatial transfor-
mation is directly governed by the weights, we impose the
OMT penalty locally. Based on Eq. (2.2), we optimize the
following:

m∗ = argmin
m0

λ⟨m0, v0⟩ + Sim[I0 ◦ Φ−1(1), I1] +

λOMT

∫
ÔMT(w(x)) dx +

λTV

√N−1∑
i=0

(∫
γ(∥∇I0(x)∥)∥∇ωi(x)∥2 dx

)2

,

(3.6)

subject to the constraints Φ−1
t +DΦ−1v = 0 and Φ−1(0) =

id; λTV, λOMT ≥ 0. The partition of unity defining the met-
ric, intervenes in the L2 scalar product ⟨m0, v0⟩.
Further, in Eq. (3.6), the OMT penalty is integrated point-
wise over the image-domain to support spatially-varying
weights; γ(x) ∈ R+ is an edge indicator function, i.e.,

γ(∥∇I∥) = (1 + α∥∇I∥)−1, with α > 0 ,

to encourage weight changes coinciding with image edges.

Local regressor. To learn the regularizer, we propose a lo-
cal regressor from the image and the momentum to the pre-
weights of the multi-Gaussian. Given the momentum m and
image I (the source image I0 for vSVF; I(t) at time t for
LDDMM) we learn a mapping of the form: fθ : Rd ×R →
∆N−1 , where ∆N−1 is the N−1 unit/probability simplex3.
We will parametrize fθ by a CNN in §3.1.1. The following
attractive properties are worth pointing out:

1) The variance of the multi-Gaussian is bounded by the
variances of its components. We retain these bounds and
can therefore specify a desired regularity level.

2) A globally smooth set of velocity fields is still computed
(in Fourier space) which allows capturing large-scale
regularity without a large receptive field of the local re-
gressor. Hence, the CNN can be kept efficient.

3) The local regression strategy makes the approach suit-
able for more general registration models, e.g., for LD-
DMM, where one would like the regularizer to follow
the deforming source image over time.

3.1.1 Learning the CNN regressor

For simplicity we use a fairly shallow CNN with two lay-
ers of filters and leaky ReLU (lReLU) [27] activations. In
detail, the data flow is as follows: conv(d + 1, n1) →
BatchNorm → lReLU → conv(n1, N) → BatchNorm →

3We only explore mappings dependent on the source image I0 in our
experiments, but more general mappings also depending on the momen-
tum, for example, should be explored in future work.



weighted-linear-softmax. Here conv(a, b) denotes a
convolution layer with a input channels and b output feature
maps. We used n1 = 20 for our experiments and convolu-
tional filters of spatial size 5 (5× 5 in 2D and 5× 5× 5 in
3D). The weighted-linear-softmax activation function,
which we formulated, maps inputs to ∆N−1. We designed
it such that it operates around a setpoint of weights wi which
correspond to the global weights of the multi-Gaussian ker-
nel. This is useful to allow models to start training from
a pre-specified, reasonable initial configuration of global
weights, parameterizing the regularizer. Specifically, we
define the weighted linear softmax σw : Rk → ∆N−1 as

σw(z)j =
clamp0,1(wj + zj − z)∑N−1

i=0 clamp0,1(wi + zi − z)
, (3.7)

where σw(z)j denotes the j-th component of the output, z
is the mean of the inputs, z, and the clamp function clamps
the values to the interval [0, 1]. The removal of the mean
in Eq. (3.7) assures that one moves along the probability
simplex. That is, if one is outside the clamping range, then

N−1∑
i=0

clamp0,1(wi+zi−z) =

N−1∑
i=0

wi+zi−z =

N−1∑
i=0

wi = 1

and consequentially, in this range, σw(z)j = wj + zj − z.
This is linear in z and moves along the tangent plane of
the probability simplex by construction. As a CNN with
small initial weights will produce an output close to zero,
the output of σw(z) will initially be close to the desired set-
point weights, wj , of the multi-Gaussian kernel. Once the
pre-weights, ωi(x), have been obtained via this CNN, we
compute multi-Gaussian weights via Gaussian smoothing.
We use σ = 0.02 in 2D and σ = 0.05 in 3D throughout all
experiments (§4).

3.2. Discretization, optimization, and training

Discretization. We discretize the registration model using
central differences for spatial derivatives and 20 steps in 2D
(10 in 3D) of 4th order Runge-Kutta integration in time.
Gaussian smoothing is done in the Fourier domain. The
entire model is implemented in PyTorch4; all gradients are
computed by automatic differentiation [32].

Optimization. Joint optimization over the momenta of a set
of registration pairs and the network parameters is difficult
in 3D due to GPU memory limitations. Hence, we use a cus-
tomized variant of stochastic gradient descent (SGD) with
Nesterov momentum (0.9) [41], where we split optimiza-
tion variables (1) that are shared and (2) individual between
registration-pairs. Shared parameters are for the CNN. Indi-
vidual parameters are the momenta. Shared parameters are

4Available at https://github.com/uncbiag/registration, also in-
cluding various other registration models such as LDDMM.

kept in memory and individual parameters, including their
current optimizer states, are saved and restored for every
random batch. We use a batch-size of 2 in 3D and 100 in
2D and perform 5 SGD steps for each batch. Learning rates
are 1.0 and 0.25 for the individual and the shared parameters
in 3D and 0.1 and 0.025 in 2D, respectively. We use gradi-
ent clipping (at a norm of one, separately for the gradients
of the shared and the individual parameters) to help balance
the energy terms. We use PyTorch’s ReduceLROnPlateau
learning rate scheduler with a reduction factor of 0.5 and a
patience of 10 to adapt the learning rate during training.

Curriculum strategy: Optimizing jointly over momenta,
global multi-Gaussian weights and the CNN does not work
well in practice. Instead, we train in two stages: (1) In the
initial global stage, we pick a reasonable set of global Gaus-
sian weights and optimize only over the momenta. This al-
lows further optimization from a reasonable starting point.
Local adaptations (via the CNN) can then immediately cap-
ture local effects rather than initially being influenced by
large misregistrations. In all experiments, we chose these
global weights to be linear with respect to their associated
variances, i.e., wi = σ2

i /(
∑N−1

j=0 σ2
j ). Then, (2) start-

ing from the result of (1), we optimize over the momenta
and the parameters of the CNN to obtain spatially-localized
weights. We refer to stages (1) and (2) as global and lo-
cal optimization, respectively. In 2D, we run global/local
optimization for 50/100 epochs. In 3D, we run for 25/50
epochs. Gaussian variances are set to {0.01, 0.05, 0.1, 0.2}
for images in [0, 1]d. We use normalized cross correlation
(NCC) with σ = 0.1 as similarity measure. See §B of the
supplementary material for further implementation details.

4. Experiments

We tested our approach on three dataset types: (1) 2D syn-
thetic data with known ground truth (§4.1), (2) 2D slices of
a real 3D brain magnetic resonance (MR) images (§4.2),
and (3) multiple 3D datasets of brain MRIs (§4.3). Im-
ages are first affinely aligned and intensity standardized by
matching their intensity quantile functions to the average
quantile function over all datasets. We compute deforma-
tions at half the spatial resolution in 2D (0.4 times in 3D)
and upsample Φ−1 to the original resolution when evaluat-
ing the similarity measure so that fine image details can be
considered. This is not necessary in 2D, but essential in 3D
to reduce GPU memory requirements. We use this approach
in 2D for consistency.

All evaluations (except for §4.2 and for the within dataset
results of §4.3) are with respect to a separate testing set.
For testing, the previously learned regularizer parameters
are fixed and numerical optimization is over momenta only
(in particular, 250/500 iterations in 2D and 150/300 in 3D
for global/local optimization).

https://github.com/uncbiag/registration
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Figure 2: Example registration results using local metric opti-
mization for the synthetic test data. Results are shown for different
values of λOMT with the total variation penalty fixed to λTV = 0.1.
Visual correspondence between the warped source and the target
images are high for all settings. Estimates for the standard devia-
tion stay largely stable. However, deformations are slightly more
regularized for higher OMT penalties. This can also be seen based
on the standard deviations (best viewed zoomed).

4.1. Results on 2D synthetic data

We created 300 synthetic 128 × 128 image pairs of ran-
domly deformed concentric rings (see supplementary mate-
rial, §C). Shown results are on 100 separate test cases.

Fig. 2 shows registrations for λOMT ∈ {15, 50, 100}. The
TV penalty was set to λTV = 0.1. The estimated standard
deviations, σ2(x) =

∑N−1
i=0 wi(x)σ

2
i , capture the trend of

the ground truth, showing a large standard deviation (i.e.,
high regularity) in the background and the center of the im-
age and a smaller standard deviation in the outer ring. The
standard deviations are stable across OMT penalties, but
show slight increases with higher OMT values. Similarly,
deformations get progressively more regular with larger
OMT penalties (as they are regularized more strongly), but
visually all registration results show very similar good cor-
respondence. Note that while TV was used to train the
model, the CNN output is not explicitly TV regularized, but
nevertheless is able to produce largely constant regions that
are well aligned with the boundaries of the source image.
Fig. 3 shows the corresponding estimated weights. They
are stable for a wide range of OMT penalties.

Finally, Fig. 4 shows displacement errors relative to the
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Figure 3: Estimated multi-Gaussian weights (blue=0; yellow=1)
for the registrations in Fig. 2 w.r.t. different λOMT’s. Weight esti-
mates are very stable across λOMT. While the overall standard de-
viation (Fig. 2) approximates the ground truth, the weights for the
outer ring differ (ground truth weights are [0.05, 0.55, 0.3, 0.1])
from the ground truth. They approximately match for the back-
ground and the interior (ground truth [0, 0, 0, 1]).
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Figure 4: Displacement error (in pixel) with respect to the ground
truth (GT) for various values of the total variation penalty, λTV (t)
and the OMT penalty, λOMT (o). Results for the inner and the
outer rings show subpixel registration accuracy for all local met-
ric optimization results (*_l). Overall, local metric optimization
substantially improves registrations over the results obtained via
initial global multi-Gaussian regularization (global).

ground truth deformation for the interior and the exterior
ring of the shapes. Local metric optimization significantly
improves registration (over initial global multi-Gaussian
regularization); these results are stable across a wide range
of penalties with median displacement errors < 1 pixel.

4.2. Results on real 2D data

We used the same settings as for the synthetic dataset. How-
ever, here our results are for 300 random registration pairs
of axial slices of the LPBA40 dataset [26].
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Figure 5: Example registration results using local metric opti-
mization for different λOMT’s and λTV = 0.1. Visual correspon-
dences between the warped source images and the target image
are high for all values of the OMT penalty. Standard deviation es-
timates capture the variability of the ventricles and increased reg-
ularity with increased values for λOMT (best viewed zoomed).

Fig. 5 shows results for λOMT ∈ {15, 50, 100}; λTV = 0.1.
Larger OMT penalties yield larger standard deviations and
consequentially more regular deformations. Most regions
show large standard deviations (high regularity), but lower
values around the ventricles and the brain boundary – areas
which may require substantial deformations.

Fig. 6 shows the corresponding estimated weights. We have
no ground truth here, but observe that the model produces
consistent regularization patterns for all shown OMT values
({15,50,100}) and allocates almost all weights to the Gaus-
sians with the lowest and the highest standard deviations,
respectively. As λOMT increases, more weight shifts from
the smallest to the largest Gaussian.

4.3. Results on real 3D data

We experimented using the 3D CUMC12, MGH10, and
IBSR18 datasets [26]. These datasets contain 12, 10, and
18 images. Registration evaluations are with respect to all
132 registration pairs of CUMC12. We use λOMT = 50,
λTV = 0.1 for all tests5. Once the regularizer has been
learned, we keep it fixed and optimize for the vSVF vector
momentum. We trained independent models on CUMC12,
MGH10, and IBSR18 using 132 image pairs on CUMC12,
90 image pairs on MGH10, and a random set of 150 im-
age pairs on IBSR18. We tested the resulting three models
on CUMC12 to assess the performance of a dataset-specific
model and the ability to transfer models across datasets.

5We did not tune these parameters and better settings may be possible.
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Figure 6: Estimated multi-Gaussian weights for different λOMT

for real 2D data. Weights are mostly allocated to the Gaussian with
the largest standard deviation (see colorbars; best viewed zoomed).
A shift from w0 to w3 can be observed for larger values of λOMT.
While weights shift between OMT setting, the ventricle area is
always associated with more weight on w0 (best viewed zoomed).

Tab. 1 and Fig. 7 compare to the registration methods in [26]
and across different stages of our approach for different
training/testing pairs. We also list the performance of the
most recent VoxelMorph (VM) variant [11]. We kept the
original architecture configuration, swept over a selection of
VoxelMorph’s hyperparameters and report the best results
here. Each VoxelMorph model was trained for 300 epochs
which, in our experiments, was sufficient for convergence.
Overall, our approach shows the best results among all mod-
els when trained/tested on CUMC12 (c/c local); though
results are not significantly better than for SyN, SPM5D,
and VoxelMorph. Local metric optimization shows strong
improvements over initial global multi-Gaussian regulariza-
tion. Models trained on MGH10 and IBSR18 (m/c local
and i/c local) also show good performance, slightly lower
than for the model trained on CUMC12 itself, but higher
than all other competing methods. This indicates that the
trained models transfer well across datasets. While the top
competitor in terms of median overlap (SPM5D) produces
outliers (cf. Fig. 7), our models do not. In case of Vox-
elMorph we observed that adding more training pairs (i.e.,
using all pairs of IBSR18, MGH18 & LBPA40) did not im-
prove results (cf. Tab. 1 */c VM).

In Tab. 2, we list statistics for the determinant of the Jaco-
bian of Φ−1 on CUMC12, where the model was also trained
on. This illustrates how transformation regularity changes
between the global and the local regularization approaches.
As expected, the initial global multi-Gaussian regulariza-
tion results in highly regular registrations (i.e., determi-
nant of Jacobian close to one). Local metric optimization
achieves significantly improved target volume overlap mea-
sures (Fig. 7) while keeping good spatial regularity, clearly
showing the utility of our local regularization model. Note



Method mean std 1% 5% 50% 95% 99% p MW-stat sig?
FLIRT 0.394 0.031 0.334 0.345 0.396 0.442 0.463 <1e−10 17394.0 ✓
AIR 0.423 0.030 0.362 0.377 0.421 0.483 0.492 <1e−10 17091.0 ✓
ANIMAL 0.426 0.037 0.328 0.367 0.425 0.483 0.498 <1e−10 16925.0 ✓
ART 0.503 0.031 0.446 0.452 0.506 0.556 0.563 <1e−4 11177.0 ✓
Demons 0.462 0.029 0.407 0.421 0.461 0.510 0.531 <1e−10 15518.0 ✓
FNIRT 0.463 0.036 0.381 0.410 0.463 0.519 0.537 <1e−10 15149.0 ✓
Fluid 0.462 0.031 0.401 0.410 0.462 0.516 0.532 <1e−10 15503.0 ✓
SICLE 0.419 0.044 0.300 0.330 0.424 0.475 0.504 <1e−10 17022.0 ✓
SyN 0.514 0.033 0.454 0.460 0.515 0.565 0.578 0.073 9677.0 ✗
SPM5N8 0.365 0.045 0.257 0.293 0.370 0.426 0.455 <1e−10 17418.0 ✓
SPM5N 0.420 0.031 0.361 0.376 0.418 0.471 0.494 <1e−10 17160.0 ✓
SPM5U 0.438 0.029 0.373 0.394 0.437 0.489 0.502 <1e−10 16773.0 ✓
SPM5D 0.512 0.056 0.262 0.445 0.523 0.570 0.579 0.311 9043.0 ✗

c/c VM 0.517 0.034 0.456 0.460 0.518 0.571 0.580 0.244 9211.0 ✗
m/c VM 0.510 0.034 0.448 0.453 0.509 0.564 0.574 0.011 10197.0 ✓
i/c VM 0.510 0.034 0.450 0.453 0.508 0.564 0.573 0.012 10170.0 ✓
*/c VM 0.509 0.033 0.450 0.453 0.509 0.561 0.570 0.007 10318.0 ✓

m/c global 0.480 0.031 0.421 0.430 0.482 0.530 0.543 <1e−10 13864.0 ✓
m/c local 0.517 0.034 0.454 0.461 0.521 0.568 0.578 0.257 9163.0 ✗

c/c global 0.480 0.031 0.421 0.430 0.482 0.530 0.543 <1e−10 13864.0 ✓
c/c local 0.520 0.034 0.455 0.463 0.524 0.572 0.581 - - -

i/c global 0.480 0.031 0.421 0.430 0.482 0.530 0.543 <1e−10 13863.0 ✓
i/c local 0.518 0.035 0.454 0.460 0.522 0.571 0.581 0.338 8972.0 ✗

Table 1: Statistics for mean (over all labeled brain structures,
disregarding the background) target overlap ratios on CUMC12
for different methods. Prefixes for results based on global and
local regularization indicate training/testing combinations iden-
tified by first initials of the datasets. For example, m/c means
trained/tested on MGH10/CUMC12. Statistical results are for the
null-hypothesis of equivalent mean target overlap with respect to
c/c local. Rejection of the null-hypothesis (at α = 0.05) is
indicated with a check-mark (✓). All p-values are computed us-
ing a paired one-sided Mann Whitney rank test [28] and corrected
for multiple comparisons using the Benjamini-Hochberg [5] pro-
cedure with a family-wise error rate of 0.05. Best results are bold,
showing that our methods exhibits state-of-the-art performance.

mean 1% 5% 50% 95% 99%
Global 1.00(0.02) 0.60(0.07) 0.71(0.03) 0.98(0.03) 1.39(0.05) 1.69(0.14)
Local 0.98(0.02) 0.05(0.04) 0.24(0.03) 0.84(0.03) 2.18(0.07) 3.90(0.23)

Table 2: Mean (standard deviation) of determinant of Jacobian
of Φ−1 for global and local regularization with λTV = 0.1 and
λOMT = 50 for CUMC12 within the brain. Local metric optimiza-
tion (local) improves target overlap measures (see Fig. 7) at the
cost of less regular deformations than for global multi-Gaussian
regularization. However, the reported determinants of Jacobian
are still all positive, indicating no folding.

that all reported determinant of Jacobian values in Tab. 2
are positive, indicating no foldings, which is consistent with
our diffeomorphic guarantees; though these are only guar-
antees for the continuous model at convergence, which do
not consider potential discretization artifacts.

5. Conclusions

We proposed an approach to learn a local regularizer, pa-
rameterized by a CNN, which integrates with deformable
registration models and demonstrates good performance on
both synthetic and real data. While we used vSVF for com-
putational efficiency, our approach could directly be inte-
grated with LDDMM (resulting in local, time-varying regu-
larization). It could also be integrated with predictive regis-

FL
IR
T

AI
R

AN
IM
AL AR
T

De
mo
ns

FN
IR
T

Fl
ui
d

SI
CL
E

Sy
N

SP
M5
N8

SP
M5
N

SP
M5
U

SP
M5
D

m/
c
gl
ob
al

m/
c
lo
ca
l

c/
c
gl
ob
al

c/
c
lo
ca
l

i/
c
gl
ob
al

i/
c
lo
ca
l

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

c/
c
VM

m/
c
VM

i/
c
VM

*/
c
VM

Figure 7: Mean target overlap ratios on CUMC12 (in 3D) with
λTV = 0.1 and λOMT = 50. Our approach (marked red) gives
the best result overall. Local metric optimization greatly improves
results over the initial global multi-Gaussian regularization. Best
results are achieved for the model that was trained on this dataset
(c/c local), but models trained on MGH10 (m/c local) and on
IBSR18 (i/c local) transfer well and show almost the same level
of performance. The dashed line is the median mean target overlap
ratio (i.e., mean over all labels, median over all registration pairs).

tration approaches, e.g., [48]. Such an integration would re-
move the computational burden of optimization at runtime,
yield a fast registration model, allow end-to-end training
and, in particular, promises to overcome the two key issues
of current deep learning approaches to deformable image
registration: (1) the lack of control over spatial regularity of
approaches training mostly based on image similarities and
(2) the inherent limitation on registration performance by
approaches which try to learn optimal registration parame-
ters for a given registration method and a chosen regularizer.

To the best of our knowledge, our model is the first ap-
proach to learn a local regularizer of a registration model
by predicting local multi-Gaussian pre-weights. This is an
attractive approach as it (1) allows retaining the theoretical
properties of an underlying (well-understood) registration
model, (2) allows imposing bounds on local regularity, and
(3) focuses the effort on learning some aspects of the regis-
tration model from data, while refraining from learning the
entire model which is inherently ill-posed. The estimated
local regularizer might provide useful information in of it-
self and, in particular, indicates that a spatially non-uniform
deformation model is supported by real data.

Much experimental and theoretical work remains. More so-
phisticated CNN models should be explored; the method
should be adapted for fast end-to-end regression; more
general parameterizations of regularizers should be studied
(e.g., allowing sliding), and the approach should be devel-
oped for LDDMM.
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A. Supplementary material

This supplementary material contains additional informa-
tion describing our approach. §A.1 discusses the theoretical
properties of our model and proves that the resulting spatial
transformations are diffeomorphic in the continuum. Pos-
sible undesirable effects of the numerical discretization are
not studied or addressed in this work. §B provides some
critical implementation details for the CNN regressing the
local pre-weights of the multi-Gaussian regularizer based
on an input image. Lastly, §C provides details on how the
synthetic data for our synthetic experiments was created.

A.1. Localized multi-Gaussian kernels

Starting from a sum of kernels
∑N−1

i=0 wiGi, we let the co-
efficient wi be spatially varying. In order to ensure the dif-
feomorphic property of deformations, we set the weights
wi(x) = Gσsmall ⋆ ωi(x) + εi, where ωi(x) are pre-weights
which are convolved with a Gaussian filter with small stan-
dard deviation and εi is a small positive real that acts as a
constant offset parameter6. We have

RegvSVF = λ⟨m0, v0⟩+ λOMT

∫
OMT(w(x)) dx +

λTV

√N−1∑
i=0

(∫
γ(∥∇I0(x)∥)∥∇ωi(x)∥2 dx

)2

, (A.1)

where m0 and v0 are the initial momentum and vector field,
respectively. Note that the partition of unity defining the
metric, intervenes in the L2 scalar product ⟨m0, v0⟩ since,
with εi > 0 a positive offset,

v0(x) = (K(w) ⋆ m0)(x)

=

N−1∑
i=0

√
wi(x)

∫
y

Gi(|x− y|)
√

wi(y)m0(y) dy , (A.2)

whose spatial smoothness is enough to guarantee the defor-
mation to be diffeomorphic. Due to the convolution of the
pre-weights, the vector field v0 has a bounded norm in the
space of C1 vector fields which implies that its flow is a
diffeomorphism at every time. In fact, we have:

Proposition 1. The minimization of the objective functional
(A.1) over a collection of image pairs provides diffeomor-
phic deformations for every pair of images. At every stage
of the optimization procedure, the deformations are guar-
anteed to be diffeomorphic.

6We enforce this small positive constant by clamping the pre-weights
to [ϵ, 1]. One could also directly integrate this into the weighted linear
softmax definition by clamping to [ϵ, 1] instead of [0, 1].

Proof. We have the existence of a constant K such that

∥f∥C1 ≤ K∥f∥Hi
≤ K∥f∥HN

, (A.3)

for every f ∈ HN .

Denote by Φ : (I,m) ↦→ ω the nonlinear map learnt by
the neural network. At every step of the optimization, and
at convergence (for a finite sample of pairs of images, each
pair is denoted by the index j), the functional (A.1) is fi-
nite, which implies that Φ(Ij ,mj) is pointwisely bounded
on the domain and is in TV , therefore, Gsmall ⋆ wi has a
bounded C1 norm, as well as

√
wi since wi > εi > 0. In

addition, Ej = ⟨mj ,K(w)mj⟩ is also finite and gives an
upper bound for ∥GN ⋆ (wimj)∥HN

. Thus, we have

∥
N−1∑
i=0

√
wi(x)Gi(|x− y|)

√
wi(y) ⋆ mj∥C1

≤ KN sup
i=1,...,N

(∥
√
wi∥C1∥

√
wimj∥HN

) . (A.4)

Therefore, the norm of the velocity field v(x) =√
wi(x)Gi(|x−y|)⋆√wimj is bounded in C1 and its flow

is a diffeomorphism.

Also, there is a corresponding variational derivation of the
spatially varying kernel with the square root which is pre-
sented next.

A.1.1 Variational derivation

Let us detail the variational definition of the spatially vary-
ing kernel used in Equation (A.2). Consider

∥v∥2H = inf

{
N−1∑
i=0

∥vi∥2Hi

⏐⏐⏐ N−1∑
i=0

√
wivi = v

}
. (A.5)

Using Lagrange multipliers, we get critical points of the
functional

N−1∑
i=0

1

2
∥vi∥2Hi

+ ⟨p,
N−1∑
i=0

√
wivi − v⟩ , (A.6)

therefore we get

Livi + wip = 0 ∀i = 0, . . . , N − 1 , (A.7)

where Li is the inverse of the kernel Gi. Hence, there exists
p such that

∥v∥2H =

N−1∑
i=0

⟨Gi
√
wip,

√
wip⟩

for the norm. Moreover, since vi = Gi
√
wip, we have

v =

N−1∑
i=0

√
wiGi(

√
wip) . (A.8)



B. Implementation details

CNN initialization/penalty. Directly using the CNN as de-
scribed in §3.1.1 does, in our experience, not lead to sta-
ble estimation results for the weights. Proper initialization
and penalizing undesirable weights is therefore essential.
Specifically, we use the following approaches:

1) Initialization: We initialize all bias terms to zero and
use the initialization scheme from [19] for the convo-
lutional weights. For the last batch normalization layer
we initialize the slope to a small value (0.025) to avoid
massive weight changes at the beginning as the regis-
tration is very sensitive to such changes.

2) Weighted linear softmax input penalty: As the
weighted linear softmax function clamps inputs, val-
ues within the clamping range will no longer produce
gradients. In our experiments this was a highly prob-
lematic behavior as it appeared to lead to cases where
one could not easily recover from poor locations in the
input space to the weighted linear softmax7. Hence,
we penalize the inputs when they are outside the [0, 1]
range as follows:

rp(z) =

N−1∑
i=0

(
wi + zi − z − clampϵ,1(wi + zi − z)

)2
.

(B.1)

Here, clampϵ,1 clamps values to the interval [ϵ, 1]. An
ϵ > 0 is required as the square root is not differentiable
at zero. This penalty is integrated over all of space and
added to the overall registration energy, i.e.,

RP(z(x)) =

∫
rp(z(x)) dx . (B.2)

We did not experiment with weightings of this term
and simply added it as is. In practice this appeared to
be fine (but may warrant further investigation) as the
term results in zero penalty when the input values to
the weighted linear softmax are not clamped and it is
operating in its linear regime.

3) Weight decay: We use a small weight decay [17] (set
to 1e-5) applied to all the network weights. However,
we did not extensively experiment with this parameter.
Hence, its practical necessity is not clear to us at the
moment. We added it to mitigate possible drift in the
estimated parameters (e.g., very large weights of the
convolutional filters).

7Similarly, if one uses a standard softmax function then exponential
terms may result in very small gradients.

C. Generation of synthetic data

To be able to validate with respect to a known ground truth
we construct synthetic data as follows:

1) We generate concentric circular regions with random
radii and associate different multi-Gaussian weights
to these regions. We associate a fixed multi-Gaussian
weight to the background.

2) We randomly create vector momenta at the borders of
the concentric circles. Specifically, we randomly cre-
ate 10 different sectors and, within each sector, we ran-
domly create either all positive or negative momenta
orthogonal to the circle boundaries. These momenta
are smoothed afterwards.

3) Based on 2), we create a deformation.

4) We randomly create a noisy image of the same dimen-
sion as the image of the concentric circles and smooth
it. We add this smoothed noise image to the concentric
circle image and deform it and its associated weights
given the deformation from 3). The resulting image
is our synthetic source image. We also transform the
image without noise.

5) We repeat steps 2) to 4), starting from the synthetic
source image without noise. The resulting deforma-
tion is applied to the (noisy) synthetic source image to
create the synthetic target image.

These steps are repeated to obtain a desired set of image
pairs.
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