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ABSTRACT

The problem of analyzing patient trajectories is fundamental to our
ability to understand and characterize diseases and how we treat
them in our hospitals, and to devise and explore effective alternative
strategies for healthcare. In this paper, we present a new approach
to analyze hospital patient trajectories. Based on visual analytics,
our approach is aimed at aiding the domain scientist (in this case,
a hospital bioinformatician or a data analyst) to visually navigate
and analyze patient health trajectories in a scalable manner. More
specifically, we view the problem as one of structure discovery and
tracking how such structure evolves with time over the course of
patients’ stay at the hospital(s). An ability to scalably track and
view the temporal progression of context variables associated with
patients in conjunction with health indicator variables could pro-
vide vital clues on how practices affect outcomes. Furthermore,
by enabling compact and consolidated views of complex patient
trajectories, our approach can help to delineate subpopulations (i.e.,
subgroups of patients) that show divergent behavior. As a concrete
case study in application and evaluation, we present results and
initial findings on a large patient data set obtained from the Duke
Antimicrobial Stewardship Outreach Network (DASON) database,
with an aim of extracting factors relevant to antibiotic usage and
stewardship in hospitals.

CCS CONCEPTS

» Mathematics of computing — Paths and connectivity prob-

lems; « Information systems — Data mining; « Human-centered

computing — Visualization; - Applied computing — Health
informatics.

KEYWORDS
Electronic Health Records, TDA, Patient Trajectories

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACM BCB 2019, Sept 7-10, 2019, Niagara Falls, NY

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Methun Kamruzzaman
Washington State University
Pullman, Washington
md.kamruzzaman@wsu.edu

Rebekah Moehring
Duke Center for Antimicrobial
Stewardship and Infection Prevention
rebekah.moehring@duke.edu

Ananth Kalyanaraman
Washington State University
Pullman, Washington
ananth@wsu.edu

Bala Krishnamoorthy
Washington State University
Vancouver, Washington
kbala@wsu.edu

ACM Reference Format:

Kaniz Fatema Madhobi, Methun Kamruzzaman, Ananth Kalyanaraman,
Eric Lofgren, Rebekah Moehring, and Bala Krishnamoorthy. 2019. A Visual
Analytics Framework for Analysis of Patient Trajectories. In Proceedings of
ACM BCB ’19: The 10th ACM Conference on Bioinformatics, Computational
Biology and Health Informatics (ACM BCB "2019). ACM, New York, NY, USA,
10 pages.

1 INTRODUCTION

The digitization of patient records has become a key instrument of
change in the way biomedical healthcare is administered. Digiti-
zation has resulted in an abundance of data, and that has in turn
resulted in an increased emphasis on scalable analytics and deci-
sion support systems that are primarily data-driven. Consequently,
“data” in the form of patient electronic health records (EHRs) have
exploded over the past decade [6]. While there are still a number of
issues and challenges pertaining to the collection, formatting, cura-
tion, and integration of EHR data, from an analytical standpoint,
one of the lead challenges in the area has been to generate analyti-
cal and computationally scalable frameworks for gleaning useful
“information” from such data, and in the process aid and enable
healthcare providers to improve the quality of decision-making.

In this paper, we focus on a specific type of electronic health
record, namely patient trajectories, obtained from in-patient hospi-
tal records that typically cover a patient’s stay at a hospital from
the day of admission to the day of discharge. These data sets cover
a wide array of treatment activities and all related meta-data asso-
ciated with the health of a patient, as administered by caregivers as
a function of time. Consequently, these data sets represent a trea-
sure trove of information relating to understanding how a patient’s
health changes with every passing day at the hospital. For instance,
these datasets can be very useful in the study of hospital-acquired
infections (HAIs) [13, 15], or for analyzing conditions such as sepsis
[12].

However, mining such information with actionable insights from
hospital records can be significantly challenging owing to a number
of factors, including but not limited to: size, variety, high dimen-
sionality, ontology, etc. [5]. First, the size of these patient records
in large hospital networks could be significantly large, covering
possibly millions of patients treated across hundreds of hospitals
and healthcare locations. Secondly, these large data sets also cover
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a wide variety of patient conditions, treated in hospitals with dif-
ferent healthcare specialties and healthcare practices, and often
different/unstandardized ways to gather patient data. Noise and
missing data introduce an additional layer of complexity into the
analysis of such data. Under these circumstances, trying to un-
derstand how treatment and healthcare practices affect patient
outcomes and to devise effective strategies to help improve those
outcomes, become challenging tasks. The tools and approaches
that are currently used in the area are mostly database-oriented,
where hospital informaticians store and retrieve data using hand-
scripted queries and supplement them with custom pipelines that
use standard statistical and regression tools for analysis.

Contributions: In this paper, we present an alternative ap-
proach to analyze hospital patient trajectories. Our approach, which
is mathematically rooted in topological data analysis [17], is a visual
analytics-based approach aimed at aiding the domain scientist (in
this case, a hospital bioinformatician or a data analyst) to visually
navigate and analyze patient health trajectories in a scalable man-
ner. More specifically, we view the problem as one of “structure
discovery” and tracking how such structure evolves with time over
the course of patients’ stay at the hospital(s). For instance, a patient
could undergo different procedures, get administrated with a vari-
ety of drugs, change units within the hospital—all over the course of
the stay; as the healthcare providers try to continually monitor and
assess health risks and vulnerabilities. An ability to scalably track
and view such temporal progression of context variables associated
with patients, in conjunction with health indicator variables could
provide vital clues on how practices affect outcomes—a key piece of
information toward decision making at the coarser level of hospitals
or units within hospitals. Furthermore, by enabling compact and
consolidated views of complex patient trajectories, our approach
can help in delineating subpopulations (i.e., subgroups of patients)
that show divergent behavior.

As a concrete case study in application and evaluation, we present
results and initial findings on a large patient data set obtained from
the Duke Antimicrobial Stewardship Outreach Network (DASON)
database [2] with an aim of extracting factors relevant to antibiotic
usage and stewardship in hospitals. The DASON database contains
a large collection of patient records from a network of 25 commu-
nity hospitals curated by the Duke University School of Medicine.
Although explained in this context, our approach is generalizable
to analyzing patient trajectory data sets in other contexts.

The rest of the paper is organized as follows: Section 2 presents
a brief overview of related works on patient trajectories and on
topological data analysis applied to health analytics, along with a
statement of how the framework presented in this work is different.
In Section 3, we present our approach to problem modeling and
describe our visual analytics framework. In Section 4, we present
our results and findings on the DASON data set.

2 RELATED WORK

There have been many studies conducted on health registry, in
particular relating to analyzing patient health records. However,
the fraction of studies that focus on studying temporal trajecto-
ries have been relatively small. Giannoula et al. [4] and Jensen
et al. [7] mined temporal patterns from patient disease histories
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using a time-analysis framework. Giannoula et al. [4] presented
a method to identify common disease trajectories from electronic
health records and, based on that information, cluster similar trajec-
tories together. The core purpose is to find statistically significant
disease associations in patients. Jensen et al. [7] presented a net-
work representation of diseases to understand disease progression
and to predict the probable next stage in a patient’s life line.

The use of topological data analysis (TDA) in healthcare is rela-
tively new. Utilizing topological concepts to find shape and pattern
in data has made it an impactful tool to analyze health registry as
well. Nicolau et al. [16] used TDA to analyze breast cancer tran-
scriptional data. They identified a unique subgroup of patients with
100% survival rate. Li et al. [10] generated a patient-patient net-
work from electronic health records, where each patient is a node
and there is an edge between two nodes if they exhibit significant
similar behavior (e.g., similar lab tests etc.). The authors used topo-
logical analysis to build this network, and identified three subtypes
of Type 2 diabetes (T2D). They also analyzed disease comorbidities
associated with each T2D subtype.

The work presented in this paper complements the above efforts.
More specifically, we present a visual analytic framework that could
be used to analyze and interact with large patient trajectory data
sets acquired from hospitals. The results of applying our tool can
help reveal, in an unsupervised manner, hidden higher-order struc-
tures about how different subpopulations within a large population
show varied behavior, and how different factors possibly contribute
to the variant behavior. This new analytical capability can provide
valuable structural and behavioral insights into data that current
pipelines are ill-equipped to reveal, and in the process could help
us formulate better hypotheses from patient data.

3 APPROACH

In this section, we first present our approach for modeling the prob-
lem of analyzing hospital patient trajectories, identifying the dif-
ferent variables of interest, and the goals of analysis. Subsequently,
we present our visual analytics framework for this problem. We
present all our discussion viewing antimicrobial stewardship as
our target application, as this application is used as a case-study
throughout our study. However, the methodologies associated with
the problem modeling as well as our visual analytics framework
are both generalizable to other application contexts that involve
patient trajectories.

3.1 Problem Modeling and Formulation

The goal of our antimicrobial stewardship study is to identify po-
tential factors that contribute to antimicrobial exposure of patients
in hospitals. We consider only in-patient data, i.e., for patients who
are admitted and stay in the hospital for at least one day. The factors
we consider can be broadly categorized into three classes:

o Temporal: length of stay (LOS), which is the number of days
starting from the day of admission to the day of discharge
or mortality for a given patient;

e Spatial: the hospital where the patient is admitted, and the
hospital units where the patient receives care; and
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o Treatment-based: agents and Standardized Antimicrobial Ad-
ministration Ratio (SAAR) groups that a patient is exposed
to over the course of their hospital stay.

The main performance (outcome) variable that we are interested
in is cumulative Days of Therapy (cDOT), which is defined as follows.
Days of Therapy (DOT) is the number of different agents a patient
receives on any given day of the admission. The cumulative DOT
(cDOT) on day i is the cumulative sum of DOT from day 1 through
day i. We also use the term Days Since Admission (DSA) to mean the
number of days since the admission date (including the admission
date). Note that when DSA equals LOS for a patient, the patient is
either discharged or deceased.
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Figure 1: A scatterplot of patient trajectory data shown as a
distribution of cumulative Days-of-Therapy (cDOT) values
as a function of Day-Since-Admission (DSA). A single pa-
tient’s trajectory of points is represented as a series of dots
from DSA 1 to the last day of the patient’s admission.

In Figure 1, we show a simple scatterplot of patients’ trajectories
that we obtained from the DASON database (see Section 4 for more
details). It shows the distribution of ¢cDOT values (performance,
on y-axis) as a function of DSA (time, on x-axis). This scatterplot,
while informative in its own to show the diversity of cDOT values,
could become easily overwhelming for decoding or identifying
any hidden patterns or substructures, particularly for large data
sets containing millions of patients. Nevertheless we show this
scatterplot to illustrate the simplistic view of data that it presents.

Hypothesis: We used the following two-part working hypoth-
esis to guide our study in understanding antimicrobial exposure
for inpatients:

e cDOT is responsive to a combination of temporal, spatial
and treatment-based factors, although to varying degrees;
and

e there can be significant variability across different (hidden)
segments of the patient population in the way ¢DOT is cor-
related to these factors.

ACM BCB 2019, Sept 7-10, 2019, Niagara Falls, NY

In other words, a patient’s antimicrobial exposure is a combined
function of time (i.e., their respective length of stay (LOS)), and is
also potentially influenced by spatial attributes such as the units and
hospitals they receive treatment in. Furthermore, we hypothesize
that the type of antibiotic drug agents a patient receives in the
earlier stages of their stay could influence the type of agents they
receive in later stages of their stay.

Ideally, we would like to construct a robust mathematical model
(or models) to describe how the antimicrobial exposure is a function
of all the above factors. However, such a model construction is
likely to require a significant and complex effort; instead in this
paper, we focus on obtaining information from the data (of patient
trajectories) that is already available, in order to guide future model
construction efforts in a data-guided manner.

The second part of our hypothesis provides a way to contex-
tualize the level of influence, as we expect variability in cDOT
responses among different patient subgroups (or subpopulations).
These subpopulations are not necessarily known a priori (i.e., they
are hidden) and they need to be discovered as part of the analysis.

3.2 A Visual Analytics Framework

To test our working hypothesis, we implemented an unsupervised
approach that has its principles rooted in the mathematical field of
topological data analysis (TDA). Algebraic topology is the branch
of mathematics dealing with the shape and connectivity of spaces
[1, 14]. There are multiple important properties of topology that
make it particularly effective for extracting structural features from
large, high-dimensional data sets. First, topology studies shapes in
a coordinate-free way, which enables comparison among data sets
from diverse sources or coordinate systems. Second, topological
constructions are not sensitive to small changes in data, and robust
against noise. Third, topology works with compressed representa-
tions of spaces in the form of simplicial complexes (or triangulations)
[14], which preserve information relevant to how points are con-
nected. Compared to more traditional techniques such as principal
component analysis, multidimensional scaling, and cluster analysis,
topological methods are known to be more sensitive to both large
and small scale patterns [11].

Our approach is unsupervised in that no prior information or
models are assumed and that the approach makes its inferences
entirely based on the data. However, we wish to point out that the
inferences made by the TDA approach do not necessarily imply
causality. They should be viewed as identifying generalized corre-
lations between variables across the spectrum of a heterogeneous
population—there is increased variability in the degrees of the cor-
relations across the population. Such generalized correlations could
not be identified by direct application of traditional data analysis
techniques.

In this paper, we present an implementation for analyzing patient
trajectory data sets using the Hyppo-X framework [8, 9], which is
an implementation of the Mapper algorithm [17]. Hyppo-X is a com-
putational tool for modeling and exploring multidimensional data
where one set of (continuous) variables f = {fi, f2, ... fi} can be
modeled as “filters” to study their impact on a target performance
(continuous) variable g. In the context of our application, each f;
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variable can be any of our potentially influential variables (tempo-
ral, spatial, treatment-based), while the performance variable g is
chosen as cDOT. We now elaborate the use of Hyppo-X framework
in the context of our application.

Input: The input is a set of n points where each “point” is a unique
combination of [patient id, hospital id, admission id, DSA]. These
are the key fields that define a patient record (or a point) in our
analysis. In addition, each point also has a set of attributes including,
but not limited to, cDOT, NHSNunit-id, the agents that the patient
was administered on that DSA, etc. Figure 2a shows an example
input distribution of points (just for illustration purposes). Note
that a trajectory can be defined by following the trail of points for
a patient through the DSA interval [1, LOS]. As the LOS is different
for each patient, the different trajectories are expected to be of
varying lengths.

Output: Hyppo-X takes a set of input points as defined above and
outputs a compact visual representation of the points, grouped into
clusters that are connected via inter-cluster edges, that summarily
shows the evolution of points along the particular dimension (or
dimensions) chosen by the user.

Algorithm: Let X denote the set of points, and f, denote a partic-
ular dimension that we would like to use as a “filter” to view the
set of points. Intuitively, a filter can be thought of as a variable of
interest (e.g., DSA) that we would like to use as a “lens” through
which we would like to view the entire distribution of points.

Given X and a filter f7, the goal is to generate a graph-like rep-
resentation of clusters, where each node in the graph is a cluster of
points, and an edge exists between any two nodes if the correspond-
ing two clusters intersect in points. Here, a cluster is a subset of
points in X that show similar cDOT performance (i.e., have highly
similar cDOT values) under a certain interval of the filter variable
(e.g., DSA 5 through DSA 10).

Intuitively, each cluster represents a set of patient records that
show similar cDOT values observed around the same DSA interval;
and an edge exists between two nodes in our graph if the corre-
sponding two clusters share at least one patient record in common.
This representation allows us to track the progression of patient
records as their trajectories evolve in time and cDOT performance.

Here is a more elaborate explanation of how we compute the
clusters. We slide a sequence of fixed length overlapping windows
over the filter variable, from the minimum DSA (=1) to the maxi-
mum DSA (=maximum over all the LOS). For experiments we used
a window length of 5, and we allow adjacent windows to overlap
by one day (i.e., last day of window i overlaps with the first day of
window i + 1). Next, the set of points that fall into each window
is organized into a bin (one bin for each window). We then run
the density-based clustering algorithm DBSCAN [3] to cluster all
points in a bin by their ¢cDOT values. This clustering step produces
a partitioning of points within each bin, i.e., no two clusters be-
longing to the same bin share any point in common. If a region is
sufficiently dense, we make a cluster as shown in Figure 2b. Fur-
thermore, because we allow the windows to overlap, we generate
trails of overlapping clusters as shown.

Subsequently, a graph is generated, where every cluster is rep-
resented as a node, and an edge is drawn between any two nodes
where the respective clusters share at least one point in common.
Note that by construction, an edge can exist only between clusters
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Figure 2: Generating topological object from a point cloud.

originating between two adjacent bins. We refer to the resulting
graph as a topological object (simplicial complex, to be precise) as
shown in Figure 2c. If three clusters share points, the object includes
the triangle connecting the corresponding three nodes. In this work,
we limit our attention to the vertices and edges in the topological
object, i.e., its graph. This graph is a compact representation of the
set of input points, and allows one to efficiently visualize a large
collection of patients.

3.2.1 Feature extraction: We can extract features as a structural
property of the topological object, which in turn help to generate
hypotheses. One such structural feature is a “flare” that represents
branching phenomenon in the topological object. We now describe
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the structure of a flare; an algorithm for detection of flares was
presented in our previous work [9].

A flare is a combination of a stem, branching node, and branches.
A stem in a flare is a simple path that ends at a branching node. A
branching node is a node that has at least two outgoing edges. Finally,
a branch is a simple path that starts at a branching node and ends at
either another branching node or a terminal node (zero out-degree
node). For instance, in Figure 2c the nodes labeled [A, B, C, D] refer
to a stem. The node D is a branching node with two branches—one
covering the path with nodes labeled [D, E, F, G, H|, and the other
covering the path with nodes labeled [D, I, J, K]. The topological
object contains a single flare here.

Branching phenomena as captured by a flare help us understand
divergent behavior of two (or more) subpopulations covered by
the branches. The comparative analysis of two divergent subpop-
ulations could help us formulate and subsequently test plausible
hypotheses pertaining to distinct behavior of hidden subpopula-
tions of a larger population.

3.3 Software

We implemented the project in C++, PHP, and D3 (for visualization).
The library generates graph objects in the JSON format for analysis.
Our framework is publicly available and can be accessed as part of
the Hyppo-X open source software kit [8].

4 EXPERIMENTAL RESULTS

4.1 Data

We used the Duke Antimicrobial Stewardship Outreach Network
(DASON) database [2], which comprises of 25 community hospi-
tals with full inpatient data. DASON contains detailed electronic
medication administration records (eMAR) for antimicrobials, pa-
tient movement data (bed flow), demographics, and billing data. It
includes information for millions of admissions, but we excluded
the records for outpatients when preparing our final dataset. Also
for calculating DOT, we counted only the antibacterial agents. We
imposed some other constraints as well, e.g., removing null values,
narrowing the dataset in between a specific range of dates, and so
on. Table 1 provides a brief summary of the final data set that we
used in all our analysis.

Table 1: Summary of the data set

Number of hospitals 25
Number of hospital unit-categories 9
Number of distinct patient-admission records 349,610
Number of adult patients 334, 207
Number of male patients 148,540
Number of female patients 201,052
Average LOS per admission 7 days
Longest LOS 405 days
Number of antibacterials used 66
Most used antibacterial Vancomycin
Average DOT per admission 6
Number of agent ranks 4
Most used agent rank rank 3
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4.2 Experimental Evaluation

We ran the Hyppo-X framework on our hospital data set using
Days Since Admission (DSA) as a single filter function with bin
size of 5 days. Figure 3 shows the static snapshot of the topological
object output by our framework!. The clusters appear left to right
in an increasing order of their mean DSA values. The label within
each cluster node shows the mean cDOT value for the inpatients
in the corresponding DSA interval. We can see that the branching
phenomena starts to appear around day 70-80. This observation
suggests that there is little divergence among the patients during
the early part of their stay in the hospitals. However, the cluster size
becomes smaller along the way, and branches with higher cDOT
values start to emerge for longer term patients. This structure is
expected because increasingly more patients are discharged with
time.

We now analyze the distribution of patient clusters at different
stages of their trajectories by showing each cluster as a pie-chart
within it, based on different patient record attributes. The attributes
we use to analyze (one at a time) include (but are not limited to):
distribution of hospital units within clusters (Section 4.2.1), antibi-
otic agent ranks used within clusters (Section 4.2.2), and hospital-
specific analysis (Section 4.2.3).

4.2.1 Analysis based on unit category for patient clusters. There are
42 hospital units in our data set. These units can be grouped into 9
categories. In Figure 4, the pie-charts show the distribution of the
hospital unit categories within each cluster.

We make the following observations based on Figure 4:

o The majority of the clusters are dominated by patients in
the adult medical/surgical ward (shown in red), followed by
adult critical care (shown in green). However, these patient
clusters correspond mostly to the low ¢cDOT branches (see
corresponding clusters in Figure 3), suggesting a relatively
low use of antibiotics for these patient groups.

e The composition of clusters (by unit categories) start to
change in the later branches of the object (with DSA values of
100 or more). In fact, on one dominant set of branches around
DSA 100, we see a more even distribution among adult criti-
cal care, pediatric critical care, and Hematology/Oncology/
Transplant wards. These clusters also see a relative spike in
their cDOT values (see corresponding clusters in Figure 3).

e Another interesting observation is that there is a distinctive
set of cluster branches in around DSA 130 and above, that
also see an increase in their cDOT values. This set of cluster
branches is dominated with patients from the neonatal unit
(shown in light green). In addition, we see a divergence
in ¢cDOT usage even among this small group of neonatal
unit patients—with some branches receiving a higher cDOT
values than the others.

Collectively, these observations suggest that antibiotic use does
not necessarily show a linear increase with time. Instead, different
patient groups receiving treatment in different units show spikes
in their antibiotic use at different intervals of their hospital stay.
Furthermore, not all units see a comparable use of antibiotics—for
instance, adult medical/surgical ward is frequently occurring but

Note that in the actual tool, all topological objects allow interactive visualization.
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Figure 4: The distribution of hospital unit categories shown as a pie-chart within each cluster.

receives lower antibiotics; whereas pediatric ward or some segment
of neonatal unit populations are rarer but receive higher antibiotics.
There are also units that are both rare and are exposed to lower an-
tibiotics (e.g., labor and delivery/post-partum/GYN). Finally, there
is also a cDOT divergence within the same unit category—in partic-
ular, patient groups in the neonatal ward.

4.2.2  Analysis based on agent rank on patient clusters. There are a
total of 66 antibacterial agents used on patients in the DASON data.
We can rank and group these agents into four groups—from rank
1 through rank 4—roughly in order of their type/target microbial
coverage. This ranking also reflects a rough ordering based on the
agent severity (with 1 being low to 4 being high).

Using this ranking scheme, we computed the distribution of
agent ranks used within each cluster. This distribution is as per

the agents used by the patients in a given cluster (within the DSA
range represented by that cluster). In addition, there were many
days when a patient did not receive any agent. To capture such
cases, we introduced a separate “No agent usage” rank category.
Figure 5 shows the distribution of agent ranks within each cluster.
We make the following observations based on this figure:

e The most dominant category is the “No agent usage” cate-
gory across the range of clusters. However, in the initial days
of stay (DSA range 1 through 60-70) this is not necessarily
true (i.e., other agent ranks are visible).

e Among the agents used, rank 3 agents appear most frequent
(shown in blue), followed by rank 1 (shown in yellow), and
subsequently by rank 2 (shown in cyan).



A Visual Analytics Framework for Analysis of Patient Trajectories

[C] No agent usage
] rank 1
[ rank 2
M rank 3
m rank 4

““03‘5\&90 T
N

Almost half of the
patients are not
getting any antibiotic

Mostly rank 3 agents

ACM BCB 2019, Sept 7-10, 2019, Niagara Falls, NY

Rank 4 agents appeared relatively
more in higher cDOT branches

. ?
© C‘Ae“‘
<
>0 ® ¢
N 5
¢ 2" ¢ ¢ Y
-
- ¢ e e
ce %8
€
ee“e“.
¢ ¢ ¢ 0 g
e ¢
¢ & e ot eoe
o
&
®

Figure 5: The pie chart in each node is representing the percentage usage of each agent group on that particular interval of

time.

e Rank 4 agents appear rarely (represented by red) but they
also generally appear in the branches with the higher cDOT
values. This observation probably suggests that use of this
agent is reserved typically for patients with worsening health
conditions.

Note here that the use or non-use of an antibiotic agent (rank)
could potentially be a matter of preference or practice protocol
across different hospitals. In the following section, we analyze their
impact across different hospitals.

2000 1001
1011

1012

1050 )

1048

1047
1045

1040

Figure 6: Number of records per hospital. The Duke hospital
(id: 2000) has the largest number of records.

4.2.3  Rank based analysis on specific hospital. Patient data from a
total of 25 hospitals are represented in the DASON data set. How-
ever, the Duke medical hospital (hospital id: 2000) is the domi-
nant contributor accounting for almost 15% of the unique patient
records—as shown in Figure 6. To elucidate any potential differences
in antibiotic use across these different hospitals, we performed two
studies—one by considering records only from the Duke hospital
(id: 2000), and another by considering records only from the re-
maining 24 hospitals. The resulting objects are shown in Figure 7.
Even though the pie-charts in the clusters are shown by their agent
rank distributions, we also compare information that is contained
in the general structure of these two objects.

We make the following observations based on Figure 7:

o The sizes of the clusters stay roughly uniform over the first
100 days along the main stem of the topological object for
Duke hospital, whereas the sizes rapidly shrink for the other
hospitals in the same period. This suggests that the patients
tend to stay longer at the Duke hospital, whereas in the com-
munity hospitals, patients either leave because they recover
or they leave to get transferred to a larger hospital (such as
Duke).

e Patients in the Duke Hospital are more likely (than ones in
the other hospitals) to receive some antibiotic at least once
during their stay.

e The use of agent rank 4 is relatively more frequent at the
Duke hospital than for the other hospitals.

e Even though these two objects were constructed individ-
ually, the general topological structure (i.e., overall shape)
is roughly comparable, suggesting we have similar branch-
ing/divergence attributes between the two classes of hospi-
tals (Duke vs. non-Duke).

4.3 Interesting features/flares

So far, we have described observations on the topological object
without necessarily examining its branching structure in detail. In
order to more thoroughly examine the branching structure within
different parts of the object (i.e., different subpopulations), we ap-
plied our flare detection algorithm (Section 3.2.1) to the DASON
data. Recall that a flare is a structural features comprising of a stem
region that ends at a branching node, and is subsequently followed
by a number of child branches. For the purpose of our study, we
used the hospital id attribute of the dataset to identify the coverage
of a flare. The coverage of a flare specifies the boundary to which
we can extend a given flare. This is done in order to ensure that
we recover a meaningful branch which covers data points from the
same subpopulation.

Figure 8 shows the two most interesting flares detected by our
approach (shown in blue and red arcs). Note that our tool computes
a score for each flare and outputs them in decreasing order. We
make the following observations based on the detected flares:
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Figure 7: A comparison of rank based analysis on Duke (top) vs Non-Duke (bottom) Hospitals.

(1) From DSA 1 to DSA 80, there is little divergence in the cDOT
values of the patient clusters (with a few exceptions), and
this is shown by the long stem of the blue flare.

(2) This behavior changes around DSA 80. A group of patients
were treated with higher dose of antibiotics compared to the
remaining group (Figure 8(A)). The branching node (shown
with thick border) in the blue flare represents this branching
event. This branching event essentially serves to bifurcate
patients in the Hematology/Oncology/Transplant or the Pe-
diatric wards into two subgroups as shown in Figure 8(C)—
those for whom ¢DOT increased (higher branches) and those
for whom it did not, along the lower branches.

(3) The other flare (shown in red arcs), with a branching occur-
ring around DSA 100, shows a further split in the population
between the neonatal branches (lower) vs. non-neonatal
branches (higher).

(4) In terms of agent rank usage, we see that it is the subpop-
ulation corresponding to the first flare (blue) that is ex-
posed to agent rank 4 (see Figure 8(B)). This subpopulation
corresponds to patients mostly in either the Adult Medi-
cal/Surgical Ward or the Hematology/Oncology/Transplant
Ward (see Figure 8(C)).

In summary, our approach was able to identify in an unsuper-
vised manner the major branching events in the data. Further, the
analysis presented above shows which subgroups within the larger
patient population are more prevalent in those branches.

5 CONCLUSIONS

The use of topological data analysis for biomedical informatics
applications is relatively new. This technique has a potential to
represent complex data in compact and visually-friendly formats.
In this paper, we have presented a visual analytics framework pow-
ered by topological data analysis for analyzing patient trajectories,
and applied it to the concrete application of exploring patient tra-
jectories following the use of antibiotics in hospitals. First, the
framework allowed a clustering of patient trajectories (by their
antibiotic use, or cDOT) so that they can be concisely viewed along
the temporal dimension. Subsequently, we used multiple attributes
such as hospital units or agent ranks to analyze and observe patterns
(both conserved and discrepant substructures) in these clustered
trajectories.
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Figure 8: Topological object constructed using DSA as a single filter function (shown earlier in Figure 3), now also showing the
interesting flares detected by our method. The nodes are arranged from left to right with chronological order of mean DSA
values. (A) Each cluster colored by its mean cDOT, with branches showing different degree of uses. (B) Each cluster (node) of
the topological object is rendered as a pie-chart showing the distribution of their five antibiotic classes. (C) Each cluster (node)
of the topological object is rendered as a pie-chart showing the distribution of their nine hospital unit classes. Long arcs of

different colors show interesting flares, and the corresponding branching nodes are identified with bold border. The blue flare
was ranked as the most interesting flare.

In contrast to traditional approaches using dense scatterplots
(as shown in Figure 1), our approach provides the new capabil-
ity to analyze and examine patient trajectories in a detailed and

visually interactive manner. Further, our analysis by different at-
tributes revealed a more nuanced picture of how antibiotics are
used across the patient population and across hospitals (and their
units). In summary, we not only find differing propensities for use
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of antibiotics within certain hospital units, but we also find similar
propensities across hospitals. Furthermore, we observe divergence
within patient groups (e.g., neonatal) on how antibiotics are used.
These observations are directly inferred from the data in an unsu-
pervised manner, and could in turn inform future construction of
more robust models in this space.

Future research directions include (but are not limited to) the
following. In addition to the attributes used, we plan to explore
using other variables in our framework to study antibiotic use
in hospitals including patients’ Elixhauser score (which gives an
indication of comorbidities in a patient), disease diagnostic codes
(associated with each admission), and others. These variables could
collectively throw more light into the context under which a patient
receives treatment in a hospital.

The observations made in this work also open new questions
about what makes a patient more susceptible toward antibiotic
exposure in hospitals, and about whether there is a way to build
predictive/probabilistic models based on training data obtained
from these trajectories. Also, more work is needed to understand
and better characterize the structural properties of the topological
objects created for different hospitals. In particular, comparing
and contrasting them can help us better understand similar and
discrepant practices across those healthcare locations and also help
us devise consistent and standardized procedures toward improving
antibiotic stewardship.
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