
Slimmer: Weight Loss Secrets for Docker Registries

Nannan Zhao1, Vasily Tarasov2, Ali Anwar1, Lukas Rupprecht2, Dimitrios Skourtis2,
Amit S. Warke2, Mohamed Mohamed2, and Ali R. Butt1

1Virginia Tech, 2IBM Research—Almaden

Abstract—Due to their tight isolation, low overhead, and
efficient packaging of the execution environment, Docker con-
tainers have become a prominent solution for deploying modern
applications. Docker registries store a large amount of images
and with the increasing popularity of Docker, they continue to
grow. For example, Docker Hub—a popular public registry—
stores more than half a million public images. In this paper,
we analyze over 167 TB of uncompressed Docker images and
evaluate the potential of file-level deduplication in the registry.
Our analysis reveals that only 3% of the files in images
are unique and Docker’s existing layer sharing mechanism
is not sufficient to eliminate this profound redundancy. We
then present the design of Slimmer—a Docker registry with
file deduplication support—and conduct a simulation-based
analysis of its performance implications.

Keywords-Docker; Deduplication; Docker registry; Dis-
tributed storage systems;

I. INTRODUCTION

Containers have recently gained significant traction due to
their low overhead, fast deployment, and the rise of container
management frameworks such as Docker [1]. Polls suggest
that 87% of enterprises are at various stages of adopting
containers, and they are expected to constitute a $2.7 billion
market by 2020 [2].

Docker combines process containerization with efficient
and effective packaging of complete runtime environments
in so called images. Images are composed of shareable and
content addressable layers. A layer is a set of files, which
are compressed in a single archive. Both images and layers
are stored in a Docker registry and accessed by clients as
needed. Since layers are uniquely identified by a collision-
resistant hash of their content, no duplicate layers are stored
in the registry.

Registries are growing rapidly. For example, Docker Hub,
the most widely used registry, stores more than 500,000
public image repositories comprising over 2 million layers
and it keeps growing. This massive image dataset presents
challenges to the registry storage infrastructure and so far
has remained largely unexplored.

In this paper, we perform the first large-scale redundancy
analysis of the images and layers stored in Docker Hub.
We downloaded 47 TB (167 TB uncompressed) worth of
Docker Hub images, which in total contain over 5 billion
files. Surprisingly, we found that only around 3% of the
files are unique while others are redundant copies. This
suggests that current layer sharing cannot efficiently remove

data duplicates. Container images are similar with virtual
machine images in the sense that they all serve as OS
snapshots. Difference users might choose similar libraries
and run similar applications, which incurs a considerable
redundancy across different container images.

Given our findings, we propose Slimmer, a file-level
content addressable storage model for the Docker registry.
Slimmer unpacks layer tarballs into individual files and
deduplicates them. When a Docker client requests a layer,
Slimmer dynamically reconstructs the layer from its con-
stituent files. To assess the feasibility of our design, we
conduct a simulation-based evaluation of Slimmer.

II. DEDUPLICATION ANALYSIS

In this section, we investigate the potential for data
reduction in the Docker registry by estimating the efficacy
of layer sharing, compression, and the proposed file-level
deduplication.

A. Methodology

To analyze the benefits of different data reduction tech-
niques for the Docker registry, we downloaded a large
number of Docker images from Docker Hub registry. Docker
Hub does not provide an API to retrieve all repository names.
Hence, we crawled the registry’s website to obtain a list of
all available repositories, and then downloaded the latest
version of an image and its corresponding layers for each
repository. We downloaded 355,319 images, resulting in
1,792,609 compressed layers and 5,278,465,130 files, with
a total compressed dataset size of 47 TB.

B. Data reduction analysis

Layer sharing: Docker supports the sharing of layers
among different images. To analyze the effectiveness of
this approach, we compute how many times each layer is
referenced by images. Figure 1 shows that around 90% of
layers are referenced by a single image, an additional 5%
are referenced by 2 images, and less than 1% of the layers
are shared by more than 25 images. From the above data
we can estimate that without layer sharing, the Docker Hub
dataset would grow from 47 TB to 85 TB, implying a 1.8×
deduplication ratio provided by layer sharing.

Figure 5. Off-line file-level deduplication run time.

B. Performance evaluation

Simulation: To analyze the impact of file-level dedupli-
cation on performance, we conduct a preliminary simulation-
based study of Slimmer. Our simulation approximates sev-
eral of Slimmer’s steps as described in Section III-A. First,
a layer from our dataset is copied to a RAM disk. The
layer is then decompressed, unpacked, and the fingerprints
of all files are computed using the MD5 hash function. The
simulation searches the fingerprint index for duplicates, and,
if the file has not been stored previously, it records the file’s
fingerprint in the index. At this point our simulation does
not include the latency of storing unique files. To simulate
the layer reconstruction during a pull request, we archive
and compress the corresponding files.

The simulator is implemented in 600 lines of Python
code and our setup is a one-node Docker registry on a
machine with 32 cores and 64 GB of RAM. To speed up
the experiments and fit the required data in RAM we use
50% of all layers and exclude the ones larger than 50 MB.
We process 60 layers in parallel using 60 threads. The entire
simulation took 3.5 days to finish.

Figure 5 shows the CDF for each sub-operation of
Slimmer. Unpacking, Decompression, Digest Calculation,
and Searching are part of the deduplication process and
together make up the Dedup time. Searching, Archiving, and
Compression simulate the processing for a pull request and
form the Pulling time.

Push: Slimmer does not directly impact the latency
of push requests because deduplication is performed asyn-
chronously. The appropriate performance metric for push
is the time it takes to deduplicate a single layer. Looking
at the breakdown of the deduplication time in Figure 5, we
make several observations.

First, the searching time is the smallest among all op-
erations with 90% of the searches completing in less than
4 ms and a median of 3.9 ms. Second, the calculation of
digests spans a wide range from 5µs to almost 125 s. This
is because the time mainly depends on the layer size, i.e.
the fewer and smaller files a layer contains, the faster it is
to compute all digests for the layer. Typically, smaller layers
contain a smaller number of smaller files, which takes much
less time to calculate their digests. While if the layer is
bigger, the digest calculation overhead will be higher. 90%
of digest calculation times are less than 27 s while 50% are

less than 0.05 s. The diversity in the timing is caused by a
high variety of layer sizes both in terms of storage space
and file counts. Third, the run time for decompression and
unpacking follows an identical distribution for around 60%
of the layers and is less than 150 ms. However, after that,
the times diverge and decompression times increase faster
compared to unpacking times. 90% of decompressions take
less than 950 ms while 90% of packing time is less than
350ms.

Overall, we see that 90% of file-level deduplication time
is less than 35 s per layer, while the average processing time
for a single layer is 13.5 s. This means that our single-node
deployment can process about 4.4 layers/s on average (using
60 threads).

From Figure 5 we can see that 55% of the layers have
close compression and archiving times ranging from from
40 ms to 150 ms and both operations contribute equally to
pulling latency. After that, the times diverge and compres-
sion times increase faster with an 90th percentile of 8 s.
This is because compression times increase for larger layers
and follow the distribution of layer sizes (see Figure 2).
Compression time makes up the major portion of the pull
latency and is a bottleneck. Overall, the average pull time is
2.3 s.

IV. CONCLUSION

Data deduplication has proven itself as a highly effective
technique for eliminating data redundancy. In spite of being
successfully applied to numerous real datasets, deduplication
bypassed the promising area of Docker images. In this paper,
we propose to fix this striking omission. We analyzed over
1.7 million real-world Docker image layers and identified
that file-level deduplication can eliminate 96.8% of the files
resulting in a capacity-wise deduplication ratio of 6.9×. We
proceeded with a simulation-based evaluation of the impact
of deduplication on the Docker registry performance. We
found that restoring large layers from registry can slow
down pull performance due to compression overhead. To
speed up Slimmer, we suggested several optimizations. Our
findings justify and lay way for integrating deduplication in
the Docker registry.

Future work: In the future, we plan to investigate the
effectiveness of sub-file deduplication for Docker images
and to extend our analysis to more image tags rather than just
the latest tag. We also plan to proceed with a complete
implementation of Slimmer.

REFERENCES

[1] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors:
Current Technology and Future Trends,” Computer, vol. 38,
no. 5, 2005.

[2] 451 Research, “Application Containers Will Be a $2.7Bn
Market by 2020,” https://tinyurl.com/ya358jbn.

https://tinyurl.com/ya358jbn

	Introduction
	Deduplication analysis
	Methodology
	Data reduction analysis

	Registry with deduplication support
	Design
	Performance evaluation

	Conclusion
	References

