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Abstract

We consider semidefinite programs (SDPs) with equality constraints. The vari-

able to be optimized is a positive semidefinite matrix X of size n. Following

the Burer-Monteiro approach, we optimize a factor Y of size n � p instead,

such that X D Y Y T. This ensures positive semidefiniteness at no cost and can

reduce the dimension of the problem if p is small, but results in a nonconvex

optimization problem with a quadratic cost function and quadratic equality con-

straints in Y . In this paper, we show that if the set of constraints on Y regularly

defines a smooth manifold, then, despite nonconvexity, first- and second-order

necessary optimality conditions are also sufficient, provided p is large enough.

For smaller values of p, we show a similar result holds for almost all (linear)

cost functions. Under those conditions, a global optimum Y maps to a global

optimum X D Y Y T of the SDP. We deduce old and new consequences for SDP

relaxations of the generalized eigenvector problem, the trust-region subproblem,

and quadratic optimization over several spheres, as well as for the Max-Cut and

Orthogonal-Cut SDPs, which are common relaxations in stochastic block mod-

eling and synchronization of rotations. © 2018 Wiley Periodicals, Inc.

1 Introduction

We consider semidefinite programs (SDPs) of the form

f ? D min
X2Sn�n

hC;Xi subject to A .X/ D b; X � 0;(SDP)

where Sn�n is the set of real symmetric matrices of size n, C 2 Sn�n is the cost

matrix, hC;Xi D Tr.C TX/, A WSn�n ! R
m is a linear operator capturing m
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equality constraints with right-hand side b 2 Rm, and the variable X is symmetric,

positive semidefinite. Let A1; : : : ; Am 2 Sn�n be the constraint matrices such that

A .X/i D hAi ; Xi, and let

C D fX 2 Sn�nW A .X/ D b and X � 0g(1.1)

be the search space of (SDP), assumed to be nonempty.

Interior point methods solve (SDP) in polynomial time [23]. In practice, how-

ever, for n beyond a few thousand, such algorithms run out of memory (and time),

prompting research for alternative solvers. Crucially, if C is compact, then (SDP)

admits a global optimum of rank at most r , where
r.rC1/

2
� m [7, 24]—we review

this fact in Section 2.2. Thus, if one restricts C to matrices of rank at most p with
p.pC1/

2
� m, the optimal value remains unchanged. This restriction is easily en-

forced by factorizing X D Y Y T where Y has size n � p, yielding a quadratically

constrained quadratic program:

min
Y2Rn�p

hCY ; Y i subject to A .Y Y T/ D b:(P)

In general, (P) is nonconvex because its search space

Mp D �
Y 2 Rn�pW A .Y Y T / D b

	
(1.2)

is nonconvex. (When p is clear from context or unimportant, we just write M .)

Nonconvexity makes it a priori unclear how to solve (P). Still, the benefits are

that M requires no conic constraint and can be lower dimensional than C . This has

motivated Burer and Monteiro [12, 13] to try to solve (P) using local optimization

methods, with surprisingly good results. They developed theory in support of this

observation (details below).

Commenting on their results, Burer and Monteiro [13, end of sec. 3] ask how

large one must take p so that the local minima of (P) are guaranteed to map to

global minima of (SDP). The theorem they provide essentially asserts that one

needs only1 p.pC1/
2

> m, with the important caveat (in their own words) that

positive-dimensional faces of (SDP) which are “flat” with respect to the objec-

tive function can harbor nonglobal local minima. The caveat—the existence or

nonexistence of nonglobal local optima, or their potentially adverse effect for local

optimization algorithms—was not further discussed. How mild this caveat really

is (as stated) is hard to gauge, considering C can have a continuum of faces.

Contributions

In this paper, we identify settings where the nonconvexity of (P) is benign, in

the sense that second-order necessary optimality conditions are sufficient for global

optimality—an unusual property for a nonconvex problem. This paper extends a

previous conference paper by the same authors [11]. Our core assumption is as

follows.

1 The condition on p and m is slightly, but inconsequentially, different in [13].
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Assumption 1.1. For a given p such that M (1.2) is nonempty, constraints on (SDP)

defined by A1; : : : ; Am 2 Sn�n and b 2 Rm satisfy at least one of the following:

(a) fA1Y; : : : ; AmY g are linearly independent in Rn�p for all Y 2 M , or

(b) fA1Y; : : : ; AmY g span a subspace of constant dimension in Rn�p for all Y

in an open neighborhood of M in Rn�p.

In either case, let m0 denote the dimension of the space spanned by fA1Y; : : : ;

AmY g. (By assumption, m0 is independent of the choice of Y 2 M .)

Under Assumption 1.1, M is a smooth manifold, which is why we say such

an (SDP) is smooth. Furthermore, if the assumption holds for several values of p,

then m0 is the same for all. Formal statements follow; proofs are in Appendix A.

PROPOSITION 1.2. Under Assumption 1.1, M is an embedded submanifold of

R
n�p of dimension np �m0.

PROPOSITION 1.3. If Assumption 1.1 holds for some p, it holds for all p0 � p

such that Mp0 is nonempty. Furthermore, if Assumption 1.1(a) holds for p D n,

then it holds for all p0 such that Mp0 is nonempty. In both cases, m0 is independent

of p.

Examples of SDPs satisfying Assumption 1.1 are detailed in Section 5 (they all

satisfy Assumption 1.1(a) for p D n). The assumption itself is further discussed in

Section 6. Our first main result is as follows, where rank A can be replaced by m

if preferred. Optimality conditions are derived in Section 2.

THEOREM 1.4. Let p be such that
p.pC1/

2
> rank A and such that Assumption 1.1

holds. For almost any cost matrix C 2 Sn�n, if Y 2 M satisfies first- and second-

order necessary optimality conditions for (P), then Y is globally optimal and X D
Y Y T is globally optimal for (SDP).

The proof combines two intermediate results (Proposition 3.1 and Lemma 3.3

below):

(1) If Y is column-rank deficient and satisfies first- and second-order necessary

optimality conditions for (P), then it is globally optimal and X D Y Y T is

optimal for (SDP).

(2) If
p.pC1/

2
> rank A , then, for almost all C , every Y that satisfies first-

order necessary optimality conditions is column-rank deficient.

The first step is a variant of well-known results [12,13,17]. The second step is new

and crucial, as it allows to formally exclude the existence of spurious local optima,

thus resolving the caveat raised by Burer and Monteiro generically in C .

Theorem 1.4 is a statement about the optimization problem itself, not about

specific algorithms. If C is compact, then so is M and known algorithms for

optimization on manifolds converge to second-order critical points,2 regardless of

2 Points that satisfy first- and second-order necessary optimality conditions. Compactness of C

ensures a minimum is attained in (P), hence also that second-order critical points exist.
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initialization [10]. Thus, provided p is large enough, for almost any cost matrix C ,

such algorithms generate sequences that converge to global optima of (P). Each

iteration requires a polynomial number of arithmetic operations.

In practice, the algorithm is stopped after a finite number of iterations, at which

point one can only guarantee approximate satisfaction of first- and second-order

necessary optimality conditions. Ideally, this should lead to a statement of approx-

imate optimality. We are only able to make that statement for large values of p.

We state this result informally here and give a precise statement in Corollary 4.5

below.

THEOREM 1.5 (Informal). Assume C is compact and Assumption 1.1 holds for

p D n C 1. Then, for any cost matrix C 2 S
n�n, if Y 2 MnC1 approximately

satisfies first- and second-order necessary optimality conditions for (P), then it is

approximately globally optimal and X D Y Y T is approximately globally optimal

for (SDP) in terms of attained cost value.

Theorem 1.4 does not exclude the possibility that a zero-measure subset of cost

matrices C may pose difficulties. Theorem 1.5 does apply for all cost matrices, but

requires a large value of p. A complementary result in this paper, which comes

with a more geometric proof, constitutes a refinement of the caveat raised by Burer

and Monteiro [13] as highlighted in the introduction. It states that a suboptimal

second-order critical point Y must map to a face FY Y T of the convex search space

C whose dimension is large (rather than just positive) when p itself is large. The

facial structure of C is discussed in Section 2.2. The following is a consequence

of Corollary 2.9 and Theorem 3.4 below.

THEOREM 1.6. Let Assumption 1.1 hold for some p. Let Y 2 M be a second-

order critical point of (P). If rank.Y / < p or if rank.Y / D p and dim FY Y T <
p.pC1/

2
� m0 C p, then Y is globally optimal for (P) and X D Y Y T is globally

optimal for (SDP).

Combining this theorem with bounds on the dimension of faces of C allows us to

conclude the optimality of second-order critical points for all cost matrices C , with

bounds on p that are smaller than n. Implications of these theorems for examples

of SDPs are treated in Section 5, including the trust-region subproblem, Max-Cut,

and Orthogonal-Cut.

Notation

S
n�n is the set of real, symmetric matrices of size n. A symmetric matrix X

is positive semidefinite (X � 0) if and only if uTXu � 0 for all u 2 R
n. For

matrices A;B , the standard euclidean inner product is hA;Bi D Tr.ATB/. The

associated (Frobenius) norm is kAk D
p
hA;Ai. Id is the identity operator and In

is the identity matrix of size n. The variable m0 � m is defined in Assumption 1.1.

The adjoint of A is A �, such that A �.�/ D �1A1 C � � � C �mAm.
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2 Geometry and Optimality Conditions

We first discuss the smooth geometry of (P) and the convex geometry of (SDP),

as well as optimality conditions for both.

2.1 For the Nonconvex Problem (P)

Endow R
n�p with the classical euclidean metric hU1; U2i D Tr.U T

1U2/, corre-

sponding to the Frobenius norm: kU k2 D hU;U i. As stated in Proposition 1.2,

under Assumption 1.1 for a given p, the search space M of (P) defined in (1.2) is

a submanifold of Rn�p of dimension dim M D np � m0. Furthermore, the tan-

gent space to M at Y is a subspace of Rn�p obtained by linearizing the equality

constraints.

LEMMA 2.1. Under Assumption 1.1, the tangent space at Y to M , TYM , obeys

TYM D f PY 2 Rn�pW A . PY Y T C Y PY T / D 0g
D f PY 2 Rn�pW hAiY ; PY i D 0 for i D 1; : : : ; mg:(2.1)

PROOF. By definition, PY 2 Rn�p is a tangent vector to M at Y if and only if

there exists a curve 
 W R! M such that 
.0/ D Y and P
.0/ D PY , where P
 is the

derivative of 
 . Then, A .
.t/
.t/T/ D b for all t . Differentiating on both sides

yields A . P
.t/
.t/T C 
.t/ P
.t/T/ D 0. Evaluating at t D 0 confirms that TYM is

included in the subspace (2.1). To conclude, use the fact that both subspaces have

the same dimension under Assumption 1.1, by Proposition 1.2. �

Each tangent space is equipped with a restriction of the metric h � ; � i, thus mak-

ing M a Riemannian submanifold of Rn�p. From (2.1), it is clear that the AiY

span the normal space at Y :

NYM D spanfA1Y; : : : ; AmY g:(2.2)

An important tool is the orthogonal projector ProjY W Rn�p ! TYM :

ProjY Z D argmin
PY2TYM

k PY �Zk:(2.3)

We have the following lemma to characterize it:

LEMMA 2.2. Under Assumption 1.1, the orthogonal projector is given by

ProjY Z D Z � A
�.G�

A .ZY T//Y;

where A �W Rm ! S
n�n is the adjoint of A , G D G.Y / is a Gram matrix defined

by Gij D hAiY ;AjY i, and G� denotes the Moore-Penrose pseudo-inverse of G.

Furthermore, if Y 7! Z.Y / is differentiable in an open neighborhood of M in

R
n�p, then Y 7! ProjY Z.Y / is differentiable at all Y in M .
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PROOF. Orthogonal projection is along the normal space, so that ProjY Z 2
TYM and Z � ProjY Z 2 NYM (2.2). From the latter we infer there exists

� 2 Rm such that

Z � ProjY Z D
mX
iD1

�iAiY D A
�.�/Y;

since the adjoint of A is A �.�/ D �1A1 C � � � C �mAm by definition. Multiply

on the right by Y T and apply A to obtain

A .ZY T/ D A .A �.�/Y Y T/;

where we used A .ProjY .Z/Y
T/ D 0 since ProjY .Z/ 2 TYM . The right-hand

side expands into

A .A �.�/Y Y T/i D
�
Ai ;

mX
jD1

�jAjY Y
T

�
D

mX
jD1

hAiY ;AjY i�j D .G�/i :

Thus, any � satisfying G� D A .ZY T/ will do. Without loss of generality, we

pick the smallest norm solution: � D G�A .ZY T/. The function Y 7! G� is

continuous and differentiable at Y 2 M provided G has constant rank in an open

neighborhood of Y in Rn�p [16, theorem 4.3], which is the case under Assump-

tion 1.1. �

Problem (P) minimizes

g.Y / D hCY ; Y i(2.4)

over M , where g is defined over Rn�p. Its classical (euclidean) gradient at Y

is rg.Y / D 2CY . The Riemannian gradient of g at Y , gradg.Y /, is defined

as the unique tangent vector at Y such that, for all tangent PY , hgradg.Y /; PY i D
hrg.Y /; PY i: This is given by the projection of the classical gradient onto the tan-

gent space [3, eq. (3.37)]:

gradg.Y / D ProjY .rg.Y // D 2 ProjY .CY / D 2
�
C �A

�.G�
A .CY Y T//

�
Y:

This motivates the definition of S as follows, with Gij D


AiY ;AjY

�
:

S D S.Y / D S.Y Y T/ D C �A
�.�/ with � D G�

A .CY Y T/:(2.5)

This is indeed well-defined since Gij is a function of Y Y T. We get a convenient

formula for the gradient:

gradg.Y / D 2SY:(2.6)

In what follows, S will play a major role.

Turning toward second-order derivatives, the Riemannian Hessian of g at Y

is a symmetric operator on the tangent space at Y obtained as the projection of

the derivative of the Riemannian gradient vector field [3, eq. (5.15)]. The latter
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is indeed differentiable owing to Lemma 2.2. With D denoting classical Fréchet

differentiation, writing S D S.Y / and PS D D.Y 7! S.Y //.Y /� PY �,

(2.7)
Hessg.Y /� PY � D ProjY .D gradg.Y /� PY �/ D 2ProjY .

PSY C S PY /

D 2ProjY .S
PY /:

The projection of PSY vanishes because PS D A �.�/ for some � 2 Rm so that
PSY DPm

iD1 �iAiY is in the normal space at Y (2.2).

These differentials are relevant for their role in necessary optimality conditions

of (P).

DEFINITION 2.3. Y 2 M is a ( first-order) critical point for (P) if

1

2
gradg.Y / D SY D 0;(2.8)

where S is a function of Y (2.5). If furthermore Hessg.Y / � 0, that is (using the

fact that ProjY is self-adjoint),

8 PY 2 TYM
1

2
h PY ;Hessg.Y /� PY �i D h PY ; S PY i � 0;(2.9)

then Y is a second-order critical point for (P).

PROPOSITION 2.4. Under Assumption 1.1, all local (and global) minima of (P)

are second-order critical points.

PROOF. These are standard necessary optimality conditions on manifolds; see

[31, rem. 4.2 and cor. 4.2]. �

Thus, the central role of S in necessary optimality conditions for the nonconvex

problem is clear. Its role for the convex problem is elucidated next.

2.2 For the Convex Problem (SDP)

The search space of (SDP) is the convex set C defined in (1.1), which is assumed

to be nonempty. Regarding geometry, we are primarily interested in the facial

structure of C [27, §18].

DEFINITION 2.5. A face of C is a convex subset F of C such that every (closed)

line segment in C with a relative interior point in F has both endpoints in F . The

empty set and C itself are faces of C .

For example, the nonempty faces of a cube are its vertices, edges, facets, and the

cube itself. By [27, thm. 18.2], the collection of relative interiors of the nonempty

faces forms a partition of C (the relative interior of a singleton is the singleton).

That is, each X 2 C is in the relative interior of exactly one face of C , called FX .

The dimension of a face is the dimension of the lowest-dimensional affine subspace

that contains that face. Of particular interest are the zero-dimensional faces of C

(singletons).

DEFINITION 2.6. X 2 C is an extreme point of C if dim FX D 0.
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In other words, X is extreme if it does not lie on an open line segment included

in C . If C is compact, it is the convex hull of its extreme points [27, cor. 18.5.1].

Of importance to us, if C is compact, (SDP) always attains its minimum at one of

its extreme points since the linear cost function of (SDP) is (a fortiori) concave [27,

cor. 32.3.2]. The faces of C can be described explicitly as follows. The proof is in

Appendix B.

PROPOSITION 2.7. Let X 2 C have rank p and let FX be its associated face (that

is, X is in the relative interior of FX .) Then, with Y 2 Mp such that X D Y Y T,

FX D fX 0 D Y.Ip C A/Y TW A 2 ker LX and Ip C A � 0g;(2.10)

where LX W Sp�p ! R
m is defined by

LX .A/ D A .YAY T/ D �hY TA1Y ;Ai; : : : ; hY TAmY ;Ai
�T
:(2.11)

Thus, the dimension of FX is the dimension of the kernel of LX . Since the

dimension of Sp�p is
p.pC1/

2
and rank.LX / � m0, the rank-nullity theorem gives

a lower bound:

dim FX D p.p C 1/

2
� rank LX � p.p C 1/

2
�m0:(2.12)

For extreme points, dim FX D 0; then,
p.pC1/

2
D rank LX � m0. Solving for p

(the rank of X) shows extreme points have small rank, namely,

dim FX D 0 H) rank.X/ � p� ,
p
8m0 C 1 � 1

2
:(2.13)

Since (SDP) attains its minimum at an extreme point for compact C , we recover the

known fact that one of the optima has rank at most p�. This approach to proving

that statement is well-known [24, thm. 2.1].

Optimality conditions for (SDP) are easily stated once S (2.5) is introduced—it

acts as a dual certificate, known in closed form owing to the underlying smooth

geometry of M . We need a first general fact about SDPs (Assumption 1.1 is not

required.)

PROPOSITION 2.8. Let X 2 C and let S D C � A �.�/ for some � 2 R
m (as

is the case in (2.5) for example). If S � 0 and hS;Xi D 0, then X is optimal

for (SDP).

PROOF. First, use S � 0: for any X 0 2 C , since X 0 � 0 and A .X/ D A .X 0/,

0 � hS;X 0i D hC;X 0i � hA �.�/; X 0i D hC;X 0i � h�;A .X/i:
Concentrating on the last term, use hS;Xi D 0:

h�;A .X/i D hA �.�/; Xi D hC;Xi � hS;Xi D hC;Xi:
Hence, hC;Xi � hC;X 0i, which shows X is optimal. �

Since (SDP) is a relaxation of (P), this leads to a corollary of prime importance.
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COROLLARY 2.9. Let Assumption 1.1 hold for some p. If Y is a critical point

for (P) as defined by (2.8) and S (2.5) is positive semidefinite, then X D Y Y T is

globally optimal for (SDP) and Y is globally optimal for (P).

PROOF. Since Y is a critical point, SY D 0; thus, hS;Xi D 0 and Proposi-

tion 2.8 applies. �

A converse of Proposition 2.8 holds under additional conditions that are satisfied

by all examples in Section 5. Thus, for those cases, for a critical point Y , Y Y T is

optimal if and only if S is positive semidefinite. We state it here for completeness

(this result is not needed in what follows.)

PROPOSITION 2.10. Let X 2 C be a global optimum of (SDP) and assume strong

duality holds. Let Assumption 1.1(a) hold with p D rank.X/. Then, S � 0 and

hS;Xi D 0, where S D S.X/ is as in (2.5).

PROOF. Consider the dual of (SDP):

max
�2Rm

hb; �i subject to C �A
�.�/ � 0:(DSDP)

Since we assume strong duality and X is optimal, there exists � optimal for the

dual such that hC;Xi D hb; �i. Using hb; �i D hA .X/; �i D hX;A �.�/i, this

implies

0 D hC;Xi � hb; �i D hC �A
�.�/; Xi:

Since both C �A �.�/ and X are positive semidefinite, .C �A �.�//X D 0. As

a result, by definition of � and G (2.5),

� D G�
A .CX/ D G�

A .A �.�/X/ D G�G� D �;

where we used G� D G�1 under Assumption 1.1(a) and

.G�/i D
X
j

Gij �j D
X
j

hAi ; AjXi�j D hAi ;A
�.�/Xi D A .A �.�/X/i :

Thus, S D C �A �.�/ D C �A �.�/ has the desired properties. This concludes

the proof and shows uniqueness of the dual certificate. �

3 Optimality of Second-Order Critical Points

We aim to show that second-order critical points of (P) are global optima, pro-

vided p is sufficiently large. To this end, we first recall a known result about

rank-deficient second-order critical points.3

PROPOSITION 3.1. Let Assumption 1.1 hold for some p and let Y 2 M be a

second-order critical point for (P). If rank.Y / < p, then S.Y / � 0 so that Y is

globally optimal for (P) and so is X D Y Y T for (SDP).

3 Optimality of rank-deficient local optima is shown (under different assumptions) in [13, 17],

with the proof in [17] actually only requiring second-order criticality.
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PROOF. The proof parallels the one in [17]. By Corollary 2.9, it is sufficient to

show that S D S.Y / (2.5) is positive semidefinite. Since rank.Y / < p, there exists

´ 2 Rp such that ´ ¤ 0 and Y´ D 0. Furthermore, for all x 2 Rn, the matrix
PY D x´T is such that Y PY T D 0. In particular, PY is a tangent vector at Y (2.1).

Since Y is second-order critical, inequality (2.9) holds, and here simplifies to

0 � h PY ; S PY i D hx´T; Sx´T i D k´k2 � xTSx:

This holds for all x 2 Rn. Thus, S is positive semidefinite. �

COROLLARY 3.2. Let Assumption 1.1 hold for some p � n. Then, any second-

order critical point Y 2 M of (P) is globally optimal, and X D Y Y T is globally

optimal for (SDP).

PROOF. For p > n (with p D n C 1 being the most interesting case), points

in M are necessarily column-rank deficient, so that the corollary follows from

Proposition 3.1. For p D n, if Y is rank deficient, use the same proposition.

Otherwise, Y is invertible and SY D 0 (2.8) implies S D 0, which is a fortiori

positive semidefinite. By (2.5), this only happens if C D A �.�/ for some �, in

which case the cost function hC;Xi D hA �.�/;Xi D h�; bi is constant over C .

�

In this paper, we aim to secure optimality of second-order critical points for p

less than n. As indicated by Proposition 3.1, the sole concern in that respect is the

possible existence of full-rank second-order critical points. We first give a result

that excludes the existence of full-rank first-order critical points (thus, a fortiori of

second-order critical points) for almost all cost matrices C , provided p is suffi-

ciently large. The argument is by dimensionality counting.

LEMMA 3.3. Let p be such that
p.pC1/

2
> rank A and such that Assumption 1.1

holds. Then, for almost all C , all critical points of (P) are column-rank deficient.

PROOF. Let Y 2 M be a critical point for (P). By the definition of S.Y / D
C �A �.�.Y // (2.5) and the first-order condition S.Y /Y D 0 (2.8), we have

rankY � null
�
C �A

�.�.Y //
� � max

�2Rm
null.C �A

�.�//;(3.1)

where null denotes the nullity (dimension of the kernel). This first step in the proof

is inspired by [30, thm. 3]. If the right-hand side evaluates to `, then there exists �

and M D C �A �.�/ such that null.M/ D `. Writing C DM CA �.�/, we find

that

C 2 N` C im.A �/;(3.2)

where N` denotes the set of symmetric matrices of size n with nullity ` and the C
is a set sum. The set N` has dimension

dim N` D
n.nC 1/

2
� `.`C 1/

2
:(3.3)
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Assume the right-hand side of (3.1) evaluates to p or more. Then, a fortiori,

C 2
[

`Dp;:::;n

N` C im.A �/:(3.4)

The set on the right-hand side contains all “bad” matrices C , that is, those for

which (3.1) offers no information about the rank of Y . The dimension of that set

is bounded as follows, using the fact that the dimension of a finite union is at most

the maximal dimension, and the dimension of a finite sum of sets is at most the

sum of the set dimensions:

dim
� [
`Dp;:::;n

N` C im.A �/
�
� dim

�
Np C im.A �/

�

� n.nC 1/

2
� p.p C 1/

2
C rank A :

Since C 2 S
n�n lives in a space of dimension

n.nC1/
2

, almost no C verifies (3.4)

if

n.nC 1/

2
� p.p C 1/

2
C rank A <

n.nC 1/

2
:

Thus, if
p.pC1/

2
> rank A , for almost all C , critical points have rank.Y / < p. �

Theorem 1.4 follows as an easy corollary of Proposition 3.1 and Lemma 3.3.

In order to make a statement valid for all C , we further explore the implications

of second-order criticality on the definiteness of S . For large p (though still smaller

than n), we expect full-rank second-order critical points should indeed be optimal.

The intuition is as follows. If Y 2 M is a second-order critical point of rank p,

then, by (2.8), SY D 0, which implies S has a kernel of dimension at least p.

Furthermore, by (2.9), S has “positive curvature” along directions in TY M , whose

dimension grows with p. Overall, the larger p, the more conditions force S to have

nonnegative eigenvalues. The main concern is to avoid double counting, as the two

conditions are redundant along certain directions: this is where the facial structure

of C comes into play.

The following theorem refines this intuition. We use 
 for Kronecker products

and vec to vectorize a matrix by stacking its columns on top of each other, so that

vec.AXB/ D .BT 
 A/ vec.X/. A real number a is rounded down as bac.
THEOREM 3.4. Let p be such that Assumption 1.1 holds. Let Y 2 M be a second-

order critical point for (P). The matrix X D Y Y T belongs to the relative interior

of the face FX (2.10). If rank.Y / D p, then S D S.X/ (2.5) has at most�
dim FX ��

p

�
(3.5)

negative eigenvalues, where

� D p.p C 1/

2
�m0:(3.6)
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In particular, if dim FX < �C p, then S is positive semidefinite and both X and

Y are globally optimal.

PROOF. Consider the subspace vec.TY M / of vectorized tangent vectors at Y ;

it has dimension k , dim M . Pick U 2 R
np�k with columns forming an or-

thonormal basis for that subspace: U TU D Ik . Then, U T.Ip 
 S/U has the same

spectrum as 1
2

Hessg.Y /. Indeed, for all PY 2 TY M there exists x 2 Rk such that

vec. PY / D Ux, and, by (2.9),

1

2
h PY ;Hessg.Y /� PY �i D h PY ; S PY i D hUx; .Ip 
 S/Uxi D hx; U T.Ip 
 S/Uxi:

In particular, U T.Ip
S/U is positive semidefinite since Y is second-order critical.

Let V 2 Rnp�p2 , V TV D Ip2 ; have columns forming an orthonormal basis of

the space spanned by the vectors vec.YR/ for R 2 Rp�p: such V exists because

rank.Y / D p. Indeed, vec.YR/ D .Ip 
 Y / vec.R/, and Ip 
 Y 2 R
np�p2

then has full rank p2. Since Y is a critical point, SY D 0 by (2.8), which implies

.Ip 
 S/V D 0.

Let k0 denote the dimension of the space spanned by the columns of both U and

V , and let W 2 Rnp�k0 ; W TW D Ik0 , be an orthonormal basis for this space. It

follows that M D W T.Ip 
 S/W is positive semidefinite. Indeed, for any ´, there

exist x; y such that W´ D Ux C Vy. Hence, ´TM´ D xTU T.Ip 
 S/Ux � 0.

Let �0 � � � � � �n�1 denote the eigenvalues of S , and let z�0 � � � � � z�np�1
denote the eigenvalues of Ip 
 S . The latter are simply the eigenvalues of S

repeated p times, thus: z�i D �bi=pc. Let �0 � � � � � �k0�1 denote the eigenvalues

of M . The Cauchy interlacing theorem states that, for all i ,

z�i � �i � z�iCnp�k0 :(3.7)

In particular, since M � 0, we have 0 � �0 � �b.np�k0/=pc. It remains to

determine k0.
From Proposition 1.2, recall that k D dim M D np � m0. We now investigate

how many new dimensions V adds to U . All matrices R 2 Rp�p admit a unique

decomposition as

R D Rskew CRker L CR.ker L /? ;

whereRskew is skew-symmetric, Rker L is in the kernel of LX (2.11), andR.ker L /?

is in the orthogonal complement of the latter in Sp�p. Recalling the definition of

tangent vectors (2.1), it is clear that PY D YRskew is tangent. Similarly, PY D
YRker L is tangent because of the definition of LX (2.11). Thus, vectorized ver-

sions of these are already in the span of U . On the other hand, by definition,

YR.ker L /? is not tangent at Y (if it is nonzero). This raises k0 (the rank of W ) by

dim .ker LX /
? D p.pC1/

2
� dim ker LX . Since dim ker LX D dim FX , we have

k0 D np �m0 C p.p C 1/

2
� dim FX D np C� � dim FX :(3.8)
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Thus, np � k0 D dim FX � �. Combine with �b.np�k0/=pc � 0 to conclude the

proof. �

Theorem 1.6 follows easily from Corollary 2.9 and Theorem 3.4.

Remark 3.5. What does it take for a second-order critical point Y 2 M to be

suboptimal? For local optima, the quote from Burer and Monteiro [13, §3] in

the introduction readily states that Y must have rank p, and the face FX (with

X D Y Y T) must be positive dimensional and such that the cost function hC;Xi is

constant over FX . Here, under Assumption 1.1 for p, Theorem 3.4 states that if Y

is second-order critical and is suboptimal, then FX must have dimension � C p

or higher. Since (2.12) suggests generic faces at rank p have dimension �, this

further shows that suboptimal second-order critical points, if they exist, can only

occur if the cost function is constant over a high-dimensional face of C .

To use Theorem 3.4 in a particular application, one needs to obtain upper bounds

on the dimensions of faces of C . We follow this path for a number of examples in

Section 5.

4 Near Optimality of Near Second-Order Critical Points

Under Assumption 1.1, problem (P) is an example of smooth optimization over

a smooth manifold. This suggests using Riemannian optimization to solve it [3],

as already proposed by Journée et al. [17] in a similar context. Importantly, known

algorithms—in particular, the Riemannian trust-region method (RTR)—converge

to second-order critical points regardless of initialization [2]. We state here a recent

computational result to that effect [10].

PROPOSITION 4.1. Under Assumption 1.1, if C is compact, RTR initialized with

any Y0 2 M produces in O.1="2g"H C 1="3H / iterations a point Y 2 M such that

g.Y / � g.Y0/; kgradg.Y /k � "g ; and Hessg.Y / � �"H Id;

where g (2.4) is the cost function of (P).

PROOF. Apply the main results of [10] using the fact that g has locally Lipschitz

continuous gradient and Hessian in Rn�p and M is a compact submanifold of

R
n�p. �

Importantly, only a finite number of iterations of any algorithm can be run in

practice, so that only approximate second-order critical points can be computed.

Thus, it is of interest to establish whether approximate second-order critical points

are also approximately optimal. As a first step, we give a soft version of Corol-

lary 2.9. We remark that the condition In 2 im A � is satisfied in all examples of

Section 5.
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LEMMA 4.2. Let Assumption 1.1 hold for some p and assume C (1.1) is compact.

For any Y on the manifold M , if kgradg.Y /k � "g and S.Y / � �"H
2
In, then the

optimality gap at Y with respect to (SDP) is bounded as

0 � 2.g.Y / � f ?/ � "HRC "g
p
R;(4.1)

where f ? is the optimal value of (SDP) and R D maxX2C Tr.X/ <1 measures

the size of C .

If In 2 im.A �/, the right-hand side of (4.1) can be replaced by "HR. This

holds in particular if all X 2 C have the same trace and C has a relative interior

point (Slater condition).

PROOF. By assumption on S.Y / D C � A �.�.Y // (2.5) with �.Y / D
G�A .CY Y T/,

8X 0 2 C � "H

2
Tr.X 0/ � hS.Y /;X 0i D hC;X 0i � hA �.�.Y //; X 0i

D hC;X 0i � h�.Y /; bi:
This holds in particular for X 0 optimal for (SDP). Thus, we may set hC;X 0i D f ?,

and certainly Tr.X 0/ � R. Furthermore,

h�.Y /; bi D h�.Y /;A .Y Y T/i D hC � S.Y /; Y Y Ti D g.Y / � hS.Y /Y ; Y i:
Combining the displayed equations and using gradg.Y / D 2S.Y /Y (2.8), we find

0 � 2.g.Y / � f ?/ � "HRC hgradg.Y /; Y i:(4.2)

In general, we do not assume In 2 im.A �/, and we get the result by Cauchy-

Schwarz on (4.2) and kY k D
p

Tr.Y Y T/ �
p
R:

0 � 2.g.Y / � f ?/ � "HRC "g
p
R:

But if In 2 im.A �/, then we show that Y is a normal vector at Y , so that it is

orthogonal to gradg.Y /. Formally: there exists � 2 Rm such that In D A �.�/,
and

hgradg.Y /; Y i D hgradg.Y /Y T; Ini D hA .gradg.Y /Y T/; �i D 0;

since gradg.Y / 2 TYM (2.1). This indeed allows us to simplify (4.2).

To conclude, we show that if C has a relative interior pointX 0 (that is, A .X 0/ D
b and X 0 � 0) and if Tr.X/ is constant for X in C , then In 2 im.A �/. Indeed,

S
n�n D im.A �/ � ker A , so there exist � 2 R

m and M 2 ker A such that

In D A �.�/CM . Thus, for all X in C ,

0 D Tr.X �X 0/ D hA �.�/CM;X �X 0i D hM;X �X 0i:
This implies M is orthogonal to all X �X 0. These span ker A since X 0 is interior.

Indeed, for any H 2 ker A , since X 0 � 0, there exists t > 0 such that X ,

X 0 C tH � 0 and A .X/ D b, so that X 2 C . Hence, M 2 ker A is orthogonal

to ker A . Consequently, M D 0 and In D A �.�/. �
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The lemma above involves a condition on the spectrum of S . Next, we show

this condition is satisfied under an assumption on the spectrum of Hessg and rank

deficiency.

LEMMA 4.3. Let Assumption 1.1 hold for some p. If Y 2 M is column-rank

deficient and Hessg.Y / � �"H Id, then S.Y / � �"H
2
In.

PROOF. By assumption, there exists ´ 2 Rp, k´k D 1, such that Y´ D 0. Thus,

for any x 2 Rn, we can form PY D x´T. It is a tangent vector since Y PY T D 0

(2.1) and k PY k2 D kxk2. Then, condition (2.9) combined with the assumption on

Hessg.Y / tells us

�"Hkxk2 � h PY ;Hessg.Y /� PY �i D 2h PY ; S PY i D 2hx´T´xT; Si D 2xTSx:

This holds for all x 2 Rn, hence S � �"H
2
In as required. �

We now combine the two previous lemmas to form a soft optimality statement.

THEOREM 4.4. Assume C is compact and let R < 1 be the maximal trace of

any X feasible for (SDP). For some p, let Assumption 1.1 hold for both p and

p C 1. For any Y 2 Mp, form zY D �Y j0n�1� in MpC1. The optimality gap at Y

is bounded as

0 � 2.g.Y / � f ?/ �
p
Rkgradg.Y /k �R�min.Hessg. zY //:(4.3)

If all X 2 C have the same trace R and there exists a positive definite feasible X ,

then the bound

0 � 2.g.Y / � f ?/ � �R�min.Hessg. zY //(4.4)

holds. If p > n, the bounds hold with zY D Y (and Assumption 1.1 only needs to

hold for p.)

PROOF. Since zY zY T D Y Y T, S. zY / D S.Y /; in particular, we have g. zY / D
g.Y / and kgradg. zY /k D kgradg.Y /k. Since zY has deficient column rank, apply

Lemmas 4.2 and 4.3. For p > n, there is no need to form zY as Y itself necessarily

has deficient column rank. �

This works well with Proposition 4.1. Indeed, equation (4.3) also implies the

following:

�min.Hessg. zY // � �2.g.Y / � f ?/ �
p
Rkgradg.Y /k

R
:

That is, an approximate critical point Y in Mp that is far from optimal (for (SDP))

maps to a comfortably escapable approximate saddle point zY in MpC1. This can

be helpful for the development of optimization algorithms.

For p D nC1, the bound in Theorem 4.4 can be controlled a priori: approximate

second-order critical points are approximately optimal for any C .4

4 With p D n C 1, problem (P) is no longer lower dimensional than (SDP), but retains the

advantage of not involving a positive semidefiniteness constraint.
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COROLLARY 4.5. Assume C is compact. Let Assumption 1.1 hold for p D nC 1.

If Y 2 MnC1 satisfies both kgradg.Y /k � "g and Hessg.Y / � �"H Id, then Y

is approximately optimal in the sense that (with R D maxX2C Tr.X/):

0 � 2.g.Y / � f ?/ � "g
p
RC "HR:

Under the same condition as in Theorem 4.4, the bound holds with right-hand side

"HR instead.

Theorem 1.5 is an informal statement of this corollary.

5 Applications

In all applications below, Assumption 1.1(a) holds for all p such that the search

space is nonempty. For each one, we deduce the consequences of Theorems 1.4

and 1.6. For the latter, the key part is to investigate the facial structure of the SDP.

As everywhere else in the paper, kxk denotes the 2-norm of vector x and kXk
denotes the Frobenius norm of matrix X .

5.1 Generalized Eigenvalue SDP

The generalized symmetric eigenvalue problem admits a well-known extremal

formulation:

min
x2Rn

xTCx subject to xTBx D 1;(EIG)

where C;B are symmetric of size n � 2. The usual relaxation by lifting introduces

X D xxT and discards the constraint rank.X/ D 1 to obtain this SDP (which is

also the Lagrangian dual of the dual of (EIG)):

min
X2Sn�n

hC;Xi subject to hB;Xi D 1; X � 0:(EIG-SDP)

Let C denote the search space of (EIG-SDP). It is nonempty and compact if and

only if B � 0, which we now assume. A direct application of (2.13) guarantees

all extreme points of C have rank 1, so that it always admits a solution of rank 1:

the SDP relaxation is always tight, which is well-known. Under our assumption,

B admits a Cholesky factorization as B D RTR with R 2 Rn�n invertible. The

corresponding Burer-Monteiro formulation at rank p reads:

min
Y2Rn�p

hCY ; Y i subject to kRY k2 D 1:(EIG-BM)

Let M denote its search space. Assumption 1.1(a) holds for any p � 1 with

m0 D 1. Indeed, for all Y 2 M , fBY g spans a subspace of dimension 1, since

BY D RTRY , RY ¤ 0, and RT is invertible. Thus, Theorem 1.4 readily states

that for p � 2, for almost all C , all second-order critical points of (EIG-BM) are

optimal.

We can do better. The facial structure of C is easily described. Recalling (2.12),

for all X D Y Y T 2 C we have dim FX D p.pC1/
2

� 1, since Y TBY ¤ 0.

Hence, by Theorem 1.6, for any value of p � 1, all second-order critical points
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of (EIG-BM) are optimal (for anyC ). In particular, for p D 1 (EIG) and (EIG-BM)

coincide, and we get the following:

COROLLARY 5.1. All second-order critical points of (EIG) are optimal.

This is a well-known fact, though usually proven by direct inspection of neces-

sary optimality conditions.

5.2 Trust-Region Subproblem SDP

The trust-region subproblem consists of minimizing a quadratic on a sphere,

with n � 2:

min
x2Rn

xTAx C 2bTx C c subject to kxk2 D 1:(TRS)

It is not difficult to produce .A; b; c/ such that (TRS) admits suboptimal second-

order critical points. The usual lifting here introduces

X D
�
x

1

��
xT 1

� D �
xxT x

xT 1

�
and C D

�
A b

bT c

�
:

The quadratic cost and constraint are linear in X , yielding this SDP relaxation:

min
X2Sn�n

hC;Xi subject to Tr.X1Wn;1Wn/ D 1; XnC1;nC1 D 1; X � 0:

(TRS-SDP)

Let C denote the search space of (TRS-SDP). It is nonempty and compact.

Here too, a direct application of (2.13) guarantees the SDP relaxation is always

tight (it always admits a solution of rank 1), which is a well-known fact related to

the S-lemma [25]. The Burer-Monteiro relaxation at rank p reads:

min
Y12Rn�p;y22Rp

hCY ; Y i subject to kY1k2 D 1; ky2k2 D 1; with Y D
�
Y1
yT

2

�
:

(TRS-BM)

Let M denote its search space. After verifying that Assumption 1.1 holds (see

below), application of Theorem 1.4 guarantees that for p � 2 and for almost all

.A; b; c/, second-order critical points of (TRS-BM) are optimal. We can further

strengthen this result by looking at the faces of C , as we do now.

LEMMA 5.2. Assumption 1.1(a) holds for any p � 1 with m0 D 2. Furthermore,

for X 2 C of rank p,

dim FX D
(
0 if p D 1;
p.pC1/

2
� 2 if p � 2:

PROOF. The constraints of (SDP) are defined by

A1 D
�

In 0n�1
01�n 0

�
; b1 D 1; A2 D

�
0n�n 0n�1
01�n 1

�
; b2 D 1:
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For Y 2 M , we have

A1Y D
�

Y1
01�p

�
; A2Y D

�
0n�p
yT

2

�
:

These are nonzero and always linearly independent, so dim spanfA1Y;A2Y g D 2

for all Y 2 M , which confirms that Assumption 1.1(a) holds with m0 D 2.

The facial structure of C is simple as well. Let X 2 C have rank p and consider

Y 2 M such that X D Y Y T. To use (2.12), note that

Y TA1Y D Y T

1 Y1; Y TA2Y D y2y
T

2 :

These are nonzero. For p D 1, they are scalars: they span a subspace of dimen-

sion 1. Then, dim FX D 1 � 1 D 0. For p > 1, we argue they are linearly

independent. Indeed, if they are not, there exists � ¤ 0 such that Y T

1 Y1 D � �y2yT

2 .

If so, Y1 must have rank 1 with row space spanned by y2, so that Y1 D ´yT

2 for

some ´ 2 Rn and k´k D 1. As a result, Y itself has rank 1, which is a contradic-

tion. Thus, dim FX D p.pC1/
2

� 2, as announced. �

Combining the latter with Theorem 1.6 yields the following new result, which

holds for all .A; b; c/. Notice that for p D 1, the theorem correctly allows second-

order critical points to be suboptimal in general.

COROLLARY 5.3. For p � 2, all second-order critical points of (TRS-BM) are

globally optimal.

A second-order critical point Y of (TRS-BM) with p D 2 is thus always opti-

mal. If Y has rank 1, it is straightforward to extract a solution of (TRS) from it. If

Y has rank 2,5 it maps to a face of dimension 1. The endpoints of that face have

rank 1 and are also optimal. The following lemma shows these can be computed

easily from Y by solving two scalar equations.

LEMMA 5.4. Let Y 2 M be a second-order critical point of (TRS-BM) with

p D 2, and let ´ 2 R2 satisfy kY1´k2 D 1 and yT

2´ D 1. Then, Y1´ is a global

optimum of (TRS).

PROOF. If rank.Y / D 1, then Y1 D xyT2 for some x 2 Rn, and kY1k D 1,

ky2k D 1 ensure kxk D 1. Solutions to yT2 ´ D 0 are of the form ´ D y2 C u,

where yT2 u D 0. For any such ´, Y1´ D x, which is indeed optimal for (TRS) since

Y is globally optimal for (TRS-BM) and x attains the same cost for the restricted

problem (TRS).

Now assume rank.Y / D 2. By (2.10), the one-dimensional face FY Y T contains

all matrices of the form Y.I2�M/Y T such that I2�M � 0 and hI2 �M;Y T

1 Y1i D
0, hI2 �M;y2y

T

2i D 0. This face has two extreme points of rank 1, for which

I2 � M is a positive semidefinite matrix of rank 1, so that I2 � M D ´´T for

5 This can happen, notably if .A; b; c/ forms a so-called hard case TRS (details omitted.) This

observation shows that it is indeed necessary to exclude some nontrivial matrices C in Lemma 3.3.
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some ´ 2 R2. Given that Y is feasible, the conditions on ´ are kY1´k2 D 1 and

yT

2´ D �1. These equations define an ellipse in R2 and two parallel lines, totaling

four intersections �´;�´0 which can be computed explicitly. Fixing yT

2´ D C1

allows identifying the two extreme points of the face. Since the cost function is

constant along that face, either extreme point yields a global optimum in the same

way as above. �

5.3 Optimization over Several Spheres

The trust-region subproblem generalizes to optimization of a quadratic function

over k spheres, possibly in different dimensions n1; : : : ; nk � 2:

min
xi2Rni ;iD1:::k

xTCx subject to kx1k D � � � D kxkk D 1;(Spheres)

with xT D �
xT

1 � � � xT

k
1
�
:

The variable x is in RnC1, with n D n1 C � � � C nk . Since the last entry of x

is 1, this indeed covers all possible quadratic functions of x1; : : : ; xk . The SDP

relaxation by lifting reads:

min
X2R.nC1/�.nC1/

hC;Xi subject to Tr.X11/ D � � � D Tr.Xkk/ D 1;

XnC1;nC1 D 1; X � 0;(Spheres-SDP)

where Xij denotes the block of size ni � nj of matrix X , in the obvious way. This

SDP has a nonempty compact search space and k C 1 independent constraints, so

that by (2.13) it always admits a solution of rank at most p� D
p
8kC9�1

2
. The

Burer-Monteiro relaxation at rank p reads:

min
Y2R.nC1/�p

hCY ; Y i subject to kY1k D � � � D kYkk D 1; kyk D 1;

(Spheres-BM)

with Y T D �
Y T

1 � � � Y T

k
y
�
;

where Yi 2 Rni�p and y 2 Rp. It is easily checked that Assumption 1.1(a) holds

for all p � 1. Thus, Theorem 1.4 gives this result:

COROLLARY 5.5. For p >
p
8kC9�1

2
and for almost all C , all second-order crit-

ical points of (Spheres-BM) are optimal and map to optima of (Spheres-SDP).

To apply Theorem 1.6, we first investigate the facial structure of the SDP.

LEMMA 5.6. Let Y be feasible for (Spheres-BM) and have full rank p. The di-

mension of the face of the search space of (Spheres-SDP) at Y Y T obeys

dim FY Y T � p.p C 1/

2
� 2

if p � 2, and dim FY Y T D 0 if p D 1.

PROOF. Following (2.12),

dim FY Y T D p.p C 1/

2
� dim span

�
Y T

1 Y1; : : : ; Y
T

k Yk; yy
T
�
:
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Since Y is feasible, each defining element of the span is nonzero, so that the di-

mension is at least 1. If p D 1, these elements are scalars: they span R. Now

consider p � 2 and assume for contradiction that the span has dimension 1. Then,

all defining elements are equal up to scaling. In other words: Y T

i Yi D �i � yyT

for some nonzero �i . If so, Yi has rank 1 and there exists ´i 2 R
ni such that

Yi D ´iy
T. In turn, this implies Y has rank 1, which is a contradiction. Thus, the

span has dimension at least 2. �

COROLLARY 5.7. For p � max.2; k/, all second-order critical points of the prob-

lem (Spheres-BM) are optimal and map to optima of (Spheres-SDP) ( for any C ).

For k D 1, this recovers the main result about the trust-region subproblem. If

the cost function in (Spheres) is a homogeneous quadratic, then it can be written as

min
xi2Rni ;iD1:::k

xTCx subject to kx1k D � � � D kxkk D 1;(SpheresH)

with xT D �
xT

1 � � � xT

k

�
:

The corresponding relaxation and Burer-Monteiro formulations read

min
X2Rn�n

hC;Xi subject to Tr.X11/ D � � � D Tr.Xkk/ D 1;X � 0;

(SpheresH-SDP)

and

min
Y2Rn�p

hCY ; Y i subject to kY1k D � � � D kYkk D 1;(SpheresH-BM)

with Y T D �
Y T

1 � � � Y T

k

�
:

Assumption 1.1(a) holds for all p � 1 with m0 D k. A similar analysis of the

facial structure yields the following corollary of Theorem 1.6.

COROLLARY 5.8. For almost all C , provided p >
p
8kC1�1

2
, all second-order

critical points of (SpheresH-BM) are optimal and map to optima of the problem

(SpheresH-SDP). If p � k, the result holds for all C .

For k D 1, this recovers the results of (EIG) with B D In.

5.4 Max-Cut and Orthogonal-Cut SDP

Let n D qd for some integers q; d . Consider the semidefinite program

min
X2Sn�n

hC;Xi subject to sbd.X/ D In; X � 0;(OrthoCut)

where sbdW Sn�n ! S
n�n preserves the diagonal blocks of size d � d and zeros

out all other blocks. Specifically, with Xij denoting the .i; j /th block of size d �d

in matrix X ,

sbd.X/ij D
(
Xi i if i D j;

0d�d otherwise.

For example, with d D 1, the constraint sbd.X/ D In is equivalent to diag.X/ D 1

and this SDP is the Max-Cut SDP [15]. For general d , diagonal blocks of X of size
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d � d are constrained to be identity matrices: this SDP is known as Orthogonal-

Cut [6, 9]. Among other uses, it appears as a relaxation of synchronization on

Z2 D f�1g [1, 5, 21] and synchronization of rotations [14, 28], with applications

in stochastic block modeling (community detection) and SLAM (simultaneous lo-

calization and mapping for robotics).

The Stiefel manifold St.p; d/ is the set of matrices of size p � d with orthonor-

mal columns. The Burer-Monteiro formulation of (OrthoCut) is an optimization

problem over q copies of St.p; d/:

min
Y1;:::;Yq2Rp�d

hCY ; Y i subject to Y T

k Yk D Id 8k; Y T D �
Y1 � � � Yq

�
:

(OrthoCut-BM)

For d D 1, this problem captures one side of the Grothendieck inequality [18,

eq. (1.1)]. Assumption 1.1(a) holds for all p � d with m0 D q d.dC1/
2

(which is

the number of constraints). Theorem 1.4 applies as follows.

COROLLARY 5.9. If p >
p
1C4n.dC1/�1

2
, for almost all C , any second-order

critical point Y of (OrthoCut-BM) is a global optimum, and X D Y Y T is globally

optimal for (OrthoCut).

In order to apply Theorem 1.6, we must investigate the facial structure of

C D fX 2 Sn�nW sbd.X/ D In; X � 0g:
The following result generalizes a result in [19, thm. 3.1(i)] to d � 1.

THEOREM 5.10. If X 2 C has rank p, then the face FX (2.10) has dimension

bounded as

p.p C 1/

2
� n

d C 1

2
� dim FX � p.p C 1/

2
� p

d C 1

2
:(5.1)

If p is an integer multiple of d , the upper bound is attained for some X .

The proof is in Appendix C. Combining this with Theorem 1.6 yields the fol-

lowing result.

COROLLARY 5.11. If p > dC1
dC3

n, any second-order critical point Y for the prob-

lem (OrthoCut-BM) is globally optimal, and X D Y Y T is globally optimal for the

problem (OrthoCut). In particular, for Max-Cut SDP .d D 1/, the requirement is

p > n
2

.

PROOF. If Y is rank deficient, use Proposition 3.1. Otherwise, since rank.X/ D
p, Theorem 5.10 gives dim FX � p.pC1/

2
� p dC1

2
and Theorem 1.6 gives opti-

mality if

dim FX <
p.p C 1/

2
� n

d C 1

2
C p:

This is the case provided .n � p/.d C 1/ < 2p, that is, if p > dC1
dC3

n. �
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6 Discussion of the Assumptions

We now discuss the assumptions that appear in the main theorems.

The starting point of this investigation is the hope to solve (SDP) by solving (P)

instead. For smooth, nonconvex optimization problems, even verifying local op-

timality is usually hard [22]. Thus, we wish to restrict our attention to efficiently

computable points, such as points that satisfy first- and second-order Karush-Kuhn-

Tucker (KKT) conditions for (P); see [12, §2.2] and [29, §3]. This only helps if

global optima satisfy the latter, that is, if KKT conditions are necessary for opti-

mality.

A global optimum Y necessarily satisfies KKT conditions if constraint qualifi-

cations (CQs) hold at Y [29]. The standard CQs for equality constrained programs

are Robinson’s conditions or metric regularity (they are here equivalent). They

read as follows:

CQs hold at Y 2 M if A1Y; : : : ; AmY are linearly independent in Rn�p:(CQ)

Considering all cost matrices C , global optima could, a priori, be anywhere in M .

Thus, we require CQs to hold at all Y in M rather than only at the (unknown)

global optima. This leads to Assumption 1.1(a). Adding redundant constraints (for

example, duplicating hA1; Xi D b1) would break the CQs but does not change the

optimization problem. This is allowed by Assumption 1.1(b).

In general, (SDP) may not have an optimal solution. One convenient way to

guarantee that it does is to require C to be compact, which is why this assumption

appears in Theorem 1.5 to bound optimality gaps for approximate second-order

critical points. When C is compact, one furthermore gets the guarantee that at least

one of the global optima is an extreme point of C , which leads to the guarantee that

at least one of the global optima has rank p bounded as
p.pC1/

2
� m0 (2.13). The

other way around, it is possible to pick the cost matrix C such that the unique

solution to (SDP) is an extreme point of maximal rank, which can be as large as

allowed by (2.13). This justifies why, in Theorem 1.4, the bound on p is essen-

tially optimal. The compactness assumption could conceivably be relaxed, pro-

vided candidate global optima remain bounded. This could plausibly come about

by restricting attention to positive definite cost matrices C .

One restriction in particular in Theorem 1.4 merits further investigation: the ex-

clusion of a zero-measure set of cost matrices (“bad C ”). From the trust-region

subproblem example in Section 5.2, we know that it is necessary (in general) to

allow the exclusion of a zero-measure set of cost matrices in Lemma 3.3. Yet,

in that same example, the excluded cost matrices do not give rise to suboptimal

second-order critical points (as we proved through a different argument involving

Theorem 1.6.) Thus, it remains unclear whether or not a zero-measure set of cost

matrices must be excluded in Theorem 1.4. Resolving this question is key to gain-

ing a deeper understanding of the relationship between (SDP) and (P).
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Finally, we connect the notion of smooth SDP used in this paper to the more

standard notion of nondegeneracy in SDPs as defined in [4, def. 5]. Informally: for

linearly independent Ai , nondegeneracy at all points is equivalent to smoothness.

The proof is in Appendix D.

DEFINITION 6.1. X is primal nondegenerate for (SDP) if it is feasible and TX C
ker A D S

n�n, where TX is the tangent space at X to the manifold of symmetric

matrices of rank r embedded in Sn�n, where r D rank.X/.

PROPOSITION 6.2. Let A1; : : : ; Am defining A be linearly independent. Then,

Assumption 1.1(a) holds for all p such that Mp is nonempty if and only if all

X 2 C are primal nondegenerate.

7 Conclusions and Perspectives

We have shown how, under Assumption 1.1 and extra conditions (on p, com-

pactness, and the cost matrix), the Burer-Monteiro factorization approach to solv-

ing (SDP) is “safe” despite nonconvexity. For future research, it is of interest to

determine if the proposed assumptions can be relaxed. Furthermore, it is impor-

tant for practical purposes to determine whether approximate second-order critical

points are approximately optimal for values of p well below n (an example of this

for a specific context is given in [5]). One possible way forward is a smoothed

analysis of the type developed recently in [8, 26], though these early works leave

plenty of room for improvement.

Appendix A Consequences and Properties of Assumption 1.1

PROOF OF PROPOSITION 1.2. The set M is defined as the zero level set of

�W Rn�p ! R
m where �.Y / D A .Y Y T/ � b. The differential of � at Y ,

D�.Y /, has rank equal to the dimension of the space spanned by fA1Y; : : : ; AmY g.
Under Assumption 1.1(a), D�.Y / has full rank m on M and the result follows

from [20, cor. 5.14]. Under Assumption 1.1(b), D�.Y / has constant rank m0 in a

neighborhood of M and the result follows from [20, thm. 5.12]. �

PROOF OF PROPOSITION 1.3. First, let Assumption 1.1(a) hold for some p,

and consider p0 < p such that Mp0 is nonempty. For any Y 0 2 Mp0 , form

Y D �Y 0j0n�.p�p0/� 2 Rn�p. Clearly, Y is in Mp, so that

m D dim spanfA1Y; : : : ; AmY g D dim spanfA1Y
0; : : : ; AmY

0g;
as desired. For p D n, we now consider the case p0 > n. Let Y 0 2 Mp0 and

consider its full SVD, Y 0 D U�V T, with � 2 R
n�p0

. Then, Y 0V is in Mp0

as well. Since the last p0 � n columns of � are zero, we have Y 0V D U� D
�Y j0n�.p0�n/� with Y 2 Mn. Thus, as desired,

dim spanfA1Y
0; : : : ; AmY

0g D dim spanfA1Y
0V; : : : ; AmY

0V g
D dim spanfA1Y; : : : ; AmY g D m:
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Second, let Assumption 1.1(b) hold for some p, and consider p0 < p such

that Mp0 is nonempty. For any Y 0 2 Mp0 , form Y D �Y 0j0n�.p�p0/� 2 Mp. By

assumption, there exists an open ball BY inRn�p of radius " D ".Y / > 0 centered

at Y such that

dim spanfA1 zY ; : : : ; Am zY g D m0

for all zY 2 BY . Let BY 0 be the open ball in Rn�p0

of radius ".Y / and center Y 0.
For any zY 0 2 BY 0 , form zY D � zY 0j0n�.p�p0/�. Since k zY � Y k D k zY 0 � Y 0k � ",

we have zY 2 BY , so that

m0 D dim spanfA1 zY ; : : : ; Am zY g D dim spanfA1 zY 0; : : : ; Am zY 0g:
Thus, Assumption 1.1(b) holds with the open neighborhood of Mp0 consisting of

the union of all balls BY 0 for Y 0 2 Mp0 as described above. �

Appendix B The Facial Structure of CCC

PROOF OF PROPOSITION 2.7. The construction follows [24] and applies for

any linear equality constraints. We first show that if X 0 is of the form in (2.10),

then it must be in FX . This is clear if X 0 D X . Otherwise, pick t > 0 such that

Ip � tA � 0. Then, X 0 and X 00 D Y.Ip � tA/Y T define a closed line segment in

C whose relative interior contains X . By Definition 2.5, this implies X 0 (and X 00)
are in FX .

The other way around, we now show that any point in FX must be of the form of

X 0 in (2.10). Let W 2 Sn�n be such that X 0 D X CW . Since X is in the relative

interior of FX , which is convex, there exists t > 0 such that X � tW 2 FX .

Let Y? 2 R
n�.n�p/ be such that M D �

Y Y?
�

is invertible. We can express

X D Y Y T and W as

X DM

�
Ip 0

0 0

�
M T and W DM

�
A B

BT C

�
M T:

Then, explicitly, these two matrices must belong to C :

X CW DM

�
Ip C A B

BT C

�
M T and X � tW DM

�
Ip � tA �tB
�tBT �tC

�
M T:

In particular, they must both be positive semidefinite, which implies C � 0 and

�tC � 0, so that C D 0. By Schur’s complement, it follows that B D 0. Thus,

W D YAY T for some A 2 Sp�p such that Ip C A � 0. Furthermore, A .X 0/ D
A .X CW / D b, so that A .W / D 0. The latter is equivalent to LX .A/ D 0 by

using (2.11). �

Appendix C Faces of the Ortho-Cut SDP

PROOF OF THEOREM 5.10. Consider the definition of LX (2.11) and inequal-

ity (2.12): the latter covers the lower bound and shows we need rank LX �
p.dC1/=2 for the upper bound; that is, we need to show the condition LX .A/ D 0

imposes at least p.d C 1/=2 linearly independent constraints on A 2 Sp�p.
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Let Y 2 Mp be such that X D Y Y T, and let y1; : : : ; yn 2 R
p denote the

rows of Y transposed. Greedily select p linearly independent rows of Y , in order,

such that row i is picked iff it is linearly independent from rows y1 to yi�1. This

is always possible since Y has rank p. Write t D ft1 < � � � < tpg to denote the

indices of selected rows. Write sk D f..k�1/dC1/; : : : ; kdg to denote the indices

of rows in slice Y T

k
, and let ck D sk\ t be the indices of selected rows in that slice.

We make use of the following fact [19, lem. 2.1]: for x1; : : : ; xp 2 Rp linearly

independent, the p.p C 1/=2 symmetric matrices xix
T

j C xjx
T

i form a basis of

S
p�p. Defining Eij D yiy

T

j C yjy
T

i D Ej i , this means E D fEt` ;t`0 W `; `0 D
1; : : : ; pg forms a basis of Sp�p (E is a set, so that Eij and Ej i contribute only

one element). Similarly, since each slice Y T

k
has orthonormal rows, matrices in

fEij W i; j 2 skg are linearly independent.

The constraint LX .A/ D 0 means hA;Eij i D 0 for each k and for each i; j 2
sk . To establish the theorem, we need to extract a subset T of at least p.d C 1/=2

of these qd.dC1/=2 constraint matrices, and guarantee their linear independence.

To this end, let

T D fEij W k 2 f1; : : : ; qg and i 2 ck � sk; j 2 skg:(C.1)

That is, for each slice k, T includes all constraints of that slice which involve at

least one of the selected rows. For each slice k, there are jckjd � jck j.jck j�1/
2

such

constraints—note the correction for double-counting the Eij ’s where both i and j

are in ck . Thus, using jc1j C � � � C jcqj D p, the cardinality of T is:

jT j D
qX

kD1

�
jckjd � jckj.jckj � 1/

2

�
D p.d C 1=2/ � 1

2

qX
kD1

jckj2:(C.2)

We first show matrices in T are linearly independent. Then, we show jT j is large

enough.

Consider one Eij 2 T : i; j 2 sk for some k and i D t` for some ` (otherwise,

permute i and j ). By construction of t , we can expand yj in terms of the rows

selected in slices 1 to k, i.e., yj DP`k
`0D1

�j;`0yt`0 , where `k D jc1j C � � � C jckj.
As a result, Eij expands in the basis E as follows: Eij D P`k

`0D1
�j;`0Et`;t`0 .

As noted before, Eij ’s in T contributed by a same slice k are linearly indepen-

dent. Furthermore, they expand in only a subset of the basis E , namely, E .k/ D
fEt`;t`0 W `k�1 < ` � `k; `

0 � `kg: t` is a selected row of slice k and t`0 is a se-

lected row of some slice between 1 and k. For k ¤ k0, E .k/ and E .k0/ are disjoint;

in fact, they form a partition of E . Hence, elements of T are linearly independent.
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It remains to lower bound (C.2). To this end, use jckj � d and jc1jC� � �Cjcqj D
p to get:

qX
kD1

jckj2 � max
x2Rq W kxk1�d;kxk1Dp

kxk2 D
jp
d

k
d2 C

�
p �

jp
d

k
d
�2

� pd:

Indeed, the maximum in x is attained by making as many of the entries of x as

large as possible, that is, by setting bp=dc entries to d and setting one other entry

to p � bp=dcd if the latter is nonzero. This many entries are available since

p � qd D n. That this is optimal can be verified using KKT conditions. In

combination with (C.2), this confirms at least p.d C 1=2/� pd=2 D p.d C 1/=2

linearly independent constraints act on A, thus upper bounding dim FX .

To conclude, we argue that the proposed upper bound is essentially tight. Indeed,

build Y 2 Mp by repeating q times the d first rows of Ip, then by replacing

its p first rows with Ip (to ensure Y has full rank). If p=d is an integer, then

exactly the p=d first slices each contribute d.d C 1/=2 independent constraints,

i.e., dim FY Y T D p.p C 1/=2 � p.d C 1/=2. �

Appendix D Equivalence of Global Nondegeneracy and Smoothness

PROOF OF PROPOSITION 6.2. By Proposition 1.3, it is sufficient to consider the

case p D n. Consider X 2 C of rank r and a diagonalization X D QDQT, where

D D diag.�1; : : : ; �r ; 0; : : : ; 0/ and Q D �
Q1 Q2

�
is orthogonal of size n with

Q1 2 R
n�r . By [4, thm. 6], since A1; : : : ; Am are linearly independent, X is

primal nondegenerate if and only if the matrices

Bk D
"
QT

1AkQ1 QT

1AkQ2

QT

2AkQ1 0

#
; k D 1 : : : ; m;

are linearly independent. The Bk are linearly dependent if and only if there exist

�1; : : : ; �m not all zero such that �1B1 C � � � C �mBm D 0. Considering the

first r columns of the Bk , the latter holds if and only if
P

k �kQ
TAkQ1 D 0,

which holds if and only if
P

k �kAkQ1 D 0. For any Y 2 R
n�p such that

X D Y Y T, since span.Y / D span.Q1/, we have
P

k �kAkQ1 D 0 if and only

if
P

k �kAkY D 0. This shows the Bk are linearly dependent if and only if

the AkY are linearly dependent. Thus, X is primal nondegenerate if and only if

fA1Y; : : : ; AmY g are linearly independent. Overall, primal nondegeneracy holds

at all X 2 C if and only if Assumption 1.1(a) holds. �
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