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Abstract—We address the design of fast wavelength assignment
and reconfiguration using cognitive management and control that
can quickly and accurately adapt to the operating conditions
for optical networks. The traffic detection performances of two
Bayesian estimators and a stopping-trial (sequential) estimator
are examined based on the transient behaviors of networks.
The stopping-trial estimator has the fastest response time to the
changes of traffic arrival statistics. We propose a wavelength
reconfiguration algorithm with continuous assessment where the
system reconfigures whenever it deems necessary. The recon-
figuration can involve addition or subtraction of multiple wave-
lengths. Using the fastest detection and reconfiguration algorithm
can reduce queueing delays during traffic surges without over
provisioning and thus can reduce network capital expenditure
and prevent waste of resources upon erroneous decision on
occurrence of surges.

Index Terms—cognitive network, optical network, network
management and control

I. INTRODUCTION

The bursty, unscheduled and large data transactions intro-
duced by new technological applications can cause both high
costs and extreme congestions in networks. The dynamic and
bursty (unpredictable) nature of large traffic transactions either
requires over-provisioning of the networks which is costly or
a more agile network control and management system that
adaptively allocate resources by reconfiguring the network in
a timely manner in reaction to the offered traffic. The network
management and control system should be able to sense traffic
changes and reconfigure to use network resources efficiently.
Specifically, reconfigurations should be done as fast as a sub-
second time scale with no human involvement. To meet these
demands, cognitive networking is proposed as a candidate
architectural construct that can provide fast, dynamic, and
efficient control using cognitive techniques.

In this paper, we present the design of fast-reconfigurable
cognitive wavelength management and control algorithms that
can accurately adapt by observing the operating conditions of
the networks. Our previous work [1] provided a brief overview
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of cognitive optical networks and proposed two Bayesian esti-
mators and a stopping-trial estimator to detect traffic changes.
In this work, we further develop these estimators and examine
their traffic detection and queueing delay performances based
on the resulting transient behaviors of networks. A network
cost model is proposed to capture the trade-off between
reconfiguration performance (transient queueing delays) and
the cost of the capacity plus the control resources used. We rec-
ommend a wavelength reconfiguration algorithm based on the
stopping-trial estimator with continuous assessment where the
system reconfigures whenever necessary. The reconfiguration
can involve addition or subtraction of multiple wavelengths.

II. TRAFFIC MODEL AND TUNNELED ARCHITECTURE

A. All-to-all Poisson Traffic

As a simple illustrative example, we consider a network
topology (MAN or WAN) with a WDM tunnel architecture.
We assume all-to-all independent and identically distributed
(ILD.) sessions between every node pair. The size of each
transaction L is exponentially distributed with the expectation
Lg. The arrival traffic at the source is assumed to form a
doubly stochastic Poisson point process with a time-dependent
rate of A(t). We assume A(t) switches between a non-surging
state A9 and a surging state A;, where A\g < A;. When A(%)
switches from g to Aj, there is a traffic surge and we want
to detect it promptly to avoid potential traffic congestion and
large queueing delays. When A(¢) switches from Ay to Ag,
there is a traffic drop and we want to detect it promptly to
avoid any waste of resources.

We can observe the Poisson arrival process in two ways.
First, we observe the number of arrivals NV in the observation
interval [t — T,t]. N follows a Poisson distribution with
the rate of A(¢t)7. Notice that 7' should be less than the
network coherence time for effective adaptions, and both time
points (¢t —T') and ¢ are included to avoid ambiguity. Second,
each inter-arrival time in {7;,7 > 1} follows an exponential
distribution with parameter A\(¢). We assume the 15 arrival
always happens at the starting time (¢ — T'), and T; is the
inter-arrival time between the *" arrival and the (i + 1)*"



arrival. The sum of NN inter-arrival times va:l T; follows an
Erlang distribution with A(t).

B. Tunneled Optical Network Architecture

In this work, we assume a tunneled network architecture,
where each node pair is connected via a pre-selected set of
wavelengths within a single lightpath or multiple lightpaths
for traffic transmission as shown in Fig. 1. Zhang showed in
[2] that tunneled architecture can reduce control plane traffic
and processing complexity significantly with little sacrifice
in efficiency for heavy traffic volumes compared to meshed
architecture that enables full switchability at all nodes. The
capacity between each node pair is reconfigurable by adjusting
the number of wavelengths used by the node pair based on
the offered traffic. Assume m(t) wavelengths are assigned
between a node pair at time ¢, and each wavelength has a
constant capacity R bits per second. Given the average size
of a transaction Lg, the service rate of each wavelength per
transaction is p = L%‘ The queue between each node pair
can be modeled as an M /M /m(t) queue with the arrival rate
A(t) and the service rate u. Define the network load between
a node pair as p = n;\((tt )”. The system is in a stable state when
p < 1. When p > 1, the network is overloaded, and network
reconfigurations are needed to bring the system to a new steady
state. In practice, the addition of capacities occurs as early as
p~ % because users do not want excessive queueing delay.
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Fig. 1. An example of an all-to-all tunneled network connection between
node pairs in the form of wavelengths.

III. CANDIDATE ESTIMATORS

We consider two traditional Bayesian estimators and the
stopping-trial sequential estimator proposed in [1] to detect
the changes of traffic statistics. Given the binary nature of
A(t) defined in section II-A, two possible hypotheses for the
decision are: Hy : A(t) = Ao; Hy : A(t) = A;. The false
alarm probability P, is the probability that we accept H;
when Hj is true. The missed detection probability P, is the
probability that we accept Hy when H; is true. The probability
of detection is Py = 1 — P,,. If the a priori probabilities are
known as 7, for Hy and 7, = 1 — m,, for H;, the total
error probability is

Prle] = mx, Py + 7, P (1)

A. Fixed-time estimator Ar(t)

For the fixed-time estimator Ap(t), we count the total
number of arrivals in a fixed time interval [t — T, ¢] denoted
by N(T') backwards in time to determine the validation of the
hypotheses. We define
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1) Bayesian Likelihood Ratio Test (Bayesian LRT): The
Bayesian LRT for N(7T') with given a priori probabilities 7y,
and 7y, is
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The error probability Prler] for Ap(t) is Prler] =
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2) Neyman-Pearson Test: In practice, a priori probabilities
are usually unknown, which leads us to use the Neyman-
Pearson test. Define a threshold 7 for the LRT, we have
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Given n is an integer, the false alarm probability Py, is
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where [-] is the ceiling function. The missed detection prob-
ability P, is
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We can use Chernoff bounds to approximate the false alarm
probability and the missed detection probability. However, the
detection time 7' after a rate change needs to be as short
as possible to achieve the fast response preventing the queue
build-up. A short detection time will inevitably cause higher
false alarm/missed detection rates, where the exponentially
tight Chernoff bound is not a good approximation. Though we
will not use the Chernoff bound approximation in this work,
it does provide an easily calculable approximation when the
requirement of the probability of false alarm/missed detection
is strict, which will be discussed in our future work.

B. Fixed-count estimator Ay (t)

For the fixed-count estimator Ay (t), we observe the dura-
tion T'(V) formed by the last NV arrivals (including the one at
(t — T')) backwards in time to determine the validation of the
hypotheses. We define

An(t) = = ®)



where Z(t) is the age of the Poisson process of the observation
interval ending at time ¢, which is defined as the interval from
the most recent arrival (N*" arrival) before (not include) ¢ until
t. If the N*" arrival happens at time ¢, Z(t) = 0. (N — 1)
inter-arrivals are included in the previous N arrivals, so that
Z2t)=T-25'T.

We can prove Z(t) also follows an exponential distribution
with rate A(t). If we look at the arrivals of the Poisson
process in [t — T, t] backward in time, it is still a Poisson
process due to its time-reversibility [3], and Z(¢) becomes the
interval between the starting time and the first arrival. Due to
the memoryless property of the exponential distribution, Z(t)
follows an exponential distribution. Therefore, we have
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1) Bayesian LRT: The Bayesian LRT for T(N) with a
priori probabilities 7y, and 7y, is
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2) Neyman-Pearson Test: For the Neyman-Pearson test,
define a threshold n for LRT and we have
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C. Comparison of the two Bayesian estimators

The simulated rate change detection comparisons of both
Ar(t) and Ay (t) in a single run and the average of 200 runs
are shown in Fig. 2. The fixed count V in AN (t) is chosen such
that N = \(¢)T for the fixed time 7" in Ap(t). 5\N( t) always
responds faster to sudden rate changes than )\T( ), though
A (t) may not be as accurate (and stable) as Ap(t), which
is also shown in the receiver operating characteristic (ROC)
comparisons of the two estimators in Fig. 3. Compared to the
fixed time T, the detection time of Ay (f) can flexibly adjust
to the underlying A(¢). Ax () can improve network efficiency
by avoiding both a long detection time for fast changes and a
high sampling frequency for low arrival rates.

Though both Bayesian estimators are simple to implement,
their pre-determined fixed time or count limits their detection
performance, which can result in inaccurate and even dis-
ruptive reconfigurations. Moreover, both Bayesian estimators

require the a priori probability distributions, which are usually
unknown and may be changing. Though the distribution can be
estimated from prior traffic statistics by learning techniques,
such techniques fail to perform well for extremely rare events
(e.g. black swans) due to the lack of history. Hence there is the
need to find an estimator that can detect rate changes in the
shortest possible time so that the system can be reconfigured
at a fast time scale. We will explore the efficacy of a sequential
decision algorithm called “stopping trials” in the next section.
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Fig. 2. (a) The comparison of detection processes of A (t) and %N(t); (b)
The comparison of the average detection results over 200 runs of Ar(t) and
)\N(t). A =5X1=10. T =1,N = X\oT =5.
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Fig. 3. The comparison of ROC curves of fixed-time estimator S\T(zz) and
fixed-count estimator Ay (t). Ao = 5, A1 = 10. The fixed count IV in Ay (t)
is chosen such that N = AT for the fixed time 7" in Ap(¢).

D. Stopping-trial estimator S\ST(t)

For the stopping-trial estimator XST(t), we observe each
inter-arrival time 7T; of the doubly stochastic Poisson point
process as a sequential test to trigger network reconfigurations.
As opposed to Ar(t) and An(t), Agr(t) does not require
a pre-determined observation time or count. It can make a
decision at the shortest possible time when the session arrival
statistics provide enough confidence for reconfiguration [3].
The process can be modeled as a random walk S; based on
{T;,i > 1}, where J is the time that a threshold is crossed and

a reconfiguration is made. Define S; = Z;.]:l(Ti - /\in) if the

process start from a non-surging state; Sy = Z;’Zl(Ti - %) if
the process start from a surging state. To avoid bias from the



previous decision, the algorithm resets .Sy and starts from the
new state once a traffic rate change is detected. Two sample
random walks are shown in Fig. 4 [1], where n is a discretized
time index in the unit of arrivals. Denote the threshold for
adding a new wavelength as 74 and the threshold for tearing
down an existing wavelength as n_. Both 1, and n_ are
determined by the desired error probabilities.
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Fig. 4. Sample functions of random walks S;, with one for traffic surge and
one for traffic drop [1]. n is a discretized time index in the unit of arrivals.

An exponentially tight upper bound of the missed detection
probability for a surge from Wald’s identity in [3] is

P,
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where 7* is the positive root for ln(E[er(Tﬁﬁ)]) = 0. An
upper bound on the false alarm probability after x arrivals
given no surge happens from [1] is
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Figure 5 shows the detection performances of traffic
surges/drops for two Bayesian estimators and a stopping-trial
estimator. The fixed time for Ay (t), the fixed count for Ay (t),
and the thresholds for Agp(t) are picked so that all three
estimators’ probabilities of missed detection are 1%. From Fig.
5, S\ST(t) has the shortest response time to rate changes. The
memory reset upon the detection helps to stabilize Agp(t)
to avoid highly frequent erroneous reconfigurations. Even if
XST(t) make any false alarm, it can be quickly corrected.
As7(t) requires no knowledge of a priori probabilities, and
its detection time is shortest when the session arrival statistics
provide enough confidence for reconfiguration. What is more,
the algorithm is applicable beyond Poisson traffic arrival
model. As long as the inter-arrival times of traffic transactions
are independent, the algorithm still reacts fast as the traffic
rate changes, which will be discussed in our future work.

< (16)
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IV. NETWORK TRANSIENT BEHAVIORS

A good understanding of the transient behavior of the
queue between each node pair is required for the design of
the traffic rate change detection and network reconfiguration
algorithms. When the traffic rate or the network configuration
is changed, the network queueing delay also changes. Based on
the M /M /m(t) queueing model developed before, we focus
on both the peak queueing delay and the total duration of
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Fig. 5. The comparison of traffic surge/drop detections among different

estimators with pr, = 1%. (a) The fixed-time estimator %A\T(t); (b) The fixed-
count estimator A (t); (¢) The stopping-trial estimator Ag7 (¢); (d) All three
estimators. 7wy, = 7y, = 0.5, A0 = 5,1 = 10.

a surge/drop from the time that a surge/drop happens to the
time that the network reaches a new steady state. Since the
processes of traffic surge and traffic drop are quite similar,
without loss of generality, we only discuss the modeling of
the traffic surge process, where A(t) switches from Ag to A;.

A. M/M/1/M Queue Transient Behavior and M /M /m(t)
Queue Approximation

Denote pF(t) as the probability that n transactions are
in the system at the current time ¢ given k transactions in
the system at ¢ = 0. Assume M as the maximum number
of transactions in the system, where M is very large to
approximate the system with the infinite buffer. From the
analytical results of transient behavior of M /M /1/M queues
in [4], the corresponding time-dependent solution to pF (¢) is
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where p = M, and , is the steady state probability for state
nin M/M/1/M queue as
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The expression for ~; is

i = A(t) + 1 — 24/ A(t)p cos (MH_T'_ 1) (1)

where = 1,2,...,M,and n = 0,1,2, ..., M. The mean queue
length at time ¢ is
M

Q(t) =) _(n—1L)pj(t)

n=1

(22)



Fig. 6(a) shows both the analytical and simulated transient
behaviors of the queue for a traffic surge followed by a
proper reconfiguration. ¢; is the time that the traffic arrival
rate switches from Ay to A;. ¢o is the time that the change
is detected and the network is reconfigured. We assume that
a reconfiguration is completed instantaneously once a surge
is detected. t3 is the time that the network with the new
wavelength assignment (i.e. the new service rate) reaches the
steady state. The detection time is 73 = t2 — 1 and the queue
settling time is 79 = t3 — to. The duration of a surge is
Tsurge = T1 + T2, Where we assume other delays are ignorable
compared to 7 and 7. Since the average peak queue size
Qpeak is reached at to, the average peak queueing delay I'peqr
is also reached at 75. Obviously, both I, and 7o depend on
71. Therefore, an estimator quickly responding to changes will
lead to both a shorter peak queueing delay and a shorter queue
settling time.
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Fig. 6. (a) Simulated and analytical results of the evolution of queue size

for a network surge followed by a proper reconfiguration for an M/M/1/M
queue; (b) The transient behavior of the average queue size. my, = 7y, =
05,2 =5,A\1 =10, = 6.

The analytical results for the transient queueing delay for
M/M/m(t) queues are shown in [5] but are hard to use in
practice. Instead, we can use the M/M/1/M queue with
the service rate m(t)u and a large M to approximate the
M/M/m(t) queue, since their probability distributions are
similar when the network is highly loaded or overloaded. We
can also approximate the continuous-time M /M /m(t) queue
with a sampled-time M /M /m(t) Markov chain with a very
small sample unit time. Figure 6(b) shows the comparison
between the M /M /1 queue with the service rate m(¢)u and
a large M approximation and the sampled-time M /M /m(t)
Markov chain. The agreement of the results shows the analyt-
ical results of the M /M /1 queue with the service rate m(t)u
and a large M can approximate the transition behavior of the
M/M/m(t) queue well, and we will use the approximation
in the following sections.

B. Detection time 1,

The detection time 71 is crucial in the network delay
transition as it affects 7 and I'peqr. The value of 7 depends
on both the base detection duration and the detection accuracy.

1) Fixed-time estimator Ar(t): Ar(t) has a base detection
duration 7. If no rate change is detected within 7T, the
algorithm keeps working as time evolves continuously until
it catches a change. Let AT be the time it takes the algorithm
to detect a range after the miss within 7. We can model AT
as a random walk where an arrival comes or leaves in a short
unit time &. Denote 7 as the threshold of determining the prob-
ability of detection p,, and missed detection p,,, = 1 —pa4,.
When a surge happens, we have

Tir :pdTT+<1_pdT)<T+AT) (23)

n—1 1 —n)?
where AT = S Y p(n)EL] = S H P(n )%53(17_&16)
and P(n) follows a Poisson distribution with A;.

In the event of false alarms, we have

T = (1 _pr)T+pr(T+ AT)
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and P(n) follows a Poisson distribution with Ag.

(24)

2) Fixed-count estimator Ay (t): Ay (t) needs a duration of
N arrivals as the detection time. The results will be updated
once a new arrival comes. Then we can formulate the average
detection time when a surge happens as

> o1 N+n—1
= ZpdN(]‘ _pdN) 1/\7 (25)
- 1
In the event of false alarms, we have
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N+n-1
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3) Stopping-trial estimator ;\ST(t).' Ast(t) needs the av-
erage stopping time E[T;]E[J] for making the decision, in
which E[J] could be derived from Wald’s equality as E[S ;] =
E[T;, - %O]E[J] With E[T;] = A , E[S5] = n4, the average
detection time when a surge happens is

E[T]E[S,] Ao+

= = 27
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In the event of false alarms, E[T; — %O] = 0, which makes

Wald’s equality inapplicable. In this case, we can use the

second derivative of Wald’s identity as E[S7] = E[J|o{r, -
With E[T}] = &+, 02 E[S3] = n%, we have
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C. Peak queueing delay I peqr

For the M /M /1 queue, the queueing delay of the incoming
transaction with (n + 1) transactions already in the system
(i.e. n in the queue) is the total transmission time of all
(n + 1) transactions. Given the average transmission delay
per transaction as + and the average queue length Q(t), the

average queueing delay for the incoming transaction is

QU)+1 _ [pi(n—1pp (1) +1
H H

T, () = (29)



We can prove that the average queueing delay for the
M/M/m(t) queue with p is the same as that of M/M/1
queue with the service rate m(t)u. The idea is that the
queueing delay distribution for the (n+1)*" transaction in both
queueing systems are i—fold convolutions of 1 — e~™®rT
Therefore, the average queueing delays that are the weighted
average of the distributions are the same.

The normalized peak delay increases with the increase of
71 are shown in Fig. 7 , where the normalized average peak
delays is the peak queueing delay normalized by the average
transmission delay 7¢rqns = %. Therefore, a fast response time
can help to avoid severe peak queueing delays.

Normalized Peak Delay

30

Detection Time 7

Fig. 7. Normalized average peak delays versus surge changes and detection
times 71. Ao = 5, u = 6.

The transients of the normalized average queueing delay
with one or more reconfigurations for different detection times
71 averaged over both detections and false alarms are shown in
Fig. 8. The performances of different 71 diverge after the peak
in Fig. 8(a) because p,, and py differ. Though a short detection
time can lead to a low I',c 4z, it also suffers from a high missed
detection probability so that the average queue size keeps
increasing making the network unstable. A long detection time
incurs a high I',., in exchange for a low missed detection
probability, and increases delays and degrades users’ quality
of service. Therefore, an optimized detection time is important
in designing the cognitive control of wavelength assignment if
the detection algorithms without continuous assessments are
used. On the other hand, an algorithm with continuous as-
sessments and reconfigurations will reduce the peak queueing
delay as shown in Fig. 8(b), where the zig-zag shapes come
from correcting errors previously made. Hence, continuous
assessments and reconfigurations algorithms compensate for
estimators’ detection inaccuracy and should be used.

D. Queue settling time T

To is the time that the network needs to serve the sessions
accumulated in the queue up to 71 and settles to the steady
state with the new service rate. We have

(30)

where t3 = imtn t, s.t. Ty(t) = Tsteady- Tsteady is the new
>to

Ty =13 —to

steady state queueing delay after a proper reconfiguration.
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Fig. 8. (a) Average normalized queueing delay for different detection times 71
with one reconfiguration; (b) Average normalized queueing delay for different
detection times 71 with multiple reconfigurations. The results are the average
of both detections and false alarms. 7y, = mx, = 0.5,A0 = 5,A\1 =
10, n = 6.

We can find a bound on 75 using the convergence properties
of the sampled-time M /M /m/(t) Markov chain, and it will be
addressed in our future work.

V. COST-DRIVEN NETWORK RECONFIGURATION SCHEME
A. Network Operating Cost Model

There is an obvious trade-off between the queueing delay
and the cost of a wavelength in determining the reconfiguration
algorithm. More wavelengths can bring a lower queueing delay
but comes at a higher total cost. The cost of a wavelength
includes both the capital expenditure of fiber, switches and
amplifiers, and the operating expenditure of setting up wave-
lengths. Sometimes, it is acceptable to make a wrong decision
as long as the incurred total cost is low. On the other hand,
we may not want to add a new wavelength for a transient
traffic surge, since it may cost much more to reconfigure the
network than to tolerate the transient delay increase. Denote
the cost parameter C; as the cost per unit of the normalized
queueing delay, and denote the cost parameter C,, as the cost
per wavelength. The total wavelength cost for an M /M /m(t)
queue is m(t)Cy.

Figure 9 shows the transient behaviors of the total costs
of the different algorithms if one ore more reconfigurations
are allowed averaging with detections and false alarms. C,, =
C4 = 100, and the target probability of missed detection for
all three estimators is 10%. Though the estimators respond
differently to the surge, the single decision nature of this
particular cases with no further correction upon erroneous
actions leads all of them to higher costs eventually driven by
the high queueing delay due to the missed detection errors.
When continuous assessment with reconfigurations is enabled
as shown in Fig.9(b), the system can effectively correct errors
and bring down costs, even though missed detections/false
alarms have occurred. Due to its fast-response to changes, the
stopping-trial estimator requires the shortest time to reconfig-
ure correctly, and yields the lowest total cost.
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the average of both detections and false alarms. 7y, = my, = 0.5, =
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B. Multiple Wavelengths Addition and Subtraction

The addition and subtraction of multiple wavelengths can be
used to deal with severe traffic surges, since more additional
wavelengths assigned at once can better reduce the queueing
delay. Considering the trade-off between the queueing delay
and the cost of any additional wavelength, we need to find
an optimal combination of both factors to achieve the optimal
total cost. Figure 10 shows the cost comparisons of different
estimators with different number of wavelengths assigned.
The stopping-trial estimator requests a smaller number of
wavelengths realizing higher cost efficiency than the other two
estimators, since its fast response helps to avoid a high peak
queueing delay.
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Fig. 10. Cost comparison of different estimators with p,, = 10%. w), =
m, = 0.5, =5,A\1 =10, u = 6. Cyy = Cg = 100.

When the assignment of multiple wavelengths is allowed, it
is possible find the optimal number of wavelengths to assign
given the total cost constraints. The total cost is

w)
Ciotar = Coyw + cdrpmk;‘) 31)

where w is the number of wavelength assigned before the
surge occurs. Setting dCiotq/dw = 0, the optimal number of
wavelength w* is
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Fig. 11. (a) Optimal number of wavelengths comparison versus cost parameter
ratio Cy,/Cq of different estimators; (b) Optimal number of wavelengths
comparison versus load p of different estimators. 7y, = 7y, = 0.5, A0 =
5,A1 = 10,4 = 6. Cyy = Cq = 100, wo = 1, ppm = 10%.

We find the stopping-trial estimator uses the smallest num-
ber of wavelengths for the same quality of service among
all three estimators for the different combinations of cost
parameters or different network loads as shown in Fig. 11.
The stopping-trial estimator is recommended as the algorithm
for reconfigurations.

VI. CONCLUSION

In this paper, we address the design of a fast-response
algorithm for wavelength reconfiguration. Two Bayesian esti-
mators and a stopping-trial sequential estimator are developed
to detect changes of traffic arrival statistics. Based on the
network transient behaviors of the network, we have shown
that the stopping-trial estimator has the shortest detection
time for traffic rate changes, and it requires no knowledge
of a priori probabilities. With continuous assessment, the
system reconfigures only when it is necessary. Allowing for
the possibility of the addition and subtraction of multiple
wavelengths, the stopping-trial estimator (among all three
estimators) requires the smallest number of wavelengths to
be reconfigured due to its fastest response that helps to avoid
a high peak queueing delay.
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