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We summarize and expand known connections between the
study of Dehn surgery on links and the study of trisections of
closed, smooth 4-manifolds. In particular, we propose a program
in which trisections could be used to disprove the generalized
property R conjecture, including a process that converts the poten-
tial counterexamples of Gompf, Scharlemann, and Thompson into
genus four trisections of the standard 4-sphere that are unlikely to
be standard. We also give an analog of the Casson-Gordon rectan-
gle condition for trisections that obstructs reducibility of a given
trisection.
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he theory of Dehn surgery on knots has been thoroughly

developed over the past 40 y. In general, this research has
focused on two major questions: First, which manifolds can be
obtained by surgery on a knot in a given manifold Y'? Second,
given a pair of manifolds Y and Y’, for which knots K C Y,
does there exist a surgery to Y'? These two questions have
contributed to the growth of powerful tools in low-dimensional
topology, such as sutured manifold theory, the notion of thin
position, and Heegaard Floer homology. For example, over the
last 15 y, the Heegaard Floer homology theories of Ozsvath and
Szab6 have dramatically deepened our collective understanding
of Dehn surgeries on knots (for instance, ref. 1).

If we replace the word “knot” with “link” in the preced-
ing paragraph, the situation changes significantly; for example,
the classical Lickorish-Wallace theorem asserts that every 3-
manifold Y can be obtained by surgery on a link in S* (2, 3).
For the second general question, concerning which links in a
given 3-manifold Y yield a surgery to another given 3-manifold
Y’, we observe the following basic fact: Two framed links that
are handleslide equivalent surger to the same 3-manifold (4).
Thus, surgery classification of links is necessarily considered up
to handleslide equivalence, and tools which rely on the topol-
ogy of a knot exterior S® \ v(K) are not nearly as useful, since
handleslides can significantly alter this topology.

The purpose of this paper is to make clear the significant role
of the trisection theory of smooth 4-manifolds in the classifica-
tion of Dehn surgeries on links, including a program that suggests
trisections may be used to disprove the generalized property R
conjecture (GPRC), Kirby problem 1.82 (5). The GPRC asserts
that every n-component link in S* with a Dehn surgery to
#7(8' x S?) is handleslide equivalent to the n-component zero-
framed unlink. We call a link L with such a surgery an R-link.
The related stable GPRC asserts that if L is an R-link, then
the disjoint union of L and an unlink is handleslide equiva-
lent to an unlink. The GPRC is known to be true when n=1
(6), and the stable GPRC is known to be true in the following
special case.

Theorem 1 (7). If L C S® is an n-component R-link with tunnel
number n, then L satisfies the stable GPRC.

Any n-component R-link L can be used to construct a closed
4-manifold X, where X, has a handle decomposition with a
single 0-handle, no 1-handles, n 2-handles, n 3-handles, and
a single 4-handle. An elementary argument reveals that X7, is
a homotopy 4-sphere, and if L is handleslide equivalent to an
unlink, then X is the standard $*. Thus, both the GPRC and
stable GPRC imply the smooth 4D Poincaré conjecture (S4PC)
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for geometrically simply connected 4-manifolds (those that can
be built without 1-handles). Yet these conjectures are substan-
tially stronger than this instance of the S4PC, since the GPRC
implies that not only that is X}, standard, but also that the handle
decomposition can be standardized without adding any cancel-
ing pairs of handles. (The stable version allows the addition of
canceling 2-handle/3-handle pairs, but not canceling 1-handle/2-
handle pairs.) Although experts seem divided about the veracity
of the S4PC, it is widely believed that the GPRC is false, with the
most prominent possible counterexamples appearing in a paper
of Gompf, Scharlemann, and Thompson (8), building on work of
Akbulut and Kirby (9).

A new tool that has been useful in this context is a trisection
of a 4-manifold, introduced by Gay and Kirby (10). A trisection
is a decomposition of a 4-manifold X into three simple pieces,
a 4-dimensional version of a 3D Heegaard splitting. Elegantly
connecting the two theories, Gay and Kirby (10) proved that
every smooth 4-manifold admits a trisection, and every pair of
trisections for a given 4-manifold has a common stabilization,
mirroring the Reidemeister—Singer theorem (11, 12) in dimen-
sion three. Unlike Heegaard splittings, however, the stabilization
operation of Gay and Kirby can be broken into three separate
operations, called unbalanced stabilizations of types 1, 2, and
3 (7). A trisection is said to be standard if it is an unbalanced
stabilization of the genus zero trisection of $*, and thus every
trisection of S* becomes standard after some number of stabi-
lizations. Just as trisections were pivotal in the Proof of Theorem
1 above, we have also used trisections to obtain the following
Dehn surgery classification result.

Theorem 2 (13). If LC S3 is a two-component link with tunnel
number one with an integral surgery to S®, then L is handleslide
equivalent to a 0-framed Hopf link or a +1-framed unlink.

In the present article, we exhibit a program to disprove the
GPRC in three steps, of which we complete the first two. The
initial step translates the GPRC and the related stable GPRC
into statements about trisections of the 4-sphere. In 3. R-Links
and Stabilizations we prove the following, postponing rigorous
definitions for now.

Significance

Dehn surgery is the process in which one cuts out a neigh-
borhood of a knot or a link in 3D space and reglues this
neighborhood in a different way to obtain a new 3D space.
By viewing this operation as occurring smoothly over a period,
there is a natural interpretation of spaces “before” and “after”
a Dehn surgery as level sets of a generic function taking a 4D
space to the real line. As such, 4D spaces are deeply linked
to Dehn surgeries. This paper explores the ways in which
trisections of 4-manifolds can be used to answer interesting
questions about such surgeries.
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Theorem 3. Suppose L is an R-link and X is any admissible surface
for L.

i) If L satisfies the GPRC, then T (L, X) is 2-standard.
it) The link L satisfies the stable GPRC if and only if T (L,X) is
2, 3-standard.

The second step is contained in 4. Trisecting the Gompf-
Scharlemann—Thompson Examples in which we convert the pro-
posed counterexamples of Gompf-Scharlemann-Thompson into
trisections (with explicit diagrams). The final, incomplete step
in this program is to prove that the trisections constructed in
the second step are not 2-standard, which, together with Theo-
rem 3, would imply that the GPRC is false. To accomplish step
iii, we must develop machinery to verify that a trisection is non-
standard. To this end, in 5. A Rectangle Condition for Trisection
Diagrams we introduce an analog of the Casson—Gordon rect-
angle condition (14) for trisection diagrams, giving a sufficient
condition for a trisection diagram to correspond to an irreducible
(nonstandard) trisection.

We encourage the reader to view this article in full color, as a
gray-scale rendering of the figures leads to a loss of information.

1. Trisections

All manifolds are connected and orientable, unless otherwise
stated. We let v(-) refer to an open regular neighborhood in an
ambient manifold that should be clear from context. The tun-
nel number of a link L C Y is the cardinality of the smallest
collection of arcs a with the property that ¥ \v(LUa) is a
handlebody. In this case, Ov(LU a) is a Heegaard surface cut-
ting Y \v(L) into a handlebody and a compression body. A
framed link refers to a link with an integer framing on each
component.

Let L be a framed link in a 3-manifold Y, and let a be a
framed arc connecting two distinct components of L; call them
L; and L,. The framings of L, Lo, and a induce an embedded
surface S C Y, homeomorphic to a pair of pants, such that
LiULyUais a core of S. Note that S has three boundary com-
ponents, two of which are isotopic to L; and L. Let L3 denote
the third boundary component, with framing induced by S. If L'
is the framed link (L ~\ L1) U L3, we say that L’ is obtained from
L by a handleslide of L; over L; along a.

If two links are related by a finite sequence of handleslides,
we say they are handleslide equivalent. It is well known that
Dehn surgeries on handleslide-equivalent framed links yield
homeomorphic 3-manifolds (4). Recall that an R-link is an n-
component link in S with a Dehn surgery to the manifold
#™ (S x §%), which we henceforth denote by Y,,. Let U, denote
the n-component zero-framed unlink in S®. If an R-link L is
handleslide equivalent to U,, we say that L has property R.
If the split union LU U, is handleslide equivalent to U, for
some integer r, we say that L has stable property R. With these
definitions the GRPC and stable GPRC can be formulated as
follows.

(Stable) GPRC. Every R-link has (stable) property R.

In this section, we explore the relationship between R-links
and trisections of the smooth 4-manifolds that can be constructed
from these links.

Let X be a smooth, orientable, closed 4-manifold. A (g; k1,
ko, ks)-trisection 7 of X is a decomposition X = X7 U X U X3
such that

i) each X; is a 4D 1-handlebody, ¥ (S* x B%);
ii) if i #4, then H;; = X; N X; is a 3D handlebody, §7(S* x D?);
and
iii) the common intersection ¥ = X1 N X, N X3 is a closed genus
g surface.

The surface X is called the trisection surface or central surface,
and the parameter g is called the genus of the trisection. The tri-
section 7 is called balanced if k1 = k2 = k3 = k, in which case it
is called a (g, k) -trisection; otherwise, it is called unbalanced.
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We call the union Hi2 U Hag U Hs; the spine of the trisection.
In addition, we observe that 0X; = Y, = H;;Us Hj; is a genus
g Heegaard splitting. Because there is a unique way to cap
off Yy, with h% (S x B®) (15, 16), every trisection is uniquely
determined by its spine.

Like Heegaard splittings, trisections can be encoded with dia-
grams. A cut system for a genus g surface X is a collection of
¢ pairwise disjoint simple closed curves that cut ¥ into a2g-
punctured sphere. A cut system ¢ is said to define a handlebody
H; if each curve in § bounds a disk in Hs. A triple («, 3,7) of
cut systems is called a (g; k1, k2, ks)-trisection diagram for 7T if
a, 3, and ~ define the components H,, Hg, and H, of the spine
of 7. We set the conventions that H, = X3 N X1, Hg = X1 N X>,
and H, = X, N X3, which the careful reader may note differ
slightly from conventions in ref. 7. With our conventions, («, §),
(B,7), and (v, ) are Heegaard diagrams for Yy, , Yy,, and Yi,,
respectively. In ref. 10, Gay and Kirby proved that every smooth
4-manifold admits a trisection, and trisection diagrams, mod-
ulo handleslides within the three collections of curves, are in
one-to-one correspondence with trisections.

Given trisections 7 and 7~ for 4-manifolds X and X', we can
obtain a trisection for X# X’ by removing a neighborhood of a
point in each trisection surface and gluing pairs of components of
T and 7" along the boundary of this neighborhood. The resulting
trisection is uniquely determined in this manner; we denote it by
T#T'. A trisection T is called reducible if T=T"#T , where
neither 77 nor 7~ is the genus zero trisection; otherwise, it is
called irreducible. Equivalently, 7 is reducible if there exists an
essential separating curve § in ¥ that bounds compressing disks
in Ha, Hg, and H,. Such a curve § represents the intersection of
a decomposing 3-sphere with the trisection surface.

In dimension three, stabilization of a Heegaard surface may be
viewed as taking the connected sum with the genus one splitting
of $3, and a similar structure exists for trisections. Let S; denote
the unique genus one trisection of S* satisfying k; = 1. Diagrams
for these three trisections are shown in Fig. 1. A trisection 7
is called ¢-stabilized if T=T'#S, and is simply called stabilized
if it is i-stabilized for some i =1,2,3. Two trisections 7' and
T are called stably equivalent if there is a trisection 7 that is a
stabilization of both 77 and 7~ . Gay and Kirby (10) proved that
any two trisections of a fixed 4-manifold are stably equivalent.

We say that a trisection 7 of S* is standard if 7 can be
expressed as the connected sum of genus one trisections S;.

2. Admissible Surfaces

Here we turn our attention to R-links and Dehn surgeries, before
connecting these surgeries to the trisections described above.
Recall that Y}, denotes #*(S* x §2), and an R-link L is a framed
n-component link in S* such that Dehn surgery on L yields
Yn. As mentioned above, every R-link L describes a closed 4-
manifold X7, with a handle decomposition with a single 0-handle,
zero 1-handles, n 2-handles, n 3-handles, and a single 4-handle.

Thus, X7, is a homotopy S*. An admissible Heegaard surface %
for I is a Heegaard surface cutting S* into two handlebodies H
and H’ such that a core of H contains L. As such, M = H \ v(L)
is a compression body and ¥ may be viewed as a Heegaard

surface for the link exterior E(L)= 5%\ v(L). Let Hy be the
handlebody that results from Dehn filling M (or performing

O O

, , >
| | \
| | |

Fig. 1. The three genus one trisections diagrams for $*.
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Dehn surgery on L in H) along the framing of the link L. An
admissible pair consists of an R-link together with an admissible
Heegaard surface.

For completeness, we also allow the empty link, L =(), where
L has an empty Dehn filling yielding S*, giving rise to a handle
decomposition of S* = X, with only a single 0- and 4-handle. An
admissible surface ¥ for the empty link is a (standard) genus g
Heegaard surface for S3. A genus ¢ Heegaard diagram (o, )
for Yj is called standard if N3 contains & curves, and the
remaining g — k curves occur in pairs that intersect once and are
disjoint from other pairs. A trisection diagram is called standard
if each pair is a standard Heegaard diagram. Note that a stan-
dard trisection of S* has a standard diagram, since each of its
summands S; has such a diagram.

Lemma 4. Let L be an n-component R-link. Every admissible pair
(L,X) gives rise to a trisection T (L,X) of X1 with spine H' U
HUH If g(X)=g,then T(L,X)is a (g;0, g — n, n)-trisection.
Moreover, there is a trisection diagram (o, B,7) for T(L,%)
such that
i) Ho=H', Hs = H,and H, = Hy;
i) Lis a sublink of ~, where ~y is viewed as a link framed by ¥ in
5% = H, U Hg; and
ifi) (B,~) is a standard diagram for Y,_,, where SN~y =~ L.

Proof: This is proved (in slightly different formats) for L 0 in
both refs. 7 and 10. If L=, then it follows easily that S* = X,
has a handle decomposition without 1-, 2-, or 3-handles, H =
Hy, and H'U H U H, is the spine for the (g;0, g, 0)-trisection
T(L,X) of S In this case, there is a diagram such that 8=+,
the standard genus g diagram for Y.

Note that the conventions H, = H', Hs = H, and H, = Hf, in
conjunction with our earlier conventions, identify the 0-handle
with X3, the trace of the Dehn surgery on Hs along L with X,
and the union of the 3-handles and the 4-handle with Xs.

Lemma 5 connects R-links, standard trisections, and the stable
GPRC.

Lemma 5. Suppose L is an n-component R-link with admissible
genus g surface ¥, and T (L, X) is a standard trisection of S*. Then
L has stable property R.

Proof: By Lemma 4, the trisection 7 (L,X) has a diagram
(c, B,7) such that (3, ~) is the standard Heegaard diagram for
Y,—n. Viewing v as a g-component link in S* = H, U Hz, we
have that (¢ —n) curves in v bound disks in Hg, while the
remaining n curves are isotopic to L [and are disjoint from the
(g — n) disks]. Thus, as a link in S*, we have y= LU U, _.,.

In addition, the trisection 7 (L,X) is a standard (g;0,9 —
n, n)-trisection of S* by hypothesis. As such, it must be a con-
nected sum of g — n copies of S2 and n copies of Sz, and it has a
standard diagram, (o, 3',+"), where g — n curves in + are also
curves in 3, and the remaining n curves are also curves in /.
Thus, in S® = H,/ U Hy/, the curves 4/ compose a g-component
unlink, with surface framing equal to the zero framing on each
component. Since (o, 8,7) and (o, 8,7) are trisection dia-
grams for the same trisection, we have that v is handleslide
equivalent to v via slides contained in 3. Therefore, v and +'
are handleslide-equivalent links in S*. We conclude that L has
stable property R, as desired. |

As an aside, we note that Theoremm I can be obtained
quickly using Lemma 5 and the classification of (¢;0,1,9 —1)-
trisections from ref. 7.

3. R-Links and Stabilizations

To prove Theorem 3, we develop the connection between R-
links, their induced trisections, and the three types of stabiliza-
tions. First, we must introduce several additional definitions. Let
(L1,%1) and (L2, 32) be two admissible pairs and define the

Meier and Zupan

operation * by
(L1, 1) % (L2, X2) = (L1 U Ly, $1#3),

where the connected sum is taken so that L; L L2 is not separated
by the surface X1 #X.

Lemma 6. If (L1,%1) and (L2,X2) are admissible pairs, then
(L,X) = (L1,%1) * (L2, X2) is an admissible pair, and T (L, X) =
T (L1, X1)#T (L2, X2).

Proof: It is clear that the framed link Z; U Lo has the appropriate
surgery, so L is an R-link. Suppose ¥; bounds a handlebody H;
with core C; containing L;. Then there is a core C for HijH>
such that L, U Ly, C Cy U Cy C C, and thus X1#Xs is admissi-
ble as well. For the second claim, note that the separating curve
¢ arising from the connected sum ¥ =X;#3, is a reducing
curve for 7 (L, ¥), splitting it into the trisections 7 (Li, X1) and
T (L2, X2). O

Let U be a 0-framed unknot in S3, and let = be the genus
one splitting of S such that one of the solid tori bounded by
Yy contains U as a core. In addition, let ¥y be the genus one
Heegaard surface for S, to be paired with the empty link. Note
that (U, Xy) and (@, Xy) are admissible pairs.

Lemma 7. The pairs (0,3y) and (U,Xy) yield the following
trisections:

i) T(0,59)=S5.
i) T(U,S0)=8s.

Proof: Note that each trisection in question has genus one. The

associated trisections 7((,3p) and 7(U,Zy) are (1;0,1,0)-

and (1;0, 0, 1)-trisections, respectively, and thus they must be Sz

and Ss. O
By combining Lemmas 6 and 7, we obtain the following.

Corollary 8. Suppose (L,XY) is an admissible pair, with T =
T(L,X):

i) T((L,X) *(0,%y)) is the 2-stabilization of T .
ii) T((L,X)* (U, Xv)) is the 3-stabilization of T.

In addition, if ¥ is the stabilization of ¥ (as a Heegaard surface
for Yi), then (L, $4) = (L, 3) * (0, X¢).

Remark 9. Notably absent from Lemma 7 and Corollary 8 is any
reference to I-stabilization. By generalizing the definition of an
admissible pair, we can accommodate I-stabilization in this con-
text; however, 1-stabilizing a trisection T (L, X)) that arises from an
R-link L corresponds to adding a canceling 1-handle/2-handle pair
to the induced handle decomposition of Xy, This addition takes us
away from the setting of R-links, so we have chosen not to adopt this
greater generality here.

We say that two trisections 77 and 72 of a 4-manifold X
are 2-equivalent if there is a trisection 7 that is the result of
2-stabilizations performed on both 77 and 7.

Lemma 10. If 31 and X are two distinct admissible surfaces
for an R-link L, then the trisections T (L,31) and T (L,X2) are
2-equivalent.

Proof: Since both X; and X, are Heegaard surfaces for E(L),
they have a common stabilization X by the Reidemeister—Singer
theorem (11, 12). By Lemma 6, the surface X is admissible, and
by Corollary 8, T(L,X) can be obtained by 2-stabilizations of
T(L,%).

Observe that 2-equivalence is an equivalence relation. Since
Lemma 10 implies that every trisection 7 (L,Y) coming from a
fixed R-link L belongs to the same 2-equivalence class, it fol-
lows that L has a well-defined 2-equivalence class, namely, the
2-equivalence class of 7 (L, ) for any admissible surface X. If
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two R-links L; and L, give rise to 2-equivalent trisections, we
say that L; and L, are 2-equivalent.

Suppose that L is an n-component R-link with admissible sur-
face X, cutting S® into HU H’, and L is isotopic into a core
C C H as above. As such, there is a collection of n compressing
disks D with the property that each disk meets a unique compo-
nent of L once and misses the other components. We call D a set
of dualizing disks. Note that if («, 8, ) is the trisection diagram
for 7 (L, X) guaranteed by Lemma 4, then the n disks bounded
by the n curves in S that are not in y are a set of dualizing disks
for L.

Lemma 11. If R-links Ly and L are related by a handleslide, then
Ly and Ly are 2-equivalent.

Proof: If L; is an n-component link, then L; and Ly have n — 1
components in common and differ by a single component, L} C
Ly and L C Lo, where a slide of L} over another component
L' of L, along a framed arc a yields L5. Consider I'= L, U a,
an embedded graph with n» —1 components, and let ¥ be a
Heegaard surface cutting S* into # U H’, where T is contained
in a core of H. Then L, is also contained in a core of H, and &
is admissible (with respect to L1). Let D; be a set of dualizing
disks for L1, which by construction may be chosen so that the arc
a avoids all of the disks D; (Fig. 2).

There is an isotopy taking I" into X, preserving the intersec-
tions of L; with the dualizing disks D, so that the framing of I"
agrees with its surface framing in 3. As such, we can perform the
handleslide of L} over L’ along a within the surface ¥, so that
the resulting link L, is also contained in X, with framing given by
the surface framing. Let Dj € D, be the disk that meets L] once,
and let D’ e D; be the disk that meets L’ once. There is an arc a’,
isotopic in X to an arc in T, that connects Dj to D’ (Fig. 2). Let
D; be the compressing disk obtained by banding D; to D’ along
a’. Then D2 = (D1 \ D')U Dj is a set of dualizing disks for Lo.
Thus, by pushing L. back into H, we see that X is an admissible
surface for L.

Following Lemma 4, let H; U H] U H,, be a spine for T (L;, ).
By construction, H; = H» and H{ = Hy. Finally, since H; is Dehn
surgery on L; in H;, and L; and Ly are related by a sin-
gle handleslide, we have Hy, = Hy,. It follows that 7 (L1, %) =
T(L2,%), and we conclude that Ly and L, are 2-equivalent. [

Recall that a standard trisection of S* is the connected sum of
copies of Si1, Sz, and Ss and U, is the zero-framed, n-component
unlink, so Xy, = S*.

Lemma 12. Let X be any admissible surface for Uy; then T (Uy,,X)
is standard.

Proof: We induct on (n,g) with the dictionary ordering. If
n=1, then E(U;) is a solid torus. If g=1, then X=Xy, so
that 7(U1,Xy)=S3 by Lemma 7. If n=1 and g>1, then
Y is stabilized (17, 18), which means that 7(U:,X) is 2-
stabilized by Corollary 8, and, as such, 7(U1,X) is standard
by induction.

Fig. 2. The disks and arcs used in the Proof of Lemma 11, in which the pairs
(L7, D7) and (L', D’) are replaced with (L5, D7) and (L', D).

10890 | www.pnas.org/cgi/doi/10.1073/pnas.1717187115

In general, note that the Heegaard genus of an n-component
unlink is n; thus g > n for all possible pairs (n, g). For n >1,
we have that F(U,) is reducible, and so Haken’s lemma (19)
implies that X is reducible, splitting into the connected sum of
genus ¢; and g, surfaces ¥, and X9, where X; is a Heegaard
surface for E(U,,). Then T (U,,X) =T (Un,, L1)#T (Uny, X2),
where (ni, g;) < (n, g). Since both summands are standard tri-
sections by induction, it follows that 7 (U,, X) is also standard,
completing the Proof. d

A trisection 7 is said to be 2-standard if it becomes stan-
dard after some number of 2-stabilizations. Similarly, 7 is 2, 3-
standard if it becomes standard after some number of 2- and
3-stabilizations.

Proof of Theorem 3: Suppose L has property R. By Lemma 11,
L and U, are 2-equivalent links. Thus, 7(L,X) is 2-equivalent
to some trisection coming from U,, but all trisections induced
by U, are standard by Lemma 12, and thus 7 (L, %) becomes
standard after a finite sequence of 2-stabilizations.

If L has stable property R, then LLI U, has property R
for some n, and thus 7 ((L,X)*(U,Zy)x---*(U,Xy)) is
2-standard by the above arguments. By Lemma 7 and Corollary 8,

TULYX)*x (U, Zy)*---x(U,Xu))=T (L, X)#Ss# ... #S3;

hence 7 (L, Y) is 2, 3-standard.

Finally, if the trisection 7 (L, ) is 2, 3-standard, then there
exist integers s and ¢ such that the connected sum of 7 (L, %)
with s copies of S and ¢ copies of Ss is standard. Let (L., X.)
be the admissible pair given by

(L, X0) = (L, 2) % (0,39) % - - - (0, X¢p)
X *(U,EU)**(U,EU)

t

By assumption, 7 (L., ¥.) is standard, so by Lemma 5, the link
L. has stable property R. But by definition of %, we have L. =
LU Uy, and thus L also has stable property R, completing the
Proof. d

4. Trisecting the Gompf-Scharlemann-Thompson Examples

To use Theorem 3 to disprove the GPRC or the stable GPRC,
we must convert the possible counterexamples to these theo-
rems into trisections. In this section, we find admissible surfaces
related to the examples proposed by Gompf, Scharlemann, and
Thompson (8). We call this family the Gompf-Scharlemann—
Thompson (GST) links. First, we outline that construction, and
then we define the GST links and discuss how they fit into the
broader picture. To proceed, we need several new definitions.

Let K be a knot in S®. We say that K is ribbon if X bounds
an immersed disk in S* whose double points are ribbon singu-
larities. It is well known that every ribbon disk can be viewed
as a properly embedded disk in the standard 4-ball B*, where
K C 8% =0B*. Suppose B is any homotopy 4-ball. The knot K is
called homotopy ribbon in B if there exists a properly embedded
disk D C B such that K = 9D C S* = 9B and the inclusion map
(83, K)— (B, D) induces a surjection m1(S*~\ K)—»m (B~
D). Every ribbon knot is homotopy ribbon.

Let K C S* with F a Seifert surface for K. The knot K is
fibered with fiber F if its exterior F(K) is homeomorphic to
the mapping torus of a homeomorphism ¢: F— F such that
poar =id, called the monodromy of K. Let Y denote the 3-
manifold obtained by O-surgery on K in S®. Then Y can be
constructed by capping off each copy of F' with a disk in the
fibration of E(K) to get a closed surface F, so that Y is the

mapping torus of 3 : F' — F.. We call $ the closed monodromy of
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K. Finally, we say that ¢ extends over a handlebody H if there is
a homeomorphism ® : H — H such that ®py = .

Casson and Gordon (20) proved a remarkable theorem
connecting homotopy-ribbon knots to handlebody extensions.

Theorem 13. Let K C S® be a fibered knot with fiber F and mon-
odromy . Then K is homotopy ribbon in a homotopy 4-ball B if
and only if the monodromy ¢ extends over a handlebody H.

As above, let K C S2 be a fibered ribbon knot with fiber F,
so that Theorem 13 implies that the monodromy ¢ of K extends
over a handlebody H. Let L C F be a link in S® such that L is the
boundary of a cut system defining H. We call L a Casson—-Gordon
derivative of K.

Proposition 14. Suppose K is a fibered ribbon knot with genus g
fiber F and Casson—Gordon derivative L. Then both L and K U L
are R-links. Moreover, L has a genus 2g admissible surface, and
thus the 4-manifold X1, admits a (2g;0, g, g)-trisection.

In the remainder of this section, we spell out the details
for the simplest case, (p, q) =(3,2). Let @ denote the square
knot T'(3,2)# — T(3,2), let F denote its genus two fiber
surface, and let ¢ denote the monodromy of F(Q). In ref.
21, Scharlemann depicted an elegant way to think about the
monodromy ¢: We may draw F' as a topological annulus A4,
such that

e an open disk D has been removed from A,

e cach component of 9A is split into six edges and six vertices,
and

e opposite inside edges of OA are identified, and opposite out-
side edges of 0A are identified, so that the quotient space is
homeomorphic to F.

With respect to A, the monodromy ¢ is a 1/6th clockwise rota-
tion of A, followed by an isotopy of D returning it to its original

position. As above, let Y be the closed 3-manifold obtained by
0-surgery on @, and let ¢ denote the closed monodromy of Q.
Note that @ is an honest 1/6th rotation of the annulus in Fig. 3,
since, in this case, the puncture has been filled in by the Dehn
surgery. Details can be found in refs. 8 and 21, where Lemma 15
is proved.

Lemma 15. For every rational number p/q with q odd, there is a
family Vi, 0, V3 /0, V;:q of curves contained in F that are permuted
by @.

Proof: We may subdivide A into six rectangular regions as shown

in Fig. 3. It is proved in ref. 21 that F' is a 3-fold branched
cover of a 2-sphere S with four branch points. By naturally iden-
tifying S with a 4-punctured sphere constructed by gluing two
unit squares along their edges, there is a unique isotopy class of
curve c,,, with slope p/qin S. Let p: ' — S denote the cover-

Fig. 3. The curves V3,7, V3 ;, and V3, on the genus two fiber F for the
square knot.
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ing map. Scharlemann proves that p~"(¢p.q) = V,/q, b

and these curves are permuted by @.

We note that any 2-component sublink of V;,,,U V;, U V;:q

is a Casson—Gordon derivative for ) corresponding to some han-
dlebody extension of ¢. Fig. 3 shows the three lifts, V3,7, V3 /70

and V3, of the rational curve 3/7 to the fiber F of the square

knot. Observe that 3 ° is the identity map, and $® maps V,,/, to
itself but with reversed orientation.

Finally, we can define the GST links. Lemma 16 is also from
ref. 21.

i
r/@

Lemma 16. The GST link L, is handleslide equivalent to QU
Viy2nt1. The R-link Ly, has property R for n=0,1,2 and is not
known to have property R for n > 3.

For ease of notation, let V, =V, /2,11 and V, = 72/2n+1,

so that L, = QU V,,. Two links L and L’ are said to be sta-
bly handleslide equivalent or just stably equivalent if there are
integers n and n’ so that LU U, is handleslide equivalent to
L' U U, . While we can find admissible surfaces for L,, there
is a simpler construction for a family of links L/, stably equiva-
lent to L, for each n, and we note a link L has stable property
R if and only if every link stably equivalent to L has stable
property R.

Lemma 17. The link L, = QU V,, is stably equivalent to L, = V,, U
Vi

Proof: We show that both links are stably equivalent to Q U V,, U
V.. Since @(V,,) = V,, we have that V,, is isotopic to V,, in Y.
Carrying this isotopy into S*, we see that after some number of
handleslides of V,, over @, the resulting curve C’ is isotopic to
V. Now C' can be slid over V, to produce a split unknot Uy,
and QU V,, UV, is handleslide equivalent to L,, LI U;. On the
other hand, V,, and V,, are homologically independent in the
genus two surface F. Thus, there is a sequence of slides of () over
V, and V}, in F converting Q to a split unknot, so QU V,, U V,,
is handleslide equivalent to L;, Ll Uy as well. O

Next, we define an admissible surface for L,. Consider a collar
neighborhood F x I of F, and let N C $® denote the embedded
3-manifold obtained by crushing 0 F x I to a single curve. Letting
3 =0N, we see that ¥ is two copies of F, call them Fy and F,
glued along the curve Q.

Lemma 18. Consider L, embedded in Fy, and push L, slightly into
N. Then X is an admissible surface for L.

Proof: First, F' x [ is a genus four handlebody, as is NV, since N is
obtained by crushing the vertical boundary of F' x I. Moreover,
since the exterior £( Q) is fibered with fiber ¥, we may view this
fibering as an open-book decomposition of S* with binding @,
and thus S \ N is homeomorphic to N, so that ¥ is a Heegaard
surface for S°.

It remains to be seen that there is a core of N containing L/,
but it suffices to show that there is a pair D,, and D;, of dualizing
disks for L, in N. Note that for any properly embedded arc a C
Fo, there is a compressing disk D(a) for NV obtained by crushing
the vertical boundary of the disk, a x I C F x I. Let ao and q;
be disjoint arcs embedded in Fp such that ap meets V,, once and
avoids V,, and aj meets V,, once and avoids V,,. Then D(ao) and
D(ay) are dualizing disks for L, completing the Proof. O

Lemma 18 does more than simply prove X is admissible; it
provides the key ingredients we need to construct a diagram for
T(L,,X): Let a1 and aj denote parallel copies of ag and ag,
respectively, in F1, so that 9D (ap) = ap U a1 and 9D (ag) = ag U
aj. By Lemma 4, there is a genus four trisection diagram («, 3, )
for 7 (L, ) so that

p1=0D(a)  B2=0D(ag) m=Va 72=V,.
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Fig. 4. A trisection diagram for T(L}, £). Top row shows two copies of Fo,
along with arcs: ¢(ag) and ¢(ag) (red), ¢(bo) and ¢(bg) (pink), by and by
(dark blue), by and b} (light blue), and V3 (dark green) and Vé (light green).
Bottom row shows two copies of Fy, along with arcs: a; and aj (red and dark
blue) and b; and b} (pink and light blue). The surfaces in the Top row are
identified with those in the Bottom row along the oriented puncture. Thus,
each column describes the closed genus four surface 3. Left column encodes
a 4-tuple of curves on this surface, namely, a. Right column encodes the 4-
tuple 3 (shades of blue), as well as the two curves v, and ~,. The trisection
diagram for T(L}, £) is obtained by overlaying the two columns. (Note that
v3 =3 and v4 = Bs.)

Noting that (3, ) defines a genus four splitting of Y5, it follows
that any curve disjoint from 1 U 82 U~ U~z that bounds a disk
in either of Hg or H, also bounds in the other handlebody. Let
bo and b} denote nonisotopic disjoint arcs in Fy that are disjoint
from ap U ay U L,,. Then boU by and b{ U b3 bound disks in N;
thus, letting
Bs=v3=boUb Ba="1=DbyU by,

we have that (3, ) is a standard diagram, corresponding to two
of the cut systems in a diagram for 7 (L., X). To find the curves

in o, let N’ = $3 \_ N, and observe that N’ also has the structure
of F x I crushed along its vertical boundary, and 9N’ =9N =
FoUFy.

One way to reconstruct S® from N and N’, both of which
are homeomorphic to crushed products F' x I, is to initially glue
F1 CON to F1 CON’. The result of this initial gluing is again
homeomorphic to a crushed product F' x I. The second gluing
then incorporates the monodromy, so that Fo C N’ is glued to
Fo C N via ¢. The result of this gluing is that if a; is an arc in
Fy C N’ and D'(a1) is the corresponding product disk in N’,
then D’ (a1) = a1 Up(ao), where ao is a parallel copy of a; in
Fy (using the product structure of N).

Thus, to find curves in «, we can choose any four arcs in F
cutting the surface into a planar component and construct their
product disks. However, if we wish to a find a diagram with rel-
atively little complication with respect to the £ and ~ curves we
have already chosen, it makes sense to choose those four arcs to
be a1, ai, b1, and b;. Thus,

a3 = by U(p(bo)
as=by Up(b)).

a1=a U ga(a/o)
az=aj Up(ag)

We have proved the following.

Proposition 19. The triple («, 3,v) forms a (4;0,2,2)-trisection
diagram for T (L,,Y).

10892 | www.pnas.org/cgi/doi/10.1073/pnas.1717187115

The diagram («, 3,7) is depicted in Fig. 4. A generalization
of this construction allows us to replace () with any knot of the

form T'(p, ¢)# — T(p, q)-

5. A Rectangle Condition for Trisection Diagrams

In this section, we introduce a tool for potential future use. This
tool is an adaptation to the setting of trisection diagrams of
the rectangle condition for Heegaard diagrams, which was intro-
duced by Casson and Gordon (14) (also ref. 22). A collection
of 3g — 3 pairwise disjoint and nonisotopic curves in a genus g
surface X is called a pants decomposition, as the curves cut X
into 2g — 2 thrice-punctured spheres, or pairs of pants. A pants
decomposition defines a handlebody in the same way a cut sys-
tem does, although a cut system is a minimal collection of curves
defining a handlebody, whereas a pants decomposition neces-
sarily contains superfluous curves. An extended Heegaard dia-
gram is a pair of pants decompositions (o, 31) determining a
Heegaard splitting Ho+ U Hg+. An extended trisection diagram
is a triple of pants decompositions (o™, 37, v") determining the
spine Ho4+ U Hgy U H, . of a trisection.

Suppose that o™ and S are pants decompositions of ¥, and
let Po+ be a component of X \ v(a+) and Psy be a component
of ¥ \v(B+). Let a1, a2, and as denote the boundary compo-
nents of P4 and b1, b2, and b3 denote the boundary components
of Pzy. We say that the pair (Pa+, Py ) is saturated if for all
i,7,k,1€1,2,3,i+#j, k #1, the intersection P4 N P contains
arectangle R; ; ,; with boundary arcs contained in a;, bx, a;, and
b; (Fig. 5, Left). We say that that pair of pants P, is saturated
with respect to 87 if for every component P4+ of £\ v(3+), the
pair (Pa+, Pp+) is saturated.

An extended Heegaard diagram (a',3") satisfies the
Casson-Gordon rectangle condition if for every component P,
of ¥\ v(a™), we have that P, is saturated with respect to 5.
Casson and Gordon (14) proved the following.

Theorem 20. Suppose that an extended Heegaard diagram (o™, )
satisfies the rectangle condition. Then the induced Heegaard
splitting Ho+ U Hg.y is irreducible.

Now, let (o, 8%,7™) be an extended trisection diagram. We
say that (o™, 87, y") satisfies the rectangle condition if for every
component Poy of ¥\ v(a™), we have that either P,y is sat-
urated with respect to 8% or P, is saturated with respect
to 7*.

Remark 21. Note that since (o, 1) and (a*,y") are extended
Heegaard diagrams for the standard manifolds Yy, and Y, it is
not possible for either pair to satisfy the rectangle condition of Cas-
son and Gordon (14). In other words, it is not possible that every

component P, of o be saturated with respect to, say, 5.

Proposition 22. Suppose that an extended trisection diagram

(at, BT, yT) satisfies the rectangle condition. Then the induced
trisection T with spine Ho+ U Hgy U Hy 4 is irreducible.

Fig. 5. (Left) A pair of pants P_ that is saturated with respect to a sec-
ond pair of pants P, . (Center) A depiction of the contradiction incurred

under the assumption that § € o™ but § ¢ 31. (Right) A depiction of the
contradiction incurred under the assumption that § ¢ o™ U8t U~™T.
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Proof: Suppose by way of contradiction that 7 is reducible. Then
there exists a curve § C X = 0H,+ that bounds disks D1 C Ha+,
D> C Hg, and D3 C Hy4. Let Do denote the set of 3g—3
disks in H,. bounded by the curves o™, and define Ds; and
D, 4 similarly. There are several cases to consider. First, suppose
that § € ", so that D; € D+, and let P,y be a component of
¥ N v(a+) that contains § as a boundary component. Suppose
without loss of generality that P, is saturated with respect to
BT, Then, for any curve b € 3, we have that b is the boundary
of a component Pg of ¥\ v(871), where Pay N Pgy contains a
rectangle with boundary arcs in ¢ and b. It follows that § meets
everycurve be f1,s06 ¢ 8.

Suppose that D, and D4 have been isotoped to intersect min-
imally, so that these disks meet in arcs by a standard argument.
There must be an outermost arc of intersection in D2, which
bounds a subdisk of D, with an arc §' C 8, and ¢’ is a wave (an
arc with both endpoints on the same boundary curve) contained
in a single component Py of ¥~ v(8"). Let b; and b2 be the
boundary components of Pg disjoint from §’. Since P, is sat-
urated with respect to 87, there is a rectangle R C Pot N Pp
with boundary arcs contained in b1, J, b2, and some other curve
in 0P+ (Fig. 5, Center). Let 6" be the arc component of OR
contained in d. Since the wave §’ separates by from bs in Pay, it
follows that &' N 5" # 0, a contradiction.

In the second case, suppose that § is a curve in 7. Note
that the Heegaard splitting determined by (o™, ") is reducible,
and thus by the contrapositive of the Casson-Gordon rectangle
condition, there must be some pair of pants Pat of &\ v(a™)
such that P, is not saturated with respect to v, so that P,
is saturated with respect to S*. Let Psy be a component of
Y\ v(BT) that contains § as a boundary component. By the
above argument, § ¢ o, and if we intersect D with Do+, we can
run an argument parallel to the one above to show that § has a

-
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self-intersection, a contradiction. A similar argument shows that
S ~y+.

Finally, suppose that § is not contained in any of o™, 87, or
~*. By intersecting the disks Dy and D,, we see that there
is a wave &’ C§ contained in some pants component P, of
3\ v(a+). Suppose without loss of generality that P, is sat-
urated with respect to 3. By intersecting D2 with Ds., we see

that there is a wave § C § contained in some pants component
Psy of ¥\ v(8+). Let a1 and az be the components of 9Pa+
that avoid &', and let b, and bs be the components of 9Ps+

that avoid & . By the rectangle condition, P4+ N Psy contains a
rectangle R whose boundary is made of arcs in a1, b1, a2, and
ba. As such, & N R contains an arc connecting b1 to bz, while

§" N R contains an arc connecting a to az, but this implies that

5N 6”7& 0, a contradiction. We conclude that no such curve &
exists. d

Of course, at this time, the rectangle condition is a tool without
an application, which elicits the following question.

Question 23. Is there an extended trisection diagram that satisfies
the rectangle condition?

Note that while it is easy to find three pants decompositions
that satisfy the rectangle condition, the difficulty lies in finding
three such pants decompositions which also determine a trisec-
tion; in pairs, they must be extended Heegaard diagrams for the
3-manifolds Y.
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