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We summarize and expand known connections between the
study of Dehn surgery on links and the study of trisections of
closed, smooth 4-manifolds. In particular, we propose a program
in which trisections could be used to disprove the generalized
property R conjecture, including a process that converts the poten-
tial counterexamples of Gompf, Scharlemann, and Thompson into
genus four trisections of the standard 4-sphere that are unlikely to
be standard. We also give an analog of the Casson–Gordon rectan-
gle condition for trisections that obstructs reducibility of a given
trisection.
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R Conjecture | Heegaard splitting

The theory of Dehn surgery on knots has been thoroughly
developed over the past 40 y. In general, this research has

focused on two major questions: First, which manifolds can be
obtained by surgery on a knot in a given manifold Y ? Second,
given a pair of manifolds Y and Y ′, for which knots K ⊂Y ,
does there exist a surgery to Y ′? These two questions have
contributed to the growth of powerful tools in low-dimensional
topology, such as sutured manifold theory, the notion of thin
position, and Heegaard Floer homology. For example, over the
last 15 y, the Heegaard Floer homology theories of Ozsváth and
Szabó have dramatically deepened our collective understanding
of Dehn surgeries on knots (for instance, ref. 1).

If we replace the word “knot” with “link” in the preced-
ing paragraph, the situation changes significantly; for example,
the classical Lickorish–Wallace theorem asserts that every 3-
manifold Y can be obtained by surgery on a link in S3 (2, 3).
For the second general question, concerning which links in a
given 3-manifold Y yield a surgery to another given 3-manifold
Y ′, we observe the following basic fact: Two framed links that
are handleslide equivalent surger to the same 3-manifold (4).
Thus, surgery classification of links is necessarily considered up
to handleslide equivalence, and tools which rely on the topol-
ogy of a knot exterior S3 r ν(K ) are not nearly as useful, since
handleslides can significantly alter this topology.

The purpose of this paper is to make clear the significant role
of the trisection theory of smooth 4-manifolds in the classifica-
tion of Dehn surgeries on links, including a program that suggests
trisections may be used to disprove the generalized property R
conjecture (GPRC), Kirby problem 1.82 (5). The GPRC asserts
that every n-component link in S3 with a Dehn surgery to
#n(S1×S2) is handleslide equivalent to the n-component zero-
framed unlink. We call a link L with such a surgery an R-link.
The related stable GPRC asserts that if L is an R-link, then
the disjoint union of L and an unlink is handleslide equiva-
lent to an unlink. The GPRC is known to be true when n = 1
(6), and the stable GPRC is known to be true in the following
special case.

Theorem 1 (7). If L⊂S3 is an n-component R-link with tunnel
number n , then L satisfies the stable GPRC.

Any n-component R-link L can be used to construct a closed
4-manifold XL, where XL has a handle decomposition with a
single 0-handle, no 1-handles, n 2-handles, n 3-handles, and
a single 4-handle. An elementary argument reveals that XL is
a homotopy 4-sphere, and if L is handleslide equivalent to an
unlink, then XL is the standard S4. Thus, both the GPRC and
stable GPRC imply the smooth 4D Poincaré conjecture (S4PC)

for geometrically simply connected 4-manifolds (those that can
be built without 1-handles). Yet these conjectures are substan-
tially stronger than this instance of the S4PC, since the GPRC
implies that not only that is XL standard, but also that the handle
decomposition can be standardized without adding any cancel-
ing pairs of handles. (The stable version allows the addition of
canceling 2-handle/3-handle pairs, but not canceling 1-handle/2-
handle pairs.) Although experts seem divided about the veracity
of the S4PC, it is widely believed that the GPRC is false, with the
most prominent possible counterexamples appearing in a paper
of Gompf, Scharlemann, and Thompson (8), building on work of
Akbulut and Kirby (9).

A new tool that has been useful in this context is a trisection
of a 4-manifold, introduced by Gay and Kirby (10). A trisection
is a decomposition of a 4-manifold X into three simple pieces,
a 4-dimensional version of a 3D Heegaard splitting. Elegantly
connecting the two theories, Gay and Kirby (10) proved that
every smooth 4-manifold admits a trisection, and every pair of
trisections for a given 4-manifold has a common stabilization,
mirroring the Reidemeister–Singer theorem (11, 12) in dimen-
sion three. Unlike Heegaard splittings, however, the stabilization
operation of Gay and Kirby can be broken into three separate
operations, called unbalanced stabilizations of types 1, 2, and
3 (7). A trisection is said to be standard if it is an unbalanced
stabilization of the genus zero trisection of S4, and thus every
trisection of S4 becomes standard after some number of stabi-
lizations. Just as trisections were pivotal in the Proof of Theorem
1 above, we have also used trisections to obtain the following
Dehn surgery classification result.

Theorem 2 (13). If L⊂S3 is a two-component link with tunnel
number one with an integral surgery to S3, then L is handleslide
equivalent to a 0-framed Hopf link or a ±1-framed unlink.

In the present article, we exhibit a program to disprove the
GPRC in three steps, of which we complete the first two. The
initial step translates the GPRC and the related stable GPRC
into statements about trisections of the 4-sphere. In 3. R-Links
and Stabilizations we prove the following, postponing rigorous
definitions for now.

Significance

Dehn surgery is the process in which one cuts out a neigh-
borhood of a knot or a link in 3D space and reglues this
neighborhood in a different way to obtain a new 3D space.
By viewing this operation as occurring smoothly over a period,
there is a natural interpretation of spaces “before” and “after”
a Dehn surgery as level sets of a generic function taking a 4D
space to the real line. As such, 4D spaces are deeply linked
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trisections of 4-manifolds can be used to answer interesting
questions about such surgeries.
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Theorem 3. Suppose L is an R-link and Σ is any admissible surface
for L.

i) If L satisfies the GPRC, then T (L, Σ) is 2-standard.
ii) The link L satisfies the stable GPRC if and only if T (L, Σ) is

2, 3-standard.

The second step is contained in 4. Trisecting the Gompf–
Scharlemann–Thompson Examples in which we convert the pro-
posed counterexamples of Gompf–Scharlemann–Thompson into
trisections (with explicit diagrams). The final, incomplete step
in this program is to prove that the trisections constructed in
the second step are not 2-standard, which, together with Theo-
rem 3, would imply that the GPRC is false. To accomplish step
iii, we must develop machinery to verify that a trisection is non-
standard. To this end, in 5. A Rectangle Condition for Trisection
Diagrams we introduce an analog of the Casson–Gordon rect-
angle condition (14) for trisection diagrams, giving a sufficient
condition for a trisection diagram to correspond to an irreducible
(nonstandard) trisection.

We encourage the reader to view this article in full color, as a
gray-scale rendering of the figures leads to a loss of information.

1. Trisections
All manifolds are connected and orientable, unless otherwise
stated. We let ν(·) refer to an open regular neighborhood in an
ambient manifold that should be clear from context. The tun-
nel number of a link L⊂Y is the cardinality of the smallest
collection of arcs a with the property that Y r ν(L∪ a) is a
handlebody. In this case, ∂ν(L∪ a) is a Heegaard surface cut-
ting Y r ν(L) into a handlebody and a compression body. A
framed link refers to a link with an integer framing on each
component.

Let L be a framed link in a 3-manifold Y , and let a be a
framed arc connecting two distinct components of L; call them
L1 and L2. The framings of L1, L2, and a induce an embedded
surface S ⊂Y , homeomorphic to a pair of pants, such that
L1 ∪L2 ∪ a is a core of S . Note that S has three boundary com-
ponents, two of which are isotopic to L1 and L2. Let L3 denote
the third boundary component, with framing induced by S . If L′
is the framed link (LrL1)∪L3, we say that L′ is obtained from
L by a handleslide of L1 over L2 along a .

If two links are related by a finite sequence of handleslides,
we say they are handleslide equivalent. It is well known that
Dehn surgeries on handleslide-equivalent framed links yield
homeomorphic 3-manifolds (4). Recall that an R-link is an n-
component link in S3 with a Dehn surgery to the manifold
#n(S1×S2), which we henceforth denote by Yn . Let Un denote
the n-component zero-framed unlink in S3. If an R-link L is
handleslide equivalent to Un , we say that L has property R.
If the split union LtUr is handleslide equivalent to Un+r for
some integer r , we say that L has stable property R. With these
definitions the GRPC and stable GPRC can be formulated as
follows.

(Stable) GPRC. Every R-link has (stable) property R.
In this section, we explore the relationship between R-links

and trisections of the smooth 4-manifolds that can be constructed
from these links.

Let X be a smooth, orientable, closed 4-manifold. A (g ; k1,
k2, k3)-trisection T of X is a decomposition X =X1 ∪X2 ∪X3

such that
i) each Xi is a 4D 1-handlebody, \ki (S1×B3);

ii) if i 6=j , then Hij =Xi ∩Xj is a 3D handlebody, \g(S1×D2);
and

iii) the common intersection Σ =X1 ∩X2 ∩X3 is a closed genus
g surface.

The surface Σ is called the trisection surface or central surface,
and the parameter g is called the genus of the trisection. The tri-
section T is called balanced if k1 = k2 = k3 = k , in which case it
is called a (g , k) -trisection; otherwise, it is called unbalanced.

We call the union H12 ∪H23 ∪H31 the spine of the trisection.
In addition, we observe that ∂Xi =Yki =Hij∪ΣHli is a genus
g Heegaard splitting. Because there is a unique way to cap
off Yki with \ki (S1×B3) (15, 16), every trisection is uniquely
determined by its spine.

Like Heegaard splittings, trisections can be encoded with dia-
grams. A cut system for a genus g surface Σ is a collection of
g pairwise disjoint simple closed curves that cut Σ into a2g-
punctured sphere. A cut system δ is said to define a handlebody
Hδ if each curve in δ bounds a disk in Hδ . A triple (α,β, γ) of
cut systems is called a (g ; k1, k2, k3)-trisection diagram for T if
α, β, and γ define the components Hα,Hβ , and Hγ of the spine
of T . We set the conventions that Hα =X3 ∩X1, Hβ =X1 ∩X2,
and Hγ =X2 ∩X3, which the careful reader may note differ
slightly from conventions in ref. 7. With our conventions, (α,β),
(β, γ), and (γ,α) are Heegaard diagrams for Yk1 , Yk2 , and Yk3 ,
respectively. In ref. 10, Gay and Kirby proved that every smooth
4-manifold admits a trisection, and trisection diagrams, mod-
ulo handleslides within the three collections of curves, are in
one-to-one correspondence with trisections.

Given trisections T and T ′ for 4-manifolds X and X ′, we can
obtain a trisection for X#X ′ by removing a neighborhood of a
point in each trisection surface and gluing pairs of components of
T and T ′ along the boundary of this neighborhood. The resulting
trisection is uniquely determined in this manner; we denote it by
T#T ′. A trisection T is called reducible if T =T ′#T

′′
, where

neither T ′ nor T
′′

is the genus zero trisection; otherwise, it is
called irreducible. Equivalently, T is reducible if there exists an
essential separating curve δ in Σ that bounds compressing disks
in Hα, Hβ , and Hγ . Such a curve δ represents the intersection of
a decomposing 3-sphere with the trisection surface.

In dimension three, stabilization of a Heegaard surface may be
viewed as taking the connected sum with the genus one splitting
of S3, and a similar structure exists for trisections. Let Si denote
the unique genus one trisection of S4 satisfying ki = 1. Diagrams
for these three trisections are shown in Fig. 1. A trisection T
is called i -stabilized if T =T ′#S i and is simply called stabilized
if it is i -stabilized for some i = 1, 2, 3. Two trisections T ′ and
T

′′
are called stably equivalent if there is a trisection T that is a

stabilization of both T ′ and T
′′

. Gay and Kirby (10) proved that
any two trisections of a fixed 4-manifold are stably equivalent.

We say that a trisection T of S4 is standard if T can be
expressed as the connected sum of genus one trisections Si .

2. Admissible Surfaces
Here we turn our attention to R-links and Dehn surgeries, before
connecting these surgeries to the trisections described above.
Recall that Yk denotes #k (S1×S2), and an R-link L is a framed
n-component link in S3 such that Dehn surgery on L yields
Yn . As mentioned above, every R-link L describes a closed 4-
manifold XL with a handle decomposition with a single 0-handle,
zero 1-handles, n 2-handles, n 3-handles, and a single 4-handle.
Thus, XL is a homotopy S4. An admissible Heegaard surface Σ
for L is a Heegaard surface cutting S3 into two handlebodies H
and H ′ such that a core of H contains L. As such, M =H r ν(L)
is a compression body and Σ may be viewed as a Heegaard
surface for the link exterior E(L) =S3 r ν(L). Let HL be the
handlebody that results from Dehn filling M (or performing

Fig. 1. The three genus one trisections diagrams for S4.

10888 | www.pnas.org/cgi/doi/10.1073/pnas.1717187115 Meier and Zupan

http://www.pnas.org/cgi/doi/10.1073/pnas.1717187115


SP
EC

IA
L

FE
A

TU
RE

M
A

TH
EM

A
TI

CS

Dehn surgery on L in H ) along the framing of the link L. An
admissible pair consists of an R-link together with an admissible
Heegaard surface.

For completeness, we also allow the empty link, L= ∅, where
L has an empty Dehn filling yielding S3, giving rise to a handle
decomposition of S4 =X∅ with only a single 0- and 4-handle. An
admissible surface Σ for the empty link is a (standard) genus g
Heegaard surface for S3. A genus g Heegaard diagram (α,β)
for Yk is called standard if α∩β contains k curves, and the
remaining g − k curves occur in pairs that intersect once and are
disjoint from other pairs. A trisection diagram is called standard
if each pair is a standard Heegaard diagram. Note that a stan-
dard trisection of S4 has a standard diagram, since each of its
summands Si has such a diagram.

Lemma 4. Let L be an n-component R-link. Every admissible pair
(L, Σ) gives rise to a trisection T (L, Σ) of XL with spine H ′ ∪
H ∪HL. If g(Σ) = g , then T (L, Σ) is a (g ; 0, g −n,n)-trisection.
Moreover, there is a trisection diagram (α,β, γ) for T (L, Σ)
such that

i) Hα =H ′, Hβ =H , and Hγ =HL;
ii) L is a sublink of γ, where γ is viewed as a link framed by Σ in

S3 =Hα ∪Hβ ; and
iii) (β, γ) is a standard diagram for Yg−n , where β ∩ γ= γrL.

Proof: This is proved (in slightly different formats) for L 6=∅ in
both refs. 7 and 10. If L= ∅, then it follows easily that S4 =X∅
has a handle decomposition without 1-, 2-, or 3-handles, H =
HL, and H ′ ∪H ∪HL is the spine for the (g ; 0, g , 0)-trisection
T (L, Σ) of S4. In this case, there is a diagram such that β= γ,
the standard genus g diagram for Yg .

Note that the conventions Hα =H ′, Hβ =H , and Hγ =HL, in
conjunction with our earlier conventions, identify the 0-handle
with X1, the trace of the Dehn surgery on Hβ along L with X2,
and the union of the 3-handles and the 4-handle with X3.

Lemma 5 connects R-links, standard trisections, and the stable
GPRC.

Lemma 5. Suppose L is an n-component R-link with admissible
genus g surface Σ, and T (L, Σ) is a standard trisection of S4. Then
L has stable property R.

Proof: By Lemma 4, the trisection T (L, Σ) has a diagram
(α,β, γ) such that (β, γ) is the standard Heegaard diagram for
Yg−n . Viewing γ as a g-component link in S3 =Hα ∪Hβ , we
have that (g −n) curves in γ bound disks in Hβ , while the
remaining n curves are isotopic to L [and are disjoint from the
(g −n) disks]. Thus, as a link in S3, we have γ=LtUg−n .

In addition, the trisection T (L, Σ) is a standard (g ; 0, g −
n,n)-trisection of S4 by hypothesis. As such, it must be a con-
nected sum of g −n copies of S2 and n copies of S3, and it has a
standard diagram, (α′,β′, γ′), where g −n curves in γ′ are also
curves in β′, and the remaining n curves are also curves in α′.
Thus, in S3 =Hα′ ∪Hβ′ , the curves γ′ compose a g-component
unlink, with surface framing equal to the zero framing on each
component. Since (α,β, γ) and (α′,β′, γ′) are trisection dia-
grams for the same trisection, we have that γ is handleslide
equivalent to γ′ via slides contained in Σ. Therefore, γ and γ′

are handleslide-equivalent links in S3. We conclude that L has
stable property R, as desired. �

As an aside, we note that Theorem 1 can be obtained
quickly using Lemma 5 and the classification of (g ; 0, 1, g − 1)-
trisections from ref. 7.

3. R-Links and Stabilizations
To prove Theorem 3, we develop the connection between R-
links, their induced trisections, and the three types of stabiliza-
tions. First, we must introduce several additional definitions. Let
(L1, Σ1) and (L2, Σ2) be two admissible pairs and define the

operation ∗ by

(L1, Σ1) ∗ (L2, Σ2) = (L1 tL2, Σ1#Σ2),

where the connected sum is taken so that L1 tL2 is not separated
by the surface Σ1#Σ2.

Lemma 6. If (L1, Σ1) and (L2, Σ2) are admissible pairs, then
(L, Σ) = (L1, Σ1) ∗ (L2, Σ2) is an admissible pair, and T (L, Σ) =
T (L1, Σ1)#T (L2, Σ2).

Proof: It is clear that the framed link L1 tL2 has the appropriate
surgery, so L is an R-link. Suppose Σi bounds a handlebody Hi

with core Ci containing Li . Then there is a core C for H1\H2

such that L1 tL2⊂C1 tC2⊂C , and thus Σ1#Σ2 is admissi-
ble as well. For the second claim, note that the separating curve
δ arising from the connected sum Σ = Σ1#Σ2 is a reducing
curve for T (L, Σ), splitting it into the trisections T (L1, Σ1) and
T (L2, Σ2). �

Let U be a 0-framed unknot in S3, and let ΣU be the genus
one splitting of S3 such that one of the solid tori bounded by
ΣU contains U as a core. In addition, let Σ∅ be the genus one
Heegaard surface for S3, to be paired with the empty link. Note
that (U , ΣU ) and (∅, Σ∅) are admissible pairs.

Lemma 7. The pairs (∅, Σ∅) and (U , ΣU ) yield the following
trisections:

i) T (∅, Σ∅)=S2.
ii) T (U , ΣU )=S3.

Proof: Note that each trisection in question has genus one. The
associated trisections T (∅, Σ∅) and T (U , ΣU ) are (1; 0, 1, 0)-
and (1; 0, 0, 1)-trisections, respectively, and thus they must be S2

and S3. �
By combining Lemmas 6 and 7, we obtain the following.

Corollary 8. Suppose (L, Σ) is an admissible pair, with T =
T (L, Σ):

i) T ((L, Σ) ∗ (∅, Σ∅)) is the 2-stabilization of T .
ii) T ((L, Σ) ∗ (U , ΣU )) is the 3-stabilization of T .

In addition, if Σ+ is the stabilization of Σ (as a Heegaard surface
for Yk ), then (L, Σ+) = (L, Σ) ∗ (∅, Σ∅).

Remark 9. Notably absent from Lemma 7 and Corollary 8 is any
reference to 1-stabilization. By generalizing the definition of an
admissible pair, we can accommodate 1-stabilization in this con-
text; however, 1-stabilizing a trisection T (L, Σ) that arises from an
R-link L corresponds to adding a canceling 1-handle/2-handle pair
to the induced handle decomposition of XL. This addition takes us
away from the setting of R-links, so we have chosen not to adopt this
greater generality here.

We say that two trisections T1 and T2 of a 4-manifold X
are 2-equivalent if there is a trisection T that is the result of
2-stabilizations performed on both T1 and T2.

Lemma 10. If Σ1 and Σ2 are two distinct admissible surfaces
for an R-link L, then the trisections T (L, Σ1) and T (L, Σ2) are
2-equivalent.

Proof: Since both Σ1 and Σ2 are Heegaard surfaces for E(L),
they have a common stabilization Σ by the Reidemeister–Singer
theorem (11, 12). By Lemma 6, the surface Σ is admissible, and
by Corollary 8, T (L, Σ) can be obtained by 2-stabilizations of
T (L, Σi).

Observe that 2-equivalence is an equivalence relation. Since
Lemma 10 implies that every trisection T (L, Σ) coming from a
fixed R-link L belongs to the same 2-equivalence class, it fol-
lows that L has a well-defined 2-equivalence class, namely, the
2-equivalence class of T (L, Σ) for any admissible surface Σ. If
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two R-links L1 and L2 give rise to 2-equivalent trisections, we
say that L1 and L2 are 2-equivalent.

Suppose that L is an n-component R-link with admissible sur-
face Σ, cutting S3 into H ∪H ′, and L is isotopic into a core
C ⊂H as above. As such, there is a collection of n compressing
disks D with the property that each disk meets a unique compo-
nent of L once and misses the other components. We callD a set
of dualizing disks. Note that if (α,β, γ) is the trisection diagram
for T (L, Σ) guaranteed by Lemma 4, then the n disks bounded
by the n curves in β that are not in γ are a set of dualizing disks
for L.

Lemma 11. If R-links L1 and L2 are related by a handleslide, then
L1 and L2 are 2-equivalent.

Proof: If Li is an n-component link, then L1 and L2 have n − 1
components in common and differ by a single component, L′1⊂
L1 and L′2⊂L2, where a slide of L′1 over another component
L′ of L1 along a framed arc a yields L′2. Consider Γ =L1 ∪ a ,
an embedded graph with n − 1 components, and let Σ be a
Heegaard surface cutting S3 into H ∪H ′, where Γ is contained
in a core of H . Then L1 is also contained in a core of H , and Σ
is admissible (with respect to L1). Let D1 be a set of dualizing
disks for L1, which by construction may be chosen so that the arc
a avoids all of the disks D1 (Fig. 2).

There is an isotopy taking Γ into Σ, preserving the intersec-
tions of Li with the dualizing disks D1, so that the framing of Γ
agrees with its surface framing in Σ. As such, we can perform the
handleslide of L′1 over L′ along a within the surface Σ, so that
the resulting link L2 is also contained in Σ, with framing given by
the surface framing. Let D ′1∈D1 be the disk that meets L′1 once,
and let D ′∈D1 be the disk that meets L′ once. There is an arc a ′,
isotopic in Σ to an arc in Γ, that connects D ′1 to D ′ (Fig. 2). Let
D ′2 be the compressing disk obtained by banding D ′1 to D ′ along
a ′. Then D2 = (D1 rD ′)∪D ′2 is a set of dualizing disks for L2.
Thus, by pushing L2 back into H , we see that Σ is an admissible
surface for L2.

Following Lemma 4, let Hi ∪H ′i ∪HLi be a spine for T (Li , Σ).
By construction, H1 =H2 and H ′1 =H ′2. Finally, since Hi is Dehn
surgery on Li in Hi , and L1 and L2 are related by a sin-
gle handleslide, we have HL1 =HL2 . It follows that T (L1, Σ) =
T (L2, Σ), and we conclude that L1 and L2 are 2-equivalent. �

Recall that a standard trisection of S4 is the connected sum of
copies of S1, S2, and S3 and Un is the zero-framed, n-component
unlink, so XUn =S4.

Lemma 12. Let Σ be any admissible surface for Un ; then T (Un , Σ)
is standard.

Proof: We induct on (n, g) with the dictionary ordering. If
n = 1, then E(U1) is a solid torus. If g = 1, then Σ = ΣU , so
that T (U1, ΣU )=S3 by Lemma 7. If n = 1 and g > 1, then
Σ is stabilized (17, 18), which means that T (U1, Σ) is 2-
stabilized by Corollary 8, and, as such, T (U1, Σ) is standard
by induction.

Fig. 2. The disks and arcs used in the Proof of Lemma 11, in which the pairs
(L′1, D′

1) and (L′, D′) are replaced with (L′2, D′
1) and (L′, D′

2).

In general, note that the Heegaard genus of an n-component
unlink is n; thus g ≥n for all possible pairs (n, g). For n > 1,
we have that E(Un) is reducible, and so Haken’s lemma (19)
implies that Σ is reducible, splitting into the connected sum of
genus g1 and g2 surfaces Σ1 and Σ2, where Σi is a Heegaard
surface for E(Uni ). Then T (Un , Σ) = T (Un1 , Σ1)#T (Un2 , Σ2),
where (ni , gi)< (n, g). Since both summands are standard tri-
sections by induction, it follows that T (Un , Σ) is also standard,
completing the Proof. �

A trisection T is said to be 2-standard if it becomes stan-
dard after some number of 2-stabilizations. Similarly, T is 2, 3-
standard if it becomes standard after some number of 2- and
3-stabilizations.

Proof of Theorem 3: Suppose L has property R. By Lemma 11,
L and Un are 2-equivalent links. Thus, T (L, Σ) is 2-equivalent
to some trisection coming from Un , but all trisections induced
by Un are standard by Lemma 12, and thus T (L, Σ) becomes
standard after a finite sequence of 2-stabilizations.

If L has stable property R, then LtUn has property R
for some n , and thus T ((L, Σ) ∗ (U , ΣU )∗ · · · ∗(U , ΣU )) is
2-standard by the above arguments. By Lemma 7 and Corollary 8,

T ((L, Σ) ∗ (U , ΣU ) ∗ · · · ∗ (U , ΣU )) = T (L, Σ)#S3# . . .#S3;

hence T (L, Σ) is 2, 3-standard.
Finally, if the trisection T (L, Σ) is 2, 3-standard, then there

exist integers s and t such that the connected sum of T (L, Σ)
with s copies of S2 and t copies of S3 is standard. Let (L∗, Σ∗)
be the admissible pair given by

(L∗, Σ∗) = (L, Σ) ∗ (∅, Σ∅) ∗ · · · ∗ (∅, Σ∅)︸ ︷︷ ︸
s

× ∗ (U , ΣU ) ∗ · · · ∗ (U , ΣU )︸ ︷︷ ︸
t

.

By assumption, T (L∗, Σ∗) is standard, so by Lemma 5, the link
L∗ has stable property R. But by definition of ∗, we have L∗=
LtUt , and thus L also has stable property R, completing the
Proof. �

4. Trisecting the Gompf–Scharlemann–Thompson Examples
To use Theorem 3 to disprove the GPRC or the stable GPRC,
we must convert the possible counterexamples to these theo-
rems into trisections. In this section, we find admissible surfaces
related to the examples proposed by Gompf, Scharlemann, and
Thompson (8). We call this family the Gompf–Scharlemann–
Thompson (GST) links. First, we outline that construction, and
then we define the GST links and discuss how they fit into the
broader picture. To proceed, we need several new definitions.

Let K be a knot in S3. We say that K is ribbon if K bounds
an immersed disk in S3 whose double points are ribbon singu-
larities. It is well known that every ribbon disk can be viewed
as a properly embedded disk in the standard 4-ball B4, where
K ⊂S3 = ∂B4. Suppose B is any homotopy 4-ball. The knot K is
called homotopy ribbon in B if there exists a properly embedded
disk D ⊂B such that K = ∂D ⊂S3 = ∂B and the inclusion map
(S3,K ) ↪→ (B ,D) induces a surjection π1(S3 rK )�π1(B r
D). Every ribbon knot is homotopy ribbon.

Let K ⊂S3 with F a Seifert surface for K . The knot K is
fibered with fiber F if its exterior E(K ) is homeomorphic to
the mapping torus of a homeomorphism ϕ :F→F such that
ϕ∂F = id, called the monodromy of K . Let Ŷ denote the 3-
manifold obtained by 0-surgery on K in S3. Then Ŷ can be
constructed by capping off each copy of F with a disk in the
fibration of E(K ) to get a closed surface F̂ , so that Ŷ is the
mapping torus of ϕ̂ : F̂→ F̂ . We call ϕ̂ the closed monodromy of
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K . Finally, we say that ϕ extends over a handlebody H if there is
a homeomorphism Φ :H →H such that Φ∂H = ϕ̂.

Casson and Gordon (20) proved a remarkable theorem
connecting homotopy-ribbon knots to handlebody extensions.

Theorem 13. Let K ⊂S3 be a fibered knot with fiber F and mon-
odromy ϕ. Then K is homotopy ribbon in a homotopy 4-ball B if
and only if the monodromy ϕ extends over a handlebody H .

As above, let K ⊂S3 be a fibered ribbon knot with fiber F ,
so that Theorem 13 implies that the monodromy ϕ of K extends
over a handlebody H . Let L⊂F be a link in S3 such that L is the
boundary of a cut system defining H . We call L a Casson–Gordon
derivative of K .

Proposition 14. Suppose K is a fibered ribbon knot with genus g
fiber F and Casson–Gordon derivative L. Then both L and K ∪L
are R-links. Moreover, L has a genus 2g admissible surface, and
thus the 4-manifold XL admits a (2g ; 0, g , g)-trisection.

In the remainder of this section, we spell out the details
for the simplest case, (p, q) = (3, 2). Let Q denote the square
knot T (3, 2)#−T (3, 2), let F denote its genus two fiber
surface, and let ϕ denote the monodromy of E(Q). In ref.
21, Scharlemann depicted an elegant way to think about the
monodromy ϕ: We may draw F as a topological annulus A,
such that

• an open disk D has been removed from A,
• each component of ∂A is split into six edges and six vertices,

and
• opposite inside edges of ∂A are identified, and opposite out-

side edges of ∂A are identified, so that the quotient space is
homeomorphic to F .

With respect to A, the monodromy ϕ is a 1/6th clockwise rota-
tion of A, followed by an isotopy of D returning it to its original
position. As above, let Ŷ be the closed 3-manifold obtained by
0-surgery on Q , and let ϕ̂ denote the closed monodromy of Q .
Note that ϕ̂ is an honest 1/6th rotation of the annulus in Fig. 3,
since, in this case, the puncture has been filled in by the Dehn
surgery. Details can be found in refs. 8 and 21, where Lemma 15
is proved.

Lemma 15. For every rational number p/q with q odd, there is a
family Vp/q ,V ′p/q ,V

′′
p,q of curves contained in F̂ that are permuted

by ϕ̂.

Proof: We may subdivide A into six rectangular regions as shown
in Fig. 3. It is proved in ref. 21 that F̂ is a 3-fold branched
cover of a 2-sphere S with four branch points. By naturally iden-
tifying S with a 4-punctured sphere constructed by gluing two
unit squares along their edges, there is a unique isotopy class of
curve cp/q with slope p/q in S . Let ρ :F→S denote the cover-

Fig. 3. The curves V3/7, V′
3/7, and V′′

3/7 on the genus two fiber F for the
square knot.

ing map. Scharlemann proves that ρ−1(cp,q) =Vp/q ,V ′p/q ,V
′′
p,q ,

and these curves are permuted by ϕ̂. �
We note that any 2-component sublink of Vp/q ∪V ′p/q ∪V

′′
p,q

is a Casson–Gordon derivative for Q corresponding to some han-
dlebody extension of ϕ. Fig. 3 shows the three lifts, V3/7, V ′3/7,
and V ′′3/7, of the rational curve 3/7 to the fiber F of the square
knot. Observe that ϕ̂ 6 is the identity map, and ϕ̂ 3 maps Vp/q to
itself but with reversed orientation.

Finally, we can define the GST links. Lemma 16 is also from
ref. 21.

Lemma 16. The GST link Ln is handleslide equivalent to Q ∪
Vn/2n+1. The R-link Ln has property R for n = 0, 1, 2 and is not
known to have property R for n ≥ 3.

For ease of notation, let Vn =Vn/2n+1 and V ′n =V ′n/2n+1,
so that Ln =Q ∪Vn . Two links L and L′ are said to be sta-
bly handleslide equivalent or just stably equivalent if there are
integers n and n ′ so that LtUn is handleslide equivalent to
L′ tUn′ . While we can find admissible surfaces for Ln , there
is a simpler construction for a family of links L′n stably equiva-
lent to Ln for each n , and we note a link L has stable property
R if and only if every link stably equivalent to L has stable
property R.

Lemma 17. The link Ln =Q ∪Vn is stably equivalent to L′n =Vn ∪
V ′n .

Proof: We show that both links are stably equivalent to Q ∪Vn ∪
V ′n . Since ϕ̂(Vn) =V ′n , we have that V ′n is isotopic to Vn in Ŷ .
Carrying this isotopy into S3, we see that after some number of
handleslides of V ′n over Q , the resulting curve C ′ is isotopic to
Vn . Now C ′ can be slid over Vn to produce a split unknot U1,
and Q ∪Vn ∪V ′n is handleslide equivalent to Ln tU1. On the
other hand, Vn and V ′n are homologically independent in the
genus two surface F . Thus, there is a sequence of slides of Q over
Vn and V ′n in F converting Q to a split unknot, so Q ∪Vn ∪V ′n
is handleslide equivalent to L′n tU1 as well. �

Next, we define an admissible surface for L′n . Consider a collar
neighborhood F × I of F , and let N ⊂S3 denote the embedded
3-manifold obtained by crushing ∂F × I to a single curve. Letting
Σ = ∂N , we see that Σ is two copies of F , call them F0 and F1,
glued along the curve Q .

Lemma 18. Consider L′n embedded in F0, and push L′n slightly into
N . Then Σ is an admissible surface for L′n .

Proof: First, F × I is a genus four handlebody, as is N , since N is
obtained by crushing the vertical boundary of F × I . Moreover,
since the exterior E(Q) is fibered with fiber F , we may view this
fibering as an open-book decomposition of S3 with binding Q ,
and thus S3 rN is homeomorphic to N , so that Σ is a Heegaard
surface for S3.

It remains to be seen that there is a core of N containing L′n ,
but it suffices to show that there is a pair Dn and D ′n of dualizing
disks for L′n in N . Note that for any properly embedded arc a ⊂
F0, there is a compressing disk D(a) for N obtained by crushing
the vertical boundary of the disk, a × I ⊂F × I . Let a0 and a ′0
be disjoint arcs embedded in F0 such that a0 meets Vn once and
avoids V ′n , and a ′0 meets V ′n once and avoids Vn . Then D(a0) and
D(a ′0) are dualizing disks for L′n , completing the Proof. �

Lemma 18 does more than simply prove Σ is admissible; it
provides the key ingredients we need to construct a diagram for
T (L′n , Σ): Let a1 and a ′1 denote parallel copies of a0 and a ′0,
respectively, in F1, so that ∂D(a0) = a0 ∪ a1 and ∂D(a ′0) = a ′0 ∪
a ′1. By Lemma 4, there is a genus four trisection diagram (α,β, γ)
for T (L′n , Σ) so that

β1 = ∂D(a0) β2 = ∂D(a ′0) γ1 =Vn γ2 =V ′n .
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Fig. 4. A trisection diagram for T (L′3, Σ). Top row shows two copies of F0,
along with arcs: ϕ(a0) and ϕ(a′

0) (red), ϕ(b0) and ϕ(b′
0) (pink), b0 and b′

0
(dark blue), b1 and b′

1 (light blue), and V3 (dark green) and V′
3 (light green).

Bottom row shows two copies of F1, along with arcs: a1 and a′
1 (red and dark

blue) and b1 and b′
1 (pink and light blue). The surfaces in the Top row are

identified with those in the Bottom row along the oriented puncture. Thus,
each column describes the closed genus four surface Σ. Left column encodes
a 4-tuple of curves on this surface, namely, α. Right column encodes the 4-
tuple β (shades of blue), as well as the two curves γ1 and γ2. The trisection
diagram for T (L′3, Σ) is obtained by overlaying the two columns. (Note that
γ3 = β3 and γ4 = β4.)

Noting that (β, γ) defines a genus four splitting of Y2, it follows
that any curve disjoint from β1 ∪β2 ∪ γ1 ∪ γ2 that bounds a disk
in either of Hβ or Hγ also bounds in the other handlebody. Let
b0 and b′0 denote nonisotopic disjoint arcs in F0 that are disjoint
from a0 ∪ a ′0 ∪L′n . Then b0 ∪ b1 and b′0 ∪ b′1 bound disks in N ;
thus, letting

β3 = γ3 = b0 ∪ b1 β4 = γ4 = b′0 ∪ b′1,

we have that (β, γ) is a standard diagram, corresponding to two
of the cut systems in a diagram for T (Ln , Σ). To find the curves
in α, let N ′=S3 rN , and observe that N ′ also has the structure
of F × I crushed along its vertical boundary, and ∂N ′= ∂N =
F0 ∪F1.

One way to reconstruct S3 from N and N ′, both of which
are homeomorphic to crushed products F × I , is to initially glue
F1⊂ ∂N to F1⊂ ∂N ′. The result of this initial gluing is again
homeomorphic to a crushed product F × I . The second gluing
then incorporates the monodromy, so that F0⊂N ′ is glued to
F0⊂N via ϕ. The result of this gluing is that if a1 is an arc in
F1⊂N ′ and D ′(a1) is the corresponding product disk in N ′,
then ∂D ′(a1) = a1 ∪ϕ(a0), where a0 is a parallel copy of a1 in
F0 (using the product structure of N ).

Thus, to find curves in α, we can choose any four arcs in F1

cutting the surface into a planar component and construct their
product disks. However, if we wish to a find a diagram with rel-
atively little complication with respect to the β and γ curves we
have already chosen, it makes sense to choose those four arcs to
be a1, a ′1, b1, and b′1. Thus,

α1 = a1 ∪ϕ(a0) α3 = b1 ∪ϕ(b0)
α2 = a ′1 ∪ϕ(a ′0) α4 = b′1 ∪ϕ(b′0).

We have proved the following.

Proposition 19. The triple (α,β, γ) forms a (4; 0, 2, 2)-trisection
diagram for T (Ln , Σ).

The diagram (α,β, γ) is depicted in Fig. 4. A generalization
of this construction allows us to replace Q with any knot of the
form T (p, q)#−T (p, q).

5. A Rectangle Condition for Trisection Diagrams
In this section, we introduce a tool for potential future use. This
tool is an adaptation to the setting of trisection diagrams of
the rectangle condition for Heegaard diagrams, which was intro-
duced by Casson and Gordon (14) (also ref. 22). A collection
of 3g − 3 pairwise disjoint and nonisotopic curves in a genus g
surface Σ is called a pants decomposition, as the curves cut Σ
into 2g − 2 thrice-punctured spheres, or pairs of pants. A pants
decomposition defines a handlebody in the same way a cut sys-
tem does, although a cut system is a minimal collection of curves
defining a handlebody, whereas a pants decomposition neces-
sarily contains superfluous curves. An extended Heegaard dia-
gram is a pair of pants decompositions (α+,β+) determining a
Heegaard splitting Hα+ ∪Hβ+. An extended trisection diagram
is a triple of pants decompositions (α+,β+, γ+) determining the
spine Hα+ ∪Hβ+ ∪Hγ+ of a trisection.

Suppose that α+ and β+ are pants decompositions of Σ, and
let Pα+ be a component of Σr ν(α+) and Pβ+ be a component
of Σr ν(β+). Let a1, a2, and a3 denote the boundary compo-
nents of Pα+ and b1, b2, and b3 denote the boundary components
of Pβ+. We say that the pair (Pα+,Pβ+) is saturated if for all
i , j , k , l ∈ 1, 2, 3, i 6=j , k 6=l , the intersection Pα+ ∩Pβ+ contains
a rectangle Ri,j ,k ,l with boundary arcs contained in ai , bk , aj , and
bl (Fig. 5, Left). We say that that pair of pants Pα+ is saturated
with respect to β+ if for every component Pβ+ of Σr ν(β+), the
pair (Pα+,Pβ+) is saturated.

An extended Heegaard diagram (α+,β+) satisfies the
Casson–Gordon rectangle condition if for every component Pα+

of Σr ν(α+), we have that Pα+ is saturated with respect to β+.
Casson and Gordon (14) proved the following.

Theorem 20. Suppose that an extended Heegaard diagram (α+,β+)
satisfies the rectangle condition. Then the induced Heegaard
splitting Hα+ ∪Hβ+ is irreducible.

Now, let (α+,β+, γ+) be an extended trisection diagram. We
say that (α+,β+, γ+) satisfies the rectangle condition if for every
component Pα+ of Σr ν(α+), we have that either Pα+ is sat-
urated with respect to β+ or Pα+ is saturated with respect
to γ+.

Remark 21. Note that since (α+,β+) and (α+, γ+) are extended
Heegaard diagrams for the standard manifolds Yk1 and Yk3 , it is
not possible for either pair to satisfy the rectangle condition of Cas-
son and Gordon (14). In other words, it is not possible that every
component Pα+ of α+ be saturated with respect to, say, β+.

Proposition 22. Suppose that an extended trisection diagram
(α+,β+, γ+) satisfies the rectangle condition. Then the induced
trisection T with spine Hα+ ∪Hβ+ ∪Hγ+ is irreducible.

Fig. 5. (Left) A pair of pants Pα+ that is saturated with respect to a sec-
ond pair of pants Pβ+ . (Center) A depiction of the contradiction incurred

under the assumption that δ ∈α+ but δ /∈ β+. (Right) A depiction of the
contradiction incurred under the assumption that δ /∈α+ ∪ β+ ∪ γ+.
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Proof: Suppose by way of contradiction that T is reducible. Then
there exists a curve δ⊂Σ = ∂Hα+ that bounds disks D1⊂Hα+,
D2⊂Hβ+, and D3⊂Hγ+. Let Dα+ denote the set of 3g − 3
disks in Hα+ bounded by the curves α+, and define Dβ+ and
Dγ+ similarly. There are several cases to consider. First, suppose
that δ ∈α+, so that D1 ∈Dα+, and let Pα+ be a component of
Σr ν(α+) that contains δ as a boundary component. Suppose
without loss of generality that Pα+ is saturated with respect to
β+. Then, for any curve b ∈β+, we have that b is the boundary
of a component Pβ+ of Σr ν(β+), where Pα+ ∩Pβ+ contains a
rectangle with boundary arcs in δ and b. It follows that δ meets
every curve b ∈β+, so δ /∈β+.

Suppose that D2 and Dβ+ have been isotoped to intersect min-
imally, so that these disks meet in arcs by a standard argument.
There must be an outermost arc of intersection in D2, which
bounds a subdisk of D2 with an arc δ′⊂ δ, and δ′ is a wave (an
arc with both endpoints on the same boundary curve) contained
in a single component Pβ+ of Σr ν(β+). Let b1 and b2 be the
boundary components of Pβ+ disjoint from δ′. Since Pα+ is sat-
urated with respect to β+, there is a rectangle R⊂Pα+ ∩Pβ+

with boundary arcs contained in b1, δ, b2, and some other curve
in ∂Pα+ (Fig. 5, Center). Let δ

′′
be the arc component of ∂R

contained in δ. Since the wave δ′ separates b1 from b2 in Pβ+, it
follows that δ′ ∩ δ

′′
6= ∅, a contradiction.

In the second case, suppose that δ is a curve in β+. Note
that the Heegaard splitting determined by (α+, γ+) is reducible,
and thus by the contrapositive of the Casson–Gordon rectangle
condition, there must be some pair of pants Pα+ of Σr ν(α+)
such that Pα+ is not saturated with respect to γ+, so that Pα+

is saturated with respect to β+. Let Pβ+ be a component of
Σr ν(β+) that contains δ as a boundary component. By the
above argument, δ /∈α+, and if we intersect D1 with Dα+, we can
run an argument parallel to the one above to show that δ has a

self-intersection, a contradiction. A similar argument shows that
δ /∈ γ+.

Finally, suppose that δ is not contained in any of α+, β+, or
γ+. By intersecting the disks D1 and Dα+, we see that there
is a wave δ′⊂ δ contained in some pants component Pα+ of
Σr ν(α+). Suppose without loss of generality that Pα+ is sat-
urated with respect to β+. By intersecting D2 with Dβ+, we see
that there is a wave δ

′′
⊂ δ contained in some pants component

Pβ+ of Σr ν(β+). Let a1 and a2 be the components of ∂Pα+

that avoid δ′, and let b1 and b2 be the components of ∂Pβ+

that avoid δ
′′

. By the rectangle condition, Pα+ ∩Pβ+ contains a
rectangle R whose boundary is made of arcs in a1, b1, a2, and
b2. As such, δ′ ∩R contains an arc connecting b1 to b2, while
δ
′′
∩R contains an arc connecting a1 to a2, but this implies that

δ′ ∩ δ
′′
6= ∅, a contradiction. We conclude that no such curve δ

exists. �
Of course, at this time, the rectangle condition is a tool without

an application, which elicits the following question.

Question 23. Is there an extended trisection diagram that satisfies
the rectangle condition?

Note that while it is easy to find three pants decompositions
that satisfy the rectangle condition, the difficulty lies in finding
three such pants decompositions which also determine a trisec-
tion; in pairs, they must be extended Heegaard diagrams for the
3-manifolds Yki .
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