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ABSTRACT

Natural disasters, such as hurricanes, large wind and ice
storms, typically require the repair of a large number of com-
ponents in electricity distribution networks. Since power
cannot be restored before the completion of repairs, opti-
mally scheduling the available crews to minimize the cu-
mulative duration of the customer interruptions reduces the
harm done to the affected community. We have previously
proposed approximation algorithms to schedule post-disaster
repairs in electricity distribution networks with complete
damage information [1]. In this paper, we extend our pre-
vious work to the case with incomplete damage informa-
tion. We model this problem as scheduling a set of jobs
with stochastic processing times on parallel identical ma-
chines in order to minimize the total weighted energization
time. A linear programming (LP) based list scheduling pol-
icy is proposed and then analyzed in terms of theoretical
performance.

1. INTRODUCTION

Natural disasters have caused major damage to the elec-
tricity distribution networks and deprived homes and busi-
nesses of electricity for prolonged periods. The resulting
damages may also have secondary economic and environ-
mental impact due to unpreparedness for such severe events.
Examples include Hurricane Harvey in August 2017 [2, 3],
the Christchurch Earthquake in February 2011 [4] and the
June 2012 Mid-Atlantic and Midwest Derecho [5]. The re-
cent Hurrican Harvey affected 2.02 million customers and
over 6200 distribution poles were downed or damaged [2].
Physical damage to grid components must be repaired be-
fore power can be restored [6,7]. From an operational per-
spective, approaches to scheduling the available repair crews
to minimize the cumulative weighted customer downtime
and reduce the harm done to the affected communities have
been proposed in [1,8,9]. In particular, given the complete
damage information and knowledge of deterministic repair
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times, our previous work [1] modeled the problem as a paral-
lel machine scheduling problem with outtree soft precedence
constraints in order to minimize the total weighted energiza-
tion time, or equivalently, Plouttree soft prec| . w;E;, fol-
lowing Graham’s notation [10]. This problem was proven to
be strongly AP-hard and 2 constant-factor polynomial-time
approximation algorithms was proposed in [1].

In our prior work [1], all job repair times were assumed
to be known with certainty prior to decision-making. Since
this is hardly realistic in practice, in this paper, we relax
that assumption and model the job repair times as random
variables. We refer to the former scenario as deterministic
scheduling and the latter scenario as stochastic scheduling.

1.1 Review of Deterministic Scheduling

We now briefly review the operational problem of schedul-
ing post-disaster repairs in distribution networks with multi-
ple repair crews when the repair times and other parameters
(such as the number of repair crews) are known with uncer-
tainty. A detailed discussion can be found in [1].

We model a distribution network as a tree graph G (al-
ternately, a radial topology) with a set of nodes N and a
set of edges L. Without any loss of generality (w.l.o.g), we
assume that there is only one source node and the rest are
sink nodes which connect to load centers. An importance
factor, w,, is assigned to every node. This parameter de-
pends on multiple factors, including but not limited to, the
amount of load connected to node n, the type of load served,
and interdependency with other critical infrastructures. An
edge in G represents a distribution feeder or some other con-
necting component. Network connectivity is ensured using
a simple network flow model. While our work considers the
availability of multiple repair crews, we assume that only
one repair crew is assigned to repair a damaged line (com-
ponent). Let p; denote the repair time for line I. Obviously,
nodes downstream of [ can be energized only after line [ is
repaired. Based on conversations with an industry expert,
we make the assumption that crew travel times in a typi-
cal distribution network are small compared to actual repair
times and can be ignored as a first order approximation.

We construct two simplified directed radial graphs to model
the effect that the topology of the distribution network has
on scheduling. The first graph, G’, is called the damaged



component graph. All nodes in G that are connected by in-
tact edges are contracted into a supernode in G’. The set
of edges in G’ is the set of damaged lines in G, L”. The
directions to these edges follow trivially from the network
topology. The damage component graph G’ would allow us
to assume that, without loss of generality, all lines are dam-
aged, i.e., LP = L. The second graph, P, is called a soft
precedence constraint graph, and is constructed as follows.
The nodes in P are the damaged lines in G and an edge ex-
ists between two nodes in this graph if they share the same
node in G’. Such a graph enables us to consider the hierar-
chical relationships between damaged lines, which we define
as soft precedence constraints [1]. See Fig. 2 for examples of
P and G'.
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Figure 2: (a) The damaged component graph, G’, obtained
from Fig. 1, assuming that the damaged edges are 650 — 632,
632 — 645, 684 — 611 and 671 — 692. (b) The corresponding
soft precedence graph, P.

Two different time vectors are of interest: (i) a vector of
completion times of line repairs, denoted by Ci’s, and (ii) a
vector of energization times of nodes, denoted by E,’s. Due
to the radial topology, it is possible to define energization
times on the lines. Given a directed edge | € G’, let h(l)
and ¢(1) denote its head and tail nodes, i.e., I = h(l) — t(1).
Then, E; = Ey), where E; is the energization time of line
[ and E is the energization time of the node t(I) in G.
Analogously, the weight of node ¢(I), wy), can be inter-
preted as a weight on the line I, w;. The soft precedence
constraint i <g j, necessitated by network flow, therefore
implies that line j cannot be energized unless line i is en-
ergized, or equivalently, F; > E;. Line j can be energized

immediately after all its predecessors, including itself, are
repaired, i.e., E; = max;<g; C;. The set of soft precedence
constraints of cardinality |L|—1 embodied in the precedence
graph is also denoted by P.

In the deterministic setting, the goal is to come up with
an m-crew schedule by which the damaged lines should be
repaired such that the total weighted energization time, or
analogously, the aggregate harm, > w; Ej;, is minimized. See [1,
11] for a discussion on how the minimization of aggregate
harm objective relates to the infrastructure resilience metric.

1.2 Stochastic Scheduling

In deterministic scheduling, all problem data is known
beforehand and a schedule assigns a job to a machine at
a specified time. In a general scheduling framework con-
sidering uncertainties, however, we may not have complete
or exact information about the job processing times, the
number of machines (repair crews) or even the set of jobs
to be scheduled (incomplete knowledge of the damage sta-
tuses), prior to decision-making. In this paper, we allow the
job repair times to be uncertain, while still assuming com-
plete and exact knowledge of the number of repair teams
and the set of jobs to be scheduled. Albeit a slight abuse
of notation, we have used P to denote the soft precedence
constraint graph/set and P to denote the random vector of
repair times. Accordingly, the processing time of each job j
is modeled as a non-negative random variable, P;, and its
realization, p;, is known with certainty only after completion
of the job. We assume that P;’s are pairwise independent.
Since the repair times are random, so are the resulting start
times, completion times and energization times, which we
denote by S;, C;, and F; respectively'. In contrast to the
deterministic case, we seek to minimize the expected aggre-
gate harm, E [> w;F;].

It is important to observe that the probabilistic nature of
the repair times fundamentally alters the associated schedul-
ing problem. Whereas the deterministic setting yields an ac-
tual repair schedule, the stochastic setting leads to a schedul-
ing policy. Loosely speaking, a scheduling policy makes de-
cisions at certain times, say t, and a decision is made at
time ¢ based on an a priori knowledge of the input data
and jobs which have already been completed by time ¢. In
particular, a scheduling policy should be non-anticipatory;
i.e., no assumption can be made regarding the jobs which
may have started before ¢ but not completed by t. For
a complete discussion of the differences between determin-
istic and stochastic scheduling and rigorous definitions of
scheduling policy, see [12-16]. A scheduling policy is called
an a-approximation if its expected performance is within a
factor of a of the optimal expected performance.

1.3 Our Approach

We focus on a static list scheduling policy, where a set of
jobs is obtained ahead of time that does not change during
the scheduling process. The policy simply assigns jobs from
the ordered list to whichever crew happens to be idle at
any point in time. We construct the list based on an LP-
relaxation model, built upon the valid inequalities proposed
in [12]. This LP-based list scheduling policy only requires
the knowledge of the means and variances of the repair jobs.

!The switch in notation from E; to F; to represent the ener-
gization times is due to our extensive use of the expectation
operator E.



We also provide a theoretical performance bound for the
proposed policy.

2. LP-BASED LIST SCHEDULING POLICY

As mentioned above, our scheduling policy is derived from
an LP-relaxation model based on completion and energiza-
tion time vectors. A set of inequalities was shown to be
the convex hull of completion time vectors for general sin-
gle machine scheduling problems and a slightly modified set
of inequalities is valid for general parallel machine schedul-
ing [17]. These inequalities have proven to be very useful
in developing approximation algorithms for single and par-
allel identical machine scheduling problems with precedence
constraints and release time, in order to minimize the to-
tal weighted completion time [18,19]. In a deterministic
framework, we have previously shown [1] how a set of valid
inequalities could help in developing an approximation al-
gorithm for the multi-crew repair scheduling problem with
soft precedence constraints. In the stochastic setting, with
the knowledge of mean and variance for the repair times,
a set of valid inequalities is extended for stochastic parallel
machine scheduling:

Theorem 1. [12] Let II denote any policy for general
stochastic parallel machine scheduling and m the number
of machines (repair crews). The following inequalities (1)
are valid for the corresponding vector of expected completion
times, E[C™].

2
I 1 1 2
ZE[PJ] ElC;] = I ZE[PJ] 3 ZE[Pj]
jeA jeA jeA
m—1
jEA

The proof of this theorem in [16] requires the processing
times to be pairwise independent and the scheduling policy
to be non-anticipatory. With an additional assumption on
the squared coefficients of variation for all processing time
distributions, eqn. (1) can be refined as follows:

Corollary 1.1. [12] If Var[P;]/E[P;]* < A, then inequal-
ities (2) are valid for the corresponding vector of expected
completion times E[C™].

> E[P]E[C]'] > f(A) VACL, (2)

where the set function f:2F — R is defined as:

F(4) = ;(ZE[%Q I SR
)

jEA

Observe that under any scheduling policy, the following in-
equalities:

E[F] > E[F"], V(i,j) € P (4)
E[F;'] > E[C}'], Vi€ L (5)
E[C;'] > E[P;], Vj € L (6)

are valid, since they are true for every realization of the
repair times. For each realization, eqn. (4) establishes the

soft precedence constraints (recall that P is the soft prece-
dence constraint graph), eqn. (5) requires that a damaged
line cannot be energized before completion of its repair, and
eqn. (6) ensures that the completion time should be at least
equal to the repair time. Combined with Corollary 1.1, an
LP relaxation, similar to those in [1,12], can be written as
follows:

mirllpi,rgize Z'(Uij (7a)
jeL

subject to F; > Cj, j€L (7b)
C; > E[P;], jeL (7c)
F; > F;, (i,j) € P (7d)
STEIPIC; > [(A) VACL,  (7e)
JjeEA

where the decision variable Fj represents the expected ener-
gization time for line j and C; represents its expected com-
pletion time. Eqn. (7c) can be applied to eqns. (7b) and (7e),
resulting in the following simplified model:

minillrnize Z'U)ij (8a)
JEL

subject to F; > E[P;], j €L (8b)
Fy > Fi, (i,j) € P (8¢)
> E[P;]F; > f(A) VACL (8d)
jeA

Although there are an exponential number of constraints
in (8), the separation problem for these inequalities can be
solved in polynomial time using the ellipsoid method [17].

Let FLT denote any feasible solution to the constraint set
(8b) - (8d). We consider a static list obtained by sorting
the damaged lines in a non-decreasing order of F’ jLP ’s. Ties
are broken according to the soft precedence constraints or
arbitrarily if there is none. Assume w.l.o.g that:

P <FP <. <FI, 9)

This implies that the list is (1,- -+ ,|L|). Since the scheduling
policy simply assigns the job at the top of the list to some
idle crew, the damaged lines will be assigned in the order
1527"' v‘L|

We will start with analyzing the basic properties of the
list scheduling policy and the LP relaxation. Let S™ and
C™ denote the random vectors of starting times and comple-
tion times respectively, corresponding to the LP-based list
scheduling policy II.

Consider any job j in the list scheduling policy. Since
jobs 1 to 7 — 1 are scheduled in order with no idle time in
between, all machines are busy before j starts. Therefore,
for any realization of the repair time vector p, the start time
of job j satisfies:

14
I
which implies:
o 1%
ELS;] < E;E[m (11)

Applying eqn. (8d) with the set A being {1,2,---,j} and



eqn. (9), we have:

( i E[ﬂ]) FP > i E[P:]F{"

i=1 =1
1 (< :
2771(;::1@[7%}) e

m—A(m —1) J 2
m(;nzm] ) (12)

Dividing both sides by 37_, E[P;], we have:

1< m— A(m —1) i E[P:)?
.LP> R . 7,.71
P} - 27n/;§;]E[TE]-¥ 2m < g:llE[T%]

(13)

v

We now consider two cases:
e Case 1: A <m/(m —1). Since the expression within

parentheses on the r.h.s of eqn. (13) is non-negative, it
follows that:

F].LP >

e Case 2: A >m/(m —1). Since:

I E[P)?
LB e g < B, (15)
LEpg S

it follows that:

LP 1 m—A(m—1) g:1 ]E[Pi]Q
FiT > o ;E[m + < )

= 2m I E[P]
1 < m—A(m-—1) _rp

>—> )+ ———— L F

- 2m p B[R]+ 2m £ (16)

Combining eqns. (14) and (16), we have:

%iE[’Pi} < <1+max{1,mmlA}> FF7an

Observe that the energization time for job j is the point-wise
maximum of the completion times of all jobs in the ordered
list (1,2,---,7). In order to establish an upper bound on
the expected energization time, we will invoke the follow-
ing lemma to bound the expectation of the maximum of a
sequence of random variables from above.

Lemma 2. [20] Let X1, X2, -+, X, be a sequence of (real
valued) random variables, each with finite mean and vari-
ance. Then:

n

E[max X;] < max E[X;]+
< 1<i<n

1<i<n

n

—1 o varlX]  (18)

Note that this bound is not necessarily tight when the
means and variances of the X;’s are arbitrary. We are now
ready to state the key result in this paper.

Proposition 3. Let F! denote the random vector of ener-
gization times corresponding to the LP-based list scheduling
policy II. Then the following inequality holds:

E[F]'] < C(A,m)Ff*, Viel (19)
where

C(A,m) = (2 + max {1, mT_lA})

+ \/Am(l +max{1, m= 1A}) (20)

m

PROOF. Again, consider any job j from the list. As ex-
plained in Section 1.1, for each realization of the repair time
vector, we have:

F; = max C; (21)
i=2s5]
Recall that the list scheduling policy assigns the damaged
lines in the order of 1 through |L| and that ties are broken
according to the soft precedence constraints or arbitrarily if
there is none. Therefore, for all {i :7 <g j} C {1,---,j}:

F; < max C; := Cul,, (22)
1<i<j

where the expression m.
1<i<y

for the job set {1,---,4}, denoted by CLI,. Since j is the
last job to start in this set, it follows that:

Calx < S5+ max pi (23)

Since the above arguments are valid for all realizations, it
also holds in an expected sense:

E[F}'] < E[S}'] + E[max Pi] (24)

. J

7—1

— Var[P;],
; ;:1 [Pi]

(25)

where the last inequality follows from eqn. (11) and Lemma 2.
We now bound all three terms in eqn. (25). Applying equs. (9)
and (17):

1 j—1 1 J m—1 P
il 1< = 1< !
- ;E[Pz] <- ;E[PJ < <1 +max{1, - A})FJ
(26)
Applying eqns. (8b) and (9):
max E[P;] < max FiLP < FjLP (27)
1<i<j 1<i<j
And finally:
j J
> Var[P] < AY E[P] (28)
i=1 i=1

IA

A(iE[Pi])FjLP (29)

Am <1 + max {1, mT;lA}> (FJ‘LP)2 )

(30)

IN

<>(‘C’i can be interpreted as the makespan



where eqn. (28) follows from the mean-variance assump-
tion in Corollary 1.1, eqn. (29) follows from eqn. (15), and
eqn. (30) follows from eqn. (17). The fact that ]J;l <1
completes the proof.

Theorem 4. The static list scheduling policy using LP re-
lazations is a C(A, m)-approzimation.

PROOF. Proposition 3 and the fact that linear program
(8) is a relaxation of the stochastic scheduling problem con-
cludes the proof.

3. CONCLUSION AND FUTURE WORK

To cope with the uncertainties associated with estimation
of repair times of the damaged components in the event of
a disaster, we have proposed a static list scheduling policy
which has a proven performance guarantee of O(y/m). Com-
pared to the O(1) bound for its deterministic counterpart,
we note that this deterioration is primarily due to an upper
bound on the expected energization times. The bound, how-
ever, is not tight and has room for improvement, especially
with more knowledge of the distributions. Another line of
work is associated with extending our solution approach in
the deterministic case, the so called ‘conversion algorithm’,
to the stochastic setting.
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