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Abstract

Visual relationship reasoning is a crucial yet challeng-
ing task for understanding rich interactions across visual
concepts. For example, a relationship {man, open, door}
involves a complex relation {open} between concrete en-
tities {man, door}. While much of the existing work has
studied this problem in the context of still images, under-
standing visual relationships in videos has received limited
attention. Due to their temporal nature, videos enable us
to model and reason about a more comprehensive set of vi-
sual relationships, such as those requiring multiple (tem-
poral) observations (e.g., {man, lift up, box} vs. {man,
put down, box}), as well as relationships that are often
correlated through time (e.g., {woman, pay, money} fol-
lowed by {woman, buy, coffee}). In this paper, we construct
a Conditional Random Field on a fully-connected spatio-
temporal graph that exploits the statistical dependency be-
tween relational entities spatially and temporally. We in-
troduce a novel gated energy function parametrization that
learns adaptive relations conditioned on visual observa-
tions. Our model optimization is computationally efficient,
and its space computation complexity is significantly amor-
tized through our proposed parameterization. Experimen-
tal results on benchmark video datasets (ImageNet Video
and Charades) demonstrate state-of-the-art performance
across three standard relationship reasoning tasks: Detec-
tion, Tagging, and Recognition.

1. Introduction

Relationship reasoning is a challenging task that not
only involves detecting low-level entities (subjects, objects,
etc.) but also recognizing the high-level interaction be-
tween them (actions, sizes, parts, etc.). Successfully rea-
soning about relationships not only enables us to build
richer question-answering models (e.g., Which objects are
larger than a car?), but also helps in improving image re-
trieval [20](e.g., images with elephants drawing a cart),
scene graph parsing [41] (e.g., woman has helmet), caption-
ing [42], and many other visual reasoning tasks.

Most contemporary research in visual relationship rea-
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Figure 1. Visual relationship reasoning in images (top) vs. videos
(bottom): Given a single image, it is ambiguous whether the mon-
key is creeping up or down the car. Using a video not only helps to
unambiguously recognize a richer set of relations, but also model
temporal correlations across them (e.g., creep down and jump left).

soning has been focused in the domain of static images.
While this has resulted in several exciting and attractive rea-
soning modules [26, 20, 42, 18, 40, 45, 3, 17], it lacks the
ability from reasoning about complex relations that are in-
herently temporal and/or correlated in nature. For example,
in Fig. 1 it is ambiguous to infer from a static image whether
the monkey is creeping down or up the car. Also, it is dif-
ficult to model relations that are often correlated through
time, such as man enters room and man open door.

In this paper, we present a novel approach for reason-
ing about visual relationships in videos. Our proposed ap-
proach jointly models the spatial and temporal structure of
relationships in videos by constructing a fully-connected
spatio-temporal graph (see Fig. 2). We refer to our model
as a Gated Spatio-Temporal Energy Graph. In our graph,
each node represents an entity and the edges between them
denote the statistical relations. Unlike much of the previ-
ous work [15, 43, 27, 4, 31] that assumed a predefined or
globally-learned pairwise energy function, we introduce an
observation-gated version that allows us to make the statis-
tical dependency between entities adaptive (conditioned on
the observation).

Our adaptive parameterization of energy function helps
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Figure 2. An overview of our Proposed Gated Spatio-Temporal Energy Graph. Given an input instance (a video clip), we predict the output
relationships (e.g., {monkey, creep down, car}, etc.,) by reasoning over a fully-connected spatio-temporal graph with nodes S (Subject),
P (Predicate) and O (Object). Unlike previous works that assumed a non-gated (i.e., predefined or globally-learned) pairwise energy
function, we explore the use of gated energy functions (i.e., conditioned on the specific visual observation) . Best viewed zoomed in and in

color.

us model the natural diversification of relationships in
videos. For instance, the dependency between man and
cooking should be different conditioned on the observation
(i.e., whether the location is kitchen or gym). However,
given the large state space of observations (in videos), di-
rectly maintaining observation-dependent statistical depen-
dencies may be computationally intractable [22, 35]. To-
wards this end, we develop an amortized parameterization
of our new gated pairwise energy function, which com-
bines ideas from clique template [33, 34, 21], neural net-
works [2, 35], and tensor factorization [14] for achieving
efficient inference and learning.

‘We evaluate our model on two benchmark datasets, Ima-
geNet Video [24] and Charades [32]. Our method achieves
state-of-the-art performance across three standard relation-
ship reasoning tasks: detection, tagging, and recognition.
We also study the utility of our model in the zero-shot set-
ting and learning from semantic priors.

2. Related Work

Video Activity Recognition. The notion of activity in a
video represents the interaction between objects [9, 12] or
the interaction between an object and a scene [32]. While
related to our task of relation reasoning, activity recogni-
tion does not require explicit prediction of all entities, such
as subject, object, scene, and their relationships. The term
relation used in activity recognition and relationship rea-
soning has different connotations. In the visual relation-
ship reasoning literature, it refers to the correlation between
different entities, such as object, verb, and scene, while in
activity recognition, it refers to either correlation between
activity predictions (i.e., single entity) or correlation be-
tween video segments. For example, [44] proposed Tem-
poral Relation Network to reason the temporal ‘relations’
across frames at multiple time scales. [6] introduced a
spatio-temporal aggregation on local convolutional features
for better learning representations in the video. [38] pro-
posed Non-Local Neural Networks to model pairwise rela-

tions for every pixel in the feature space from low-layers
to higher-layers. The work was extended to [39] for con-
structing a Graph Convolutional Layer that further modeled
relation between object-level features.

Visual Relationship Reasoning. Most recent works in re-
lation reasoning have focused their analysis on static im-
ages [40, 45, 3, 17]. For example, [26] introduced the
idea of visual phrases for compositing visual concepts of
subject, predicate, and object. [20] decomposed the di-
rect visual phrase detection task into individual detection
on subject, predicate, and object leading to improved per-
formance. [4] further applied conditional random fields on
top of the individual predictions to leverage their statisti-
cal correlations. [18] proposed a deep variation-structured
reinforcement learning framework and then formed a di-
rected semantic action graph. The global interdependency
in this graph facilitated predictions in local regions of the
image. One of the key challenges of learning relationships
in videos has been the lack of relevant annotated datasets.
In this context, the recent work of [29] is inspiring as it
contributes manually annotated relations for the ImageNet
video dataset. Our work improves upon [29] on multiple
fronts: (1) Instead of assuming no temporal contingency be-
tween relationships, we introduce a gated fully-connected
spatio-temporal energy graph for modeling the inherently
rich structure from videos; (2) We extend the study of rela-
tion triplet from subject/predicate/object to a more general
setting, such as object/verb/scene [32]; (3) We consider a
new task ‘relation recognition’ (apart from relation detec-
tion and tagging) which requires the model to make predic-
tions in a fine-grained manner; (4) For various metrics and
tasks, our model demonstrates improved performance.

Deep Conditional Random Fields. Conditional Random
Fields (CRFs) have been popularly used to model the sta-
tistical dependencies among predictions in images [ 10, 43,
27,25, 4] and videos [23, 21]. Several extensions have been
recently introduced for fully-connected CRF graphs. For
example, [43, 27, 31] attempted to express fully-connected

CRFs as recurrent neural networks and made the whole net-



work end-to-end trainable, which has led to interesting ap-
plications in image segmentation [ 3, 27] and video activity
recognition tasks [31]. In the characterization of CRFs, the
unary energy function represents the inverse likelihood for
assigning a label, while the binary energy function measures
the cost of assigning multiple labels jointly. However, most
of the existing parameterizations of binary energy func-
tions [15, 43, 27, 4, 31] have limited or no connections to
observed variables. Such parameterizations may not be op-
timal for video relationship reasoning due to the adaptive
idiosyncrasy for statistical dependencies between entities.
To address the issue, we instead propose an observation-
gated pairwise energy function with efficient and amortized
parameterization.

3. Proposed Approach

The task of video relationship reasoning not only re-
quires modeling the entity predictions spatially and tempo-
rally, but also maintaining a changeable correlation struc-
ture between entities across videos with various contents.
To this end, we propose a Gated Spatio-Temporal Fully-
Connected Energy Graph for capturing the inherently rich
video structure into account.

We start by defining our notations using Fig. 2 as a run-
ning example. The input instance X lies in a video seg-
ment and consists of K synchronous input streams X =
{X*}K .. In this example, input streams are {object tra-
jectories, predicate trajectories, subject trajectories}, and
thus K = 3, where trajectories refer to the consecutive
frames or bounding boxes in the video segment. Each
input stream contains observations for T' time steps (i.e.,
Xk = {XF}_)), where for example object trajectories
represent object bounding boxes through time. For each
input stream, our goal is to predict a sequence of entities
(labels) Y* = {YF}I_,. In Fig. 2, the output sequence
of predicate trajectories represent predicate labels through
time. Hence we formulate the data-entities tuple as (X,Y)
with Y = {¥;},Y,2... [ YE)T  representing a set of se-
quence of entities.

The entity Y should spatially relate to entities
{{v2,Y2...  YE}\ {VF}} and temporally relate to en-
tities {{Y},Y}--- YE} \ {Y*}}. For example, sup-
pose that the visual relationships observed in a grocery
store are {{mother, pay, money}, {infant, get, milk},
{infant, drink, milk}}; spatial correlation must exist be-
tween mother/pay/money and temporal correlation must
exist between pay/get/drink. We also note that implicit
correlation may also exist between Y;* and Y’ for ¢ #
t'.k # K. Based on the structural dependencies between
entities, we propose to construct a Spatio-Temporal Fully-
Connected Energy Graph (see Sec. 3.1), where each node
represents an entity and each edge denotes the statistical
dependencies between the connected nodes. To further take

account that the statistical dependency between “get” and
“drink” may be different depending on different observa-
tions (i.e., location in grocery store v.s. home), we introduce
an observation-gated parameterization for pairwise energy
functions. In the new parameterization, we amortize the
potentially large computational cost by using clique tem-
plates [33, 34, 21], neural network approximation [22, 35],
and tensor factorization [14] (see Sec. 3.2).

3.1. Spatio-Temporal Fully-Connected Graph

By treating the predictions of entities as random vari-
ables, the construction of the graph can be realized by form-
ing a Markov Random Field (MRF) conditioned on a global
observation, which is the input instance (i.e., X). Then, the
tuple (X, Y') can be modeled as a Conditional Random Field
(CRF) parametrized by a Gibbs distribution of the form:
P(Y - y|X) = ﬁexp( - E(y|X)), where Z(X)
is the partition function and E(y|X) is the energy of as-
signing labels Y = y = {y},v?,--- ,vf}L_, conditioned
on X. Assuming only pairwise cliques in the graph (i.e.,
P(y|X) = Pyy(y|X),E(y|X) := Ey(y|X)), the en-
ergy can be expressed as:

EvoyX) =D der(w|X)+ D
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where 1; x and ; k¢ xs are the unary and pairwise energy,
respectively. In Eq. (1), the unary energy, which is defined
on each node in the graph, captures inverse likelihood for
assigning Y;* = y¥ conditioned on the observation X. Typ-
ically, this term can be derived from an arbitrary classifier
or regressor, such as a deep neural network [16]. On the
other hand, the pairwise energy models interactions of label
assignments across nodes Y,* = y*, V¥ = y%’ conditioned
on the observation X. Therefore, the pairwise term deter-
mines the statistical dependencies between entities spatially
and temporally. However, the parameterization in most pre-
vious works on fully-connected CRF [43, 27, 31, 4] as-
sumes that the pairwise energy function is non-adaptive to
the current observation, which may not be ideal to model
changeable dependencies between entities across videos.
In the following Sec.3.2, we propose an observation-gated
parametrization for pairwise energy function to address the
issue.

3.2. Gated Pairwise Energy Function

Much of existing work uses a simplified parameter-
ization of pairwise energy function and typically con-
siders only the smoothness of the joint label assign-
ment. For instance, in Asynchronous Temporal Field [31],
.(uf,ul |X) is defined as p(yf,yl )K(t,t'), where p
represents the label compatibility matrix and K(t,t’) is
an affinity kernel measurement which represents the dis-



counting factor between ¢ and ¢'. Similarly, in the im-
age segmentation domain [43, 27], ¢.(s;, s;|I) is defined
as ju(si, s5)K(1i, I;), where sy; ;3 is the segment label
and Iy; ;y is the input feature for location {i,j} in im-
age I. In these models, the pairwise energy comprises
an observation-independent label compatibility matrix fol-
lowed by a spatio or temporal discounting factor. We argue
that the parametrization of pairwise energy function should
be more expressive. To this end, we define the pairwise en-
ergy as:
kK .

ek (Y Yo 1X) = (FOx pwpw g @
where f¥ can be seen as a discrete lookup table that takes
the input X of size | X | and outputs a large transition matrix
of size (T2K? — 1) x |Y[F| x |V} (), repre-
sents its zyp item. Directly maintaining this lookup table is
computationally intractable due to the large state space of
X. Considering a simple case that X is a pairwise-valued
32 x 32 image, we have |X| = 232%32 possible states.
The state space complexity aggravates when X becomes an
RGB-valued video Thanks to the recent advances in graph-
ical models [33, 34, 21], deep neural networks [22, 35], and
tensor factonzatlon [14], our workaround is to parametrize
and approximate f¥ as f; with learnable parameters 6 as
follows:

(fw)x_,t t’.k.k".y:“:ykr ~ fl;g(X‘tk'lt) t’,k, k!!yf) yf"r)
kk' k kE' k T
(¥ Ry o mF(XE) b=t
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where gk¥ (1), k¥ () € RIYE1xr and REF' (1), sE¥' (1) €

RIVS |xr represent the r-rank projection from X%, which
is modeled by a deep neural network. A® B = ABT de-
notes the function on matrix A and B, and results in a tran-
V¥ K, (t, t’) is the Gaussian
kernel with bandwidth o representing discounting factor for
different time steps.

The intuition behind our parametrization is as follows:
First, we note that clique templates [33, 34, 21] are adopted
spatially and temporally, which leads to scalable learning
and inference. Second, the idea of using neural networks
for approximating the lookup tables ensures both parame-
ter efficiency and generalization [%, 35]. The lookup table
maintains the state transitions of X — J* x V¥ where cal-
ligraphy font denotes the corresponding state space. Finally,
we choose r << ming{|Y;*|} so that a low-rank decompo-
sition is performed on the transition matrix from Y} to Y}¥'.
The low-rank decomposition allows us to substantially re-
duce the number of learnable parameters. To summarize,

sition matrix of size [Y;¥|x |

our design for f;’ amortize the large space complexity for
f% and is gated by observation.

3.3. Inference, Message Passing, and Learning

Minimizing the CRF energy in Eq. (1) returns the
most probable label assignment problem of ¥V =
{yd,y2,--- ,yX}L | given the observation X. However,
the exact inference in a fully connected CRF is often com-
putationally intractable even with variables enumeration or
elimination [ 1 3]. In this work, we adopt the commonly used
mean-field algorithm [13] as approximate inference, which
finds the approximate posterior distribution Q(Y") such that
Q(-) is closest to Py ,(Y'|X) in terms of KL(Q//Py,,)
within the class of distributions representable as a product
of independent marginals Q(Y) = [, , Q(Y{). Follow-
ing [13], inference can now be realized ‘as the naive mean-
field updates with the coordinate descent optimization, and
it can be expressed in terms of fixed-point message passing
equations:

Q(yy) oc Ue (yle) IT
[t/ K} £k}

me ek (yF[X) (@)

with Uy p = exp( — ¢31k) representing the unary potential

and m.(-) denoting the message having form' of

m.() = exp( =) prkr e (vt uf X )Q(yff))- (5)
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To parametrize the unary energy function, we use a sim-
ilar formulation:

¢t.k(yf|X) = <fw>x1t1k1y:c (6)
~fy (XE 6,k 9) = (wp (X)) e »
where wk € RIY| represents the projection from X to
logits of size |Y;¥|, modeled by a deep neural network.

Lastly, we cast the learning problem as minimizing con-
ditional cross-entropy between the proposed distribution
and the true one, where @ denotes the parameters we need
in our model: #* = argmin, Ex y [-log Q(Y)].

4. Experimental Results & Analysis

In this section, we report our quantitative and qualitative
analyses for validating the benefit of our proposed method.
Our experiments are designed to compare different base-
lines and ablations for detecting and tagging relationships
given a video as well as recognizing relationships in a
fine-grained manner.

'In Supplementary, we make connection from our gated amortized
parametrization for pairwise energy function in message form with Self-
Attention [36] in machine translation and Non-Local Means [!] in Image
Denoising.



Correponding Relationship Detection Relationship Tagging Relationship Recognition
Method Image-Relationship or relationship relationship subject predicate object relationship
Video-Activity Method R@50 R@&100 mAP P@1 P@5 P@10 Acc@] Acc@] Acc@1 Acc@l
Standard Evaluation
VidVRD™* [29] Visual Phrases [26] 5.58 6.68 6.94 41.00  29.60  21.85 80.28 16.55 80.40 12.93
UEG VRDy [20] 2.81 3.64 294 3150 19.88 14.98 80.15 23.95 80.55 18.62
UEGH VRD[20] 341 4.05 4.52 36.00 21.60 15.41 80.15 25.92 80.55 2247
SEG DRN [1] 434 532 4.16 35.00 27.10 2090 85.15 25.85 84.26 20.97
STEG AsyncTF [21] 4.18 4.98 471 40.00 2445 17.66 89.91 25.92 89.33 22.54
GSTEG (Ours) - 7.05 8.67 9.52 5150 3950  28.23 90.60 28.78 89.79 2501
Zero-Shot Evaluation
VidVRD™* [29] Visual Phrases [26] 0.93 1.16 0.18 0.0 0.82 0.32 74.54 278 74.07 1.62
UEG VRDy [20] 0.0 0.23 1.30x 1e-5 0.0 0.27 0.82 74.31 5.09 74.7T7 3
UEGH VRD[20] 0.23 0.23 5.36x1e-5 0.0 0.82 0.82 78.24 579 78.47 347
SEG DRN [1] 0.23 0.46 6.70x 1e-5 0.0 0.82 1.23 81.02 6.94 74.54 347
STEG AsyncTF [21] 0.23 0.69 0.02 1.37 1.10 0.96 80.09 7.18 79.17 4.40
GSTEG (Ours) - L16 2.08 0.15 2.74 1.92 1.92 82.18 7.87 79.40 6.02

Table 1. Evaluation for different methods on ImageNet Video dataset. * denotes the re-implementation of [29] after fixing the bugs in their
released method code (by contacting authors). T denotes the implementation with additional triplet loss term for language priors [20].

Datasets. We perform our analysis on two datasets:
ImageNet Video [24] and Charades [32]. (a) ImageNet
Video [24] contains videos (from daily-life as well as
in-the-wild) with manually labeled bounding boxes for
objects. We utilize the annotations from [29], in which a
subset of the videos having rich visual relationships were
selected (1,000 videos in total with 800 for training & rest
for evaluation, available at [28]). The visual relationship
is defined on the triplet {subject, predicate, object}. For
example, {person, ride, bicycle} or {dog, larger, monkey},
etc. It has 35 categories of subject and object, and 132
categories of predicate (see Suppl. for details) with
trajectory denoting consecutive bounding boxes through
time. A relation triplet is labeled on a pair of trajectories
(one for subject and another for object). The entire video
has multiple pairs of trajectories and these pairs may or
may not overlap with each other spatially or temporally. (b)
Charades [32] contains videos of human indoor activities
(9,848 in total with 7,985 for training and the rest for
evaluation, available at [30]) . The visual relationship is
defined on the triplet {verb, object, scene} or {object, verb,
scene}. For example, {hold, blanket, bedroom}, {someone,
cook, kitchen}, etc. It has 33 categories of verb, 38 objects
and 16 scenes (see Suppl. for details). Different from
ImageNet Videos, as suggested by [32, 31, 38, 39], we treat
the entire video as an input instance. Therefore, a video
comprises multiple relation triplets, and each relation triplet
is defined within a time segment. The relation triplets may
or may not overlap temporally with each other.

Tasks. For the above two datasets, we consider the follow-
ing three experimental tasks.

(i) Relationship Detection. For ImageNet Videos, we aim at
predicting a set of visual relationships with estimated sub-
ject and object trajectories. Specifically, a predicted visual
relationship is counted as correct if the predicted triplet is
in the ground truth set and the estimated bounding boxes

have high voluminal intersection over union (vIoU) with the
ground truth (vIoU threshold of 0.5). Following [29], this
task is termed relationship detection, which contains both
relationship prediction and object localization. For Cha-
rades dataset, as suggested by [21]%, we aim at detecting the
visual relationships in a video without object localization,
i.e., relationship detection happens in the scale of the entire
video. For evaluation, we follow [20, 29] and adopt mean
average precision (mAP) and Recall@ K (K equals 50 and
100) metrics, where mAP measures the average of the max-
imum precisions at different recall values and Recall@K
measures the fraction of the positives detected in the top K
detection results.

(ii) Relationship Tagging. For ImageNet Videos, the rela-
tionship tagging task [29] focuses on only relationship pre-
diction. This is motivated by the fact that video object lo-
calization is still an open problem. Similarly, in Charades,
relationship tagging focuses on only relationship prediction
(where relationship tagging happens at the scale of entire
video). Following [29], we use Precision@K (K equals 1,
5, and 10) to measure the accuracy of the tagging results.
(iii) Relationship Recognition. Different from performing
relationship reasoning at the scale of entire video, we
would also like to measure how well the model recognizes
the relationship in a fine-grained manner. For example,
given an object trajectory and a subject trajectory, can the
model predict accurate relationships? For the ImageNet
Video experiments: given an input instance (with object
and subject trajectories in a time segment), we measure the
recognition accuracy of subject, predicate, object, and the
relationship, which we term it relationship recognition. As
the Charades dataset does not consider object localization,

2The performance reported in [21] refers to the mean Avergage Preci-
sion (mAP) of 157 activities, while ours consider the detection of relation
triplets. Although not being our focus, our method with the 157 activities
output achieves 33.3 mAP on activity detection as compared to 18.3 mAP
in [31] when using only RGB frames as input. See Suppl. for details.



Correponding Relationship Detection Relationship Tagging Relationship Recognition

Method Image-Relationship or relationship relationship object verb scene relationship

Video-Activity Method R@50 R@100 mAP P@1 P@5 P@10 Acc@]  Acc@]  Acc@l Acc@]
VidVRD [29] Visual Phrases [26] 13.62 18.36 3.12 397 4.62 4.26 28.70 63.64 34.91 7.83

UEG VRDy [20] 22.53 29.70 7.93 16.05 11.47 872 41.74 64.70 .62 11.94
UEGH VRD [20] 22.35 29.65 7.90 16.10 1138 8.67 41.70 64.73 3517 11.85
SEG DRN [4] 23.68 31.56 877 18.04 1250 9.37 42.84 64.36 35.28 12.60
STEG AsyncTF [31] 23.79 31.65 8.84 18.46 12.57 9.37 42.87 64.53 35.71 12.76
GSTEG (Ours) - 24.95 33.37 9.86 1916 1293 9.55 43.53 64.82 40.11 14.73

Table 2. Evaluation for different methods on Charades dataset. Our method outperforms all competing baselines across the three tasks.

we perform recognition on object, verb, scene, and the rela-
tionship within a time segment (where relation recognition
happens at the scale of a time segment in the video). We
use Accuracy@K (K equals 1) for emphasizing whether
the model gives the correct recognition result on the top 1
relationship prediction.

Pre-Reasoning Modules For all our experiments and ab-
lation studies, we use the following three (exactly same)
pre-reasoning modules:

o Video Chunking. As suggested by [2], we treat the video
as consecutive overlapping segments with each segment
comprising continuous frames. For ImageNet Video, each
segment contains 30 frames, and adjacent segments have 15
overlapping frames. Since the video is chunked, the object
and subject trajectories are also decomposed into chunks.
For Charades, each segment contains 10 frames, and adja-
cent segments have 6 overlapping frames.

o Tracklet Proposal. Tracklet proposal is required in the
ImageNet Video dataset for object localization. For each
chunk in the video, we generate proposals for the possible
subject and object tracklets. We utilize Faster-RCNN [7]
as object detector trained on the 35 objects (categories in
the annotation) from MS-COCO [19] and ImageNet Detec-
tion [24] datasets. Next, the method described in [5] is used
to relate frame-level into a chunk-level object proposals.
Then, non-maximum suppression (NMS) with vioU > 0.5
is performed to reduce the numbers of generated chunk-
level proposals. During training, proposals that have vioU
> 0.5 with the ground truth trajectories are selected to be
the training proposals. However, all the generated proposals
are preserved for evaluation.

o Feature Representation. Following Sec. 3 notation, we ex-
press the input instance X into K synchronous streams of
features. For the ImageNet Video, K equals 3 and the syn-
chronous streams of features are {X#, XP, X¢}T ;. s,p,0
and T" denote subject, predicate, object, and the number of
chunks in the input instance, respectively. Note that each in-
stance may have different numbers of chunks, i.e., different
T, because of various duration of relationships. The output
YS, VP, and Y;? follow categorical distribution. Asin [29],
in the ¢y, chunk of the input instance, we choose the sub-
ject and object features (i.e., X; and X7) to be the averaged
features for the Faster-RCNN label probability distribution
outputs. X7, on the other hand, is chosen to be the concate-

nation of the following three features: the improved dense
trajectory (iDT) feature [37] for subject tracklet, the iDT
feature for object tracklet, and the relative spatio-temporal
positions [29] between subject and object tracklets. See
Suppl. for more details.

For Charades, the input instance X is expressed as
{X?,X?, X2YL | with o,v, and s denoting object, verb,
and scene , respectively. Since we are performing relation-
ship reasoning directly in the entire video, we let Y2, Y}*
be a multinomial distribution while Y;# still remains to be
a categorical distribution. The multinomial distribution
suggests that each chunk may contain > 0 number of
objects or verbs. We set X7, X}, and , X to have identical
features: the output feature layer from I3D network [2].
See Suppl. for more details.

Baselines The closest baseline to our proposed model is
VidVRD [29]. Beyond comparisons to [29], we also per-
form a detailed ablation study of our method as well as re-
late to the image-based visual relationship reasoning meth-
ods (when applicable).

VidVRD. VidVRD [29] adopted a structured loss on the
multiplication of three features (i.e., X5, X}, and X7 for
ImageNet Video). The loss took softmax over all training
triplets, which resembles the training objective in Visual
Phrases [26] (designed for image-based visual relationship
reasoning). Note that VidVRD fails to consider the tempo-
ral structure of relationship predictions.

GSTEG (Ours). We denote our proposed method as GSTEG
(Gated Spatio-Temporal Energy Graph). For the ablation
study, we choose the Energy Graph (EG) when considering
different energy function designs as described below.
STEG. Spatio-Temporal Energy Graph (STEG) takes into
account the spatial and temporal structure of video enti-
ties. However, it assumes fixed statistical dependencies be-
tween entities. Specifically, it is the non-gated version of
our full model. STEG can be seen as a modified version of
Asynchronous Temporal Fields (AsyncTF) [31] such that
we have (1) AsyncTF’s output to be a relationship predic-
tion, and (2) a fully-connected spatial graph.

SEG. Compared to STEG, the Spatio Energy Graph (SEG)
method does not consider the temporal structure of video
entities.  Specifically, SEG assumes a spatially-fully-
connected graph and thus the relationship predictions are
made temporally independently. The counterpart in image-
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Figure 3. Examples from ImageNet Video dataset of Relationship Detection (Left) & Tagging (Right) using baselines, ablations, and our
full model. The bar plots illustrate the R@100 (left) and P@5 (right) difference comparing our model to VidVRD [29]. To show the
results on all the methods, green boxes refer to a video where our model performs better and orange boxes refer to a video where VidVRD
performs better. For tagging (right), we use green to highlight the correctly tagged relation and yellow for incorrectly tagged relation. The
numbers in bracket represent the order of detection or tagging. Best viewed in color.

based visual relationship reasoning methods is Deep Re-
lational Networks (DRN) [4]. We can view SEG as cast-
ing DRN to (1) take the video-based input features and (2)
consider continuous object bounding boxes through time in-
stead of a bounding box in a single frame.

UEG and UEG'. The Unary Energy Graph (UEG) consid-
ers the prediction of entities both spatially and temporally
independently. The counterpart in image-based visual rela-
tionship reasoning methods is the Visual Relationship De-
tection (VRD) method of [20] without using language pri-
ors (denoted as V RDy/). Similar to the modification from
DRN to SEG, the accommodation from V RD+y to UEG is
having V RDy take the video-based features and consider
object trajectories. We also perform experiments that ex-
tend UEG with additional triplet loss defined with language
priors [20], which we denote it as UEG'. The counterpart
in image-based methods is the full V. RD model of [20].
(Please see Suppl. for more details about parameterizations
and training for all the methods and datasets).

4.1. Quantitative Analysis

ImageNet Video. Table. 1 shows our results and compar-
isons to the baselines. We first observe that, for every met-
ric across the three tasks (detection, tagging, and recogni-
tion), our proposed method (GSTEG) outperforms all the
competing methods. Comparing the numbers between UEG
and UEGT, we find that language priors can help promote
visual relation reasoning. We also observe performance im-
provement from UEG to SEG, which could be explained
by the fact that SEG explicitly models the spatial statistical
dependency in {subject, predicate, object} and leads to a
better relation learning between different entities. However,
comparing SEG to STEG, the performance drops in some
metrics, indicating that modeling temporal statistical depen-
dency using a fixed pairwise energy parameterization may
not be ideal. For example, although STEG gives a much
better relationship recognition results as compared to SEG,

it becomes worse in R@50 for detection and P@5 for tag-
ging. This indicates that observation-gated parametrization
for pairwise energy is able to capture different structure for
different videos. When comparing energy graph models,
VidVRD is able to outperform all our ablation baselines
(except for the full version) in relation detection and tag-
ging. However, it suffers from relation recognition, which
requires a fine-grained understanding of visual relation in
the given object and subject tracklets.

Apart from the ‘standard evaluation’, we also consid-
ered the ‘zero-shot’ setting, where zero-shot refers to the
evaluation on the relative complement of training triplets
in evaluation triplets. More specifically, in the ImageNet
Video dataset, the number of all possible relation triplets
is 35 x 132 x 35 = 161,700. While the training set
contains 2,961 relation triplets (i.e., 1.83% of 161, 700),
the evaluation set has 1,011 relation triplets (i.e., 0.63% of
161, 700). The number of zero-shot relation triplets is 258,
which is 25.5% in the evaluation set. Zero-Shot evaluation
is very challenging due to the fact that we need to infer
the never-seen relationship in the training set. We observe
that, for most cases, our proposed method reaches the best
performance compared to various baselines. The exception
is mAP, where VidVRD attains the best performance
using a structural objective. However, the overall trend of
zero-shot evaluation mirrors standard evaluation.

Charades. Our results and comparisons are shown in Ta-
ble. 2. We find that our method outperforms all relevant
baselines. We also note some interesting differences be-
tween the trend of results in Charades vs. ImageNet Video:
First, comparing UEG to UEG, we observe that language
priors do not really help the visual relationship reasoning
in Charades. We argue that it may because of the larger
inter-class distinction in Charades’ categories set. For ex-
ample, dog/cat or horse/zebra or sit front/front/jump front
share some similarity in the category set in ImageNet Video,
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Figure 4. Analysis of non-gated and gated pairwise energies: Given an input video (top left) from Charades (that has {object, verb, scene}
relationships), the matrices (top right) visualize the non-gated and gated pairwise energies between the verbs and objects (rows: 33 verbs,
cols: 38 objects). Notice that for the verb sir (highlighted in red), the gated energy with objects chair, and table is lower compared to the
corresponding non-gated pairwise energies, thereby helping towards improved relationship reasoning. A similar behavior is observed in
case of verb to scene pairwise function (bottom left) as well as verb to verb pairwise function (bottom middle), which models the temporal
correlations e.g., sit/sit or sit/stand. Best viewed in color and color in the matrix or vector is normalized in its own scale.

while the categories are less semantically similar in Cha-
rades. Second, STEG constantly outperforms SEG which
indicates modeling a fixed temporal statistical dependency
between entities may aid the visual relationship reasoning
in Charades. We hypothesize that, as compared to the Im-
ageNet Video dataset that has a diversified set of videos in
the wild between animals or inorganic substances, Charades
contains videos of human indoor activities where relations
between entities are much easier to model by a fixed de-
pendency. Finally, we observe that VidVRD performs sub-
stantially worse compared to all the other models, suggest-
ing that the structural loss introduced by VidVRD may not
generalize well to other datasets. In case of Charades, we
do not perform zero-shot evaluation as the number of zero-

shot relation triplets is low. | The number of all the possible

relation triplets is 33 x 38 x 16 = 20,064. The training
set contains 2, 285 relation triplets (i.e., 11.39% of 20, 064)
and the evaluation set contains 1, 968 relation triplets (i.e.,
9.81% of 20, 064). The number of zero-shot relation triplets

is 46, which is 2.34% in the evaluation set.

In Supplementary, we also provide the results when
leveraging language priors into our model and also provide
the comparisons with Structural-RNN [1 1] and Graph Con-
volutional Network [39].

4.2. Qualitative Analysis

We next illustrate our qualitative results in Fig. 3 in the
ImageNet Video dataset. For the relationship detection, in
a scene with a person interacting with a horse, our model
successfully detects 5 out of 6 relationships, while failing
to detect horse-stand_right-person in the top 100 detected
relationships. In another scene with a car interacting with
a person, our model only detects 1 relationship out of 7
ground-truth relationships. We argue that the reason may be

because of the sand occlusion and the small size of a person.
For relationship tagging, in a scene with a person riding a
bike over another person, our model successfully tags all
four relationships in the top 5 tagged results. Nevertheless,
the third tagged result person-sit_above-bicycle also looks
visually plausible in this video. In another scene with a per-
son playing with a dog on a sofa, our model fails to tag any
correct relationships in the top 5 tagged results. Our model
incorrectly identified dog as cat, representing the main rea-
son why it failed.

Since pairwise energy in a graphical model represents
the negative statistical dependency between entities, in
Fig. 4, for a video in Charades dataset, we provide the il-
lustration of pairwise energy when considering our gated
and non-gated parameterization. Observe that the pairwise
energies between the related entities are lower for the gated
parameterization as compared to the non-gated one, sug-
gesting that the gating mechanism is able to aid video rela-
tionship reasoning by improving statistical dependency be-
tween spatially or temporally correlated entities.

5. Conclusion

In this paper, we have presented a Gated Spatio-
Temporal Energy Graph (GSTEG) model for the task of
visual relationship reasoning in videos. In the graph, we
consider a spatially and temporally fully-connected struc-
ture with an amortized observation-gated parameterization
for the pairwise energy functions. The gated design en-
ables the model to detect adaptive relations between en-
tities conditioned on the current observation (i.e., current
video). On two benchmark video datasets (ImageNet Video
and Charades), our method achieves state-of-the-art perfor-
mance across three relationship reasoning tasks (Detection,
Tagging, and Recognition).
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Supplementary for Video Relationship Reasoning using
Gated Spatio-Temporal Energy Graph

1. Towards Leveraging Language Priors

The work of [5] has emphasized the role of language
priors in alleviating the challenge of learning relationship
models from limited training data. Motivated by their work,
we also study the role of incorporating language priors in
our framework.

In Table. 1 in the main text, comparing UEG to UEGT,
we have seen that language priors aid in improving the re-
lationship reasoning performance. Considering our exam-
ple in Sec. 3.1 in main text, when the training instance
is {mother, pay, money}, we may also want to infer that
{father, pay, money} is a more likely relationship as op-
posed to {cat, pay, money} (as mother and father are se-
mantically similar compared to mother and cat). Likewise,
we can also infer {mother, pay, check} from the semantic
similarity between money and check.

[5] adopted a triplet loss for pairing word embeddings
of object, predicate, and subject. However, their method
required sampling of all the possible relationships and was
also restricted to the number of entities spatially (e.g, K =
3). Here, we present another way to make the parameterized
pairwise energy also be gated by the prior knowledge in
semantic space. We let the prior from semantic space be
encoded as word embedding: S = {S*}X_, in which S* €

RIYF1*4 denoting prior of labels with length d. We extend
Eq. (3) in the main text as

fg’(sl thst7£!s k7k’sytk7y:c:)
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where ug(-) € R and vg(-) € R maps the label prior to a
score. Eq. (1) suggests that the label transition from Y;¥ to
Yrj‘; can also attend to the affinity inferred from prior knowl-
edge.

We performed a preliminary evaluation on the relation
recognition task in the ImageNet Video dataset using 300-
dim Glove features [6] as word embeddings. For subject,
predicate, object, and relation triplet, Acc@1 metric im-
proves from 90.60, 28.78, 89.79, and 25.01 to 90.97, 29.54,
90.57, and 26.48.

2. Connection to Self Attention and Non-Local
Means

In our main text, the message form (eq. (5)) with our
observation-gated parametrization (eq. (3) with ¢ = ¢’) can
be expressed as follows:
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The equation can be reformulated in matrix form:
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We now link this message form with self attention in Ma-
chine Translation [10] and Non-Local Mean in Computer
Vision [1]. Self-Attention is expressed as the form of

softmax (Query . KeyT) - Value

with Query, Key, and Value depending on input (termed
observation in our case).

In both Self Attention and our message form, the at-
tended weights for Value is dependent on observation. The
difference is that we do not have a row-wise softmax activa-
tion to make the attended weights sum to 1. The derivation
is also similar to Non-Local Means [!]. Note that Machine
Translation [10] focuses on the updates for features across
temporal regions, Non-Local Mean [1] focuses on the up-
dates for the features across spatial regions, while ours fo-
cuses on the updates for the entities prediction (i.e., as a
message passing).
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Figure 1. [Bottom] Table summarizing the novelty of our proposed approach v.s. competing methods, [Top-left] Comparison of the
graphical structures, [Top-right] Empirical comparisons between our approach and other Structural RNN [3] and Graph Convolution [11].

Our model performs well across all the three tasks.

3. Comparisons with SRNN [3] & GCN[11]

Here, we provide comparisons with Structural-RNN
(SRNN) [3] and Graph Convolutional Network (GCN) [11]
for comparisons. We note that these approaches are de-
signed for video activity recognition, which cannot be di-
rectly applied in video visual relationship detection. In
Fig. 1 (top-left), we show how we minimally modifying
SRNN and GCN for evaluating them in video relation-
ship detection. The main differences are: 1) our model
constructs a fully-connected graph for entire video, while
SRNN has a non-fully connected graph and GCN considers
only building a graph on partial video (~32 frames), and
2) the message passing across node represents prediction’s
dependency for our model, while it indicates temporally
evolving edge features for SRNN and similarity-reweighted
features for GCN.

4. Activity Recognition in Charades

Sigurdsson et al. [9] proposed Asynchronous Tempo-
ral Fields (AsyncTF) for recognizing 157 video activities.
As discussed in Related Work (see Sec. 2), video activ-
ity recognition is a downstream task of visual relationship
learning: in Charades, each activity (in 157 activities) is
a combination of one category object and one category in
verb. We now cast how our model be transformed into video
activity recognition. First, we change the output sequence
tobe Y = {Y;}L_,, where Y; is the prediction of video ac-
tivity. Then, we apply our Gated Spatio-Temporal Energy
Graph on top of the sequence of activity predictions. In this
design, we achieve the mAP of 33.3%. AsyncTF reported

the mAP 18.3% for using only RGB values from a video.

5. Feature Representation in Pre-Reasoning
Modules

ImageNet Video. We now provide the details for repre-
senting XF, which is the predicate feature in #;; chunk
of the input instance. Note that we use the relation fea-
ture from prior work [£] (the feature can be downloaded
form [7]) as our predicate feature. The feature comprises
three components: (1) improved dense trajectory (iDT) fea-
tures from subject trajectory, (2) improved dense trajectory
(iDT) features from object trajectory, and (3) relative fea-
tures describing the relative positions, size, and motion be-
tween subject and object trajectories. iDT features are able
to capture the movement and also the low-level visual char-
acteristics for an object moving in a short clip. The relative
features are able to represent the relative spatio-temporal
differences between subject trajectory and object trajectory.
Next, the features are post-processed as bag-of-words fea-
tures after applying a dictionary learning on the original fea-
tures. Last, three sub-features are concatenated together for
representing our predicate feature.

Charades. We use the output feature layer from I3D net-
work [2] to represent our object (X7), verb (X}'), and scene
feature (X;). The I3D network is pre-trained from Kinetics
dataset [2] (the model can be downloaded from [12]) and
the output feature layer is the layer before output logits.



6. Intractable Inference during Evaluation

In ImageNet Video dataset, during evaluation, for rela-
tion detection and tagging, we have to enumerate all the
possible associations of subject or object tracklets. The
number of possible associations grows exponentially by the
factor of the number of chunks in a video, which will easily
become computationally intractable. Note that the problem
exists only during evaluation since the ground truth asso-
ciations (for subject and object tracklets) are given during
training. To overcome the issue, we apply the greedy asso-
ciation algorithm described in [£] for efficiently associating
subject or object tracklets. The idea is as follows. First,
we adopt the inference only in a chunk. Since the message
does not pass across chunks, at this step, we don’t need to
consider associations (for subject or object tracklets) across
chunks. In a chunk, for a pair of subject and object tracklet,
we have a predicted relation triplet. Then, from two over-
lapping chunks, we only associate the pair of the subject
and object tracklets with the same predicted relation triplet
and high tracklets vloU (i.e., > 0.5). Comparing to the
original inference, this algorithm exponentially accelerates
the time computational complexity. On the other hand, in
Charades, we do not need associate object tracklets. Thus,
the intractable computation complexity issue does not exist.
The greedy associate algorithm is not required for Charades.

7. Training and Parametrization Details

We specify the training and parametrization details as
follows.
ImageNet Video. Throughout all the experiments, we
choose Adam [4] with learning rate 0.001 as our optimizer,
32 as our batch size, 30 as the number of training epoch,
and 3 as the number of message passing. We initialize the
marginals to be the marginals estimated from unary energy.

e Rank number r: 5

o gE¥(XF): | XF| x (|Y;¥| x ) fully-connected layer,
resize to |Y;F| x

o REF'(XF): | XF| x x([Y¥'| x r) fully-connected layer,
resize to [Y;F'| x r

o 7E¥(XF): | XF| x 1024 fully-connected layer, ReLU
Activation, Dropout with rate 0.3, 1024 x 1024 fully-
connected layer, ReLU Activation, Dropout with rate
0.3, 1024 x (|Y;¥| x ) fully-connected layer, resize to
V| xr

o sEK'(XF): | XF| x 1024 fully-connected layer, ReLU
Activation, Dropout with rate 0.3, 1024 x 1024 fully-
connected layer, ReLU Activation, Dropout with rate
0.3, 1024 x (|YX'| x ) fully-connected layer, resize to

|Yt"f’| X T

e o0: 10
o wk¥ (XF): |XF| x |Y;¥| fully-connected layer

Charades: Throughout all the experiments, we choose
SGD with learning rate 0.005 as our optimizer, 40 as our
batch size, 5 as the number of training epoch, and 5 as the
number of message passing. We initialize the marginals to
be the marginals estimated from unary energy.

e Rank numberr: 5

o gk¥' (XF): |XF| x (]Y}F| x r) fully-connected layer,
resize to |[Y;F| x r

o hEF'(XF): |1:{{‘| x (|Y¥'| x r) fully-connected layer,
resize to |V | x r

o 7B (XF): |XF| x (|Y;¥| x ) fully-connected layer,
resize to [Y.¥| x r

o SEF(XF): |}f§| x x ([Y¥'| x r) fully-connected layer,
resize to [Y,¥ | x r

e o: 300

o wh (XF): |XF| x |Y¥| fully-connected layer

8. Parametrization in Leveraging Language
Priors

Additional networks in the experiments towards leverag-
ing language priors are parametrized as follows:

e d: 300 (because we use 300-dim. Glove [0] features)

e up(-): d x 1024 fully-connected layer, ReLU Acti-
vation, Dropout with rate 0.3, 1024 x 1024 fully-
connected layer, ReLU Activation, Dropout with rate
0.3, 1024 x 1 fully-connected layer

e vp(-): d x 1024 fully-connected layer, ReLU Acti-
vation, Dropout with rate 0.3, 1024 x 1024 fully-
connected layer, ReLU Activation, Dropout with rate
0.3, 1024 x 1 fully-connected layer

9. Category Set in Dataset

For clarity, we use bullet points for referring to the cate-
gory choice in datasets for the different entity.

e subject / object in ImageNet Video (total 35 categories)

— airplane, antelope, ball, bear, bicycle, bird, bus,
car, cat, cattle, dog, elephant, fox, frisbee, giant
panda, hamster, horse, lion, lizard, monkey, mo-
torcycle, person, rabbit, red panda, sheep, skate-
board, snake, sofa, squirrel, tiger, train, turtle,
watercraft, whale, zebra



e predicate in ImageNet Video (total 132 categories)

— taller, swim behind, walk away, fly behind, creep
behind, lie with, move left, stand next to, touch,
follow, move away, lie next to, walk with, move
next to, creep above, stand above, fall off, run
with, swim front, walk next to, kick, stand left,
creep right, sit above, watch, swim with, fly
away, creep beneath, front, run past, jump right,
fly toward, stop beneath, stand inside, creep left,
run next to, beneath, stop left, right, jump front,
jump beneath, past, jump toward, sit front, sit
inside, walk beneath, run away, stop right, run
above, walk right, away, move right, fly right,
behind, sit right, above, run front, run toward,
jump past, stand with, sit left, jump above, move
with, swim beneath, stand behind, larger, walk
past, stop front, run right, creep away, move to-
ward, feed, run left, lie beneath, fly front, walk
behind, stand beneath, fly above, bite, fly next to,
stop next to, fight, walk above, jump behind, fly
with, sit beneath, sit next to, jump next to, run
behind, move behind, swim right, swim next to,
hold, move past, pull, stand front, walk left, lie
above, ride, next to, move beneath, lie behind,
toward, jump left, stop above, creep toward, lie
left, fly left, stop with, walk toward, stand right,
chase, creep next to, fly past, move front, run
beneath, creep front, creep past, play, lie inside,
stop behind, move above, sit behind, faster, lie
right, walk front, drive, swim left, jump away,
jump with, lie front, left

e verb in Charades (total 33 categories)

— awaken, close, cook, dress, drink, eat, fix, grasp,
hold, laugh, lie, make, open, photograph, play,
pour, put, run, sit, smile, sneeze, snuggle, stand,
take, talk, throw, tidy, turn, undress, walk, wash,
watch, work

e object in Charades (total 38 categories)

— None, bag, bed, blanket, book, box, broom, chair,

closet/cabinet, clothes, cup/glass/bottle, dish,
door, doorknob, doorway, floor, food, groceries,
hair, hands, laptop, light, medicine, mirror, pa-
per/notebook, phone/camera, picture, pillow, re-
frigerator, sandwich, shelf, shoe, sofa/couch, ta-
ble, television, towel, vacuum, window

e scene in Charades (total 16 categories)

— Basement, Bathroom, Bedroom, Closet / Walk-

in closet / Spear closet, Dining room, Entry-
way, Garage, Hallway, Home Office / Study,

Kitchen, Laundry room, Living room, Other,
Pantry, Recreation room / Man cave, Stairs
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