Sprites and State Channels: Payment Networks
that Go Faster than Lightning

Andrew Miller!, Iddo Bentov?, Surya Bakshi', Ranjit Kumaresan® and Patrick
McCorry*

! University of Illinois at Urbana-Champaign
2 Cornell Tech
3 VISA Research
* King’s College London

Abstract. Bitcoin, Ethereum and other blockchain-based cryptocurren-
cies, as deployed today, cannot support more than several transactions
per second. Off-chain payment channels, a “layer 2” solution, are a lead-
ing approach for cryptocurrency scaling. They enable two mutually dis-
trustful parties to rapidly send payments between each other and can be
linked together to form a payment network, such that payments between
any two parties can be routed through the network along a path that
connects them.

We propose a novel payment channel protocol, called Sprites. The main
advantage of Sprites compared with earlier protocols is a reduced “col-
lateral cost,” meaning the amount of money X time that must be locked
up before disputes are settled. In the Lightning Network and Raiden, a
payment across a path of ¢ channels requires locking up collateral for
O(¢A) time, where A is the time to commit an on-chain transaction;
every additional node on the path forces an increase in lock time. The
Sprites construction provides a constant lock time, reducing the overall
collateral cost to @(¢ + A). Our presentation of the Sprites protocol is
also modular, making use of a generic state channel abstraction. Finally,
Sprites improves on prior payment channel constructions by supporting
partial withdrawals and deposits without any on-chain transactions.

1 Introduction

Popular cryptocurrencies such as Bitcoin and Ethereum have at times reached
their capacity limits, leading to transaction congestion and higher fees. A limit
to scalability seems inherent in their model, since they are designed for security
through replication, every node validates every transaction.

A leading proposal for improving the scalability of cryptocurrencies is to
form a network of “off-chain” rapid payment channels. Payment channels re-
quire initial deposits of on-chain currency, but once established can support
an unbounded number of payments in a session using only off-chain messages.
Payments can be routed through a network of such channels, with changes in
balance flowing from one intermediary to the next. Only when the channel must

be settled is blockchain interaction required. The protocol is centered around a
smart contract, which handles deposits and withdrawals and defines the rules
for handling disputes.

In this paper we introduce the “collateral cost” of a payment channel, which
roughly corresponds to the amount of time that an amount of money is locked
up in the smart contract, (money X time). The main result of our paper is a new
payment channel protocol called Sprites that improves on the state-of-the-art in
worst-case collateral cost.

Collateral Costs in Payment Channels. A chief concern for the feasibility
of payment channel networks is whether or not enough collateral will be available
for payments to be routed at high throughput. For every pending payment, some
money in the channel must be reserved and held aside as collateral until the
payment is completed, called the “locktime.” Even though off-chain payments
complete quickly in the typical case, if parties fail (or act to maliciously impose
a delay), the collateral can be locked up for longer, until a dispute handler can
be activated on-chain.

We characterize the performance of a payment channel protocol as its “col-
lateral cost,” which we think of as the lost time value of money held in reserve
(i.e., in units of money x time) during the locktime.®> For a linked payment,
the longer the payment path, the more total collateral must be reserved: for a
payment of size $X across a path of £ channels, a total of (¢$X) money must
be reserved. Payment channel protocols depend on a worst-case delay bound,
A for the underlying blockchain. Essentially, A is a safe bound on how long it
takes to observe a transaction committed on the blockchain and commit one new
transaction in response, i.e., one blockchain round trip. In practical terms, A is
roughly 1 day.

In the Lightning Network and in Raiden, the two most well-known payment
networks, A is incorporated into the locktime parameter. However, a payment
on a path of length ¢ requires an additional A delay added to the locktime for
each link. Thus the worst-case total collateral cost of a $X payment over a path
of length ¢ is O(£?$X A). The diameter of the Lightning network is 8, and with
a payment of $10, the collateral costs for Lightning and Sprites are 360 dollar-
days and 116 dollar-days, respectively. Therefore, Sprites has an approximately
3x collateral cost improvement over Lightning.

Sprites: Constant-Locktime Payment Channels. Sprites improves on Light-
ning and other linked-payments by avoiding the need to add an additional A
delay for each payment on the path, reducing the collateral cost by a factor
of ¢ with a constant locktime. The key insight behind this improvement is the
use of a globally accessible smart contract that provides shared state between
individual payment channels. As such, this is expressible in Ethereum, but does
not appear possible in Bitcoin.

Although the Sprites protocol builds on prior payment channel designs, we
present it from scratch in a simplified and modular way. Our presentation is based

5 The rational investor’s preference is to obtain and use money now rather than later.

p. Transfer $1 P p Transfer $1 P
! by revealing 2 @ " by revealing ¢
@) M xbefore T+HA () 3 x before T+A 8

Linked Payments (Lightning)

p. Transfer$1if P P21 Transfer $1 if P

! anyone reveals ’ @ anyone reveals '
®) M xbefore TH+A (™ (™ xbefore T+A (=

Linked Payments (Sprites)

Fig. 1: The underlying currency serves as collateral for a payment network [19,
4]. A payment channels allow rapid payment to another party, requiring on-
chain transactions in case of disputes. Payments can be routed through multiple
channels based on a condition (a). We improve the worse case delay for ¢-hop
payments, (b), to O(¢ + A).

on a generic abstraction, the state channel, which serves two roles: First, it neatly
encapsulates the necessary cryptography (mainly exchanging digital signatures),
separating concerns in the protocol presentation. Second, it provides a flexible
interface bridging the off-chain and on-chain worlds. Sprites makes use of this
interface in several ways, both to define its constant-locktime dispute handler,
but also to support incremental deposits and withdrawals without interruption.
Our security and worst-case performance analysis ensures that intermediaries are
never at risk of losing money, and that the protocol provides real time guarantees
even in spite of Byzantine failures. Finally, we implemented a proof of concept
of Sprites, and deployed it on the Ropsten Ethereum Testnet.® We found that
the transaction fees required to resolve a dispute on-chain are around ~ $0.20
USD as of November 2018, comparable to the Lightning Network.

2 Background and Preliminaries

2.1 Blockchains and Smart Contracts

At a high level, a blockchain is a distributed ledger of balances. The primary
use of blockchains are as decentralized cryptocurrencies, which allow users to
exchange a native token without trusted intermediaries. Transactions are made
by users (addressed by pseudonyms) and published on the blockchain (on-chain
transaction) to be confirmed by the rest of the network. Decentralized cryp-
tocurrencies like Ethereum, however, require state replication across all nodes
and can not support more than several transactions per second.
Concretely, a blockchain ensures the following properties:

6 The reference implementation can be found at https://github.com/amiller/
sprites, Sprites: 0x85DF43619C04d2eFFD7e14AF643aef119E7c8414, Manager:
0x62E2D8cfE64a28584390B58C4aakF71b29D31F087.

1. All parties can agree on a consistent log of committed transactions
2. All parties are guaranteed to be able to commit new transactions in a pre-
dictable amount of time, A.

The time delay, A, is meant to capture the worst-case bound on how long it takes
to learn about a new transaction, then to publish a transaction in response. We
say one unit of time is the maximum time needed to transmit a point-to-point
message to any other party.

Modern cryptocurrencies, like Ethereum, also feature smart contracts. A
smart contract is an autonomous piece of code that exists at an address in the
Ethereum blockchain. It can hold funds like any other address and can act on
those funds through its functionality. To execute a piece of code in the contract,
a user account must submit a transaction to it specifying the method to be exe-
cuted. The method’s execution may change the state of the contract’s balance or
persistent storage, and the changes are eventually committed to the blockchain.
The main benefits of contracts are that they are essentially autonomous ma-
chines that always execute their code correctly. Throughout this paper, we show
smart contracts using pseudocode resembling reactive processes that respond to
method invocations.

2.2 Blockchain scaling

Proposed scalability improvements fall in roughly two complementary categories.
The first, “on-chain scaling,” aims to make the blockchain itself run faster [9,
11, 17, 7). A recurring theme is that the additional performance comes from
introducing stronger trust assumptions about the nodes.

The second category of scaling approaches, which includes our work, is to de-
velop “off-chain protocols” that minimize the use of the blockchain itself. Instead,
parties transact primarily by exchanging off-chain messages (point-to-point mes-
sages), and interact with the blockchain only to settle disputes or withdraw
funds.

2.3 Off-chain Payment Channels

There have been many previous payment channel constructions prior to this
work. However, for simplicity we present only the approach using signatures
over round numbers [15, 18, 2]. We also make the assumption that transactions
can depend on a “global” event recorded in the blockchain — and therefore
Sprites cannot (we conjecture) be implemented in Bitcoin.

An off-chain payment channel protocol roughly comprises the following three
phases:
Channel opening. The channel is initially opened with an on-chain deposit
transaction. This reserves a quantity of digital currency and binds it to the
smart contract program.
Off-chain payments. To make an off-chain payment, the parties exchange
signed messages, reflecting the updated balance. For example, the current state

would be represented as a signed message (o4,0R, 1, $A,$B), where a pair of
signatures o4 and op are valid for the message (i, $A,$B), where $A (resp. $B)
is the balance of Alice (resp. Bob) at round number i. Each party locally keeps
track of the current balance, corresponding to the most recent signed message.
Dispute handling. The blockchain smart contract serves as a “dispute han-
dler.” Tt is activated when either party suspects a failure, or wishes to close the
channel and withdraw the remaining balance. The dispute handler remains ac-
tive for a fixed time during which either party can submit evidence (e.g., signed
messages) of their last-known balance. The dispute handler accepts the evidence
with the highest round number and disburses the money accordingly.

The security guarantees, roughly, are the following:
(Liveness): Either party can initiate a withdrawal, and the withdrawal is pro-
cessed within a predictable amount of time. If both parties are honest, then
payments are processed very rapidly (i.e., with only off-chain messages).
(No counterparty risk): The payment channel interface offers Bob a local
estimate of his current balance (i.e., how many payments he has received). Alice,
of course, knows how much she has sent. The “no counterparty risk” property
guarantees that local views are accurate, in the sense that each party can actually
withdraw (at least) the amount they expect.

2.4 Linked payments and payment channel networks

Duplex payment channels alone cannot solve the scalability problem; opening
each channel requires an on-chain transaction before any payments can be made.
To connect every pair of parties in the network by a direct channel would require
O(N?) transactions.

Poon and Dryja [19] developed a method for linking payments across a path
of channels where the capacity within each channel is sufficient to facilitate the
transfer.

Linked payments are based on the “hashed timelock contract” (HTLC) for
conditional payments that relies on a single hash h = H(z) to synchronize a
payment across all channels. We denote an HTLC conditional payment from P;
to P, by the following;:

X
Pli-ﬁpg
h,T

)

which says that a payment of $X can be claimed by P, if the preimage of h is re-
vealed via an on-chain transaction. In the optimistic case, the sender can create
and send a new unconditional payment with a higher round number. Otherwise,
the conditional payment can be canceled after a deadline T'. Operationally, open-
ing a conditional payment means signing a message that defines the deadline,
the amount of money, and the hash of the secret h = H(x); and finally sending
the signed message to the recipient.

Consider a path of parties, Py, ..., P, where P; is the sender, P, is the recip-
ient, and the rest are intermediaries. In a linked off-chain payment, Each node
P; opens a conditional payment to P;1, one after another.

$X $X
Pl P2 Pg_l _— Pg (f)
h,T1=T¢_1+O(LA) h, Ty

Note that the hash condition h is the same for all channels. However, the dead-
lines may be different. In fact, Lightning requires that Ty = T, + O(YA) as
we explain shortly. The desired security properties of linked payments are the
following (in addition to those for basic channels given above):

(Liveness): The entire chain of payments concludes (success or cancellation)
within a bounded amount of on-chain cycles. If all parties on the path are hon-
est, then the entire payment should complete successfully using only off-chain
messages.

(No counterparty risk): A key desired property is that intermediaries should
not be placed at risk of losing funds. During the linked payment protocol, a
portion of the channel balance may be “locked” and held in reserve, but it must
returned by the conclusion of the protocol.” This property poses a challenge
that constrains the choice of deadlines {T;} in Lightning. Consider the following
scenario from the point of view of party P;.

$X $X
P;
h,T; h, Ty

.. Pi—l Pi+1

We need to ensure that if the outgoing conditional payment to P41 com-
pletes, then the incoming payment from P;_; also completes. In the worst case
where P;;1 attempts to introduce the maximum delay for P; (which we call the
“petty” attacker), the party P; only learns about x because z is published in the
blockchain at the last possible instant, at time 7;11. In order to complete the
incoming payment, if P;_1 is also petty then P; must publish = to the blockchain
by time T;. It must therefore be the case that T; > T; 1 + A, meaning P; is given
an additional grace period of time A (the worst-case bound on the time for one
on-chain round).

We use the term “collateral cost” to denote the product of the amount of
money $X multiplied by the locktime (i.e., from when the conditional payment
is opened to the time it is completed or canceled). Since the payment can be
claimed by time Ty + ©(£A) in the worst case, the overall collateral cost is
O(F2$X A) for each party (see Figure 1 (a)). The worst-case collateral cost may
occur because of failures or malicious attacks intended to slow the network. The
main goal of our Sprites construction (Section 3) is to reduce this collateral cost.

3 Overview of the Sprites construction

We first give a high-level overview of our construction, focusing on the main
improvements versus Lightning [19]: constant locktimes and incremental with-
drawals/deposits. We assume as a starting point the duplex payment channel

" The intermediary nodes in a path can also be incentivized to participate in the route
if the sender allocates an extra fee that will be shared among them.

construction described earlier in Section 2.3 and presented in related works [2,
15, 18]).

3.1 Constant locktime linked payments.

To support linked payments across multiple payment channels, we use a novel
variation of the standard “hashed timelock contract” technique [1, 10, 16, 19].

We start by defining a simple smart contract, called the PreimageManager
(PM), which simply records assertions of the form “the preimage x of hash
h = H(x) was published on the blockchain before time Tgupiry.” This can be
implemented in Ethereum as a smart contract with two methods, publish and
published (see Figure 5).

Next, we extend the duplex payment channel construction with a conditional
payment feature, which can be linked across a path of channels as shown:

$X $X
Py ... Py
PM[h7TExpiry] PM[haTExpiry]

Py (*)
In the above, the conditional payment of $X from P; to P, can be completed
by a command from P, canceled by a command from P, or in case of dispute,
will complete if and only if the PM contract receives the value prior to Teypiry-
As with the existing linked payments constructions [15, 18], operationally this
means extending the structure of the signed messages (i.e., the off-chain state)
to include a hash h, a deadline Tgpiry, and an amount $X. To execute the linked
payment, each party first opens a conditional payment with the party to their
right, each with the same conditional hash. Note that here the deadline Tg.piry
is also a common value across all channels.

The difference between Sprites and Lightning is how Sprites handles disputes.
Instead of locally enforcing the preimage z be revealed on time, in Sprites we
delegate this to the global PM contract. In short, each Sprites contract defines a
dispute handler that queries PM to check if « was revealed on time, guaranteeing
that all channels (if disputed on-chain) will settle in a consistent way (either all
completed or all canceled). It then suffices to use a single common expiry time
Texpiry, as indicated above (x).

The preimage x is initially known to the recipient; after the final conditional
payment to the recipient is opened, the recipient publishes z, and each party
completes their outgoing payment. Optimistically, (i.e., if no parties fail), the
process finishes after only ¢ + 1 off-chain rounds. Otherwise, in the worst case,
any honest parties that complete their outgoing payment submit x to the PM
contract, guaranteeing that their incoming payment will complete. This proce-
dure ensures that each party’s collateral is locked for a maximum of O(¢ + A)
rounds.

The worst-case delay scenarios for both Lightning and Sprites are illustrated
in Figure 2. In the worst-case, the attacker publishes z at the latest possible time.
However, the use of a global synchronizing gadget, the PM contract, ensures that

all payments along the path are settled consistently. In contrast, Lightning [19]
(and other prior payment channel networks [15, 4, 12, 5]) require the preimage
to be submitted to each payment channel contract separately, leading to longer

locktimes.
8 8 3 8
open(h) open(h) open(h) open(h) | open(h open(h)
{fﬂ“e—mﬁ*jﬁ—)&} publish(x) T)
—mmmmm—e publish(x) T
foretmager®) publlsh(x) T [=== === "Expiry
s ! complete | complete| eomplete
p_uE)I_|s_hix) T, . . T
Jispute | _dispute| | dispute e
A

Fig.2: The worst-case delay scenario, in Lightning (left) and in Sprites (right).
The two parties shown are “petty,” dropping off-chain messages (striken—red)
after the initial open, and sending on-chain transactions (blue) only at the last
minute. Disputes in Lightning may cascade, whereas in Sprite they are handled
simultaneously.

3.2 Supporting incremental deposits and withdrawals.

A Lightning channel must be closed and re-opened in order for either party
to withdraw or deposit currency. Furthermore, all pending conditions must be
settled on-chain and no new off-chain transactions can occur for an on-chain
round (O(A) time) until a new channel is opened on the blockchain. On the other
hand, Sprites permits either party to deposit/withdraw a portion of currency
without interrupting the channe.

To support incremental deposits, we extend the off-chain state to include
local views, deposits(; py, which reflect the total amount of deposits from each
party. If one party proposes a view that is too stale (i.e., more than some bound
O(A) behind), then the other party initiates an on-chain dispute. Of course, the
on-chain dispute handler can read the current on-chain state directly.

To support incremental withdrawals, we implement the following. We extend
the off-chain state with an optional withdrawal value wd;, which can be set
whenever either party wishes to make a withdrawal. The on-chain smart contract
is then extended with an update method that either party can invoke to submit
a signed message with a withdrawal value. Rather than close, the smart contract
verifies the signatures, disburses the withdrawal, and advances the round number
to prevent replay attacks. Further off-chain payments can continue, even while
waiting for the blockchain to confirm the withdrawal.

Incremental withdrawals and deposits are also supported in another Ethereum
payment network called Raiden [15]. Like Sprites, Raiden allows incremental de-
posits to be made at any time by any party without interrupting the channel.
However, unlike Sprites, Raiden does not currently support partial withdrawals
and forces a channel to close before any withdrawal is possible.

4 The State Channel Abstraction

In this section, we present the state channel abstraction, which is the key to our
modular construction of Sprites payment channels. A state channel generalizes
the off-chain payment channel mechanism as described in Section 2.3. The state
channel primitive exposes a simple interface: a consistent replicated state ma-
chine shared between two or more parties. The state machine evolves according
to an arbitrary, application-defined transition function. It proceeds in rounds,
during each of which inputs are accepted from every party. This primitive neatly
abstracts away the on-chain dispute handling behavior and the use of off-chain
signed messages in the optimistic case.

Each time the parties provide input to the state channel, they exchange
signed messages on the newly updated state, along with an increasing round
number. If at any time a party aborts or responds with invalid data, remaining
parties can raise a dispute by submitting the most recent agreed-upon state to
the blockchain, along with inputs for the next round. Once activated, the dispute
handler proceeds in two phases. First, the dispute handler waits for one on-chain
round, during which any party can submit their evidence (i.e., the most recently
signed agreed-upon state). The dispute handler checks the signatures on the
submitted evidence, and ultimately commits the state with the highest round
number. Finally, after committing the previous state, the dispute handler then
allows parties to submit new inputs for the next round.

To summarize, the security guarantees of a state channel are:

(Liveness): Each party is able to provide input to each iteration of the state
machine, and a corrupt party cannot stall.

(Safety): Each party’s local view of the most recent state is finalized and con-
sistent with every other party’s view.

A novel feature of our model is a general way to express side effects between
the state channel and the blockchain. Besides the inputs provided by parties,
the application-specific transition function can also depend on auxiliary input
from an external contract C on the blockchain (which, for example, can collect
currency deposits submitted by either party). The transition function can also
define an auxiliary output for each transition, which is translated to a method
invocation on the external smart contract C' (e.g., triggering a disbursement
of coins). This feature generalizes the handling of withdrawals as transfers of
on-chain currency.

4.1 Instantiating state channels

We focus on explaining the behavior of the dispute handler smart contract,
Contractsiate, defined in Figure 3; a detailed description of the local behavior for
each party is deferred to the appendix (A.4). At a high level, the off-chain state
can be advanced by having parties exchange a signed message of the following
form (for the party P;):

o, = Signp, (r||state,[[out;).

where r is the number of the current round, state, is the result after applying
the state transition function to every party’s inputs, and out, is the resulting
blockchain output (or L if this transition makes no output). In the appendix
we describe a leader-based broadcast protocol used to help parties optimistically
agree on a vector of inputs. We now explain how Contractsiate handles disputes.

Protocol s (U, Pi,...PN)

Contract Contractstate

Initialize bestRound := —1 on contract input dispute(r) at time 7"
Initialize state := () discard if r # bestRound + 1

Initialize flag := 0K discard if flag # 0K

Initialize deadline := L set flag := DISPUTE

Initialize applied := 0 set deadline := T + A

emit EventDispute(r, deadline)
on contract input evidence(r,state’, on contract input input(r,v,;) from

out,{or;}): party Pj:

discard if » < bestRound if this is the first such activation, store vy, ;
verify all signatures on the message on contract input resolve(r) at time 7"
(r||state’||out) discard if r # bestRound + 1
if flag == DISPUTE then discard if flag # PENDING

flag := OK discard if T' < deadline

emit Event0ffchain(bestRound + 1) apply the update function state :=
bestRound :=r U (state, {vy;},aux;n), where the default
state := state’ value is used for any v, ; such that party
invoke C.aux_output(out) P; has not provided input
applied := applied U {r} set flag := OK

emit EventOnchain(r, state)
bestRound := bestRound + 1

Fig. 3: Contract portion of the protocol IIsiate for implementing a general purpose
state channel.

Raising a dispute. Suppose in round r a party fails to receive off-chain signa-
tures from all the other parties for some (state,,out,.) before an O(1) timeout.
They then 1) invoke the evidence method to provide evidence that round (r—1)
has already been agreed upon, and 2) invoke the dispute(r) method, which no-
tifies all the other parties (EventDispute).

Resolving disputes off-chain. Once raised, a dispute for round r will be
resolved in one of two ways. First, another party may invoke the evidence(r’,...)
method to provide evidence that an r or a later round r’ > r has already been
agreed upon off-chain, clearing the dispute (EventOffchain). This occurs, for
example, if a corrupted node attempts to dispute an earlier already-settled round.
Resolving disputes on-chain. Alternatively, if a party P; has no more recent
evidence than (r — 1), they invoke the input method on-chain with their input

10

vp ;. After the deadline T' 4+ A, any party can invoke the resolve method to
apply the update function to the on-chain inputs (EventOnchain).

Avoiding on-chain / off-chain conflicts. We now explain how we avoid a sub-
tle concurrency hazard. Suppose in round r, a party receives the Dispute(r,T)
event, and shortly thereafter (say, T + ¢, for some € > 0), receives a final signa-
ture completing the off-chain evidence for round r. It would be incorrect for the
party to then invoke evidence(r,...), since this invocation may not be confirmed
until after T+ A+ e. If a malicious adversary equivocates, providing input(v% ;)
on-chain but v, ; off-chain, the off-chain evidence would arrive too late. Instead,
upon receiving a Dispute(r) event, if the party does not already have evidence
for round r, it pauses the off-chain routine until the dispute is resolved.

Update function Up,y, Auxiliary smart contract
Upay (state, (input,, inputy), auxn) : Contractpay (FL, Fr)
if state = L, set state := (0, 0,0, 0) Initially, deposits; := 0, deposits, := 0
parse state as (cred., oldarry, credp, oldarrs) on contract input deposit(coins($X)) from
parse auxi, as {deposits; };c 1 r} P;:
for i € {L,R}: deposits, += $X
if input; = L then input, := (,0) aux;n.send(deposits, , deposits;)
parse each input; as (arr;,wd;) on contract input output(auxXoeut):
pay; := 0, newarr; :=) parse auxout as (wdp, wdg)
while arr; # () for ¢ € {L,R} send coins(wd;) to P;

pop first element of arr; into e
if e 4+ pay; < deposits; + cred;:
append e to newarr;
pay; += e
if wd; > deposits; + cred; — pay,: wd; := 0
cred. += payy — pay;, — wdg
credg += pay, — payy — wdg

if wdr, # 0 or wdg # 0: arr; == ()
aUXour == (wdy, wdg) on input pay($X) from Contractp,y,

otherwise auxgys i= | if $X < Contractp,y.deposits, + paid; —pay; —

Local protocol IIp,, for party P;
initialize pay; := 0, wd; := 0, paid; =0
on receiving state (credy, newr, credg, news)
from Istate,

foreach e in new;: set paid, += e
provide (arr;, wd;) as input to Istate

state := (credy, newarry, credg, newarry) wd;:
return (auxoys, state) append $X to arr;
pay, += $X

on input withdraw($X) from Contractpay,
if $X < Contractp,y.deposits, + paid;, —pay; —
wd; then wd; += $X

Fig. 4: Implementation of a duplex payment channel with the IIsise primitive.

4.2 Modeling payment channels with state channels

To demonstrate the use of the It abstraction, we now construct a duplex
payment channel (e.g., as in [2, 18, 15]). In Figure 4, we give a construction that
realizes IIp,, given a state channel protocol Ilsate. Our construction consists of

11

1) an update function, Up,y, which defines the structure of the state and the
inputs provided by the parties, 2) an auxiliary contract Contractp,y, that handles
deposits and withdrawals and 3) local behavior for each party.

The update function Up,y encodes the state with two fields, cred; and deposists;,
instead of a single “balance” field. This encoding is designed to cope with the
fact that blockchain transactions are not synchronized with state updates and
may arrive out of order. So when Contractp,, receives a deposit of coins(z), we
have it accumulate in a monotonically increasing value, deposits;, that can safely
be passed to aux_input. The state then includes cred; as a balance offset, such
that the balance available is deposits,; + cred;.

Since the state channel abstraction handles synchronization between the par-
ties, when reasoning about the security of the payment channel we need only
to consider the update function. Notice that each party’s balance can only be
lowered by a pay input provided by them, and the overall sum of balances, with-
drawals, and deposits is maintained as an invariant.

As a consequence of our generic state channel, each payment requires two
signatures and two rounds of communication, from the sender to the recipient
(assuming the sender is the leader, see A.4) and back again. An optimization
taken in Lightning and in Raiden is to omit the return trip if receipt of the
payment is not necessary. The on-chain dispute resolution requires the same
number of transactions as in Lightning: one transaction establishes the deadline
(dispute, evidence, and input can be invoked simultaneously) and resolve
applies the next update on-chain.

5 Linked Payments from State Channels

In this section we complete the Sprites construction, focusing on how we link
payments together along a path of payment channels from a sender to receiver.
The challenge is to ensure the collateral provided by intermediaries is returned
to them within a bounded time.

Our construction for linked payment chains is modular, relying on multiple
instances of duplex channels Ilp,y. Like IIp,y, the definition for linked payments
consists of an update function Ul jked, an auxiliary contract, and a local protocol
for each party. Figure 5 defines the update function, the auxiliary contract and
the preimage management contract, Contractpm (a contract accessed through
the auxiliary contract). The update function Ulinked is an outer layer around the
Upay function (Figure 4), but extends state with a status flag to include support
for conditional payments.

To establish a path of linked payments off-chain, the initial sender P; first
creates a secret z, shares it with the recipient P, and creates an outgoing con-
ditional payment to P, using h = H(z). Each subsequent party P; in turn, upon
receiving the incoming conditional payment, establishes an outgoing conditional
payment to P; ;1. Once the recipient P, receives the final conditional payment,
it multicasts = to every other party.

12

When a conditional payment is in-flight, all parties on the path must wait
for the preimage to be revealed to them by the receiver, P, before T¢,; if it
arrives on time P; completes the outgoing payment off-chain. If the outgoing
payment doesn’t complete before Tcit, but P; has received the preimage, then
P; sends it to the preimage manager, Contractpm. By TExpiry, if the preimage
was published the payment is completed; otherwise, it is canceled (by all P,
because publishing the preimage is a global event). Finally, if after Tpispute the
payment has failed to complete or cancel, the party raises a dispute and forces
the payment be completed or canceled on-chain.

Security Analysis of Linked Payments. Our model begins with parties P; through
P, that have established ¢—1 payment channels, such that IT é,ay denotes the pay-
ment channel established between parties P; and P;41. Given the state channel
abstraction, it is easy to check that the desired properties described earlier (Sec-
tion 2.3) are exhibited by this protocol:

(Liveness) If all parties P; through P, are honest, and if sufficient balance is
available in each payment channel, then the chained payment completes success-
tully after O(¢) rounds. More specifically, for each channel ITp,y, the outgoing
balance H,’;ay.cred R is increased by $x and each incoming balance Héay.cred L
is decreased by $x. If the sender and receiver, P; and P, are both honest the
payment either completes or cancels after O(¢ + A) rounds.

(No counterparty risk) Even if some parties are corrupt, no honest party
on the path should lose any money. In the dispute case, the preimage manager,
Contractppy, acts like a global condition. If the preimage manager receives = be-
fore time TEpiry, then every conditional payment that is disputed will complete.
Otherwise they are canceled. Therefore, for an honest party that receives x be-
fore Teypiry — 4, it is safe to complete their outgoing payment. In the worst case
then can use the preimage manager and claim their incoming payment.

Implementation and performance analysis. We created a proof-of-concept imple-
mentation using Solidity and pyethereum available online®. In the typical case,
the off-chain communication pattern in Sprites is similar to that of Lightning. We
need one round of communication between each adjacent pair of parties to open
each conditional payment, and finally one round to complete all the payments.

In the worst-case scenario, each channel that must be resolved via the dispute
handler requires one on-chain transaction to initiate the dispute and send the
preimage to Contractpy, and, later, a transaction to complete the dispute and
withdraw the balance (Section4.1l). Based on our implementation, the dispute
process costs up to 137294 gas per disputed channel, or =~ $0.20 in November
2018.For comparison, in the Lightning Network the typical cost of closing a
channel is 0.00002025 BTC (=~ $0.072)°.

8 https://github.com/amiller/sprites
9 Representative Lightning transaction https://www.blockchain.com/btc/tx/
c9e6a9200607871e18fcfdd54dcb0dal7ac8eca005101b82c8a807def9885d3e

13

Protocol Ijined($X,T, P1,...Pp)

Let Texpiry :=T + 60 + A. Auxiliary contract Contractiined
Let T := TExpiry - A

Let Toipute = Tesiy + A + 3. Copy the auxiliary contract from Figure 5, re-

naming the output handler to output”™
on contract input output(auxj,):
parse auXou: as (alXout, aux-)
if aux,; parses as (dispute, h,$X) then

Update Function
ULinked,SBX (state, iﬂ]_,, iI’]R7 auxm)

if state = L, set state := (init, L, (0,0)) if PM.published(TExpiry, i), then
parse state as (flag, h, (credr, credr)) deposits, += $X
parse in; as (cmd;,int¥), for i € {L,R} else
if cmd., = open(h’) and flag = init, then deposits, += $X
set cred. —= $X, flag := inflight, and auxi, := (deposits , depositsy)
h:=h invoke output™ (auxt?)

else if cmdy = complete and flag = inflight,
set credy += $X, and flag := complete Global Contract Contractpm
else if cmdg = cancel and flag = inflight,
set cred;, += $X and flag := cancel
else if cmdy = dispute or cmd;, = dispute,

initially timestamp]] is an empty mapping
on contract input publish(z) at time 7"
if H(x) ¢ timestamp: then set

and flag = inflight, and current time > |
T tghen Ci timestamp([H(z)] :=T
Expiry . constant function published(h,T"):
auxoyt := (dispute,h,$X) and flag = . :
. return True if h € timestamp and
dispute timestamp[h] < T’
let state”™ := (credy, credy) It F ’?L _th .
(auxopj{,statepay) = Upay(statepay,inLPay,inRPay, return raise otherwise
aux;n)

set state := (flag, h, state™)
return (state, (auxout, auxoy))

Fig. 5: Smart contract for protocol I jnkeq that implements linked payments with
the Ilstate primitive. Parts of Upjnked,sx that are delegated to the underlying Up,y
are colored blue to help readability. See Appendix (Figure 6) for local behavior.

6 Related Works

The first off-chain protocols were Bitcoin payment channels, due to Spilman [23].
These channels, however, only allow for payments to be made in one direction
— from Alice to Bob. Subsequent channel constructions by Decker and Wat-
tenhofer [4] as well as Poon and Dryja [19] supported “duplex” payments back-
and-forth from either part, however, they require an every growing list of keys
to defend against malicious behavior.

Improvements to Payment Channels. Gervais et al. [8] proposed a protocol for
rebalancing payment channels entirely off-chain. Dziembowski et al. [5] developed
a mechanism for virtual payment channel overlays, enabling two parties with
a path to establish a rapid payment channel between them. A limitation of

14

payment channels is that their security requires honest parties to be online at all
times. McCorry et al. [13] discuss how channel participants can hire third parties
to arbitrate channel disputes (see Section 2.3). These ideas are all complementary
to our work and we think could be combined.

Routing in payment channels. While in our presentation we assume the payment
path is given, in reality finding a route is a challenging problem. Sprites can be
used with proposed routing protocols [20, 21, 22] which are complimentary. Al-
though the Tg«pire deadline is defined in terms of the path length, ¢ (see Fig. 5),
to avoid revealing path length for privacy, we can pad the deadline to a conserva-
tive upper bound. Given that measurements of the Lightning Network [6] today
show a diameter of 8, we suppose an upper bound of ¢ = 16 is conservative. The
expiration time is dominated by the block time A (1 day, if we follow Lightning
and Raiden).

Malavolta et al. [12] identified a potential for deadlock when multiple con-
current payments need to use the same link. They propose a solution, Rayo, that
guarantees non-blocking progress. Rayo assumes the existence of global identi-
fiers for payments and a global payment ordering. We conjecture such a global
identifier can be implemented on top of Sprites payment channels; for example,
it can be derived from the channel address and hash of the proposed state.

Credit networks. Malavolta et al. [14] developed a protocol for privacy-preserving
credit networks. The main difference between a payment channel and a credit
line is that payment channel balances are fully backed by on-chain deposits,
and can be settled without any counterparty risk, where lines of credit seem
inherently to expose counterparty risk.

7 Conclusion

Cryptocurrencies face several ongoing challenges: they must be scaled up be-
yond several transactions per second to accommodate increasing user demand
and compete with centralized alternatives. Off-chain payment channel networks
are currently a leading proposal to scale blockchain-based cryptocurrencies. How-
ever, the current state of the art payment network scaling solutions, like Light-
ning [19], require collateral to be locked up for a maximum period that scales
linearly with the number of hops, O(¢A). In this paper, we introduced a con-
struction of payment channels and networks, Sprites, that drastically improves
upon the current worst-case locktime—reducing it to a constant, O(¢ + A). We
also introduce a modular construction for payment channels, building on top of a
generalized state channel primitive. State channels abstract away all blockchain
interaction, allow arbitrary off-chain protocols (e.g. channels and linked pay-
ments) to be more easily defined and analyzed.

Our constant locktime construction relies on a global contract mechanism,
which is easily expressed in Ethereum, although it cannot (we conjecture) be em-
ulated in Bitcoin without modification to its scripting system. We therefore pose
the following question for future work: what minimal modifications to Bitcoin
script would enable constant locktimes?

15

References

1.

10.

11.

12.

13.

14.
15.
16.
17.
18.

19.

20.

21.

Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols.
In Crypto (2), pages 421-439, 2014.

Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. Instantaneous decentralized
poker. Asiacrypt (to appear) https://arxiv.org/abs/1701.06726, 2017.

Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. OSDI,
1999.

Christian Decker and Roger Wattenhofer. A fast and scalable payment network
with bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing
Systems, pages 3—18. Springer, 2015.

Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun:
Virtual payment channels over cryptographic currencies.

hashxp. https://hashxp.org/lightning. https://hashxp.org/lightning, Septem-
ber 2018.

Emin Gun Sirer Ittay Eyal, Adem Efe Gencer and Robbert van Renesse. Bitcoin-
NG: A scalable blockchain protocol. In NSDI, 2016.

Rami Khalil and Arthur Gervais. Revive: Rebalancing off-blockchain payment
networks. ACM CCS (to appear), 2017. http://eprint.iacr.org/2017/823.
Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. Enhancing bitcoin security and performance with strong
consistency via collective signing. In USENIX Security Symposium, 2016.

Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize correct
computations. In C'CS, 2014.

Loi Luu, Viswesh Narayanan, Kunal Baweja, Chaodong Zheng, Seth Gilbert, and
Prateek Saxena. SCP: A computationally-scalable byzantine consensus protocol
for blockchains. In CCS, 2016.

Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivat-
san Ravi. Concurrency and privacy with payment-channel networks, 2017.
Patrick McCorry, Surya Bakshi, Iddo Bentov, Sarah Meiklejohn, and An-
drew Miller. Pisa: Arbitration outsourcing for state channels. https://
www.cs.cornell.edu/~iddo/pisa.pdf, 2018.

Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Silentwhispers: Enforcing
security and privacy in decentralized credit networks. 2016.

Raiden Network. http://raiden.network/, 2015.

Tier Nolan. Alt chains and atomic transfers. bitcointalk.org, May 2013.

Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the per-
missionless model. Cryptology ePrint Archive, Report 2016/917, 2016. http:
//eprint.iacr.org/2016/917.

Dennis Peterson. Sparky: A lightning network in two pages of solidity. http:
//www.blunderingcode.com/a-1lightning-network-in-two-pages-of-solidity.
J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain instant
payments. 2016. https://lightning.network/lightning-network-paper.pdf.
Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy, and
Olaoluwa Osuntokun. Flare: An approach to routing in lightning net-
work. Whitepaper. http://bitfury.com/content/5-white-papers-research/
whitepaper_flare_an_approach_to_routing_in_lightning network_7_7_2016.pdf,
2016.

Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Settling
payments fast and private: Efficient decentralized routing for path-based transac-
tions. NDSS, 2018.

16

22. Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Mohammad Al-
izadeh, Giulia Fanti, and Pramod Viswanath. Routing cryptocurrency with the
spider network. arXiv preprint arXiv:1809.05088, 2018.

23. Jeremy Spilman. Anti dos for tx replacement. https://
lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html,
2013.

A Appendix

A.1 Acknowledgements

This work is funded in part by NSF grants CNS-1801321 and CNS-1617676 and
a gift from DTR Foundation.

A.2 Further Discussion

Supporting fees Participants who act as intermediaries in a payment path con-
tribute their resources to provide a useful service to the sender and recipient.
The intermediaries’ collateral is tied up for the duration of the payment, but
the sender and recipient would not be able to complete their payment otherwise.
Therefore the sender may provide a fee along with the payment, which can be
claimed by each intermediary upon completion of the payment. To achieve this,
each conditional payment along the path should include a slightly less amount
than the last; the difference can be pocketed by the intermediary upon com-
pletion. The following example provides a $1 fee to each intermediary, P, and
Ps.

$X+2 $X+1 $X
P, Ps
PM [haTExpiry] PM[haTExpiry] PM[haTExpiry]

Py

A.3 Details of the Linked Payments Construction
In the body of the paper (Section 4) we presented the update function and

auxiliary smart contracts (Figure 5) for the state channel protocol ITjjnked- In
Figure 6 we define the local behavior of the parties.

A.4 Local Protocol for the State Channel Construction

In the body of the paper (Figure 3) we presented the smart contract portion
of the state channel protocol. In Figure 7 we define the local behavior of the
parties.

17

Protocol iined($X,T, P1,...Pp)

Local protocol for sender, P;

on input pay from the environment:

& {0,1}*, and h < H(z)

pass (open, h, $X, Texpiry) as input to I

send (preimage,x) to P

if (preimage,) is received from P» before Tepiry, then pass complete to ey
at time Teuiry + 4, if PM.published(Texpiry, h), then

pass input complete to IS, .
at time Thispute, then pass input dispute to ey

Local protocol for party P;, where 2 <i</{—1

on receiving state (inflight, h,_) from I1¢ L
store h
provide input (open, h, $X, Texpiry) t0 e are
on receiving state (cancel, _,) from ITé .,
provide input (cancel) to IT¢ .
on receiving (preimage, z) from P, before time T, where H(z) = h,
pass complete to ITE e
at time Tt, if state (complete, _,) has not been received from ITé,,., then
pass contract input PM.publish(x)
at time TExpiry + A,
if PM.published(Texpiry, h), pass complete to IT,.
otherwise, pass cancel to Hét_atle

at time Tpispute, pass input dispute to Hgt_atle and IT¢ e

Local protocol for recipient, P,

on receiving (preimage,x) from P, store z and h := H(x)
on receiving state (inflight, h,) from IT5_ .},
multicast (preimage,x) to each party
at time Tcyt, if state (complete, _, -) has not been received from II%, ..o, then
pass contract input PM.publish(z)

at time Tpispute, Pass input dispute to Hﬁ;tle

Fig. 6: Construction for ITjjed with the ITsiate primitive. (Local portion only.
See Figure 5 for the smart contract portion.) Portions of the update function
Ulinked,$x that are delegated to the underlying Up,, update function (Figure 5)
are colored blue to help readability.

18

Reaching agreement off-chain The main role of the local portion of the protocol
is to reach agreement on which inputs to process next. To facilitate this we
have one party, P;, act as the leader. The leader receives inputs from each
party, batches them, and then requests signatures from each party on the entire
batch. After receiving all such signatures, the leader sends a COMMIT message
containing the signatures to each party. This resembles the “fast-path” case of
a fault tolerant consensus protocol [3]; However, in our setting, there is no need
for a view-change procedure to guarantee liveness when the leader fails; instead
the fall-back option is to use the on-chain smart contract.

19

Protocol s (U, Pi,...PN)

Local protocol for the leader, P

Proceed in consecutive virtual rounds numbered 7:
Wait to receive messages {INPUT (v, ;))}; from each party.
Let in, be the current state of aux;, field in the the contract.
Multicast BATCH(r, in,, {vr;};) to each party.
Wait to receive messages {(SIGN, o, ;)}; from each party.
Multicast COMMIT(r, {0 ;},) to each party.

Local protocol for each party P; (including the leader, L)
flag := OK € {OK, PENDING}; lastRound := —1; lastCommit := L

Fast Path (while flag == 0K): Proceed in rounds r, with r := 0

Wait input v, ; from environment. Send INPUT(v,;) to L.
Wait BATCH(r, in;., {v;.;};) from L. Discard if v;.; # vr; OR in}. not a recent auxin.
(state, out,) := U(state, {vr,; };,in}.)
Send (SIGN,o,;) to Pi, or; := sign,(r||out,| state)
Wait COMMIT(r, {0 ;};) from L. Discard if !(verify, (o ;||out, ||state)) for each j.
lastCommit := (state, out,, {o,;};); lastRound :=r
If out, # L, invoke evidence(r, lastCommit).
If COMMIT not received within one time-step, then:
if lastCommit # L, invoke evidence(r — 1, lastCommit) and dispute(r)

Handling on-chain events

On EventDispute(r,_), if » < lastRound, invoke evidence(lastRound, lastCommit).
Else if r = lastRound + 1, then:
Set flag := PENDING, buffer inputs of “waiting” until returning to fast path.
Send input(r,v,;) to the contract.
Wait to receive Event0ffchain(r) or EventOnchain(r) from the contract. Attempt
to invoke resolve(r) if A elapses, then continue waiting. In either case:
state := state’
flag := OK
Enter the fast path with r :=r + 1

Fig. 7: Construction of a general purpose state channel parameterized by tran-
sition function U. (Local portion only, for the smart contract see Figure 3.)

20

