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This supplementary material contains further details
of the FPSGR approach. Specifically, Sec. 1 investigates
estimation bias. Sec. 2 shows that using simply the slope
and y-intercept of the linear fit to the estimated atrophy
scores contains information useful for classification thereby
supporting the use of atrophy measures to assess our re-
sults. Sec. 3 explores atrophy measures. Sec. 4 shows
forecasting results not only for the prediction + correc-
tion method, but also for the prediction method without
correction. Sec. 5 shows example graphs illustrating the
numerical convergence of the deep learning model during
training. Lastly, Sec. 6 reports the overall runtime and
training time of our approach and discusses computational
cost in relation to existing optimization-based approaches.

1. Bias

Table 1 is an extended version of Table 3 in the main
manuscript, which also includes the prediction-only (i.e.,
without correction) results. As pairwise registration re-
sults were discussed in the main document and used there
to justify SGR they are no longer reported here. Specifi-
cally, Table 1 shows the estimated slopes, intercepts, and
95% confidence intervals for optimization-based SGR LD-
DMM and for FPSGR predictions with and without correc-
tion for ADNI-1 and ADNI-2, respectively. SGR LDDMM-
1 and SGR LDDMM-2 denote the optimization-based re-
sults split into the same testing groups used for the Pred-
1/2 and Pred+Corr-1/2 results to allow for a direct com-
parison. All of the results show intercepts that are near
zero relative to the range of changes observed and all pre-
diction intercept confidence intervals contain zero. Sim-
ilar to our discussion in the main manuscript, we con-
clude that (1) neither optimization-based SGR LDDMM
nor FPSGR produce deformations with significant bias to
overestimate or underestimate volume change; (2) a linear
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model of atrophy scores generated by FPSGR can capture
intrinsic volume change (i.e., slope) among different diag-
nostic change groups; and (3) The prediction+correction
approach produces results which are more similar to SGR
LDDMM than the prediction-only approach.

In Table 1, all slopes are positive, indicating average
volume loss over time. This is consistent with expecta-
tions for an aging and neuro-degenerative population. The
slopes capture increasing atrophy with disease severity. In
ADNI-1/ADNI-2, we expect SlopeNC-NC < SlopeNC-MCI;
SlopeMCI-NC < SlopeMCI-MCI < SlopeMCI-AD; and
SlopeNC-NC < SlopeMCI-MCI < SlopeAD-AD. The exper-
imental groups (SGR LDDMM-1/2, SGR Pred-1/2, and
SGR Pred+Corr-1/2) are consistent with these expecta-
tions (and also consistent with results in Hua et al. (2013)).
The slopes estimated from the prediction+correction re-
sults are generally larger than the for the prediction-only
model and closer to the slopes obtained via optimization-
based SGR LDDMM. This indicates that the correction
network can generally improve prediction accuracy.

2. Classification

We performed classification experiments to assess if the
trends estimated via FPSGR carry information indicative
of the diagnostic category. Note that these experiments
make use of very limited information (i.e., they use only
the slopes and y-intercepts of the estimated atrophy trends
obtained via linear regression from the FPSGR-estimated
atrophy measures, as discussed in main paper Sec. 4.2).
Hence, these experiments are not expected to yield state-
of-the art classification results which can be obtained using
much more sophisticated biomarkers (Davatzikos et al.,
2011; Suk and Shen, 2013; Westman et al., 2012).

Nevertheless, we use a similar experimental setup and
perform pair-wise classifications between the three diag-
nostic groups on both the ADNI-1 and ADNI-2 datasets.
In particular, we compare NC vs. AD, NC vs. MCI,
and MCI-converter vs. MCI-nonconverter. Here, MCI-
converter indicates that a patient diagnosed with MCI will
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ADNI-1 Slope Intercept #data

NC-NC

SGR LDDMM-1 [0.62, 0.70, 0.78] [-0.25,-0.08, 0.09]
154SGR Pred-1 [0.37, 0.44, 0.50] [-0.21, -0.08, 0.05]

SGR Pred+Corr-1 [0.61, 0.68, 0.75] [-0.15, -0.01, 0.13]
SGR LDDMM-2 [0.57, 0.66, 0.75] [-0.21, -0.04, 0.14]

156SGR Pred-2 [0.43, 0.50, 0.57] [-0.16, -0.02, 0.11]
SGR Pred+Corr-2 [0.51, 0.58, 0.65] [-0.12, 0.01, 0.15]

NC-MCI

SGR LDDMM-1 [0.72, 0.94, 1.16] [-0.45, -0.03, 0.39]
24SGR Pred-1 [0.39, 0.58, 0.78] [-0.43, -0.05, 0.33]

SGR Pred+Corr-1 [0.71, 0.90, 1.10] [-0.40, -0.01, 0.37]
SGR LDDMM-2 [0.88, 1.19, 1.50] [-0.65, -0.05, 0.55]

22SGR Pred-2 [0.72, 0.99, 1.26] [-0.68, -0.16, 0.36]
SGR Pred+Corr-2 [0.80, 1.07, 1.34] [-0.66, -0.14, 0.38]

MCI-MCI

SGR LDDMM-1 [0.97, 1.17, 1.38] [-0.28, 0.05, 0.39]
146SGR Pred-1 [0.65, 0.80, 0.96] [-0.29, -0.03, 0.22]

SGR Pred+Corr-1 [0.92, 1.09, 1.26] [-0.14, 0.14, 0.42]
SGR LDDMM-2 [0.83, 1.00, 1.17] [-0.21, 0.06, 0.33]

148SGR Pred-2 [0.69, 0.82, 0.96] [-0.20, 0.02, 0.24]
SGR Pred+Corr-2 [0.77, 0.90, 1.04] [-0.15, 0.07, 0.29]

MCI-NC

SGR LDDMM-1 [0.48, 0.72, 0.96] [-0.85, -0.42, 0.01]
16SGR Pred-1 [0.26, 0.44, 0.62] [-0.61, -0.29, 0.03]

SGR Pred+Corr-1 [0.51, 0.68, 0.86] [-0.52, -0.20, 0.13]
SGR LDDMM-2 [0.54, 0.79, 1.03] [-0.79, -0.36, 0.07]

17SGR Pred-2 [0.40, 0.61, 0.83] [-0.62, -0.24, 0.14]
SGR Pred+Corr-2 [0.49, 0.70, 0.91] [-0.59, -0.21, 0.17]

MCI-AD

SGR LDDMM-1 [1.94, 2.10, 2.27] [-0.28, 0.02, 0.31]
148SGR Pred-1 [1.28, 1.40, 1.53] [-0.24, -0.02, 0.20]

SGR Pred+Corr-1 [1.70, 1.84, 1.98] [-0.17, 0.08, 0.33]
SGR LDDMM-2 [1.75, 1.92, 2.09] [-0.16, 0.14, 0.44]

147SGR Pred-2 [1.42, 1.56, 1.70] [-0.11, 0.14, 0.39]
SGR Pred+Corr-2 [1.49, 1.64, 1.78] [-0.08, 0.17, 0.43]

AD-AD

SGR LDDMM-1 [1.97, 2.33, 2.69] [-0.17, 0.27, 0.70]
143SGR Pred-1 [1.23, 1.50, 1.77] [-0.13, 0.21, 0.54]

SGR Pred+Corr-1 [1.74, 2.05, 2.35] [-0.04, 0.33, 0.70]
SGR LDDMM-2 [1.92, 2.28, 2.65] [-0.20, 0.24, 0.68]

140SGR Pred-2 [1.56, 1.85, 2.15] [-0.13, 0.22, 0.57]
SGR Pred+Corr-2 [1.65, 1.95, 2.24] [-0.10, 0.25, 0.60]

ADNI-2 Slope Intercept

NC-NC

SGR LDDMM-1 [0.55, 0.65, 0.75] [-0.08, 0.03, 0.13]
170SGR Pred-1 [0.41, 0.48, 0.55] [-0.03, 0.04, 0.12]

SGR Pred+Corr-1 [0.50, 0.57, 0.65] [-0.04, 0.05, 0.13]
SGR LDDMM-2 [0.51, 0.62, 0.72] [-0.10, 0.01, 0.12]

175SGR Pred-2 [0.47, 0.55, 0.62] [-0.03, 0.05, 0.13]
SGR Pred+Corr-2 [0.35, 0.44, 0.52] [-0.09, -0.00, 0.08]

NC-MCI

SGR LDDMM-1 [0.56, 0.79, 1.02] [-0.22, 0.01, 0.25]
16SGR Pred-1 [0.53, 0.68, 0.82] [-0.14, 0.01, 0.16]

SGR Pred+Corr-1 [0.63, 0.80, 0.97] [-0.16, 0.02, 0.19]
SGR LDDMM-2 [0.62, 0.90, 1.18] [-0.32, -0.02, 0.28]

17SGR Pred-2 [0.58, 0.77, 0.97] [-0.19, 0.01, 0.22]
SGR Pred+Corr-2 [0.46, 0.68, 0.91] [-0.25, -0.02, 0.22]

MCI-MCI

SGR LDDMM-1 [0.71, 0.83, 0.94] [-0.13, -0.00, 0.12]
184SGR Pred-1 [0.53, 0.61, 0.68] [-0.06, 0.02, 0.10]

SGR Pred+Corr-1 [0.64, 0.73, 0.82] [-0.08, 0.02, 0.11]
SGR LDDMM-2 [0.71, 0.82, 0.92] [-0.14, -0.02, 0.09]

183SGR Pred-2 [0.58, 0.66, 0.73] [-0.05, 0.03, 0.12]
SGR Pred+Corr-2 [0.50, 0.59, 0.67] [-0.12, -0.02, 0.07]

MCI-NC

SGR LDDMM-1 [0.03, 0.39, 0.74] [-0.38, 0.05, 0.47]
16SGR Pred-1 [0.05, 0.29, 0.52] [-0.24, 0.05, 0.33]

SGR Pred+Corr-1 [0.08, 0.36, 0.64] [-0.28, 0.05, 0.38]
SGR LDDMM-2 [0.14, 0.40, 0.67] [-0.28, 0.04, 0.35]

21SGR Pred-2 [0.24, 0.42, 0.61] [-0.17, 0.05, 0.28]
SGR Pred+Corr-2 [0.05, 0.26, 0.48] [-0.22, 0.03, 0.29]

MCI-AD

SGR LDDMM-1 [1.65, 1.95, 2.25] [-0.21, 0.13, 0.47]
70SGR Pred-1 [1.09, 1.27, 1.46] [-0.12, 0.09, 0.30]

SGR Pred+Corr-1 [1.39, 1.62, 1.85] [-0.15, 0.11, 0.37]
SGR LDDMM-2 [1.59, 1.91, 2.23] [-0.16, 0.19, 0.53]

65SGR Pred-2 [1.15, 1.35, 1.56] [-0.09, 0.14, 0.36]
SGR Pred+Corr-2 [1.20, 1.45, 1.69] [-0.13, 0.14, 0.41]

AD-AD

SGR LDDMM-1 [2.49, 2.76, 3.04] [-0.15, 0.07, 0.30]
101SGR Pred-1 [1.74, 1.90, 2.07] [-0.09, 0.04, 0.18]

SGR Pred+Corr-1 [2.14, 2.34, 2.54] [-0.09, 0.08, 0.24]
SGR LDDMM-2 [2.72, 2.99, 3.27] [-0.15, 0.07, 0.29]

103SGR Pred-2 [1.97, 2.14, 2.31] [-0.07, 0.07, 0.21]
SGR Pred+Corr-2 [2.16, 2.36, 2.56] [-0.15, 0.02, 0.18]

Table 1: Slope and intercept values for linear regression of volume
change over time. Our notation for slope and intercept indicates
[lower bound of 95% C.I., point estimate, upper bound of 95%
C.I.]. The intervals of intercept estimates all contain zero. The slope
changes between the different diagnostic groups. The #data column
lists the number of data points analyzed.

develop into AD while MCI-nonconverter indicates that
such a conversion did not occur throughout the imaging
time-frame. We used a simple linear Support Vector Ma-
chine (SVM) to perform binary classifications for these
three experiments. Table 2 shows the classification accu-
racies1. We only show results for ADNI-1 Pred-Corr-1 and

1Note that we omitted training data of ADNI-1/2 Pred-Corr-1 in
testing the classification accuracy.

ADNI-2 Pred-Corr-1. Similar results are obtained using
the other models and are hence omitted here. For each
experiment, we used two fold cross-validation on a dataset
balanced with respect to diagnostic category. This is done
to ensure that during training and testing of the SVM each
class has the same number of samples (i.e., 186 NC vs 186
MCI, 100 NC vs 100 AD, 70 MCI-C vs 70 MIC-N, each sep-
arated into two folds). The reported accuracies are aver-
ages over the two folds. While our results are below state-
of-the art (expected based on the simple two-dimensional
slope/y-intercept feature we use) they clearly indicate that
the estimated atrophy measures capture information dis-
criminative for the different diagnostic groups. Example
state-of-the-art results (Davatzikos et al., 2011; Suk and
Shen, 2013; Westman et al., 2012) for the three diagnostic
categories are NC vs AD: ≈ 96%, NC vs MCI: ≈ 90%, and
MCI-C vs MCI-NC: ≈ 76%. However, these results were
obtained using much more sophisticated biomarkers using
complex models. Note also that the datasets for these re-
sults are not the same. Hence, this remains a qualitative
comparison.

NC vs. MCI NC vs. AD MCI-C vs MCI-NC
ADNI-1 Pred+Corr-1 66.22% (50%) 82.83% (50%) 68.22% (50%)

# samples 186 NC + 186 MCI 100 NC + 100 AD 70 MCI-C + 70 MCI-NC
ADNI-2 Pred+Corr-1 62.50% (50%) 83.77% (50%) 64.96% (50%)

# samples 178 NC + 178 MCI 142 NC + 142 AD 148 MCI-C + 148 MCI-NC

Table 2: Linear SVM classification results of three diagnostic groups
with baseline accuracies in parentheses (i.e., random chance). MCI-
C denotes MCI-converter; MCI-NC denotes MCI-nonconverter. Re-
sults show that the slope and y-intercept of the linear model of at-
rophy scores can be used as features to capture differences between
different diagnostic groups.

3. Atrophy

This part extends the discussion of the atrophy mea-
sure in the main manuscript (Sec.4.2). Table 3 and Fig. 1
show the results of the Spearman rank-order correlation
over all three diagnostic groups (NC, MCI and AD) com-
bined. In detail, for ADNI-1/2, we randomly selected 2002

cases from each diagnostic category at each month and cal-
culated the Spearman rank-order correlation. Fig. 1 shows
the results for 50 repetitions. Results are comparable with
previous studies Fleishman and Thompson (2017b,a) as
discussed in the main manuscript (Sec.4.2). Note that
correlations at 18 month and 36 month do not follow an
upward trend in Fig. 1. This is mainly, because diagnos-
tic categories are not balanced for these two time-points.
See Table 5 for details on data distribution. To study the
dependence on diagnostic group, Fig. 2 therefore shows
correlations separated by diagnostic groups, which do not
exhibit the downward trend at 18 and 36 months.

Further, using the correction network, FPSGR achieves
comparable and sometimes even slightly better perfor-
mance compared to the optimization-based SGR LDDMM

2For ADNI-1 at 48 month, we selected 60, because there was not
enough data; ADNI-2 36 month was omitted due to lack of data.
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Figure 1: Boxplot of FPSGR-derived correlations with clinical variables in ADNI-1 and ADNI-2. Prediction + correction results are comparable
with optimization-based LDDMM. Adding a correction network generally improves over the prediction-only results.

Figure 2: Boxplot of Spearman rank-order correlations between atrophy measures and MMSE with respect to time in ADNI-1 and ADNI-2.
Top row: ADNI-1 NC-NC group (left), ADNI-1 MCI-MCI group (middle), ADNI-1 AD-AD group (right). Bottom row: ADNI-2 NC-NC group
(left), ADNI-2 MCI-MCI group (middle), ADNI-2 AD-AD group (right). ADNI-1 MCI-MCI and ADNI-1 AD-AD show stronger correlations with
time. In comparison, correlations remain relatively stable over time for the diagnostic groups in ADNI-2.
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ADNI-1 MMSE p-value DX p-value #data

6mo

SGR LDDMM-1 -0.4957 5.17e-39 0.5140 2.66e-42
608SGR Pred-1 -0.4642 8.09e-34 0.4754 1.30e-35

SGR Pred+Corr-1 -0.5104 1.22e-41 0.5259 1.53e-44
SGR LDDMM-2 -0.4667 4.17e-34 0.4814 1.75e-36

606SGR Pred-2 -0.4711 8.48e-35 0.4849 4.58e-37
SGR Pred+Corr-2 -0.4734 3.54e-35 0.4890 9.67e-38

12mo

SGR LDDMM-1 -0.5749 5.23e-51 0.5313 1.81e-42
565SGR Pred-1 -0.5328 9.46e-43 0.4898 1.97e-35

SGR Pred+Corr-1 -0.5799 4.39e-52 0.5406 3.44e-44
SGR LDDMM-2 -0.5301 6.81e-42 0.5055 1.17e-37

560SGR Pred-2 -0.5351 9.79e-43 0.5120 1.11e-38
SGR Pred+Corr-2 -0.5374 3.73e-43 0.5155 2.89e-39

18mo

SGR LDDMM-1 -0.4939 4.86e-16 0.4776 5.76e-15
238SGR Pred-1 -0.4659 3.18e-14 0.4313 3.37e-12

SGR Pred+Corr-1 -0.4924 6.16e-16 0.4643 3.98e-14
SGR LDDMM-2 -0.4385 9.50e-13 0.4000 1.12e-10

241SGR Pred-2 -0.4389 9.06e-13 0.3818 8.80e-10
SGR Pred+Corr-2 -0.4384 9.75e-13 0.3790 1.19e-9

24mo

SGR LDDMM-1 -0.6064 5.01e-45 0.5978 1.69e-43
435SGR Pred-1 -0.5664 2.83e-38 0.5607 2.18e-37

SGR Pred+Corr-1 -0.6001 6.55e-44 0.5943 6.82e-43
SGR LDDMM-2 -0.5822 4.11e-40 0.5534 1.24e-35

427SGR Pred-2 -0.5911 1.41e-41 0.5714 2.26e-38
SGR Pred+Corr-2 -0.5898 2.28e-41 0.5709 2.65e-38

36mo

SGR LDDMM-1 -0.5142 4.29e-20 0.5300 1.81e-21
277SGR Pred-1 -0.4731 7.38e-17 0.4926 2.42e-18

SGR Pred+Corr-1 -0.5069 1.71e-19 0.5296 1.99e-21
SGR LDDMM-2 -0.4334 3.79e-13 0.4815 2.93e-16

256SGR Pred-2 -0.4425 1.07e-13 0.4894 7.99e-17
SGR Pred+Corr-2 -0.4393 1.67e-13 0.4863 1.34e-16

48mo

SGR LDDMM-1 -0.7456 2.01e-13 0.6635 5.20e-10
69SGR Pred-1 -0.7294 1.18e-12 0.6458 2.08e-9

SGR Pred+Corr-1 -0.7443 2.30e-13 0.6575 8.43e-10
SGR LDDMM-2 -0.6889 2.25e-10 0.5927 1.98e-7

65SGR Pred-2 -0.6995 9.08e-11 0.6048 9.49e-8
SGR Pred+Corr-2 -0.7005 8.31e-11 0.6067 8.49e-8

ADNI-2 MMSE p-value DX p-value #data

3mo

SGR LDDMM-1 N/A N/A 0.4254 2.34e-24
522SGR Pred-1 N/A N/A 0.4142 4.72e-23

SGR Pred+Corr-1 N/A N/A 0.4353 1.52e-25
SGR LDDMM-2 N/A N/A 0.4409 2.77e-26

523SGR Pred-2 N/A N/A 0.4280 1.05e-24
SGR Pred+Corr-2 N/A N/A 0.4445 9.64e-27

6mo

SGR LDDMM-1 -0.4989 8.01e-31 0.4688 6.09e-27
468SGR Pred-1 -0.4768 6.22e-28 0.4625 3.47e-26

SGR Pred+Corr-1 -0.5128 9.64e-33 0.4846 6.19e-29
SGR LDDMM-2 -0.5072 4.29e-32 0.4883 1.58e-29

470SGR Pred-2 -0.4718 2.02e-27 0.4742 9.96e-28
SGR Pred+Corr-2 -0.5066 5.25e-32 0.4913 6.33e-30

12mo

SGR LDDMM-1 -0.4756 1.43e-27 0.4859 7.22e-29
464SGR Pred-1 -0.4530 7.32e-25 0.4771 9.39e-28

SGR Pred+Corr-1 -0.4908 1.67e-29 0.5064 1.37e-31
SGR LDDMM-2 -0.4937 1.07e-29 0.5026 7.05e-31

461SGR Pred-2 -0.4626 7.94e-26 0.4913 2.21e-29
SGR Pred+Corr-2 -0.4987 2.35e-30 0.5149 1.44e-32

24mo

SGR LDDMM-1 -0.4120 9.53e-15 0.4476 2.06e-17
325SGR Pred-1 -0.3670 8.51e-12 0.4331 2.71e-16

SGR Pred+Corr-1 -0.4109 1.15e-14 0.4632 1.09e-18
SGR LDDMM-2 -0.4095 2.09e-14 0.4375 1.93e-16

321SGR Pred-2 -0.3411 3.46e-10 0.3940 2.29e-13
SGR Pred+Corr-2 -0.3943 2.20e-13 0.4336 3.79e-16

36mo

SGR LDDMM-1 -0.2474 0.55 0.2869 0.49
8SGR Pred-1 -0.2474 0.55 0.2869 0.49

SGR Pred+Corr-1 -0.2474 0.55 0.2869 0.49
SGR LDDMM-2 0.0935 0.83 0.1695 0.69

8SGR Pred-2 0.0935 0.83 0.1695 0.69
SGR Pred+Corr-2 0.0935 0.83 0.1695 0.69

Table 3: FPSGR-derived correlations with clinical variables,
compared to correlations with clinical variables for SGR using
optimization-based LDDMM. The #data column lists the number
of data points analyzed. Green indicates that FPSGR using the pre-
diction+correction network shows the strongest correlations; Yellow
indicates that FPSGR using the prediction network alone shows the
strongest correlations; Red indicates that SGR LDDMM shows the
strongest correlations. The MMSE column lists correlations between
atrophy scores and the mini-mental state exam scores; the DX col-
umn lists correlations between atrophy score and diagnostic cate-
gory. Finally, the p-value column(s) list the p-values for the null-
hypothesis that there is no correlation. Benjamini-Hochberg pro-
cedure was employed to reduce the false discovery rate and Purple
highlight indicates statistically significant. FPSGR using the predic-
tion+correction network generally improves performance over using
the prediction network alone and frequently even performs slightly
better than the SGR results obtained by optimization-based LD-
DMM.

method; see Table 3 for additional quantitative results.
Specifically, FPSGR using the prediction+correction net-
work performs best in 10 out of 18 comparisons for

Normality Test
MMSE SGR LDDMM SGR Pred SGR Pred+Corr

SGR LDDMM N/A 0.1507 0.5361
SGR Pred 0.1507 N/A 0.0183

SGR Pred+Corr 0.5361 0.0183 N/A

Paired t-test
MMSE SGR LDDMM SGR Pred SGR Pred+Corr

SGR LDDMM N/A 0.0005484 0.09469173
SGR Pred 0.9994516 N/A

SGR Pred+Corr 0.0530827 N/A

Normality Test
DX SGR LDDMM SGR Pred SGR Pred+Corr

SGR LDDMM N/A 0.1963 0.2356
SGR Pred 0.1963 N/A 0.3208

SGR Pred+Corr 0.2356 0.3208 N/A

Paired T -test
DX SGR LDDMM SGR Pred SGR Pred+Corr

SGR LDDMM N/A 0.0010944 0.9813582
SGR Pred 0.9989056 N/A 0.9999869

SGR Pred+Corr 0.0186418 0.0000131 N/A

Table 4: Results of a Shapiro-Wilk normality test and a paired t-test
on MMSE and DX correlations among optimization-based LDDMM,
FPSGR without prediction network and FPSGR with correction net-
work. The null-hypothesis for the Shapiro-Wilk normality test is
that the difference between column-method and row-method is nor-
mally distributed. The null-hypothesis for the paired t-test is that
the correlation of the column-method is greater than that of the
row-method, i.e. the column-method is statistically better than row-
method (at a significance level of 5%). Green highlighted p-values
indicate no rejection of the normality hypothesis (at 5% significance)
and thus facilitate the paired t-test. p-values highlighted in red in-
dicate a rejection of the normality null-hypothesis and consequently
do not allow a paired t-test. Specifically, green highlighted p-values
in paired t-test indicate that SGR Pred+Corr ≥ SGR LDDMM >
SGR Pred. Hence the FPSGR with correction network works best
in terms of correlation with MMSE and DX.

Distribution of prediction cases in ADNI-1

Pred-1 6mo 12mo 18mo 24mo 36mo 48mo
NC 182 172 8 151 128 38
MCI∗ 274 221 165 122 80 11
AD 153 173 66 163 69 20

Total 609 566 239 436 277 69

Pred-2 6mo 12mo 18mo 24mo 36mo 48mo
NC 182 168 9 144 119 33
MCI∗ 272 224 169 124 70 10
AD 152 168 64 160 67 22

Total 606 560 242 428 256 65

Table 5: Distribution of Pred/Corr-1 and Pred/Corr-2 cases in
ADNI-1. MCI∗ is the combination of the MCI and LMCI diagnostic
groups.

MMSE and in 14 out of 20 comparisons for diagnos-
tic group. In the cases where FPSGR with predic-
tion+correction network does not perform best its differ-
ence to the optimization-based method is generally very
small. In general FPSGR using the correction network
performs better than FPSGR without the correction net-
work. To check for statistical differences in the perfor-
mance of FPSGR, we use a paired t-test. Table 4 shows
the resulting p-values for the three methods: optimization-
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based SGR LDDMM, FPSGR without correction network
(i.e., Pred) and FPSGR with correction network (i.e.,
Pred+Corr). For both correlation with MMSE and DX,
FPSGR with correction network shows significantly better
performance than FPSGR without correction network and
slightly better performance than SGR LDDMM, which
justifies using FPSGR with correction network. In sum-
mary, FPSGR captures correlations between atrophy and
clinical measures well.

To further explore the correlations of atrophy with
MMSE scores, we visualize them separated by diagnos-
tic group where diagnosis did not change (i.e., NC-NC,
MCI-MCI, AD-AD) in Fig. 2. For the ADNI-1 dataset, we
observe (as expected) very low correlations for the normal
diagnostic group (with no clear trend), and much stronger
correlations for the MCI and AD groups. MCI and AD
also exhibit increasingly stronger correlations with time.
In case of ADNI-2, the MCI group shows modest correla-
tions, which remain consistent across time. Correlations
are relatively low for the normal groups. The AD groups
show increasingly strong correlations over time. In con-
trast to ADNI-1, ADNI-2 focuses mainly on earlier stages
of the diagnostic groups (Hua et al., 2016). Hence, the de-
formations in ADNI-2 are generally smaller than in ADNI-1.
This may explain why the NC and MCI diagnostic groups
show consistent correlation values over time (instead of
stronger correlations as for AD in ADNI-2 or the MCI and
AD groups in ADNI-1).

To address the question how stat-ROI-specific mea-
sures behave over time, we here explore how atrophy locally
(i.e., voxel-by-voxel) correlates with MMSE. We define the
local atrophy as

s(ϕ)(x) := (1− det(Dϕ(x)))× 100 . (1)

I.e., each voxel in a stat-ROI has an associated atrophy
score. Fig. 3 shows kernel density estimates of the high-
est 10% local correlations in a violin plot. For the ADNI-1
MCI and AD groups, a clear shift toward stronger correla-
tions can be observed over time, similar to the boxplots of
Fig. 2. This indicates the progression of the disease. Cor-
relations for the normal groups in ADNI 1/2 are mostly
centered around a modest correlation (as expected). In
ADNI-2, only the AD diagnostic group shows a shift to-
wards stronger correlations over time. All the other diag-
nostic groups show a relatively consistent distribution over
time. This is also similar to Fig. 2.

4. Forecasting

The forecasting results shown here correspond to the
results of Sec. 4 of the main manuscript, but include the
results for the prediction-only models. Specifically, Table 6
corresponds to Table 7 in the main manuscript with the
prediction-only results included. Prediction + correlation
results are similar to prediction-only results.

Figure 3: Kernel density estimates of highest 10% local correlations
of atrophy with MMSE within the ROI depicted in the main paper.
Top row: results of NC group, MCI group and AD group from
ADNI-1. Bottom row: results of NC group, MCI group and AD
group from ADNI-2. Results show a shifting pattern for the ADNI-1

MCI case, the ADNI-1 AD case and the ADNI-2 AD case.
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Figure 4: Logarithmic loss curves for prediction and correction network. Left: log base 10 loss for ADNI-1 Pred-2 model; Right: log base 10
loss for ADNI-1 Corr-2 model. Loss curves for the other models are similar.

ADNI-1 MMSE p-value DX p-value #data

36mo

All months
SGR LDDMM-1 -0.5142 4.29e-20 0.5300 1.81e-21

277

SGR Pred-1 -0.4731 7.38e-17 0.4926 2.42e-18
SGR Pred+Corr-1 -0.5069 1.71e-19 0.5296 1.99e-21

Forecast
SGR Pred-1 -0.4583 1.09e-15 0.4825 1.93e-17

SGR Pred+Corr-1 -0.4708 1.42e-16 0.4980 1.21e-18

Replace
SGR Pred-1 -0.4923 3.43e-18 0.5104 1.21e-19

SGR Pred+Corr-1 -0.5097 1.37e-19 0.5375 5.47e-22

All months
SGR LDDMM-2 -0.4334 3.79e-13 0.4815 2.93e-16

256

SGR Pred-2 -0.4425 1.07e-13 0.4894 7.99e-17
SGR Pred+Corr-2 -0.4393 1.67e-13 0.4863 1.34e-16

Forecast
SGR Pred-2 -0.4078 1.36e-11 0.4398 1.95e-13

SGR Pred+Corr-2 -0.4005 3.34e-11 0.4301 7.40e-13

Replace
SGR Pred-2 -0.4202 2.75e-12 0.4635 6.27e-15

SGR Pred+Corr-2 -0.4164 4.51e-12 0.4582 1.38e-14

48mo

All months
SGR LDDMM-1 -0.7456 2.01e-13 0.6635 5.20e-10

69

SGR Pred-1 -0.7294 1.18e-12 0.6458 2.08e-9
SGR Pred+Corr-1 -0.7443 2.30e-13 0.6575 8.43e-10

Forecast
SGR Pred-1 -0.6332 5.29e-9 0.6165 1.70e-8

SGR Pred+Corr-1 -0.6541 1.10e-9 0.6317 5.86e-9

Replace
SGR Pred-1 -0.6446 2.27e-9 0.6478 1.78e-9

SGR Pred+Corr-1 -0.6668 3.98e-10 0.6800 1.31e-10

All months
SGR LDDMM-2 -0.6889 2.25e-10 0.5927 1.98e-7

65

SGR Pred-2 -0.6995 9.08e-11 0.6048 9.49e-8
SGR Pred+Corr-2 -0.7005 8.31e-11 0.6067 8.49e-8

Forecast
SGR Pred-2 -0.6528 3.79e-9 0.5568 1.46e-6

SGR Pred+Corr-2 -0.6403 9.25e-9 0.5460 2.55e-6

Replace
SGR Pred-2 -0.6334 1.49e-8 0.5970 1.53e-7

SGR Pred+Corr-2 -0.6307 1.79e-8 0.5973 1.50e-7

Table 6: Forecast results compared with real data results. The
#data column lists the number of data points analyzed. The
Benjamini-Hochberg procedure was employed to reduce the false dis-
covery rate (FDR). Purple highlight indicates statistically significant
results after corrections for multiple comparisons. Forecast results
are calculated by using SGR excluding 36mo and 48mo data points
and then predicting 36mo and 48mo correlations. Results are com-
pared based on the same dataset except for two invalid data points
for the 36mo data.

5. Numerical Convergence During Training

For completeness, Fig. 4 shows some convergence
curves for the training of a prediction and a correction net-
work. We use a batch size of 50, a learning rate of 0.0001,
and 10 epochs to train both the prediction and correction
network. We use approximately 180,000 patches to train
each model. At a batch size of 50 this corresponds to 3,600
iterations/epoch. We observe that 10 epochs are sufficient
for convergence of the models. No overfitting was noticed

in our experiment, nor in the experiments of Yang et al.
(2017).

6. Efficiency

Training a network takes about 20 hours on one
NVIDIA GTX1080Ti. Thus, the prediction+correction
model takes about 40 hours of training time, because two
networks are trained. To prepare the training dataset, it
took about 50 hours to use optimization-based LDDMM to
obtain the initial momenta. For the prediction+correction
model an additional 0.5 hours are required since a correc-
tion step is used to generate differences of the initial mo-
mentum and the predicted initial momentum; hence, the
initial momentum needs to be predicted, based on which
the transform from the target to the source domain can be
computed, which is then used to spatially warp the target
image back to the source image domain. The analysis of
the ADNI-1 dataset (2,646 pairwise image registrations) us-
ing FPSGR took about 24 hours. Hence the total time for
such a large-scale analysis was about 114.5 hours, which
is less than 5 days. Using optimization-based LDDMM to
process the same dataset took over 40 days using a single
GPU. The computation time is similar for ADNI-2. Hence,
the net improvement for the large-scale image analysis of
ADNI-1 and ADNI-2 is roughly 70 days including the train-
ing time of the models.
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