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Abstract. Deep convolutional neural networks (CNNs) are state-of-the-
art for semantic image segmentation, but typically require many labeled
training samples. Obtaining 3D segmentations of medical images for su-
pervised training is difficult and labor intensive. Motivated by classical
approaches for joint segmentation and registration we therefore propose
a deep learning framework that jointly learns networks for image regis-
tration and image segmentation. In contrast to previous work on deep
unsupervised image registration, which showed the benefit of weak super-
vision via image segmentations, our approach can use existing segmenta-
tions when available and computes them via the segmentation network
otherwise, thereby providing the same registration benefit. Conversely,
segmentation network training benefits from the registration, which es-
sentially provides a realistic form of data augmentation. Experiments on
knee and brain 3D magnetic resonance (MR) images show that our ap-
proach achieves large simultaneous improvements of segmentation and
registration accuracy (over independently trained networks) and allows
training high-quality models with very limited training data. Specifi-
cally, in a one-shot-scenario (with only one manually labeled image) our
approach increases Dice scores (%) over an unsupervised registration
network by 2.7 and 1.8 on the knee and brain images respectively.

1 Introduction

Image segmentation and registration are two crucial tasks in medical image anal-
ysis. They are also highly related and can help each other. E.g., labeled atlas
images are used via image registration for segmentation. Segmentations can also
provide extra supervision (in addition to image intensities) for image registra-
tion and are used to evaluate registration results. Consequentially, joint image
registration and segmentation approaches have been proposed. E.g., approaches
based on active-contours [12] and Bayesian [8] or Markov random field formu-
lations [7]. While these methods jointly estimate registration and segmentation
results, they operate on individual image pairs (instead of a population of im-
ages) and require the computationally costly minimization of an energy function.

Deep learning (DL) has been widely and successfully applied to medical im-
age analysis. For supervised image segmentation, CNN-based approaches are
faster and better than classical methods when many labeled training samples are
available [6]. DL-based registration achieves similar performance to optimization-
based approaches but is much faster. As true transformations are not available,



training either uses estimates from optimization-based methods [11] or is un-
supervised [3]. Recent work [4] shows that weak supervision via an additional
image segmentation loss between registered images can improve results over un-
supervised training, which relies on the images alone. In practice, obtaining seg-
mentations for 3D medical images is difficult and labor intensive. Hence, manual
segmentations will often not be available for a large fraction of image data.

We propose DeepAtlas, to jointly learn deep networks for weakly supervised
registration and semi-supervised segmentation. Our contributions are:
• We propose the first approach to jointly learn two deep neural networks for
image registration and segmentation. Previous joint approaches require joint
optimizations for each image pair. Instead, we jointly learn from a popu-
lation of images during training, but can independently use the resulting
segmentation and registration networks at test time.

• Our joint approach only requires few manual segmentations. Our two net-
works mutually guide each other’s training on unlabeled images via an
anatomy similarity loss. This loss penalizes the dissimilarity of the warped
segmentation of the moving image and the segmentation of the target image.
When registering image pairs consisting of a manually labeled image and the
estimate of a labeled image (via its network-predicted segmentation), this
loss provides anatomy consistency supervision for registration and forces the
predicted segmentation to match the manual segmentation after registration.

• We evaluate our approach on large 3D brain and knee MRI datasets. Using
few manual segmentations, our method outperforms separately learned reg-
istration and segmentation networks. In the extreme case, where only one
manually segmented image is available, our approach facilitates one-shot
segmentation and boosts registration performance at the same time.

2 Method

Our goal is to improve registration and segmentation accuracy when few manual
segmentations are available for a large set of images by jointly learning a seg-
mentation and a registration network. Fig. 1 illustrates our approach consisting
of two parts: weakly-supervised registration learning (solid blue lines) and semi-
supervised segmentation learning (dashed yellow lines). Our loss is the weighted
sum of the registration regularity loss (Lr), the image similarity loss (Li), the
anatomy loss (La) penalizing segmentation dissimilarity, and the supervised seg-
mentation loss (Lsp). The losses {Lr, Li, La} drive the weakly supervised learn-
ing of registration (Sec. 2.1) and the losses {La, Lsp} drive the semi-supervised
learning of segmentation (Sec. 2.2). Sec. 2.3 details the implementation.

2.1 Weakly-supervised Registration Learning

Given a pair of moving and target images Im and It, a registration network FR

with parameters θr predicts a displacement field u = FR(Im, It; θr). This then
allows warping the moving image to the target image space, Iwm = Im ◦ Φ−1,



Fig. 1: DeepAtlas for joint learning of weakly supervised registration and semi-
supervised segmentation. Unlabeled moving/target images are segmented by the seg-
mentation network so that every training registration pair has weak supervision via the
anatomy similarity loss which also guides segmentation learning on unlabeled images.

where Φ−1 = u + id is the deformation map and id is the identity transform.
A good map, Φ, maps related anatomical positions to each other. Unsupervised
registration learning optimizes θr over an intensity similarity loss Li (penalizing
appearance differences between It and Iwm) and a regularity loss Lr on u to
encourage smooth transformations. Adding weak supervision by also matching
segmentations between the target image (St) and the warped moving image
(Sw

m = Sm◦Φ−1) via an anatomy similarity loss La can improve registrations [4].
Weakly-supervised registration learning is then formulated as:

θ⋆r = argmin
θr

{Li(Im ◦ Φ−1, It) + λrLr(Φ
−1) + λaLa(Sm ◦ Φ−1, St)}, (1)

with weights λr, λa ≥ 0. In practice, while a large set of images are often avail-
able, few of them have manual segmentations. In contrast to existing work, we
estimate missing moving or target segmentations via our segmentation network
(see Fig. 1). Hence, we provide weak supervision for every training image pair.

2.2 Semi-supervised Segmentation Learning

The segmentation network FS with parameters θs takes an image I as input and
generates probabilistic segmentation maps for all semantic classes: Ŝ = FS(I; θs).
In addition to the typical supervised segmentation loss Lsp(Ŝ, S) where S is a
given manual segmentation, the anatomy similarity loss for registration La(Sm ◦
Φ−1, St) also drives segmentation learning when Sm or St are predicted via FS

for unlabeled images. Specifically, we define these losses as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
La = La(Sm ◦ Φ−1,FS(It)) and Lsp = Lsp(FS(Im), Sm), if It is unlabeled;

La = La(FS(Im) ◦ Φ−1, St) and Lsp = Lsp(FS(It), St), if Im is unlabeled;

La = La(Sm ◦ Φ−1, St) and Lsp = Lsp(FS(Im), Sm), if Im and It are labeled;

La = Lsp = 0, if both It and Im are unlabeled.



La teaches FS to segment an unlabeled image such that the predicted seg-
mentation matches the manual segmentation of a labeled image via FR. In the
case where the target image It is unlabeled, La is equivalent to a supervised
segmentation loss on It, in which the single-atlas segmentation Sm ◦ Φ−1 is the
noisy true label. Note that we do not use two unlabeled images for training and
La does not train the segmentation network when both images are labeled. We
then train our segmentation network in a semi-supervised manner as follows:

θ⋆s = argmin
θs

(λaLa + λspLsp), λa, λsp ≥ 0. (2)

2.3 Implementation Details

Losses: Various choices are possible for the intensity/anatomy similarity, the
segmentation, and the regularity losses. Our choices are as follows.
Anatomy similarity and supervised segmentation loss: A cross-entropy loss re-
quires manually tuned class weights for imbalanced multi-class segmentations [9].
We use a soft multi-class Dice loss which addresses imbalances inherently:

Ldice(S, S
⋆) = 1− 1

K

K∑
k=1

∑
x Sk(x)S

⋆
k(x)∑

x Sk(x) +
∑

x S
⋆
k(x)

, (3)

where k indicates a segmentation label (out of K) and x is voxel location. S and
S⋆ are two segmentations to be compared.
Intensity similarity loss: We use normalized cross correlation (NCC) as:

Li(I
w
m, It) = 1−NCC(Iwm, It), (4)

which will be in [0, 2] and hence will encourage maximal correlation.
Regularization loss: We use the bending energy[10]:

Lr(u) =
1

N

∑
x

d∑
i=1

∥H(ui(x))∥2F (5)

where ∥ · ∥F denotes the Frobenius norm, H(ui(x)) is the Hessian of the i-th
component of u(x), and d denotes the spatial dimension (d = 3 in our case). N
denotes the number of voxels. Note that this is a second-order generalization of
diffusion regularization, where one penalizes ∥∇ui(x)∥22 instead of ∥H(ui(x))∥2F .

Alternate training: It is in principle straightforward to optimize two net-
works according to Eqs. 1 and 2. However, as we work with the whole 3D images,
not cropped patches, GPU memory is insufficient to simultaneously optimize the
two networks in one forward pass. Hence, we alternately train one of the two net-
works while keeping the other fixed. We use a 1:20 ratio between training steps
for the segmentation and registration networks, as the segmentation network
converges faster. Since it is difficult to jointly train from scratch with unlabeled
images, we independently pretrain both networks. When only few manual seg-
mentations are available, e.g., only one, separately training the segmentation



network is challenging. In this case, we train the segmentation network from
scratch using a fixed registration network trained unsupervisedly. We start alter-
nate training when the segmentation network achieves reasonable performance.

Networks: DeepAtlas can use any CNN architecture for registration and
segmentation. We use the network design of [3] for registration; and a customized
light 3D U-Net design for segmentation with LeakyReLU instead of ReLU, and
smaller feature size due to GPU memory limitations.

3 Experiments and Results

We show on a 3D knee and a 3D brain MRI dataset that our framework im-
proves both registration and segmentation when many images with few manual
segmentations are available: i.e. N of M images are labeled (N << M).

Baselines: We train a baseline supervised segmentation network using only
N labeled images. The baseline registration network is trained via Eq. 1 using all
M training images withN images labeled; the anatomy similarity loss, La, is only
used for training pairs where both images have manual segmentations. Baseline
models trained with M manual segmentations (i.e., with manual segmentations
for all images) provide our upper performance bound. All baseline models are
trained for a sufficient number of epochs until they over-fit. The best models
based on validation performance are evaluated.

DeepAtlas (DA): We initialize the joint model with the trained baseline
networks. In addition to the alternately trained DA models, we train a network
with the other network held fixed, termed Semi-DeepAtlas (Semi-DA).

In one-shot learning (N=1) experiments, training a supervised segmentation
network based on a single labeled image is difficult; hence, we do not compute a
baseline segmentation model in this case. For Semi-DA, we train a segmentation
network from scratch with a fixed registration network that is trained unsu-
pervised (N=0). The DA model is initialized using the Semi-DA segmentation
network and the unsupervised registration network.

Knee MRI experiment: We test our method on 3D knee MRIs from the
Osteoarthritis Initiative (OAI) [1] and corresponding segmentations of femur
and tibia as well as femoral and tibial cartilage [2]. From a total of 507 labeled
images, we use 200 for training, 53 for validation, and 254 for testing. To test
registration performance we use 10,000 random image pairs from the test set. All
images are affinely registered, resampled to isotropic spacing of 1mm, cropped to
160× 160× 160 and intensity normalized to [0,1]. In addition, right knee images
are flipped to be consistent with left knees. For training, the loss weights are λr =
20, 000, λa = 3, and λsp = 3 based on approximate hyper-parameter tuning.
Note that when computing Lr from the displacements, the image coordinates
are scaled to [-1, 1] for each dimension.

Brain MRI experiment: We also evaluate our method on the MindBoog-
gle101 [5] brain MRIs with 32 cortical regions. We fuse corresponding segmen-
tation labels of the left and right brain hemispheres. MindBoogle101 consists
of images from multiple datasets, e.g., OASIS-TRT-20, MMRR-21 and HLN-12.



Moving Target BL0 BL5 DA1 DA5 BL200

Image Manual Seg DA1 BL21 DA21 BL65

Fig. 2: Examples of knee MRI registration (top) and brain MRI segmentation (bot-
tom) results. Top: The first two columns are the moving image/segmentation and
the target image/segmentation followed by the warped moving images (with deforma-
tion grids)/segmentations by different models. Bottom left to right: original image,
manual segmentation, and predictions of various models. BLi and DAi represent the
baseline and DA models with i manual segmentations respectively.

After removing images with problematic labels, we obtain a total of 85 images.
We use 5 images from OASIS-TRT-20 as validation set and 15 as test set. We
use the remaining 65 images for training. Manual segmentations in the N=1
and N=21 experiments are only from the MMRR-21 subset; this simulates a
common practical use case, where we only have few manual segmentations for
one dataset and additional unlabeled images from other datasets, but desire to
process a different, new dataset. All images are 1mm isotropic, affinely-aligned,
histogram-matched, and cropped to size 168× 200× 169. We apply sagittal flip-
ping for training data augmentation. We use the same loss weights as for the knee
MRI experiment except for λr = 5, 000, since cross-subject brain registrations
require large deformations and hence less regularization.

Optimizer: We use Adam. The initial learning rates are 1e-3 for the baseline
models. Initial learning rates are 5e-4 for the registration network and 1e-4 for
the segmentation network for Semi-DA and DA. Learning rates decay by 0.2 at
various epochs across experiments. We use PyTorch and run on Nvidia V100
GPUs with 16GB memory.

Results: All trained networks are evaluated using Dice overlap scores be-
tween predictions and the manual segmentations for the segmentation network,
or between the warped moving segmentations and the target segmentations for
the registration network. Tabs. 1 and 2 show results for the knee and brain MRI
experiments respectively in Dice scores (%). Fig. 2 shows examples of knee MRI
registrations and brain MRI segmentations.



N Models
Segmentation Dice (%) Registration Dice (%)

Bones Cartilages All Bones Cartilages All
0 Baseline - - - 95.32(1.13) 65.71(5.86) 80.52(3.24)

1
Semi-DA 96.43(0.85) 76.67(3.24) 86.55(1.86) - - -

DA 96.80(0.81) 77.63(3.22) 87.21(1.84) 95.76(1.01) 70.77(5.68) 83.27(3.14)

5
Baseline 96.51(1.69) 78.95(3.91) 87.73(2.37) 95.60(1.08) 68.13(5.98) 81.87(3.31)
Semi-DA 96.97(1.26) 79.73(3.84) 88.35(2.22) 96.38(0.81) 73.48(5.26) 84.93(2.89)

DA 97.49(0.67) 80.35(3.64) 88.92(2.01) 96.35(0.82) 73.67(5.22) 85.01(2.86)

10
Baseline 97.29(1.03) 80.59(3.67) 88.94(2.07) 95.77(1.02) 69.45(5.93) 82.61(3.27)
Semi-DA 97.60(0.76) 81.21(3.58) 89.40(1.99) 96.66(0.72) 74.67(5.01) 85.66(2.73)

DA 97.70(0.65) 81.19(3.47) 89.45(1.91) 96.62(0.75) 74.69(5.03) 85.66(2.75)
200 Baseline 98.24(0.34) 83.54(2.93) 90.89(1.56) 96.98(0.56) 77.33(4.34) 87.16(2.35)

Table 1: Segmentation and registration performance on 3D knee MRIs. Average (stan-
dard deviation) of Dice scores (%) for bones (femur and tibia) and cartilages (femoral
and tibial). N of 200 training images are manually labeled.

General results: For both datasets across different numbers of manual seg-
mentations, Semi-DA, which uses a fixed pre-trained network to help the training
of the other network, boosts performance compared to separately trained base-
line networks. DA, where both networks are alternately trained, achieves even
better Dice scores in most cases. Based on a Mann-Whitney U-test with a sig-
nificance level of 0.05 and a correction for multiple comparisons with a false
discovery rate of 0.05, our models (DA/Semi-DA) result in significantly larger
Dice scores than the baselines for all experiments. This demonstrates that seg-
mentation and registration networks can indeed help each other by providing
estimated supervision on unlabeled data.

N Models Seg Dice (%) Reg Dice (%)

0 Baseline - 54.75(2.37)

1
Semi-DA 61.19(1.49) -

DA 61.22(1.40) 56.54(2.32)

21
Baseline 73.48(2.58) 59.47(2.34)
Semi-DA 75.63(1.66) 62.92(2.14)

DA 76.06(1.50) 62.92(2.13)

65 Baseline 81.31(1.21) 63.25(2.07)

Table 2: Segmentation and regis-
tration performance on 3D brain
MRIs. Average(Standard devia-
tion) of Dice scores (%) for 31 cor-
tical regions. N of 65 training im-
ages are manually labeled.

Knee results: On knee MRIs, our method
improves segmentation scores over separately
learned networks by about 1.2 and 0.5, and
registration scores increase by about 3.1 and
3.0, when training with 5 and 10 man-
ual segmentation respectively. Especially for
the challenging cartilage structures, our joint
learning boosts segmentation by 1.4 and 0.7,
and registration by 5.5 and 5.2 for N=5 and
N=10 respectively.

Brain results: Dice scores for segmentation
and registration increase by about 2.6 and 3.5
respectively for the cortical structures of the
brain MRIs.

One-shot learning: In the one-shot experiments on both datasets, reasonable
segmentation performance is achieved; moreover, DA increases the Dice score
over unsupervised registration by about 2.7 and 1.8 on the knee and brain data
respectively. This demonstrates the effectiveness of our framework for one-shot
learning.

Qualitative results: DA achieves more anatomically consistent registrations
on the knee MRI samples than the baseline models (Fig. 2).



4 Conclusion

We presented our DeepAtlas framework for joint learning of segmentation and
registration networks using only few images with manual segmentations. By
introducing an anatomical similarity loss, the learned registrations are more
anatomically consistent. Furthermore, the segmentation network is guided by a
form of data augmentation provided via the registration network on unlabeled
images. For both bone/cartilage structures in knee MRIs and cortical structures
in brain MRIs, our approach shows large improvements over separately learned
networks. When only given one manual segmentation, our method provides one-
shot segmentation learning and greatly improves registration. This demonstrates
that one network can benefit from imperfect supervision on unlabeled data pro-
vided by the other network. Our approach provides a general solution to the
lack of manual segmentations when training segmentation and registration net-
works. For future work, introducing uncertainty measures for the segmentation
and registration networks may help alleviate the effect of poor predictions of
one network on the other. It would also be of interest to investigate multitask
learning via layer sharing for the segmentation and registration networks. This
may further improve performance and decrease model size.
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A Supplementary material

Fig. 3: Architectures of the segmentation network (left) and the registration network
(right). In the segmentation network, max-pooling is used for down-sampling for which
2-stride convolution is used in the registration network.
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Fig. 4: Examples of brain MRI registration (top) and knee MRI segmentation (bottom)
results. Top: The first two columns are the moving image/segmentation and the target
image/segmentation followed by the warped moving images/segmentations by different
models. Bottom left to right: original image, manual segmentation, and predictions
of various models. BLi and DAi represent the baseline and DA models with i manual
segmentations respectively.
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