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Abstract—Target parameter estimation is a key problem in
radar signal processing. In this paper, we put forward a novel
approach to estimate the moving target parameters from the
associated one-bit sampled data with time-varying thresholds,
where one-bit samples are produced by comparing the signal of
interest with a threshold level at a very high rate. We show that
as the length of the transmit sequence increases, the performance
of the proposed algorithm enhances to the point that it reaches
that of the case of having the data with infinite precision—thus
demonstrating great potential for one-bit techniques in radar
signal processing applications.

I. INTRODUCTION

Quantization is typically the first step in modern signal
processing applications. An analog signal is sampled at a
high rate by an analog-to-digital converter (ADC) and its
magnitude is mapped to the closest pre-defined level. In many
modern applications, such as spectral sensing for cognitive
radio [1], cognitive radios [2], radio astronomy [3], and
automotive short-range radars [4], the signal of interest has
a wide bandwidth and requires the sampling resolution to be
very high. However, the cost of ADCs rise exponentially with
sampling resolution and the number of quantization levels [5],
which makes them impractical for many modern applications.
Thus, in order to overcome these problems, the number of
quantization bits should be decreased. In the most extreme
case, the number of quantization bits is reduced to just one.
In other words, the ADC is replaced with an inexpensive one-
bit comparator that can efficiently sample at very high rates
[5]. The need for enhanced resolution is thus addressed by
relatively high sampling rates.

The problem of parameter estimation using one-bit sam-
pling has been previously studied from different perspectives,
including statistical signal processing [6], [7], and modern
compressive sensing [8]–[10]. Until recently, the signal was
compared to a fixed threshold, typically zero, which translates
to loss of signal amplitude. Conversely, many recent studies
focus on comparing the signal of interest with a time-varying
threshold that enables the recovery of the signal in its entirety
[10]–[13].

In this paper, we study the problem of estimating the
parameters of a moving target radar using only the one-bit
sampled data of the signal backscattered from it. In Section IV,
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we develop an algorithm to accomplish this task by using
designed time-varying thresholds and a priori knowledge of
some statistics of the interference. The algorithm forms and
solves an optimization problem with linear constraints that can
efficiently be solved cyclically to recover the target parameters
as well as the received signal. Finally, numerical results are
provided in Section V to verify the efficiency of the proposed
algorithm.

Notation: Bold lowercase and bold uppercase letters are
used to denote vectors and matrices, respectively. (·)T and
(·)H denote the transpose and Hermitian transpose of a matrix
argument. Additionally, (·)∗ denotes the complex conjugate
of a complex matrix, vector, or number. ‖ · ‖ denotes the l2
norm of a vector while ‖ · ‖F denotes the Frobenius norm
of a matrix. <(·) and =(·) are the real and imaginary parts
of a complex number, respectively. sgn(·) is the element-wise
sign operator with an output of +1 for nonnegative numbers
and −1 otherwise. E{·} stands for the expectation operator.
Finally, The symbol � represents the Hadamard product of
matrices.

II. SYSTEM MODEL

Let s =
[
s1 s2 . . . sN

]T
be the complex-valued trans-

mit sequence that will be modulated as a train of pulses in
time [14]. Note that the transmitted or received signal can be
expressed in discrete time or digital form and all forms of
processing can too be applied in digital domain. Thus, in this
paper, we use the discrete model as well to represent the data;
for further information see [15], [16].

The received baseband signal y ∈ CN of a moving target
corresponding to the range-azimuth cell of interest can be
modeled as follows [16]–[20]:

y = α0[s� p(ν)] + c + n (1)

where α0 ∈ C is the backscattering coefficient of the target.
Also, p(ν) =

[
ej2π(0)ν , ej2π(1)ν , . . . , ej2π(N−1)ν

]T
is

the temporal sampling vector with ν ∈ [−.5, .5) being the
normalized Doppler shift of the target. The terms c and n refer
to the signal-dependent and signal-independent interferences,
respectively.

The clutter vector c is built by aggregation of zero-mean
unwanted echoes of the transmitted signal at different range-



azimuth bins [19], which can be formulated as

c =

Nc−1∑
k=0

L−1∑
l=0

α(k,l)Jk
[
s� p(νd(k,l)

)
]

(2)

with Nc ≤ N being the number of range-rings, L be-
ing the number of different azimuth sectors, and α(k,l)

and νd(k,l)
denoting the uncorrelated scattering coefficient

and normailized Doppler shift of the (k, l) range-azimuth
bin. It is assumed that the clutter patches in each range-
azimuth bin have uniform Doppler shift in the interval Ωc =(
ν̄d(k,l)

−
εd(k,l)

2 , ν̄d(k,l)
+

εd(k,l)

2

)
[20]. The matrices {Jk} are

shift matrices defined as

Jk = JH−k =


0 . . . 0 1 . . . 0
...

. . .
1︸ ︷︷ ︸

k

0 . . . 0 . . .

 . (3)

The covariance matrix of the clutter, c, can be formulated
as [20]

Σc =

Nc−1∑
k=0

L−1∑
l=0

σ2
(k,l)JkΦ (s, (k, l)) JTk (4)

where σ2
(k,l) is the average scattering power of the (k, l) range-

azimuth bin. Moreover,

Φ (s, (k, l)) = Diag(s)Cν(k, l)Diag(s)H

where Diag(.) is a diagonal matrix with diagonal entries equal
to those of its vector argument and Cν(k, l) is the propagation
covariance matrix of the (k, l) bin [20] that can be written as

Cν(k, l) =


1 k = l

e
j(k−l)ν̄d(k,l)

sin
(

k−l
2 εd(k,l)

)
sin

(
k−l
2 εd(k,l)

) k 6= l
. (5)

The covariance matrix of the zero-mean signal-independent
vector n is denoted by

Γ = E{nnH}. (6)

Therefore, the covariance matrix of the interference terms in
the received signal y can be written as

R = Cov(c + n) = Σc + Γ. (7)

By applying one-bit sampling to the received signal, i.e.
comparing the received signal with pre-defined threshold lev-
els, we obtain the one-bit sampled data given as

γr = sgn (<{α0(s� p(ν)) + c + n− λ}),
γi = sgn (={α0(s� p(ν)) + c + n− λ}),

γ = 1√
2
(γr + jγi),

(8)

where λ ∈ CN is the time-varying threshold vector—whose
design is discussed in Section IV.

If the received signal y is available and the normalized
Doppler shift ν is known, we can take advantage of the
signal model in (1) to find an estimate of the backscattering

coefficient α0. In fact, one can use a matched filter (MF) to
estimate α0. However, in order to make the estimate more
accurate and more robust to signal-independent noise, such
as jammers that operate in certain frequency bands, one
can utilize an instrumental variable (IV) filter, also called
mismatched filter (MMF), instead of a matched filter. By using
an IV filter, the estimate of the backscattering coefficient α0

will be

α̂0 =
wHy

wH(s� p(ν))
(9)

with w ∈ CN being the receive (IV) filter. Thus, the mean-
square-error (MSE) of the estimate can be written as

MSE(α̂0) = E

{∣∣∣∣ wHy

wH(s� p(ν))
− α0

∣∣∣∣2
}

=
wHRw

|wH(s� p(ν))|2
. (10)

It can easily be verified that the numerator of the MSE is
the power of interferences and its denominator is the power
of the signal at the receiver end; hence, minimizing the
MSE is equivalent to maximizing the signal-to-clutter-and-
interference-ratio (SCIR).

In the following, we first discuss a Bussgang-theorem and
arcsine-law based algorithm to estimate the radar parameters
in Section III. Then, in Section IV, we propose an algorithm to
jointly estimate the radar parameters, the scattering coefficient
α0 and normalized Doppler shift ν, as well as the received
signal y from its one-bit sampled version γ.

III. BUSSGANG-THEOREM-AIDED ESTIMATION

In this section, we put forward an algorithm using the
Bussgang theorem and arcsine law to estimate the radar
parameters.

Let Y (t) be a real-valued, scalar, and stationary Gaussian
process. If Y (t) is one-bit sampled, we get the process Z(t) =
sgn(Y (t)). The autocorrelation function of the process Z(t),
which is denoted by RZ(τ), is given by

RZ(τ) = E{Z(t+ τ)Z(t)} =
2

π
R̄Y (τ) (11)

with R̄Y (τ) = RY (τ)/RY (0) being the normalized autocor-
relation function of Y (t) [21].

The Bussgang theorem [22] shows that RY Z(τ), the cross-
correlation function of the two processes Y (t) and Z(t), is
proportional to RY (τ), the autocorrelation function of the
process Y (t) which has been one-bit sampled. In other words,
the equality RZY (τ) = µRY (τ) holds with µ being the
proportion factor that depends on the power of the process
Y (t).

As for the complex-valued case, let y be a complex-valued
vector and denote its one-bit sampled version with γ =
1√
2
(sgn(<(y)) + jsgn(=(y)). Let R̄y denote the normalized

autocorrelation function of the vector:

R̄y = N (Ry) , D−1/2RyD−1/2 (12)



with D = Ry� I, i.e. D is a diagonal matrix whose diagonal
elements are identical to those of Ry. According to the arcsine
law [23], the following equality holds for the autocorrelation
functions as well as covariance matrices:

R̄Y(τ) = sin

(
2

π
Rγ

)
. (13)

Therefore, the above relation can be used for our purpose
of estimating the radar parameters from the associated one-bit
sampled data. In order to do so, we calculate the covariance
matrix of the data after thresholding but before undergoing
one-bit sampling, (i.e. y - λ):

Ry−λ =|α0|2[s� p(ν)][s� p(ν)]H

+λλH + R− 2<
(
α0[s� p(ν)]λH

)
. (14)

As a result, in order to recover the backscattering coefficient
α0 and the normalized Doppler shift ν, one can minimize the
following non-convex criterion with respect to α0 and ν∥∥R̄y − F(α0, ν)

∥∥
F

(15)

where

F(α0, ν) = N
(
|α0|2[s� p(ν)][s� p(ν)]H

+λλH + R− 2<
(
α0[s� p(ν)]λH

))
.

IV. THE PROPOSED ALGORITHM

In this section, we discuss our proposed algorithm to jointly
recover the received signal y and the radar parameters of the
target in the desired range-azimuth bin, namely the backscat-
tering coefficient α0 and normalized Doppler shift ν.

In order to find the optimal IV filter w [24], [25], one can
minimize the MSE in (10) with respect to w to find

w = R−1(s� p(ν)). (16)

In spite of the MMF approach to estimating the backscattering
coefficient in (9), as it was discussed earlier, due to one-bit
sampling, there is no direct access to the unquantized received
signal y. Hence, our proposed algorithm shall rely only on the
one-bit sampled data γ and the threshold vector λ to recover
the received signal and radar parameters. Thus, in pursuance
of estimating the radar parameters, we define the following
weighted-least-squares objective function

Q(y,α0, ν) =

[y − α0(s� p(ν))]
H

R−1 [y − α0(s� p(ν))] . (17)

The above objective function has the following properties:
1) It does not require any knowledge of the un-quantized

received signal y.
2) It is a function of the received signal y, the backscattering

coefficient α0, and the normalized Doppler shift ν. This
facilitates their joint recovery.

3) For given y and ν, it can be verified that the optimal α0

is given exactly by the MMF estimate of α0, which is
basically (9) with substitution of (16).

4) It is in agreement with, and enforces, the system model
of (1). As for the unwanted interference signals in (1),
one can rewrite them as

y − α0[s� p(ν)] = c + n. (18)

The weighted-least-squares objective of (17) penalizes the
model mismatch based on the second-order statistics of
the interference, derived as

E
{

(c + n) (c + n)
H
}

= E
{
ccH

}
+ E

{
nnH

}
= R (19)

where R is the same as in (7).
Therefore, the problem of jointly estimating the received

signal and the moving target radar parameters boils down to
the optimization problem:

min
α0,y,ν

[y − α0(s� p(ν))]
H

R−1 [y − α0(s� p(ν))]

s.t. Ωr (yr − λr) ≥ 0,

Ωi (yi − λi) ≥ 0, (20)

where (yr,yi) and (λr,λi) are the real and imaginary
parts of y and λ, respectively. Also, Ωr = Diag(γr) and
Ωi = Diag(γi), where Diag(·) denotes the diagonalization
operator that produces a diagonal matrix as output which has
only diagonal entries same as in its input vector.

To solve the optimization problem in (20), we will utilize
cyclic optimization on w, y, and ν until convergence. By
applying the substitution of the optimal α0 in (9) into the
objective function of (17), we obtain the simplified objective
function to be

Q(w,y, ν) =

∥∥∥∥R−1/2

(
I− [s� p(ν)]wH

wH [s� p(ν)]

)
y

∥∥∥∥2

2

. (21)

For given y and ν, the optimal IV filter w is given by
(16). Then, for given w and ν, the minimization problem for
estimating y becomes

min
y

∥∥∥∥R−1/2

(
I− [s� p(ν)]wH

wH [s� p(ν)]

)
y

∥∥∥∥2

2

s.t. Ωr (yr − λr) ≥ 0,

Ωi (yi − λi) ≥ 0. (22)

It can easily be verified that the above minimization problem is
a convex linearly-constraint quadratic program on the variable
y, which can be solved efficiently using the numerous methods
available in the literature; e.g. see [26].

Next, in order to recover the normalized Doppler shift ν for
given w and y, one can rewrite the minimization problem of
(20) on ν as

min
ν

g(ν)

s.t. p(ν) =
[
ej2π(0)ν ej2π(1)ν . . . ej2π(N−1)ν

]T
(23)



where

g(ν) ,[
1

p(ν)

]H [
0 −(α̂0s)T � (yHR−1)

−(α̂0s)∗ � (R−1y) |α̂0|2R−1 � (ssH)∗

] [
1

p(ν)

]
where α̂0 is calculated using (9). The above optimization
problem on ν resembles the estimation of direction-of-arrival
(DOA) in uniform linear arrays. Thus, it can be tackled using
any of the multitudinous methods derived for estimating
DOA; e.g. see [27]. Note that the cyclic optimization iterations
with respect to w, y, and ν should be continued until a
convergence or another stop criteria is satisfied.

Once the optimal w, y, and ν are found, one can estimate
the backscattering coefficient α0 using (9).

Finally, we need to have the threshold vector λ designed
in such a way that is the most informative about the received
signal. Ultimately, from an information theoretic perspective,
we do want the probability of observing both +1 and −1 at
the output of the sampler to be as close as possible. For this to
happen, the optimal choice of λ should divide the signal space
into subspaces with similar cardinalities. This can be hard
when the dimension of the signal, N , gets larger. However,
a reasonable approximation of the optimal λ can be obtained
when it is assumed to be a random variable that follows the
statistics and demeanors of the received signal y. Additionally,
because the sampling resolution is very high and therefore the
time difference of consecutive samples are very small, it can
be assumed that the only term in (1) that changes from sample
to sample is the Gaussian noise component; thus, the received
signal y can be considered a to be a Gaussian random variable.
Therefore, we generate the threshold vector λ from a Gaussian
distribution with the following statistics

E {λ} = E{y} = E {α0} (s� p(E{ν})),
Cov(λ) = Cov (y)

= E
{
|α0|2

} [
(ssH)�

(
p (E{ν}) p (E{ν})H

)]
+R. (24)

That is, the design of λ is engineered by the expected value
of the radar parameters, which can be of great importance
especially when tracking is concerned.

The proposed algorithm is summarized in Algorithm 1 for
reader’s convenience.

V. NUMERICAL RESULTS

In this section, we study the performance of the proposed
algorithm of Section IV. In order to do this, we compare
the errors associated with estimations obtained by 1) the
proposed algorithm, 2) the Bussgang-theorem-aided method
of Section III, referred to as Bussgang-aided, and 3) using
the unquantized received signal y, which is denoted by
∞− precision.

For simulations, we assume that the signal-independent
interference term is a white Gaussian noise with a variance
of .1, and that the transmit sequence s is generated using

Algorithm 1
One-Bit Moving Target Radar Parameter Estimation
Step 0: Initialize s and generate the threshold vector λ randomly based on
the statistics in (24).
Step 1: For fixed y and ν, compute the optimal IV filter w using (16).
Step 2: For fixed w and ν, compute the optimal vector y by solving the
minimization problem of (22) over the variable y.
Step 3: For fixed w and y, compute the optimal target normalized Doppler
shift ν by minimizing the criterion in (23).
Step 4: If convergence is reached, go to Step 5, otherwise go to Step 1.
Step 5: For fixed w, y, and ν, find the optimal target backscattering coefficient
α0 using (9).
Step 6: In case of tracking, set λ according to (24) and goto Step 1.

the method in [28]. Moreover, the number of the interfering
rings Nc and azimuth sectors L are assumed to be 2 and 10,
respectively. The normalized Doppler shifts are assumed to
have a uniform distribution over the interval Ωc = [−.1.1];
for further details see [29]. Also, to comply with the Monte-
Carlo method, the result of each of the algorithms is averaged
over 100 runs.

Figure 1(a) shows the normalized estimation error of the
backscattering coefficient α0 defined by |α0−α̂0|/|α0|, where
α̂0 denotes the estimate of α0. Similarly, Figure 1(b) shows
the same metric in estimation of the normalized Doppler shift
ν. The plots in Figure 2 show the results of estimating the
radar parameters using the mentioned methods in a Monte-
Carlo trial along with the true value of the parameter for
N ∈ {50, 100, 1000}. The upper plots of Figure 2 shows the
estimation of α0 on a complex plane while the lower plots
show the estimation of ej2πν , where the estimation results of
different methods are shown with different radii for aesthetic
purposes.

It can be verified from the figures that the error of estimation
of α0 and ν decreases as N grows larger. More interestingly,
as N increases, the estimation performance of our method
reach that of the ∞ − precision case where we have the
unquantized received signal at hand. This behavior is expected
because as N grows large, more information will be available
to be gleaned from the one-bit sampled data about the received
signal, which facilitates a more accurate recovery.

VI. CONCLUSION

Many modern applications require very fast sampling of
data. However, the cost and energy consumption of the current
ADCs grows exponentially with the sampling resolution. To
address this issue, there is a growing interest in resorting to
one-bit sampling of data that uses an inexpensive and energy-
efficient comparator in lieu of complex ADC structures. One
such application, namely moving target radar parameter esti-
mation, was studied in this paper. An algorithm to estimate
the target radar parameters was developed. Several numerical
results were provided to verify the favorable performance
of the proposed algorithm, especially when the length of
transmit sequence grows large. Thus, it was shown that one-
bit sampling can be used efficiently as a replacement for the
conventional ADCs.



Fig. 1: Performance comparison of moving target parameter estimation using the Bussgang-aided method, the proposed
algorithm, and in the∞−precision case: (a) average normalized estimation error (|α0−α̂0|/|α0|) of backscattering coefficient
α0, (b) average estimation error of the normalized Doppler shift ν.

Fig. 2: Performance comparison of moving target parameter estimation using the Bussgang-aided method, the proposed
algorithm, and in the ∞ − precision case for N ∈ {50, 100, 1000}. The upper plots show the estimation results for the
backscattering coefficient α0 on the complex plane while the lower plots show the target Doppler shift estimates on the unit
circle ej2πν and polar plane. For visual clarity, different radii are used for different approaches.
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