
Special Session: The Future of IoT Security

Sibin Mohan∗, Mikael Asplund†, Gedare Bloom‡, Ahmad-Reza Sadeghi¶,
Ahmad Ibrahim¶, Negin Salajageh∥, Paul Griffioen∗∗ and Bruno Sinopoli∗∗

∗University of Illinois at Urbana-Champaign, †Linköping University, ‡Howard University,
¶Technische Universität Darmstadt, ∥Visa Research, ∗∗Carnegie Mellon University

{∗sibin@illinois.edu, †mikael.asplund@liu.se, ‡gedare@scs.howard.edu, ¶ahmad.sadeghi@trust.tu-darmstadt.de,
¶ahmad.ibrahim@trust.tu-darmstadt.de, ∥msalajeg@visa.com, ∗∗pgriffi1@andrew.cmu.edu, ∗∗brunos@ece.cmu.edu}

Abstract—The Internet-of-Things (IoT) is a large and complex
domain. These systems are often constructed using a very diverse
set of hardware, software and protocols. This, combined with the
ever increasing number of IoT solutions/services that are rushed
to market means that most such systems are rife with security
holes. Recent incidents (e.g., the Mirai botnet) further highlight
such security issues.

With emerging technologies such as blockchain and software-
defined networks (SDNs), new security solutions are possible in
the IoT domain. In this paper we will explore future trends
in IoT security: (a) the use of blockchains in IoT security, (b)
data provenance for sensor information, (c) reliable and secure
transport mechanisms using SDNs (d) scalable authentication
and remote attestation mechanisms for IoT devices and (e)
threat modeling and risk/maturity assessment frameworks for
the domain.

I. INTRODUCTION

It is estimated that the number of sensors and corresponding
devices in the Internet-of-Things (IoT) domain is projected
to grow beyond 1 trillion devices [1] by 2030 (and beyond).
While this opens up immense economic opportunities and
improved services or even significant changes to society, the
proliferation of such devices can also raise significant security
concerns. In fact, many recent incidents have either targeted
the IoT systems [2] or used them as gateways to launch
attacks against other systems [3], [4]. Security experts believe
that such attacks and incidents will increase in quantity and
efficacy in the near future. With the advent of ‘fog’ and ‘edge’
computing [5] as well as the increased use of new technologies
such as blockchains [6], the problems are only expected to
worsen.

As mentioned earlier, IoT systems generate a lot of data
and hence security solutions need to focus on not just the
computational nodes but also the network that carries the data.
In addition, new techniques are required that allows users
and/or designers to check the provenance of the data that is
generated. Establishing trust for the computational nodes in
the IoT system will also improve the trust in the data that is
generated; so does the increased resiliency in the underlying
networks that carry this information (either between local
nodes or even across larger geographical distances).

Hence, improving the security for IoT systems and devices
will require efforts along multiple lines – from fundamental
new theories on using blockchains and related technologies for
improved logging and tracking (Section II) to better attestation
(Section VI) and authentication (Section V) mechanisms for
IoT devices. Understanding the threats faced by such systems
and developing methods to mitigate them are important (Sec-
tion VII). Ensuring the integrity and trustworthiness of sensor
data is important for maintaining the integrity of IoT systems
(Section III) and so is the reliable transportation of such data
(Section IV).

In this paper we explore these topics with the perspective
of building secure IoT systems for the future. We identify
some of the important issues and present initial thoughts and
approaches to solving them. We hope that this will provide
useful hints and directions to designers (and users) of such
systems.

II. BLOCKCHAINS FOR IOT SECURITY

Blockchain technology has become one of the more preva-
lent concepts in the area of distributed computing. However, it
is sometimes difficult to judge how well this technology is able
to meet the needs and requirements of a particular application.
Fueled by a speculation economy, anti-establishment senti-
ments as well as media and marketing logic, blockchains have
been hailed as the solution to all sorts of problems, including
that of IoT security. But is this interest warranted?

In its most pure form, a blockchain is simply a data
structure composed of data blocks where each block links
to the previous block by containing a hash of the former’s
contents. Moreover, this data structure is typically distributed
among a set of nodes thus forming a distributed database. The
key property of this database compared to traditional database
systems is the guaranteed absence of modifications to the data
by a minority of the participants in the system.

There are a number of use cases for such storage mecha-
nisms that are applicable to IoT security. For example, logging
device behaviour in a blockchain over time allows security
monitoring as well as ensuring that system resources are
fairly distributed over time. Consider the case of vehicular
platooning where the second vehicle in a platoon gains much
more speed than the leading vehicle. Having a global record of
vehicle behaviour can be used to enforce some level of fairness
in such a system. Another interesting use case for blockchains
is to keep track of device status information. Basic information
such as firmware version, or more detailed information such as
current configuration parameters or activity levels stored over
time can be used to detect anomalies in the device’s operation.

So what is stopping blockchains from already being widely
adopted as a basic IoT technology and potentially for security
in such systems? One of the main challenges to deploy
blockchains in the context of IoT devices is to control the
creation of blocks in the blockchain (which is sometimes
inaccurately referred to as a consensus layer). So far, there are
three main approaches to solve this problem – proof-of-work
(PoW), proof-of-stake (PoS) and permissioned systems. Each
of these approaches come in many flavours and they differ
greatly in terms of timing performance, scalability, resource
efficiency and architectural requirements.

For IoT devices, PoW is clearly not feasible since it con-
sumes huge amounts of resources. PoS is primarily adapted

1



to financial applications and can be difficult to apply in many
IoT domains. This leaves us with the approach of using a
closed, permissioned system (e.g., the Hyperledger Fabric).
Essentially, such an approach brings us back to a more
traditional view of distributed computing where shared state
is managed through a consensus protocol such as PBFT.

However, byzantine fault tolerance is still hampered by
considerable performance issues since every transaction is
subject to a voting process among the participating entities
in the consensus algorithm. While there are lots of ways this
process can be optimized, we lose some of the elegance of
the probabilistic PoW mechanism. The so-called Nakamoto
consensus used in many cryptocurrencies allows as much as
50% malicious nodes in an open environment (not considering
selfish miners), whereas deterministic byzantine fault tolerance
can only tolerate one-third of the nodes being intruders.

One potential way forward to solve this conundrum is
to continue exploring the probabilistic approach to leader
election, but adapted to an IoT setting. This will require
solving several sub-problems, including (i) ensuring proper
group membership information that prevents sybil attacks, (ii)
limiting the amount of damage that can be caused by malicious
nodes that are temporarily in control of block creation and (iii)
modelling the level of probabilistic security achieved under
different parameter settings, allowing proper choices to be
made in the system design.

III. TRUSTWORTHY SENSOR DATA

A major challenge in IoT security is ensuring the in-
tegrity and trustworthiness of sensor data streaming from the
edge. Sensor data integrity is necessary to prevent or detect
sensor attacks. Securing the integrity of sensors in the IoT
is challenging because of the fundamental difference in the
design patterns of IoT applications in contrast to general-
purpose computing [7]. Sensor data integrity can be achieved
through one of three accepted approaches: (1) cryptographic
integrity, (2) Byzantine agreement, and (3) data provenance.
Each approach has benefits and drawbacks.

Cryptographic integrity is widely used in general-purpose
computing with cryptographic hash functions and digital sig-
natures. Unfortunately, cryptographic algorithms tend to incur
high resource costs in both time, space, and power. The re-
source constraints of IoT devices makes adoption of traditional
cryptography difficult. An active research area to explore in
addressing this difficulty is lightweight cryptography [8].

Byzantine agreement solves the Byzantine Generals Prob-
lem, which is to achieve consensus in a distributed system
among honest nodes despite a fractional number of Byzantine
nodes. Byzantine fault tolerant systems can handle up to one-
third of the nodes of a system acting arbitrarily (malicious), but
these solutions are tailored for large-scale distributed systems,
and are not suitable for resource-constrained IoT edge de-
vices. Relaxing the consensus guarantees leads to approximate
Byzantine agreement algorithms, which show promise for IoT
sensor fusion [9].

Data provenance provides a complete history of transfor-
mations made to data. This history provides traceability and
transparency for the source and modifications of data, and
can establish the data’s trustworthiness and integrity [10]. Two
provenance data models focused on IoT are PAIoT [11], [12]
and ProvThings [13]. The main problem with provenance is
that maintaining a complete history easily leads to exhaustion

of available storage space. Log files of events consume linear
space, a fixed cost per log entry, while provenance graphs
derived from log files may consume polynomial space based
on the graph size. Existing work addresses this problem
through compression [14], [15] and policy-based pruning [16].
It is unclear whether or to what extent the prior art is applicable
for IoT edge devices, which (1) have storage constraints that
even (lossless) compression may not satisfy, and (2) do not
have any uniform policy to leverage for guiding pruning
algorithms. Other aspects of IoT provenance that require
further investigation include ensuring security and privacy of
the provenance itself [17].

Solutions for sensor data integrity and trustworthiness may
also combine multiple approaches. For example, blockchains
use both cryptographic integrity, by way of Merkle trees, and
Byzantine agreement using Nakamoto Consensus. More work
is needed in all three solution areas for building trust and
ensuring integrity of sensor data in ways that adhere to the
low-cost, resource-constrained requirements of IoT devices.

IV. RELIABLE NETWORKS FOR IOT SYSTEMS

IoT systems often carry critical data that must be transferred
across the network (either local networks or even across the In-
ternet). This could include critical sensor information, financial
data (e.g., payment transactions), important audio/video feeds,
control commands, etc. Oftentimes, such data streams/net-
work flows will require isolation and performance guarantees
to ensure that (a) any design constraints (e.g., end-to-end QoS
guarantees such as maximum time for a payment system to
respond to a user action) are met and (b) malicious actors
are unable to either peer into the data streams or even disrupt
them. There have been multiple instances of IoT networks
being targeted by attackers – from distributed denial of service
(DDoS) aimed at IoT networks [18] to IoT devices being
used at botnets to launch other attacks (e.g., Mirai [3]). Such
indiscriminate attacks or worse, targeted attacks that aim to
destabilize critical flows/information on the IoT network, can
result in devastating consequences to the IoT systems, the
operators, or even other, connected, systems. In this section,
we will discuss techniques to use software defined networks
(SDNs) to manage IoT networks – (a) from improving the
management of the network flows in such systems to (b) better
isolation and hence, security of flows (especially the critical
flows) in such systems and (c) even improved resiliency to
failure/attacks for critical flows.

Software-defined networks [19] have become increasingly
popular for managing networks of all sizes – from cloud
and data computing systems (e.g., [20], [21]) to embedded
and real-time systems [22]. SDNs allow for global visibility
into the network and also for better management and control.
This is achieved by separating the control plane from the
data plane – a (logically) centralized controller (e.g., RYU,
OpenDaylight, etc. [23]) decides what actions must be taken
for each flow (or even each packet of every flow in the system)
SDN switches just implement the actions/rules that are given
to them by the controllers.

SDNs have been proposed for use in IoT systems in the
past (e.g., [24]). There also exists work in improving network
security using SDNs in particular targeting the DDoS attacks
[25], [26] and even network monitoring [27]. There also exists
some work on applying security techniques to IoT networks
using SDNs (e.g., [28]). None of this work considers the

2



criticality of certain flows in the IoT network. Such flows will
require not just isolation guarantees (so that adversaries cannot
tamper with these flows/packets) but also improved resiliency
– if there is an attack or a link/node failure, then these flows
must still be delivered to their destinations while still meeting
their end-to-end QoS guarantees.

Hence, we believe that SDNs can be used to improve the
resiliency of critical flows in IoT systems. This can be achieved
using a three-pronged approach:

1) Using global visibility for better management. The crit-
ical flows (e.g., payment/financial information, control
commands, etc.) will often come with design constraints
such as quality of service (QoS) guarantees. One example
could be that control commands in industrial internet
of things (IIoT) or power systems be delivered to their
destinations (often robots, conveyors, generators, etc.)
within a predetermined amount of time. Failure to do
so could result in catastrophic failures in such systems.
Hence, we intend to use the fact that the SDN controller
has detailed knowledge about the state of the system (the
amount of data on the network, the link capacities, etc.)
to find routes through the network that meet the given
QoS guarantees.

2) Improved security via isolation. If malicious actors are
able to identify the critical flows in the network then
there is a possibility that such attackers could tamper
with the packets of such flows. Hence, there is a need
to improve the isolation for such packets – essentially
make sure that even in the presence of attacks (e.g.,
DoS), these packets get through the network unmolested.
The controller might need to carve out special resources
(links, queues on switches, etc.) specifically for these
packets for the lifetime of the flow. The controller will
also need to track what other flows are entering the
network and ensure that they do not affect the behavior
of the critical flows – i.e. they don’t impinge on the
resources allocated to the latter.

3) Resiliency against attacks/failures. If links/switches either
get congested (either due to increased activity or even
DoS attacks) or fail then there is a need to ensure that
the critical flows as not affected. Hence, such flows must
automatically be re-routed so that they still meet their
QoS guarantees. During this process of re-routing, new
paths must be calculated and resources allocated, on the
fly, as mentioned above.

While there exists initial work on providing end-to-end QoS
guarantees [22], this early solution is limited to real-time
systems with stringent timing requirements and isolated/fully
contained networks. In contrast, network flows in IoT systems
may have to traverse across multiple networks and even the
Internet. Hence, we need to adapt such solutions to more
heterogeneous, open, networks.

One of the challenges to calculating end-to-end routes for
critical flows in larger networks (or even across the Internet)
is that a single SDN controller may not have visibility into the
state of the entire network. Hence, all of the above require-
ments might be hard to guarantee. One way to get around this
problem could be to build upon recent research in distributed
SDN controllers (e.g., [29]–[31]). Using such solutions, we
can then break the problem into smaller problems – (a) finding
routes, checking for malicious behavior and finding alternate
paths (during failures/attacks) in smaller networks and (b)

composing the solutions to solve the end-to-end problem for
the critical flows.

V. SCALABLE AUTHENTICATION FOR IOT DEVICES

While authenticating users has been very well studied and
established in the security field, authentication of embedded
devices to each other and to web services is still an open
challenge. Whether embedded devices should be managed by
private or public certificate authority or even certificates are
the answer is not clear yet. Specially, in the case of smart
homes and everyday IoT devices that lack secure elements,
have limited user interface, and suffer from hardware/ software
limitations, designing a secure, scalable, and user-friendly (or
better yet user-free) authentication system is challenging.

The paradigm of something “you know, you have, or you
are” has been practiced for the user authentication, however,
the situation is quite different for the embedded devices. In
many cases, there is no user interface on a device to enter
a password (something you know) or measure biometrics
(something you are). Similarly, there might not be a port to
input a USB key (something you have). The idea of storing a
secret key on the device (as a measure of what you know) is
not always reliable since there is no secure element (a trusted
environment) present in most cases.

Compromising a user identity is considered a threat in
security, however, physical threats are less often considered
for users and are out of the scope of the threat model. The
same principle does not hold for embedded devices. A phone
can be stolen, reverse engineered (SW and HW), probed for
keys using memory attacks. If a device is "borrowed" for a
few hours, an attacker could infer data about your device via
power analysis. Such physical threats make embedded devices
more prone to compromise, and impersonation attacks, and as
a result, it makes authentication more challenging.

Another challenge with devices, for example in a smart
home setting or a smart city scenario, is that they are part of
a high-churn network. As the user goes from home to work,
the devices around his phone will change. As a result, any
authentication scheme that relies on a particular device (e.g.
home router) as a root of trust would not work. Therefore,
any distributed authentication protocol for smart devices must
account for changes in the network and for new devices being
added to the network. For example, a key sharing scheme with
high tolerance for small threshold would be quite suitable. On
the other hand, identity management is not a major problem
as the devices are not added or removed that often.

Accounting for all these challenges, we would argue that
any authentication method designed for embedded systems in
the heterogeneous IoT settings could be secure and effective if
it achieves the following properties: 1) scalable to the number
of devices, and type of devices; 2) decentralized so that devices
are not tied to one specific device for authentication; 3) risk-
aware and risk-tolerant so that one compromised device would
not jeopardize the whole system. To achieve these goals, one
avenue to explore is the multi-device nature of IoT settings,
where secret sharing schemes, and secure multi-party com-
putation techniques could strengthen the system. Moreover,
multi-device algorithms bring with themselves redundancy and
avoid single point of failure.

VI. REMOTE ATTESTATION FOR IOT DEVICES

Establishing trust in a world full of IoT devices is extremely
critical, as attacks targeting these devices are becoming more

3



prevalent. Remote attestation is a security service that allows
a remote, potentially infected, device (denoted by prover) to
send an authentic status report to a trusted party, called verifier,
to demonstrate that it is in a known and, thus trustworthy,
state. Conventional attestation schemes [32]–[35] rely on the
existence of a secure co-processor (e.g., a TPM [36]) to
ensure the authenticity of the attestation report. Such schemes
are most suitable for advanced computing platforms, such as
smartphones, personal computers, and servers. However, they
are not applicable to embedded devices that do not support
such complex and expensive hardware setup.

Another approach would be to apply software-based attes-
tation that requires neither secure hardware nor cryptographic
secrets [37]–[40]. The security of software-based attestation is
rather based on the limited computational power of the prover
and a strict estimation of the time required to generate a valid
attestation report. Unfortunately, software-based attestation
methods rely on strong assumptions, such as the adversary
being passive while the attestation protocol is executed and
optimality of the attestation algorithm and its implementa-
tion. Such assumptions are hard to achieve in many realistic
settings [41]. Consequently, approaches for practical remote
attestation that are based a lightweight hardware trust anchor
were devised.

Recent research efforts proposed multiple lightweight hard-
ware security architectures for low-end embedded devices
based on minimal hardware features such as a read-only
memory (ROM) and a simple memory protection unit (MPU),
e.g., SMART [42] and TrustLite [43]. These architectures
present the trust anchor that allows secure remote attestation
for many embedded devices.

However, conventional attestation is static in general, it
provides the verifier with an authentic measurement (typically,
a hash) of the software binaries, i.e., it provides a proof that
the correct software was loaded on the prover for execution.
However, it does not capture runtime attacks that hijack the
program’s control-flow (e.g., return-oriented programming –
ROP [44]). Recently progress has been made in tackling the
static character of conventional remote attestation through the
development of control-flow attestation [45]–[47]. Control-
flow attestation allows a prover to attest the exact control-
flow path of an executed program to a remote verifier. Thus,
enabling the detection of runtime attacks that lead to an
unintended program execution, e.g., non-control-data attacks.

A second problem is that remote attestation solutions are
geared for a single-prover setting, i.e., do not securely scale
to large swarms of embeded devices such as autonomous sys-
tems (e.g., drones, vehicles). Several recent efforts [48]–[51]
yielded attestation methods for swarms of devices providing
secure swarm attestation. Swarm attestation allows attesting
a million-device swarm in order of seconds [48], provides
resiliency against denial of service (DoS) attacks [49], and
is capable of detecting physical attacks that are more relevant
in device swarms [50], [51].

In the following we will briefly consider each of these
aspects. In particular, we describe lightweight security ar-
chitecture for embedded devices, and explain control-flow
attestation as well as swarm attestation.

A. Lightweight Security Architectures

Diversity of embedded devices presents a challenge for
designing hardware security solutions for such devices. Such

hardware security aims at establishing trust in embedded de-
vices and guarantee that a device is in a known and trustworthy
state by enabling secure remote attestation.

SMART [42] is a security architecture for low-end embed-
ded devices which allows establishing a dynamic root of trust
on a remote device. SMART enables secure remote attestation
based on two simple components: (1) a read-only memory
(ROM), which stores program code used for attestation and
the attestation key, and (2) a simple memory protection unit
(MPU), which controls access to ROM where the key is
stored. Both ROM and MPU are considered minimal hardware
requirement for remote attestation and they are easy and
inexpensive to realize. The concept of SMART is that program
code in ROM cannot be altered by any software running on
the device, which ensures integrity of attestation code. On the
other hand, MPU grants access to the key only to ROM code
by checking whether the program counter is within the address
space of ROM whenever the key is accessed.

Based on Intel’s Siskiyou Peak research platform,
TrustLite [43] enables isolation of code executing on em-
bedded devices. Isolated code chunks on TrustLite are called
trustlets. The isolation of trustlets is ensured by the Execution-
Aware Memory Protection Unit (EA-MPU), which can be seen
as a generalization of SMART’s MPU. The main difference is
that memory access control rules of EA-MPU in TrustLite
can be programmed as required by trustlets in contrast to
memory access control rules of SMART’s MPU which are
static. Authenticity and confidentiality of both code and data
of trustlets are ensured via secure boot.

B. Towards Runtime Attestation

Static attestation typically computes the hash of binary code
to be attested, thus only ensuring the integrity of binaries and
not the runtime behavior of the underlying code.

C-FLAT [45] presents the first step towards runtime at-
testation on embedded devices. In addition to static attesta-
tion, C-FLAT captures the runtime behavior of a program
by measuring its control-flow during execution. It allows
the prover to efficiently compute an aggregated authenticator
of the program’s control-flow and report it to the verifier,
which can then determine whether application’s control-flow
has been compromised. LO-FAT [46] aims at improving the
performance of C-FLAT on the prover side by leveraging
hardware assistance to track control-flow events and per-
forms hash calculations parallel to program execution. LO-
FAT supports control-flow attestation of legacy code since
binary instrumentation is not required. Finally, in addition to
detecting control-flow attacks, ATRIUM [47] is capable of
detecting physical time-of-check-time-of-use (TOCTOU) on
attestation that allow a prover to execute a different code than
that reported to the verifier. ATRIUM [47] detects ROP and
TOCTOU attacks by performing both static and control-flow
attestation concurrently at runtime.

C. Swarm Attestation

Based on lightweight hardware security architecture for
low-end embedded devices such as SMART [42] and
TrustLite [43], swarm attestation enables secure and efficient
attestation of large swarms of embedded devices.

SEDA [48] is the first efficient attestation protocol for large
swarms. It distribute attestation burden across the network,
allowing neighbors to attest each other and aggregate the

4



attestation results. To attest a swarm, the verifier chooses a
device as initiator and sends it a random challenge, which is
then flooded in the network forming a spanning tree rooted at
the initiator. Each device generates an attestation report and
sends it to its parent for verification. This process ends when
the initiator forwards the aggregated attestation report of the
entire swarm to the verifier. SANA [49] presents a novel cryp-
tographic primitive, called Optimistic Aggregate Signatures
(OAS). Based on OAS, SANA proposes an attestation protocol
for swarms of embedded devices, which is more resilient to
physical and denial of service (DoS) attacks than SEDA. In
order to mitigate DoS attacks on the network, SANA requires
the verifier to possess a secure attestation token. LISA [52]
presents two concrete implementations of SEDA. It aims at
realizing swarm attestation in real networks and investigating
its applicability. LISA focuses particularly on the construction
of the spanning tree for attestation.

DARPA [50] aims at detecting both software manipulations
and physical attacks in swarms of embedded devices. It
extends swarm attestation with an absence detection protocol
based on periodic network-wide heartbeats. Based on absence
detection, it enables devices in the swarm to detect physical
attacks on their peers and report it to the verifier. SCAPI [53]
overcomes the limitations of DARPA by devising an efficient
mean of detecting physical attacks, which is based the frequent
update of a session key that is shared between devices and used
for swarm attestation. Finally, US-AID [51] combines con-
tinuous attestation of neighbors and periodic local heartbeats
with a key exchange mechanism to detect both software and
physical attacks in autonomous systems with minimal cost.

D. Challenges

Establishing trust in remote IoT devices is becoming in-
creasing crucial. A lot of research has been done on secure
remote attestation. Nevertheless, several challenges in emerg-
ing IoT scenarios remain open requiring further research.
Examples include securing remote attestation under stronger
adversary models and the detection of more sophisticated
runtime attacks such as data-oriented programming (DOP)
attacks. Another challenge facing attestation is its applicability
to autonomous networks where extremely mobile embedded
devices need to act as both provers and verifiers.

VII. THREAT, RISK, AND MATURITY ASSESSMENT

FRAMEWORKS FOR THE INTERNET OF THINGS

An increasing number of everyday devices are being con-
nected to the Internet, creating a network of physical devices,
home appliances, and other items embedded with unique sets
of electronics, software, sensors, and actuators. This rapid
growth in the Internet of Things (IoT) creates opportunities for
more direct integration of the physical world into computer-
based systems but also introduces a plethora of risks. IoT
devices, whether they be part of smart transportation systems,
thermostats that adapt to daily lifestyles, or medical devices
that can monitor a patient in real time, are not always built
with security in mind, leaving them extremely vulnerable to
attacks.

A. Threats and Risks in IoT Environments

An example of a pervasive IoT attack was the Mirai botnet,
where an attacker gained unauthorized access to numerous IoT
devices including IP cameras and older routers. These infected

devices were used to make much of the Internet unavailable by
overwhelming Dyn, a domain name system (DNS) provider.
The malicious code took advantage of devices running out-of-
date versions of the Linux kernel, relying on the fact that most
users do not change the default usernames and passwords on
their devices [54].

Due to the ease with which large numbers of IoT devices
may be compromised and their direct relationship to physical
processes, this attack among many others motivates the need
for organizations to assess threats and risks in IoT environ-
ments, regardless of the role organizations play within an
IoT ecosystem. Possible roles include IoT consumers, IoT
producers, and/or platform operators that provide software that
customers connect their devices to. Each role comes with its
own set of security and privacy risks, affecting the actions or
controls an organization takes to mitigate those risks.

B. Current Threat Modeling and Risk Assessment Frameworks

Risk is a measure of the extent to which an entity is
threatened by a circumstance or event, and it is a function
of the likelihood of the event and the adverse impact caused
by the event. Risk assessment is commonly seen as a means
to identify, estimate, and prioritize risk to national, organiza-
tional, and individual operations and assets. The traditional
approach to risk assessment has been to identify relevant
threats to organizations, internal and external vulnerabilities
to organizations, the impact or harm to organizations that
may occur if vulnerabilities are exploited, and the likelihood
that harm will occur due to a successful attack [55]. After
the identified risks have been prioritized, appropriate and
effective actions and controls are chosen that mitigate those
risks. Several popular and well-regarded approaches to threat
modeling and risk assessment include STRIDE [56], PASTA
[57], Trike [58], NIST SP800-30 [55], ISO/IEC 27005 [59],
IEC/FDIS 31010 [60], CRAMM [61], FRAP [62], COBRA
[63], CORAS [64], and OCTAVE [65].

Since existing threat modeling and risk assessment method-
ologies were established prior to the development of the IoT,
they do not always cater to the complexity and pervasiveness
of IoT ecosystems and the new risks they pose. These inad-
equacies present themselves in a few ways. Firstly, these ap-
proaches are currently based on periodic assessment, assuming
that systems do not change significantly in a short period of
time. However, this assumption does not hold well in the IoT
where there is much variability in system scale, dynamics,
and coupling. Secondly, current risk assessment approaches
require a large amount of knowledge about organizational
assets, threats, likelihoods, and impacts which is difficult to
obtain in IoT ecosystems due to limited system knowledge and
history of attacks. Thirdly, these approaches fail to thoroughly
consider the relationships, processes, and couplings between
IoT devices, focusing instead on individual assets, devices,
and communication platforms. Lastly, current risk assessments
simply view organizational assets as things of value as opposed
to platforms from which an attack may be launched as in the
case of the Mirai botnet [3].

C. IoT Threat Modeling and Risk Assessment

Due to these inadequate approaches, it is important to estab-
lish new threat modeling and risk assessment frameworks that
analyze security and privacy risks unique to IoT ecosystems.
For instance, to design and leverage an IoT attack taxonomy

5



as the basis for threat modeling and risk assessment. The IoT
attack taxonomy could be comprised of a comprehensive list
of atomic attacks – where any IoT incident is composed of a
series of atomic attacks. Any atomic attack can be broken
down into four parts, each of which is associated with a
particular dimension of the IoT attack taxonomy: an attacker
with a specific set of 1) assets carries out a particular 2)
action to exploit one or more 3) vulnerabilities, compromising
a particular set of 4) properties.

By using an IoT attack taxonomy as the foundation for
threat modeling and risk assessment, we can comprehensively
characterize and break down the entire known IoT attack
space. Furthermore, the IoT attack taxonomy can be con-
sistently updated as IoT ecosystems evolve, allowing threat
modeling and risk assessment to be modular and respon-
sive to changes in IoT technology while at the same time
retaining a similar high-level approach and methodology of
existing threat modeling and risk assessment frameworks. In
addition, such an approach considers all the relationships and
couplings between elements of the IoT taxonomy to allow for
a comprehensive vulnerability and device-centered evaluation
of threats and risks. Lastly, this approach to risk and maturity
assessments is quantitative in nature, providing a more robust
and less subjective analysis of risk by using historical data
and expert opinion as inputs to detailed quantitative risk
functions. Furthermore, a quantitative approach to maturity
assessment allows consultants to conduct sensitivity analyses,
giving them a more detailed view and understanding of the
controls that need to be implemented to maximally decrease
an organization’s residual risk.

By establishing and designing new threat modeling, risk,
and maturity assessment frameworks for IoT ecosystems,
organizations will be able to receive accurate information
about which actions and controls to implement as safeguards
or countermeasures to prevent and protect against attacks. This
information allows organizations to make informed decisions
as to where regulatory, financial, and time investments should
be made, the result of which may protect consumers and
producers of IoT devices from the plethora of attacks that have
the potential to cause catastrophic physical harm and damage.

VIII. CONCLUSION

Security and privacy of IoT devices and services is already
of significant concern. Designers of such systems need to
bake in security from design time. An ever increasing rush to
release new products into the market leaves multiple security
holes in IoT devices. This is only expected to increase in the
near future. An understanding of some of the requirements
and trends in IoT security should aid designers and users to
develop/use such systems in a better fashion.

ACKNOWLEDGEMENTS

The material in this paper is based upon work sup-
ported in part by the U.S. Department of Energy (DoE)
awards DE-OE0000679 and DE-OE0000780 and National
Science Foundation (NSF) grants NSF-CPS-1544901 and NSF
SaTC 1718952; NSF CNS-1646317 and the U.S. Department
of Homeland Security grant 2017-ST-062-000003. The re-
searchers gratefully acknowledge the support of the Risk and
Regulatory Services Innovation Center at Carnegie Mellon
University sponsored by PwC. Any findings, opinions, recom-
mendations or conclusions expressed in the paper are those

of the authors and do not necessarily reflect the views of
sponsors.

REFERENCES

[1] S. Kolozali, M. Bermudez-Edo, D. Puschmann, F. Ganz, and P. Barnaghi,
“A knowledge-based approach for real-time iot data stream annotation
and processing,” in Internet of Things (iThings), 2014 IEEE Inter-
national Conference on, and Green Computing and Communications
(GreenCom), IEEE and Cyber, Physical and Social Computing (CP-
SCom), IEEE. IEEE, 2014, pp. 215–222.

[2] M. M. Hossain, M. Fotouhi, and R. Hasan, “Towards an analysis of
security issues, challenges, and open problems in the internet of things,”
in Services (SERVICES), 2015 IEEE World Congress on. IEEE, 2015,
pp. 21–28.

[3] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[4] E. Bertino and N. Islam, “Botnets and internet of things security,”
Computer, no. 2, pp. 76–79, 2017.

[5] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: Architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, vol. 4, no. 5,
pp. 1125–1142, 2017.

[6] S. Huh, S. Cho, and S. Kim, “Managing iot devices using blockchain
platform,” in Advanced Communication Technology (ICACT), 2017 19th
International Conference on. IEEE, 2017, pp. 464–467.

[7] G. Bloom, B. Alsulami, E. Nwafor, and I. C. Bertolotti, “Design patterns
for the industrial Internet of Things,” in 2018 14th IEEE International
Workshop on Factory Communication Systems (WFCS), Jun. 2018, pp.
1–10.

[8] “NIST Lightweight Cryptography.” [Online]. Available: https://csrc.
nist.gov/Projects/Lightweight-Cryptography

[9] B. Ao, Y. Wang, L. Yu, R. R. Brooks, and S. S. Iyengar, “On Precision
Bound of Distributed Fault-Tolerant Sensor Fusion Algorithms,” ACM
Comput. Surv., vol. 49, no. 1, pp. 5:1–5:23, May 2016. [Online].
Available: http://doi.acm.org/10.1145/2898984

[10] E. Bertino, “Data Trustworthiness–Approaches and Research
Challenges,” in Data Privacy Management, Autonomous Spontaneous
Security, and Security Assurance, ser. Lecture Notes in Computer
Science. Springer, Cham, Sep. 2014, pp. 17–25. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-17016-9_2

[11] E. Nwafor, A. Campbell, and G. Bloom, “Anomaly-based Intrusion
Detection of IoT Device Sensor Data using Provenance Graphs,” in
1st International Workshop on Security and Privacy for the Internet-
of-Things, Orlando, Florida, USA, Apr. 2018.

[12] E. Nwafor, D. Hill, A. Campbell, and G. Bloom, “Towards a Provenance
Aware Framework for Internet of Things Devices,” in Proceedings
of the 14th International Conference on Ubiquitous Intelligence and
Computing, ser. UIC ’17. San Fransisco, CA, USA: IEEE Computer
Society, 2017.

[13] Q. Wang, W. U. Hassan, A. J. Bates, and C. Gunter, “Fear and Logging
in the Internet of Things,” in Proceedings of the NDSS Symposium, 2017.

[14] C. Wang, S. R. Hussain, and E. Bertino, “Dictionary Based Secure
Provenance Compression for Wireless Sensor Networks,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 27, no. 2, pp. 405–418,
Feb. 2016.

[15] Y. Xie, K.-K. Muniswamy-Reddy, D. D. E. Long, A. Amer, D. Feng, and
Z. Tan, “Compressing Provenance Graphs,” in 3rd USENIX Workshop
on the Theory and Practice of Provenance, Jun. 2011.

[16] A. Bates, K. R. B. Butler, and T. Moyer, “Take Only What You Need:
Leveraging Mandatory Access Control Policy to Reduce Provenance
Storage Costs,” in Proceedings of the 7th USENIX Conference on
Theory and Practice of Provenance, ser. TaPP’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 7–7. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2814579.2814586

[17] R. Hasan, R. Sion, and M. Winslett, “Introducing Secure Provenance:
Problems and Challenges,” in Proceedings of the 2007 ACM Workshop
on Storage Security and Survivability, ser. StorageSS ’07. New
York, NY, USA: ACM, 2007, pp. 13–18. [Online]. Available:
http://doi.acm.org/10.1145/1314313.1314318

[18] C. Zhang and R. Green, “Communication security in internet of thing:
preventive measure and avoid ddos attack over iot network,” in Proceed-
ings of the 18th Symposium on Communications & Networking. Society
for Computer Simulation International, 2015, pp. 8–15.

[19] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[20] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” IEEE Communications
Magazine, vol. 51, no. 11, pp. 24–31, 2013.

6



[21] D. Levin, M. Canini, S. Schmid, and A. Feldmann, “Incremental sdn
deployment in enterprise networks,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 473–474.

[22] R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam,
S. Mohan, and R. B. Bobba, “End-to-end network delay guarantees for
real-time systems using sdn,” in Real-Time Systems Symposium (RTSS),
2017 IEEE. IEEE, 2017, pp. 231–242.

[23] “List of sdn controller software,” https://en.wikipedia.org/wiki/List_of_
SDN_controller_software, [Wikipedia, Online, accessed Juy 30 2018.].

[24] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubrama-
nian, “A software defined networking architecture for the internet-of-
things,” in Network Operations and Management Symposium (NOMS),
2014 IEEE. IEEE, 2014, pp. 1–9.

[25] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking
(sdn) and distributed denial of service (ddos) attacks in cloud computing
environments: A survey, some research issues, and challenges,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 1, pp. 602–622, 2016.

[26] S. Lim, J. Ha, H. Kim, Y. Kim, and S. Yang, “A sdn-oriented ddos
blocking scheme for botnet-based attacks,” in Ubiquitous and Future
Networks (ICUFN), 2014 Sixth International Conf on. IEEE, 2014, pp.
63–68.

[27] A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, “Orchsec: An
orchestrator-based architecture for enhancing network-security using
network monitoring and sdn control functions,” in Network Operations
and Management Symposium (NOMS), 2014 IEEE. IEEE, 2014, pp.
1–9.

[28] F. Olivier, G. Carlos, and N. Florent, “New security architecture for iot
network,” Procedia Computer Science, vol. 52, pp. 1028–1033, 2015.

[29] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-domain
sdn controllers,” in Network Operations and Management Symposium
(NOMS), 2014 IEEE. IEEE, 2014, pp. 1–4.

[30] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[31] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an elastic distributed sdn controller,” in ACM SIGCOMM
computer communication review, vol. 43, no. 4. ACM, 2013, pp. 7–12.

[32] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and
J. Butterworth, “New results for timing-based attestation,” in IEEE
Symposium on Security and Privacy, 2012, pp. 239–253.

[33] D. Schellekens, B. Wyseur, and B. Preneel, “Remote attestation on
legacy operating systems with trusted platform modules,” Science of
Computer Programming, vol. 74, no. 1, pp. 13–22, 2008.

[34] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn, “Design and
implementation of a TCG-based integrity measurement architecture.” in
Proceedings of the 13th USENIX Security Symposium, 2004, pp. 223–
238.

[35] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“TrustVisor: Efficient TCB reduction and attestation,” in Proceedings of
the 2010 IEEE Symposium on Security & Privacy, ser. S&P ’10, 2010,
pp. 143–158.

[36] Trusted Computing Group (TCG), “Website,”
http://www.trustedcomputinggroup.org, 2015.

[37] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla, “SCUBA:
Secure code update by attestation in sensor networks,” in ACM Workshop
on Wireless Security, 2006.

[38] A. Seshadri, M. Luk, and A. Perrig, “SAKE: Software attestation for key
establishment in sensor networks,” in Distributed Computing in Sensor
Systems, 2008.

[39] R. Gardner, S. Garera, and A. Rubin, “Detecting code alteration by creat-
ing a temporary memory bottleneck,” IEEE Transactions on Information
Forensics and Security, 2009.

[40] Y. Li, J. M. McCune, and A. Perrig, “VIPER: Verifying the integrity of
peripherals’ firmware,” in ACM Conference on Computer and Commu-
nications Security, 2011.

[41] F. Armknecht, A.-R. Sadeghi, S. Schulz, and C. Wachsmann, “A security
framework for the analysis and design of software attestation,” in ACM
Conference on Computer and Communications Security, 2013.

[42] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “SMART: Secure
and Minimal Architecture for (Establishing a Dynamic) Root of Trust,”
in Network and Distributed System Security Symposium, 2012.

[43] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite:
A Security Architecture for Tiny Embedded Devices,” in European
Conference on Computer Systems, 2014.

[44] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of the
14th ACM Conference on Computer and Communications Security, ser.
CCS ’07. New York, NY, USA: ACM, 2007, pp. 552–561. [Online].
Available: http://doi.acm.org/10.1145/1315245.1315313

[45] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R.
Sadeghi, and G. Tsudik, “C-flat: Control-flow attestation for embedded

systems software,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’16, 2016.

[46] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl,
N. Asokan, and A.-R. Sadeghi, “Lo-fat: Low-overhead control flow at-
testation in hardware,” in 54th Design Automation Conference (DAC’17),
Jun. 2017.

[47] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin,
and A.-R. Sadeghi, “Atrium: Runtime attestation resilient under memory
attacks,” in 2017 International Conference On Computer Aided Design
(ICCAD’17), Nov. 2017.

[48] N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi, M. Schunter,
G. Tsudik, and C. Wachsmann, “SEDA: Scalable Embedded Device
Attestation,” in Proceedings of the 22nd ACM Conference on Computer
& Communications Security, ser. CCS ’15, 2015, pp. 964–975.

[49] M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A.-R. Sadeghi, and
M. Schunter, “SANA: Secure and Scalable Aggregate Network Attes-
tation,” in Proceedings of the 23rd ACM Conference on Computer &
Communications Security, ser. CCS ’16, 2016.

[50] A. Ibrahim, A.-R. Sadeghi, and G. Tsudik, “DARPA: Device Attestation
Resilient against Physical Attacks,” in Proceedings of the 9th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
ser. WiSec ’16, 2016.

[51] ——, “Us-aid: Unattended scalable attestation of iot devices,” in
Proceedings of the 37th IEEE International Symposium on Reliable
Distributed Systems, ser. SRDS ’18, 2018.

[52] X. Carpent, K. ElDefrawy, N. Rattanavipanon, and G. Tsudik,
“Lightweight swarm attestation: A tale of two lisa-s,” in Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications
Security, ser. ASIA CCS ’17, 2017.

[53] F. Kohnhäuser, N. Büscher, S. Gabmeyer, and S. Katzenbeisser, “Scapi:
A scalable attestation protocol to detect software and physical attacks,”
in Proceedings of the 10th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, ser. WiSec ’17, 2017.

[54] M. A. et al., “Understanding the mirai botnet,” in 26th USENIX
Security Symposium (USENIX Security 17). Vancouver, BC: USENIX
Association, 2017, pp. 1093–1110.

[55] “Guide for conducting risk assessments,” NIST, Tech. Rep. SP-800-30
- Revision 1, September 2012.

[56] The stride threat model. [Online]. Available: https://msdn.microsoft.
com/en-us/library/ee823878(v=cs.20).aspx

[57] T. Ucedavélez and M. M. Morana, Risk Centric Threat Modeling:
Process for Attack Simulation and Threat Analysis. John Wiley &
Sons, 2015.

[58] B. L. Eleanor Saitta and M. Eddington, “Trike v.1 methodology docu-
ment,” July 2015.

[59] “Information technology - security techniques - information security risk
management,” ISO, Tech. Rep. ISO/IEC 27005:2011, June 2011.

[60] “Risk management - risk assessment techniques,” ISO, Tech. Rep.
IEC/FDIS 31010:2009, November 2009.

[61] CRAMM user guide, risk analysis and management method, United
Kingdom CCTA, 2001.

[62] T. R. Peltier, Information Security Risk Analysis. Auerbach Publica-
tions, 2010.

[63] Consultative, objective and bi-functional risk analysis (cobra). [Online].
Available: http://www.security-risk-analysis.com/introcob.htm

[64] F. den Braber et al., “Model-based security analysis in seven steps - a
guided tour to the coras method,” BT Technology Journal, vol. 25, no. 1,
pp. 101–117, 2007.

[65] C. J. Alberts and A. J. Dorofee, Managing Information Security Risks:
The OCTAVE Approach. Addison-Wesley Professional, 2002.

7


