
Bolt: Towards a Scalable Docker Registry via Hyperconvergence

Michael Littley1, Ali Anwar2, Hannan Fayyaz3, Zeshan Fayyaz4,
Vasily Tarasov2, Lukas Rupprecht,2, Dimitrios Skourtis2, Mohamed Mohamed2,

Heiko Ludwig2, Yue Cheng5, and Ali R. Butt1

1Virginia Tech, 2IBM Research–Almaden, 3York University, 4Ryerson University, 5George Mason University

Abstract—Docker container images are typically stored in a
centralized registry to allow easy sharing of images. However,
with the growing popularity of containerized software, the
number of images that a registry needs to store and the
rate of requests it needs to serve are increasing rapidly.
Current registry design requires hosting registry services across
multiple loosely connected servers with different roles such as
load balancers, proxies, registry servers, and object storage
servers. Due to the various individual components, registries
are hard to scale and benefits from optimizations such as
caching are limited.

In this paper we propose, implement, and evaluate BOLT—a
new hyperconverged design for container registries. In BOLT,
all registry servers are part of a tightly connected cluster and
play the same consolidated role: each registry server caches
images in its memory, stores images in its local storage, and
provides computational resources to process client requests.
The design employs a custom consistent hashing function to
take advantage of the layered structure and addressing of im-
ages and to load balance requests across different servers. Our
evaluation using real production workloads shows that BOLT
outperforms the conventional registry design significantly and
improves latency by an order of magnitude and throughput by
up to 5×. Compared to state-of-the-art, BOLT can utilize cache
space more efficiently and serve up to 35% more requests from
its cache. Furthermore, BOLT scales linearly and recovers from
failure recovery without significant performance degradation.

I. INTRODUCTION

Container management frameworks such as Docker [10]
and CoreOS Container Linux [4] have given rise to a rapid
adoption of containers [30], [24]. Compared to virtual ma-
chines, containers do not require their own operating system
but rather share the underlying kernel. This allows fast
software deployment and low performance overhead [21].
Besides their performance benefits, the lightweight nature of
containers has also enabled microservice architectures as a
new model for developing and distributing software [25]. In
this architecture, individual software components, focusing
on small functionalities, are packaged in container images
that include the software and all its dependencies. These
microservices can then be deployed separately and combined
to construct larger, more complex architectures [29].

Container images are kept in an online store called reg-
istry. A registry is a storage and content delivery system,
holding named Docker images split into one or more layers

Load
balancer

Registry

Registry

Registry

Object store
proxy

Object
server

Object
server

Object
server...

Client
requests

Figure 1: Example for a production level registry.

and available in different tagged versions. Some popular
Docker registries are Docker Hub [6], Quay.ioi [9], or IBM
Cloud Container Registry [7]. As the registry is a central
access point for users to publish and retrieve images, it
becomes a critical component in the lifecycle of a con-
tainer [22], [26]. Recent work has shown that pulling images
from a registry of such scale can account for as much as 76%
of the container start time [22].

The current Docker registry software server is a single-
node application. To serve many requests concurrently,
organizations typically deploy a load balancer in front of
several independent registry instances. All the instances
store and retrieve images from a shared backend object
store. The object store often requires its own load balancer
and proxy servers to scale. Figure 1 illustrates a typical
example of a production registry deployment. We identify
three main problems with the existing registry design: 1) low
cache efficiency, 2) high complexity of scaling, and 3) high
latencies caused by request hopping.

Cache efficiency. In its current design, the registry only
caches relevant metadata in memory but does not cache
the corresponding image data. This can lead to the registry
becoming a bottleneck when large volumes of hot images
are retrieved. Recent work proposed a registry-level image
cache [15]. However, registries in the existing design are
scaled using a load balancer and hence are not aware of
each other. As a result, container images may be cached
redundantly by different registry instances. To demonstrate
this drawback we conducted an experiment using production
level traces from the IBM Cloud container registry and the



0
20
40
60
80

100

0 500 1000 1500

%
 w

as
te

d 
m

em
or

y

Hours

Figure 2: Percentage of registry cache used by redundant copies
of image layers as time goes.

trace replayer from [15]. Figure 2 shows that at any given
time around 50% of the registry cache is wasted due to
caching the same layers across different registry nodes.

Complexity of scaling. Due to its complex architecture,
any component in the registry is prone to become a bottle-
neck depending on the workload. We illustrate this problem
by using the trace replayer to send requests to a simple setup
of two registry servers behind an NGINX load balancer. In
two experiments the trace replayer generates two distinct
workloads: one that requests 1 MB sized layers and one
that requests 1 KB sized layers. The experiment results are
illustrated in Figure 3. In the first workload we observe
that the network on the NGINX load balances becomes the
bottleneck as it limits the achieved throughput. In the second
workload, the registry server becomes CPU-bound because
small layer sizes makes the workload compute intensive.
These results show that scaling an existing registry is not
as easy as adding resources and requires a careful and
cumbersome analysis.

High latency. Finally, current registry deployments re-
quire multiple hops to process every request. For example,
in Figure 1, every request needs to traverse up to four
distributed registry components. This causes Docker clients
to experience unacceptably high latencies. We demonstrate
this issue in detail in section V-A.

In this work, we present BOLT, a distributed Docker
container registry. BOLT aims at providing a scalable reg-
istry design with a native image cache for better request
performance. Specifically, BOLT follows a hyperconverged
archictecture [18] to overcome the problems of the ex-
isting registry design. BOLT moves storage to individual
registry nodes and eliminates the need for a separate storage
backend. Additionally, BOLT improves registry scalability
storage-aware by employing a distributed design based
on consistent hashing and Zookeeper [11]. Finally, BOLT
pushes load-balancing logic into clients and thereby removes
the additional load balancing layers. Clients directly send
requests to registry nodes to retrieve images, which reduces
latency and simplifies the overall deployment.

In summary, in this paper, we make the following contri-
butions:

1) We demonstrate the shortcomings and limitations of the
existing Docker registry design using production-level

0%
20%
40%
60%
80%

100%

50 100 200 400

U
sa
ge

Clients

Nginx-CPU Nginx-NW Registry-CPU Registry-NW

(a) 1 MB requests.

0%
20%
40%
60%
80%

100%

200 400 600

U
sa
ge

Clients

Nginx-CPU Registry-CPU

(b) 1 KB requests.

Figure 3: Result experiment from sending requests to a setup
with 1 NGINX load balancer and 2 registry servers.

traces from the IBM Cloud container registry.
2) We propose BOLT, a new hyperconverged design for

container registries, which overcomes the problems of the
existing registry design.

3) We implement a prototype of BOLT, based on the current
Docker registry, which supports caching natively, allowing
a higher cache space utilization, and scales linearly.
We evaluate BOLT on an 11-node testbed and show that

it outperforms the conventional design by improving latency
by an order of magnitude, and throughput by up to 5×.

II. BACKGROUND

The Docker container management system is an open
source software consisting of a Docker engine running on
a client machine and a remote registry for storing and
distributing Docker container images. The components of the
Docker system are illustrated in Figure 4. In the following,
we describe different Docker components in more detail.

A. Docker engine

The Docker engine consists of a daemon process and
a command line interface (CLI) client that interacts with
the daemon via a REST API. The daemon is responsible
for creating and managing containers as well as fetching
container images from the Docker registry. Additionally, the
daemon sets up network and file system functionality for its
containers.

B. Docker containers

A container image consists of the executables, dependent
libraries, and configuration files required to run the applica-

2



Client machine 

User 
commands/ 

scripts 
Client CLI

Docker
daemon Registry

REST over 
UNIX socket REST over 

TCP

Figure 4: Relationship between different parts of Docker
Engine.

tion in an isolated manner. The files are organized into read-
only file systems that are compressed into tarballs called lay-
ers. These layers are fetched from the Docker registry using
SHA256 based, content-addressable storage. The hashes of
the layers, along with other container metadata, are stored
in a JSON file called the manifest.

Starting a container consists of several steps. For example,
if the user executes the docker run ubuntu command
using the CLI, the request is forwarded to the daemon
running on the local machine. The daemon fetches the
manifest file and layers of the Ubuntu container image from
the registry, if they are not available locally. The Docker
daemon then creates a container from the image layers
by setting the proper Linux namespaces [8] and control
groups [28] configurations. Next, a writable file system is
allocated for the container and a network interface defined
for it. Finally, the daemon starts the container.

C. Docker registry

The Docker registry is a stateless, centralized service
that provides image storage and distribution. Users may
store multiple versions of their images in repositories by
denoting each version with a special tag. For storage, the
registry supports multiple backends such as in-memory,
local file system, Amazon S3, Openstack Swift, Google
Cloud Storage, etc. The in-memory driver is reserved for
small registry test bed while the local file system is meant
for single node registry deployments. All other drivers use
backend objects stores for scalability.

The daemon connects to the registry via a RESTful
interface. The main requests served by the Docker registry
are related to image push and pull operations:
Pull requests. To pull an image, first, the manifest is
requested using a GET request. Next, the daemon issues a
GET request for each layer referred to in the manifest that
does not exist locally. Once a layer is fetched, a hash of its
contents is compared to its digest to ensure layer integrity.
The image pull is complete once all the layers are fetched.
Push requests. The sequence of requests required to push
an image happens in the reverse order as that of the pull
request. The daemon first issues a HEAD request to check
for the layer’s existence in the registry. If the layer is not

Registry
0x00

Registry
0x80

Registry
0xA0

Registry
0xC0

Registry
0xE0

Registry
0x20

Registry
0x40

Registry
0x60

Zookeeper

Client
Push Layer 0x30...

Client
PULL Layer 0xB0...

Client
GET registries

Figure 5: BOLT hyperconverged design.

found, the daemon will upload it to the registry using a POST
request. When a layer is received, the registry compares the
hash of the layers content with the digest provided by the
client. If the hashes match, the upload is successful and the
registry moves the layer into content addressable storage.
Once the upload process finishes for all layers, the manifest
file is uploaded using a PUT request.

III. THE BOLT REGISTRY DESIGN

In this section, we describe BOLT’s design. After dis-
cussing its overall architecture, we explain main system
components and their interactions.

A. BOLT Overview

BOLT follows a hyperconverged archictecture [18] to over-
come the problems of the existing registry design. Therefore,
BOLT incorporates three main design decisions:

First, it moves storage to individual registry nodes and
eliminates the need for a separate storage backend. This
simplifies the scaling process for administrators: to increase
registry performance they just need to add additional nodes
that provide both extra storage and compute resources.

Second, it uses a distributed design based on consistent
hashing and Zookeeper [11]. This makes registry nodes
storage-aware and allows for simpler and more efficient
caching strategies as now each registry node is responsible
for a dedicated subset of image data.

Third, it pushes load-balancing logic into clients and
thereby, removes the additional load balancing layer. Clients
directly send requests to registry nodes to retrieve images,
which reduces latency and simplifies the overall deployment.

Figure 5 illustrates the design. The individual registry
nodes form a consistent hashing ring and use Zookeeper to
identify each other. To become aware of all nodes, clients
can request a list of all registries from any registry to form a

3



copy of the ring. Clients look up layer digests in their ring to
issue push and pull requests to the responsible nodes. Clients
must push layers to the master node of the layer, defined as
the node immediately greater than the layer digest. On a
push, the master node forwards the layer to a set of other
registries (slave nodes) for replication. Clients can direct pull
requests randomly to the master or any of the slave nodes.

B. Storage-aware Registry Nodes

BOLT eliminates the reliance on a backend object store
completely by allowing registry nodes to persistently store
the layers. As shown in [15], the entire three months of
IBM workload can be held in less than 11 TB of SSD so
this feasible. However, by eliminating the backend object
store, its duties such as providing reliability and consistency
now have to be performed by the registry itself.

To achieve this, BOLT uses a master/slave topology. Each
layer has a master node, which is responsible for storing
the layer. The master node is decided by proximity in the
consistent hashing ring. The slave nodes are the next N
nodes in the ring, where N is usually set to 2.

Pushing a layer to the registry works as follows: During a
layer push, the data is first stored in a temporary file. Once
the layer upload is complete, the registry verifies the hash
of the file with the digest provided by the PUT request. If
there are no errors, the registry moves the temporary file
into a directory named by layer’s digest, at which point the
layer is ready to be served. To facilitate replication in BOLT,
while the file is being verified, the registry checks whether
it is a master or slave for the layer. If the registry is the
master, it forwards the layer to the slave registries to create
replicas. If the registry is a slave it proceeds as if it were a
standard registry. If the registry determines that it is neither
the master or the slave, it deletes the file and returns an error
to the client that issued the push.

The replication provides reliability and availability for lay-
ers. Users can choose between strong consistency provided
using chain replication protocol or eventual consistency. As
all layers are content addressable and hence, each layer
update generates a new layer digest, BOLT do not have
to deal with inconsistencies among replicas due to layer
updates.

C. Distributed Coordination

BOLT implements a distributed coordination mechanism
to improve scalability. To deal with scale out/in, determine
the correct replication targets, and allow clients to directly
request layers from responsible nodes, registry nodes must
be aware of each other and be informed of node additions/re-
movals. To meet this requirement, BOLT uses Zookeeper as a
metadata service to monitor the health and availability of all
registries in the system. Zookeeper also facilitates distributed
coordination.

Zookeeper itself is a distributed service that organizes data
into Znodes. It accepts new Znodes or updates to existing
Znodes via a consensus of the nodes. Zookeeper clients are
able to set watches on Znodes that notify them of changes
to the Znode. Znodes are organized into file system like
structures, where one root Znode acts like a directory for all
other Znodes. However, unlike normal file systems, Znodes
can have data associated with them as well as child Znodes.
Zookeeper also supports ephemeral Znodes, which exist as
long as the session that created them is active, and are
deleted when the session is terminated.

BOLT makes use of ephemeral Znodes to register active
registries. When a registry is created, it first registers itself
with Zookeeper by creating an ephemeral node under a root
Znode. If the root does not exist, the registry creates it
and then creates its ephemeral Znode. It then establishes
a watcher on the root, which provides the registry with the
addresses of all other registries in the system, and notifies of
any changes. Because the registries use ephemeral Znodes,
all other registries are notified in case the registry goes
offline and its Znode is removed. The registries use their
knowledge of each other to populate their consistent hashing
rings, and to provide clients with a list of active registries.

Clients can request the list of registries in the system from
any registry it has previously known about, or learns about
through another means, such as DNS. Docker clients can
issue this request when they first come online, or when a
layer request fails (see Section III-B), allowing the clients
to update their consistent hashing rings.

D. Replica-aware Clients

Replica-aware clients can directly query registry nodes for
desired data. However, in this design, the clients (Docker
daemons in this case) need to know which registries store
which layers. Therefore, the daemons use a specialized
consistent hashing function on the layers to identify the
location of the layers and load balance their requests across
registry nodes.

As described above, BOLT employs consistent hashing for
determining the location of a layer and for load balancing
layer requests across the registry nodes. BOLT uses a custom
consistent hashing function to take advantage of how layers
are already addressed. As layers are identified by their
digests (a SHA256 hash of the layer content), the digests can
be used directly to map a layer to a registry. As common
in consistent hashing, each registry uses a set of pseudo
identities to help distribute the layers across the node.

Two different hash functions are used for layer pushes and
pulls. For layer pushes, the write hash function returns the
first registry whose pseudo identity is immediately greater
than the layer’s hash. This is the master node for the pushed
layer. Algorithm 1 shows that the master node ID for the
pushed layer digest is determined efficiently via binary
search.

4



Algorithm 1: Write Hash Algorithm.
Input: Layer: SHA256 hash of layers. nodeIDs: List of

SHA256 psuedo IDs. Nodes: map of pseudo ID to node.
1 begin
2 ID ← BinarySearch(nodeIDs, Layer)
3 return Nodes[ID]

Algorithm 2: Read Hash Algorithm.
Input: Layer: SHA256 hash of layers. nodeIDs: List of

SHA256 psuedo IDs. Nodes: map of pseudo ID to node.
1 begin
2 ID ← BinarySearch(nodeIDs, Layer)
3 ReplicaNodeList.append(Nodes[ID])
4 index ← nodeIDs.indexOf(ID)
5 while Length(ReplicaNodeList) < NumberOfReplics do
6 index ← index + 1%length(nodeIDs)
7 ID ← nodeIDs[index]
8 node ← Nodes[ID]
9 if node not in ReplicaNodeList then

10 ReplicaNodeList.append(node)
11 return RandomChoice(ReplicaNodeList)

For pull requests, the read hash function selects a target
node from a set of registries containing a replica of the layer,
i.e. the slave nodes. The read hash is described in Algorithm
2. First, the master node ID is determined (Line 2) and added
to the list of target nodes (Line 3). The list of nodes is then
searched for the replica holders by going clockwise around
the consistent hashing ring (Lines 5–10). Finally, a random
node in the complete list is returned (Line 10). Compared to
the existing, replica-oblivious design, replica-aware clients
require less request hops for better performance and no sep-
arate load balancing infrastructure for better manageability.

IV. IMPLEMENTATION

Next, we describe the implementation details of BOLT for
its improved caching and scalability. BOLT is written in Go
and based on the Open Source Docker registry [5].

A. Caching

BOLT implement efficient layer caching in registry nodes.
Due to the hyperconverged architecture, layers are not
cached redundantly, which allows for more layers to be
cached. As manifest files are small and are handled by
services like Redis in the existing registry design, we only
focuses layer caching.

In BOLT, layers are cached using the Bigcache [2] library
for Go. This library provides a fast LRU cache for larger
objects with little to no overhead by eliminating Go’s
garbage collection for the cache. Although the cache is
configurable in the design, limiting the size of the layers
cached to 1 MB typically improves performance as it allows
more layers to be held in memory.

Due to the content addressable nature of layers we do not
have to worry about cache invalidation as any update in the
layer also updates the layer’s digest, which automatically

Registry
0x00

Registry
0x80

Registry
0xA0

Registry
0xC0

Registry
0xE0

Registry
0x20

Registry
0x40

Registry
0x60

Zookeeper

Layer 0xB0...

Client
GET Layer 0xB0...

Registry
0x50

Layer 0x41...

Figure 6: Scalability and failure recovery in BOLT.

invalidates the cached layer. In total, we added 905 lines of
code to the registry to introduce the caching functionality.

B. Scalability

BOLT supports dynamic addition and removal of registry
nodes to existing setups, allowing for easy scale out/in of
the registry deployment. Once a registry node detects a new
node via Zookeeper, it loops through all locally available
layers to detect if the new registry is the master of any of
them. If so, it forwards those layers to the new registry.

Registries can fetch layers from the master registry if
they act as their slave. This happens when clients request
layers from registries that have been recently added, or for
registries that become slaves as a result of another registry
leaving or failing. During the fetch, the registry writes the
layer to a temporary file and then renames the file to the
correct name and serves it. This prevents other clients from
requesting the layer during the fetch from receiving a partial
layer.

Figure 6 depicts an example for a node arrival. In the
figure, Node 0x50 is joining the registry. On receipt of the
notification of the new arrival, node 0x60 will pass some of
it’s layers, e.g. 0x41 to node 0x50.

The example also illustrates the case of node departure.
Node 0xC0 went offline and hence, the layers for which
node 0xC0 was a master node are now owned by node 0xE0.
Additionally, node 0x20 becomes a new slave node for those
layers. When a client attempts to retrieve a layer from 0xC0,
the request will fail, prompting the client to issue a registry
list requests from the other registries. Once the clients have
the correct ring, they might attempt to request a layer from
0x20, which has become the new slave. In that case, 0x20

5



Figure 7: CDF of the layer sizes in the workload trace.

will fetch the layer from the new master and then reply to
the client.

V. EVALUATION

By evaluating BOLT, we aim to answer five main ques-
tions: 1) how does BOLT compare to the existing registry
design; 2) how well is BOLT able to balance load; 3) how
effective is BOLT’s caching approach; 4) how does BOLT
scale; and 5) how does BOLT recover from failures.

As a workload we use a production traces from an IBM
registry from July 24th, 2017 [15]. This trace contains
around 0.26 Million requests in total and holds over 1000
clients connected in parallel. Figure 7 shows the size distri-
bution of the first 5000 requests, containing just over 1500
layers with an average layer size of 13.7 MB. The trace also
contains 4% write requests.

To replay the workload, we use the corresponding trace re-
player [15]. We modify the trace re-player to add consistent
hashing to the warm-up mode, i.e. when layers are assigned
to registry nodes and the clients.

Our testbed consists of 11 machines, each of them having
8 cores, 16 GB of RAM, 512 GB of SSD storage, and
10 Gbps networking. BOLT uses one node as a dedicated
Zookeeper node. Every experiment uses 50 pseudo identities
per registry node and 3 replicas per layer.

A. Throughput and Latency Comparison

We start by comparing BOLT to the conventional dis-
tributed registry. Both registries are deployed on 6 nodes.
BOLT is configured to have 8 GB of RAM per node. The
conventional distribution uses Swift as its backend object
store, which is co-located with the registry nodes. The
default registry uses a dedicated node as a NGINX load
balancer. Each registry connects to a Swift proxy which
is running on the same node to prevent a single proxy
bottleneck. Both Swift and BOLT are configured to have
3 replicas.

We compare the performance of both systems by in-
creasing the number of clients connecting to the registry.
BOLT uses consistent hashing for load balancing, whereas

0

1

2

3

0 50 100 150 200

La
te

nc
y (

s)

Number of Clients

Bolt Default Registry

(a) Latency

0

50

100

150

200

250

0 50 100 150 200Th
ro

ug
hp

ut
 (

re
qu

es
ts

/s
) 

Number of Clients

Bolt Default design

(b) Throughput

Figure 8: Throughput and latency for BOLT and the default
registry.

0%

5%

10%

15%

20%

n0 n1 n2 n3 n4 n5

Figure 9: Request distri-
bution.

0%
20%
40%
60%
80%

n0 n1 n2 n3 n4 n5 Avg

Figure 10: Cache hit ratios.

the conventional registry setup uses round robin. In each
experiment, the clients send 5000 requests.

BOLT outperforms the conventional registry design signif-
icantly and improves latency by an order of magnitude and
throughput by up to 5× (see Figure 8). This is due to both
BOLT’s caching of layers and the clients’ ability to request
the layer with one network hop. In the regular setup, clients
must communicate via NGINX, which load balances the
requests to the 6 registries, and the registries use the Swift
proxy to fetch the layer from one of the object nodes, which
causes additional hops between nodes and reduces latency.
As the regular setup does not cache layer data, throughput
is significantly lower.

B. Load Balancing

To determine the load balancing capabilities of BOLT’s
consistent hashing algorithm, we look at the layer distri-
bution for a 6-node deployment of BOLT. We hash the
http.request.uri field across all layer GET and PUT

requests to represent the layers as we do not have the actual

6



0
0.5

1
1.5

2
2.5

3

1 2 3 4 5 6 7 8 9 10

La
te

nc
y (

s)

Number of Registries

(a) Latency

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 

(re
qu

es
t/

se
co

nd
)

Number of Registeries

(b) Throughput

Figure 11: Throughput and latency for increasing number of
registry nodes.

layer contents. As shown in Figure 9, the layers from the
trace are distributed almost evenly on the registry nodes,
with a maximum discrepancy between two nodes of 3%.

C. Caching Effectiveness
To evaluates BOLT’s caching effectiveness, we use the

trace re-player with 4 client nodes to send 5000 requests
to a 6-node registry deployment. Each registry node uses
an 8 GB cache and only caches layers that are less than
or equal to 1 MB. Each trace player client node spawns 50
docker clients to send the requests. All clients send requests
in parallel.

The results (see Figure 10) show that the average hit
ratio is 57%. However, it’s important to note that 25% of
the layers requested were greater than 1 MB. Hence, the
effective hit ratio for cached layers is 76%. The request
latency for cached layers is an order of magnitude less than
uncached layers.

Compared to previous work on registry caching [15], we
observe that BOLT can serve up to 35% more requests
from its cache. This is because BOLT uses replication-aware
clients and does not waste cache space by storing copies of
already cached layers as shown in Figure 2).

D. Scalability
To evaluate scalability, we increase the number of reg-

istries from 1 to 10 and measure request throughput and
latency as seen by the clients. For this experiment, each
registry uses 2 CPUs and 4 GB of RAM. The cache size
for each registry is set to be 2 GB. We alter the clients to
request each layer from each slave registry in order to fully
populate newly added nodes.

The results of the experiment are shown in Figure 11. We
observe a linear increase in throughput as the number of
registries are scaled up. Analogously, latency also decreases
for more registries. Due to it’s design, scaling out BOLT only
required to adding new registry nodes and registering them
with Zookeeper.

E. Fault Tolerance
Next, we evaluate BOLT’s ability to recover from faults.

Therefore, we kill a registry 20 s after starting the experiment

70

90

110

130

150

170

190

210

0 10 20 30 40 50

Th
ro

ug
hp

ut
 (

re
qu

es
t/

se
co

nd
)

Time (seconds)

failure no failure

Figure 12: Throughput with and without failure of a registry
node.

and bring it back up 10 s later. We use 5 registries for
this experiment, and 10000 requests and measure client
throughput every second.

Figure 12 shows the results and time 0 is equal to 20 s
into the experiment, when one registry node was taken
down. We see that the ephemeral Znode for the killed
registry exists for 3 seconds after the node is killed, causing
the clients’ requests to fail. Once the Znode is removed,
the registries update their rings, which provides the clients
accurate registry lists, preventing more requests from failing.
When the node is brought back up after 10 s, the other
registries become aware of it within milliseconds.

VI. RELATED WORK

Improving Docker performance is a new research area
that is rapidly gaining widespread attention. One area that
has specifically received a lot of attention is how to best use
the storage drivers for the Docker daemon. [31] provides a
study on the impact of different storage drivers on differ-
ent types Docker workloads. Alternatively, [20] provides a
layer between the driver and the Daemon which improves
performance for dense container workloads. As our work is
focused on improving the Docker registry, it is orthogonal
to such approaches.

Recent work proposed a registry-level image cache [15].
However, registries in the existing design are scaled using
a load balancer and hence are not aware of each other. As
a result, container images may be cached redundantly by
different registry instances.

Slacker [22] improves container start-time performance
and distribution by incorporating a network file system
(NFS) server into both the Docker daemon and registry. This
design has two drawbacks: First, in the standard Docker
implementation, the image is fetched on container startup
and stored locally, so in subsequent container startups all
the layers will already be present on the machine, resulting
in faster startup times. However, with Slacker, the neces-
sary layers must be fetched from the NFS every time the
container starts. Second, Slacker tightly couples the worker
nodes with the registry. Docker clients need to maintain a
constant connection to the NFS server to fetch additional

7



layers as they need them which can present a challenge to
services like Docker Hub.

Dragonfly [1] is a peer-to-peer (p2p) based file distribution
system, recently open sourced by Alibaba, which is com-
patible with Docker. Similarly, CoMiCon [26] proposes a
p2p network for Docker clients to share Docker images. In
a p2p based approach, each client has a registry daemon
responsible for storing partial images with specialized man-
ifest files, copying layers to other nodes, and deleting layers
from its node to free space. This approach is limited to only
a trusted set of nodes including the Docker clients, and so
is not suitable for any registry deployments outside of a
single organization. Furthermore, CoMiCon creates changes
to image manifests and depends on a new command, so it
lacks backwards compatibility.

FID [23] integrates the Docker daemon and registry with
BitTorrent [3]. When images are pushed to the registry, the
registry creates torrent files for each layer of the image and
then seeds them to the BitTorrent network. When images
are pulled, the manifest is fetched from the registry and
then each layer is downloaded from the network. BitTorrent
exposes Docker clients to each other which can become a
security issue when worker nodes do not trust each other.
Additionally, FID only uses one registry which creates a
single point of failure if the registry node goes down.
This is because the registry is still responsible for handling
manifests and Docker pushes.

A large body of research studied the effect of caching
+ prefetching [19], [27], [32], [33], [12], and resource
optimization [16], [17], [13], [14]. Identifying a number of
optimization opportunities, our work demonstrates that these
techniques can be utilized to bring dramatic performance
improvement.

VII. CONCLUSION

The Docker registry plays a critical role in providing con-
tainerized services. However, due to the various individual
components, registries are hard to scale and benefits from
optimizations such as caching are limited. In this paper,
we proposed, implemented, and evaluated BOLT, a new
hyperconverged design for container registries. BOLT makes
different registry nodes aware of each other and improves
the client-to-registry mapping by using a hash function to
take advantage of how layers are addressed by the Docker
clients.

We evaluated BOLT to test its performance, caching ef-
fectiveness, scalability, and its ability to recover from faults.
Our analysis shows that BOLT outperforms the conventional
registry design significantly and improves latency by an
order of magnitude and throughput by up to 5×. Compared
to state-of-the-art, BOLT can utilize cache space more effi-
ciently and serve up to 35% more requests from its cache.
Furthermore, BOLT scales linearly and recovers from failure
recovery without significant performance degradation.

VIII. ACKNOWLEDGMENT

This work is sponsored in part by the NSF un-
der the grants: CNS-1405697, CNS-1615411, and CNS-
1565314/1838271.

REFERENCES

[1] alibaba Dragonfly. https://github.com/alibaba/Dragonfly, vis-
ited 2018-02-12.

[2] Bigcache. https://github.com/allegro/bigcache, visited 2018-
02-12.

[3] BitTorrent. http://www.bittorrent.com/, visited 2018-02-12.

[4] CoreOS. https://coreos.com/, visited 2018-02-12.

[5] Docker-Registry. https://github.com/docker/docker-registry,
visited 2018-02-12.

[6] Dockerhub. https://hub.docker.com, visited 2018-02-12.

[7] IBM Cloud Container Registry. https://console.bluemix.net/
docs/services/Registry/index.html, visited 2018-02-12.

[8] Namespaces. http://man7.org/linux/man-pages/man7/
namespaces.7.html, visited 2018-02-12.

[9] Quay.io. https://quay.io/, visited 2018-02-12.

[10] What is Docker. https://www.docker.com/what-docker, vis-
ited 2018-02-12.

[11] Zookeeper. https://zookeeper.apache.org/, visited 2018-02-12.

[12] ANWAR, A. Towards Efficient and Flexible Object Storage
Using Resource and Functional Partitioning. PhD thesis,
Virginia Tech, 2018.

[13] ANWAR, A., CHENG, Y., GUPTA, A., AND BUTT, A. R.
Taming the cloud object storage with mos. In Proceedings
of the 10th Parallel Data Storage Workshop (2015), ACM,
pp. 7–12.

[14] ANWAR, A., CHENG, Y., GUPTA, A., AND BUTT, A. R.
Mos: Workload-aware elasticity for cloud object stores.
In Proceedings of the 25th ACM International Symposium
on High-Performance Parallel and Distributed Computing
(2016), ACM, pp. 177–188.

[15] ANWAR, A., MOHAMED, M., TARASOV, V., LITTLEY, M.,
RUPPRECHT, L., CHENG, Y., ZHAO, N., SKOURTIS, D.,
WARKE, A. S., LUDWIG, H., HILDEBRAND, D., AND BUTT,
A. R. Improving docker registry design based on production
workload analysis. In 16th USENIX Conference on File
and Storage Technologies (FAST 18) (Oakland, CA, 2018),
USENIX Association, pp. 265–278.

[16] ANWAR, A., SAILER, A., KOCHUT, A., SCHULZ, C. O.,
SEGAL, A., AND BUTT, A. R. Cost-aware cloud metering
with scalable service management infrastructure. In Cloud
Computing (CLOUD), 2015 IEEE 8th International Confer-
ence on (2015), IEEE, pp. 285–292.

8



[17] ANWAR, A., SAILER, A., KOCHUT, A., SCHULZ, C. O.,
SEGAL, A., AND BUTT, A. R. Scalable metering for an
affordable it cloud service management. In Cloud Engineer-
ing (IC2E), 2015 IEEE International Conference on (2015),
IEEE, pp. 207–212.

[18] AZEEM, S. A., AND SHARMA, S. K. Study of converged
infrastructure & hyper converge infrastructre as future of
data centre. International Journal of Advanced Research in
Computer Science 8, 5 (2017).

[19] CAO, P., FELTEN, E. W., KARLIN, A. R., AND LI, K.
Implementation and performance of integrated application-
controlled file caching, prefetching, and disk scheduling.
ACM Trans. Comput. Syst. 14, 4 (Nov. 1996), 311–343.

[20] DELL EMC. Improving Copy-on-Write Performance
in Container Storage Drivers. https://www.snia.org/
sites/default/files/SDC/2016/presentations/capacity
optimization/FrankZaho Improving COW Performance
ContainerStorage Drivers-Final-2.pdf, visited 2018-02-12.

[21] FELTER, W., FERREIRA, A., RAJAMONY, R., AND RUBIO,
J. An Updated Performance Comparison of Virtual Machines
and Linux Containers. In IEEE ISPASS (2015).

[22] HARTER, T., SALMON, B., LIU, R., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Slacker: Fast distribu-
tion with lazy docker containers. In 14th USENIX Conference
on File and Storage Technologies (FAST 16) (Santa Clara, CA,
2016), USENIX Association, pp. 181–195.

[23] KANGJIN, W., YONG, Y., YING, L., HANMEI, L., AND
LIN, M. FID: A Faster Image Distribution System for
Docker Platform. In IEEE 2nd International Workshops
on Foundations and Applications of Self* Systems (FAS*W)
(Tucson AZ, 2017), IEEE, pp. 191–198.

[24] MENAGE, P. B. Adding generic process containers to the
linux kernel. In Proceedings of the Linux symposium (2007),
vol. 2, Citeseer, pp. 45–57.

[25] NADAREISHVILI, I., MITRA, R., MCLARTY, M., AND
AMUNDSEN, M. Microservice architecture: aligning prin-
ciples, practices, and culture. ” O’Reilly Media, Inc.”, 2016.

[26] NATHAN, S., GHOSH, R., MUKHERJEE, T., AND
NARAYANAN, K. CoMICon: A Co-Operative Management
System for Docker Container Images. In IEEE IC2E
(Vancouver Canada, 2017), pp. 116–126.

[27] PATTERSON, R. H., GIBSON, G. A., GINTING, E., STODOL-
SKY, D., AND ZELENKA, J. Informed prefetching and
caching. In ACM SOSP (1995).

[28] ROSEN, R. Resource management: Linux kernel namespaces
and cgroups. Haifux, May 186 (2013).

[29] SINGH, V., AND PEDDOJU, S. K. Container-based microser-
vice architecture for cloud applications. In 2017 International
Conference on Computing, Communication and Automation
(ICCCA) (2017), IEEE, pp. 847–852.

[30] SOLTESZ, S., PÖTZL, H., FIUCZYNSKI, M. E., BAVIER,
A., AND PETERSON, L. Container-based Operating System
Virtualization: A Scalable, High-performance Alternative to
Hypervisors. In ACM EuroSys (2007), ACM, pp. 275–287.

[31] TARASOV, V., RUPPRECHT, L., SKOURTIS, D., WARKE, A.,
HILDEBRAND, D., MOHAMED, M., MANDAGERE, N., LI,
W., RANGASWAMI, R., AND ZHAO, M. In search of the
ideal storage configuration for Docker containers. In IEEE
AMLCS (Tucson, AZ, 2017), IEEE.

[32] WIEL, S. P. V., AND LILJA, D. J. When caches aren’t
enough: data prefetching techniques. Computer 30, 7 (Jul
1997), 23–30.

[33] ZHANG, Z., KULKARNI, A., MA, X., AND ZHOU, Y. Mem-
ory resource allocation for file system prefetching: From a
supply chain management perspective. In ACM EuroSys
(2009).

9


