
Energy-Efficient Recurrent Neural Networks

Abstract – Recurrent neural networks (RNNs) provide
excellent performance on applications with sequential data such as
speech recognition. On-chip implementation of RNNs is difficult
due to the significantly large number of parameters and
computations. In this work, we first present a training method for
LSTM model for language modeling on Penn Treebank dataset
with binary weights and multi-bit activations and then map it onto
a fully parallel RRAM array architecture (“XNOR-RRAM”). An
energy-efficient XNOR-RRAM array based system for LSTM
RNN is implemented and benchmarked on Penn Treebank
dataset. Our results show that 4-bit activation precision can
provide a near-optimal perplexity of 115.3 with an estimated
energy-efficiency of ~27 TOPS/W.

I. INTRODUCTION

Recurrent neural networks (RNNs) have shown remarkable
performance on artificial intelligence tasks such as speech
recognition [1], image caption [2], and language modeling [3].
Long-Short-Term Memory (LSTM) [4] and Gated Recurrent
Units (GRU) [5] are the two most widely used RNNs. State-of-
the-art RNNs are typically deployed on large-scale servers in
data centers due to their high demand on memory storage size
and computational power requirements. For example, the LSTM
model in [6] for Penn Tree Bank (PTB) [7] language modeling
task contains 66M parameters and requires 51M floating-point
multiply-and-accumulate operations (MACs) per word
prediction. Directly mapping this model onto a conventional
processor would result in crippling energy consumption and is
thus infeasible.

To facilitate efficient hardware implementation and reduce
computation energy and latency, researchers have been studying
approaches to reduce the precision of weights and hidden states
of LSTMs without compromising their performance. Straight-
through estimator (STE) has been used in [8] to train quantized
LSTM models. Balanced quantization proposed in [9] to
quantize the weights and activations to multi-bit values, has
shown better performance on a 2-bit/3-bit precision for
weights/activations compared to imbalanced quantization
scheme. Xu et al. [10] recently proposed an optimization method
that quantizes the weights and activations to multi-bit values by
alternatively optimizing binary codes and real coefficients. This
method achieved better performance than full precision baseline
with 3-bit/3-bit precision for weights/activations for an LSTM
model. Hou et al. [11] showed that binarized LSTM can achieve
promising performance in character-level language modeling

task. In addition to low-precision LSTM model training, model
compression techniques have been recently explored to reduce
the number of weights of LSTMs by pruning out unnecessary
weights without hurting the accuracy of the models. Narang et
al. [12] proposed a pruning-based method to reduce the number
of weights in RNNs by ~90%, at the expense of reducing
accuracy of the model by 10-20%. Wen et al. [13] proposed a
method to learn compact structures in RNNs using group Lasso
regularization.

In this work, we present a training method for an LSTM
model for language modeling on PTB dataset with binary
weights and multi-bit activations. Unlike rectified linear unit
(ReLU) activation function widely used in modern deep
convolutional neural networks (CNNs), the sigmoid and ���ℎ
activation functions in LSTM models suffer from the gradient
vanishing problem [14]. Thus, when we binarize the weights of
LSTM models, careful selection of binary weight magnitude is
required to stay away from the gradient-saturating region. This
problem has not been considered by previous quantized LSTM
training algorithms [9][10][11].

Exploiting the massive parallelism in the RNN models,
hardware RNN accelerators have been proposed in recent years.
Lee et al. [15] proposed an RNN accelerator for speech
recognition on Xilinx XC7Z045 FPGA utilizing only on-chip
memory with 6-bit quantized weights. Han et al. [16] presented
an efficient FPGA accelerator for speech recognition with sparse
LSTM on Xilinx XCKU060 FPGA. They quantized the weights
to 12-bit without any accuracy loss, requiring two 4GB DRAMs
as off-chip memory for data storage. Shin et al. [17] proposed a
reconfigurable CMOS ASIC processor for CNN and RNN with
quantization table-based matrix multiplication to reduce off-chip
accesses.

In existing hardware accelerators of RNNs, SRAM is
commonly utilized to store synaptic weights on the chip.
However, a SRAM cell consumes more than 100 F2 (F =
technology feature size) in area, constraining the capacity of on-
chip weight storage. To enhance on-chip storage, researchers
have proposed using embedded non-volatile memories
(eNVMs) with much less area (<10F2) such as resistive random
access memory (RRAM) [18] and phase change memory (PCM)
[19] to implement “analog” synaptic weights. Long et al. [20]
proposed an analog RRAM crossbar array based implementation
of a conventional RNN for human activity detection. Even
though analog RRAM hold great advantages on area-efficiency,

Shihui Yin, Xiaoyu Sun, Shimeng Yu, Jae-sun Seo, and Chaitali Chakrabarti

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA
Email: syin11@asu.edu, xsun63@asu.edu, shimengy@asu.edu, jaesun.seo@asu.edu, chaitali@asu.edu

A Parallel RRAM Synaptic Array Architecture for

978-1-5386-6318-9/18/$31.00 ©2018 IEEE 13 IEEE Workshop on Signal Processing Systems

the non-ideal analog weight characteristics (e.g. weight update
nonlinearity, limited dynamic range) introduce notable accuracy
degradation [21]. Therefore, it is more practical to use
technologically more mature binary RRAM that have been
demonstrated at Gb chip-level by industry as a near-term
solution [22]. Our prior work [23] demonstrated a one-
transistor-one-resistor (1T1R) binary RRAM array based
architecture, namely XNOR-RRAM, for implementing deep
binary CNNs featuring binary inputs and binary weights. The
proposed XNOR-RRAM features parallel read-out by activating
all the wordlines (WLs) simultaneously and simulation results
have shown ~33X improvement in energy- compared to
traditional row-by-row read-out scheme with negligible
accuracy degradation for MNIST and CIFAR-10 dataset.

Since a number of prior works [9][10] have reported that
binarized activations (when used together with binarized
weights) will significantly degrade the performance of large
LSTM models, in this work, we present an XNOR-RRAM based
architecture to support LSTM networks with binary weights and
multi-bit activations. We benchmark the area, latency, and
energy of designs with different activation precisions and
analyze the tradeoffs. The contribution of this work includes:

 A new LSTM training method for language modeling is
proposed featuring binary weights and multi-bit activations.
The impact of binary weight magnitude when combined with
different input and hidden state precisions on the language
modeling performance is investigated. We found that careful
selection of the binary weight magnitude helps to minimize
the performance degradation.

 An XNOR-RRAM based architecture is proposed for
implementing LSTM models. Simulation results show
negligible accuracy degradation on PTB in spite of the 4-bit
quantization of partial sums due to the proposed hardware.

 The area, latency, and energy of the proposed architecture is
benchmarked with different activation precisions and the
tradeoffs are analyzed. Benchmark results show that 4-bit
activation could achieve a near-optimal accuracy with
moderate area overhead and high energy-efficiency of ~27
TOPS/W.

 The rest of this paper is organized as follows. Section II
introduces the background of LSTM models and explains the
training algorithm. Section III describes the proposed XNOR-
RRAM based architecture for LSTM models. Section IV
compares the performance on area, latency, and energy between
designs with different precisions for input and hidden states.
Section V concludes the paper.

II. BINARY-WEIGHT MULTI-BIT-ACTIVATION LSTM

A. Long Short-Term Memory (LSTM)

In this paper, we consider LSTM model for word-level
language modeling. The goal is to predict the next word given a
sequence of words. The LSTM model starts with an embedding
layer, which converts each word in a vocabulary to an
embedding vector. Then multiple LSTM layers are stacked to
extract the features of the input word based on context, followed
by a softmax fully connected (FC) layer to predict the
probability of each word in the vocabulary of the language.

In an LSTM layer, cell states contain information from
history, which are updated by current inputs and previous hidden
states. Hidden states are then evaluated based on the updated cell
states, current inputs and previous hidden states. The detailed
model for an LSTM layer [4] is described in (1)-(6):

 �� = �(�� ∙ [ℎ���, ��] + ��), (1)

 �� = �(�� ∙ [ℎ���, ��] + ��), (2)
 �� = tanh(�� ∙ [ℎ���, ��] + ��), (3)
 �� = �� ∗ ���� + �� ∗ ��, (4)
 �� = �(�� ∙ [ℎ���, ��] + ��), (5)
 ℎ� = �� ∗ tanh (��), (6)

where �, �, �, and � represent the forget, input, transform and
output gate, respectively. Four corresponding weight matrices

�� , �� , �� and �� transform the concatenated vector of

previous hidden states ℎ� and current input �� to obtain the gate
values. Sigmoid �(�) and hyperbolic tangent tanh(�) functions
are the activation functions.

Let us denote the size of the LSTM layer as �, the vocabulary
size as �, then the four matrices in each LSTM layer are all of
size � × 2�, the weight matrix in the softmax FC layer is of size
� × �, and the embedding matrix is of size � × �.

B. Quantization of weights and inputs in LSTM layers

When the LSTM layer size � or vocabulary size � is large,
it is impractical to store all the weights and inputs on the chip.
For example, Fig. 1 shows an LSTM model with two LSTM
layers for language modeling on a 10,000-word-vocabulary
Penn Treebank (PTB) dataset, where the overall LSTM model
contains 6.2M parameters. Therefore, quantizing them could
significantly reduce the memory storage stress and computation
complexity. In this work, we propose a method that binarizes the
weights and quantizes inputs to multi-bit precisions in the LSTM
model such that the LSTM model is suitable for an XNOR-
RRAM array implementation. In particular, the binarizing
function for the weights is:

 ���(�) = ����(�(�)) ∗ ��, (7)

where ����(�) returns +1 if � ≥ 0, otherwise returns -1. �(�)
is the clip function that clips � to the range of [-1, 1].

The �-bit input quantization function is:

L
S

T
M

 (
2
5

6
)

L
S

T
M

 (
2
5

6
)

W
o

rd

E
m

b
e

d
d

in
g

F
C

 (
1
0

0
0

0
)

Fig. 1. LSTM model structure.

TABLE I. 2-BIT INPUT QUANTIZATION WITHIN [-1, 1]

Level b1 (2/3) b0 (1/3) Value
0 1� 1� -1
1 1� 1 -1/3

2 1 1� +1/3
3 1 1 +1

 ��(�) = � ��(�) ×
����

�
� ×

�

����
− 1, (8)

where �(�) is the round function that rounds � to its nearest
integer number.

We can see that the 2� levels are uniformly-spaced and zero-
symmetric. For example, Table I shows the details of a 2-bit
quantization scheme. The four quantization levels are {-1, -1/3,
1/3, 1}. A 2-bit input can be represented as ����

������, where �� is of
weight 2/3, �� is of weight 1/3. �� and �� can be +1 or -1,
represented as ‘1’ and ‘1�’, respectively. In general, a �-bit input
can be represented as �������� … ��

������������������, where �� can be +1 or -1,

and has the weight of
��

����
, � = 0, 1, … , � − 1.

 Therefore, the product of a �-bit input vector � and binary
weight matrix � can be reduced to sum of � binary-input-
binary-weight matrix-vector multiplications as shown in
equations (9)-(11):

 � = ∑ �� ×
��

����

���
��� , (9)

 � = ���� , (10)

 ��� = ∑
����

����
× ��

���
���
��� , (11)

where �� is a binary (+1/-1) vector of x’s j-th bits, �� is the

weight binary magnitude, and �� is the sign matrix (+1/-1) of
�. XNOR-and-bitcounting operation is used to implement the
dot product between a 1-bit input vector and a binary weight
vector and � shift-add operations are required to accumulate the
XNOR-and-bitcounting results to implement the dot-product
between a k-bit input vector and a binary vector. This process
is described in Algorithm 1.

C. Training Quantized LSTM

The weights and inputs of both LSTM layers and the
softmax FC layer are binarized or quantized using functions
defined in (7) and (8). However, the sign and round functions
are not differentiable, hindering the back propagation of
gradients. To overcome this problem, we use straight-through
estimator (STE) [24][25] to approximate the gradient of sign
and round function during back-propagation with constant one.
Dropout [6] has been employed to avoid overfitting the LSTM
model. In this work, for 1-bit input precision, dropout ratio is
0.05; for 2 to 5-bit input precisions, dropout ratio is 0.2; for
floating-point input precision, dropout ratio is 0.4.

Batch normalization [26] has been used in quantized
convolutional neural networks or fully-connected networks to
speed up training and improve generalization performance.
However, batch normalization in LSTM model is not
straightforward and is hypothesized [27] to hurt training due to
repeated rescaling, and is only limited to input-to-hidden
transition. Proper initialization of batch normalization
parameters [28] is suggested to make batch normalization work.
Layer normalization [29] is another option for speeding up and
improving generalization performance of LSTM models, which
computes the layer normalization statistics overall the hidden
units in the same layer. An additional benefit of batch
normalization or layer normalization in quantized LSTM model

is rescaling the pre-activation values to reasonable input range
for sigmoid or tanh functions. In this work, we applied a simple
and easy-to-implement rescaling to the pre-activation values in
both LSTM layers (12)-(15) and the FC layer (16):

 �� = ���� ∗ (�� ∙ [ℎ���, ��]) + ���, (12)

 �� = �(�� ∗ (�� ∙ [ℎ���, ��]) + ��), (13)

 �� = tanh��� ∗ (�� ∙ [ℎ���, ��]) + ���, (14)

 �� = �(�� ∗ (�� ∙ [ℎ���, ��]) + ��), (15)
 �� = �������(�� ∗ (�� ∙ ��) + ��), (16)

where �� , �� , �� and �� are binary weight matrices in an

LSTM layer and �� is binary weight matrix in the softmax FC
layer; �� is � -bit quantized input to each layer; ℎ� is � -bit
quantized hidden states of each LSTM layer; ��, �� , ��, γ� and

γ� are trainable scaling parameters, all initialized to 1 during
training; ∗ means element-wise multiplication between two
vectors.

We find that the weight magnitude �� is crucial for binary-
weight multi-bit-input LSTM model training. Since the inputs
are quantized within the range of [-1, 1] for each layer, if �� is
too small, the pre-activation value will be too small, limiting the
reachable range of activation values. If �� is too large, the pre-
activation values become too large, and may get stuck in small-
gradient regions of sigmoid and hyperbolic tangent functions in
the beginning of the training process. To see this more clearly,
let’s take an example of 1-bit input and LSTM layer of size �.

Let us assume that the input binary vector is almost random
and uncorrelated, which means each entry is +1 with probability
of 0.5. Similarly, we assume that the associated weight vector
is also random and uncorrelated, and the input vector and
weight vector are also uncorrelated with each other. Then, the
product of each entry of the input and weight vector is +�� and
-�� with probability of 0.5 and 0.5, respectively. The variance
of each product is equal to ��

� . The sum of � products has a
variance of � × ��

� . The standard deviation of the weighted

Algorithm 1: Dot product of binary weight matrix � and
�-bit input vector �.

1. Split � into � binary vectors {����, ����, … , ��}
such that equation (9) satisfies.

2. First compute multiplication between the MSB
vector ����

� and �� .
� = ����

� × ��;
3. Keep left-shifting � and add with the product

between each following binary vector and weight
matrix.
for (� = � − 2; j ≥ 0; j--) {
 � = � ≪ 1;
 � = � + ��

� × ��;

}
4. Scale y to get the final product.

� =
��

����
�.

sum is √� × ��. When n is large, the weighted sum’s binomial
distribution is close to a normal distribution. If �� is large, say,
equal to 1, and � = 256, then the standard deviation of the
weighted sum is 16, which means most weighted sums will fall
in a region of sigmoid or hyperbolic tangent function where
gradient is almost zero. Therefore, proper �� should be
selected properly based on the size of LSTM layer.

We train the LSTM model unrolled in 20 time steps, using
stochastic gradient descent with momentum as the learning
optimizer. The LSTM layer size � is equal to 256. The initial
learning rate is 0.15 for the first 30 epochs, then decays by a
factor of 0.85 till the end of 50 epochs. Batch size is 20. We
sweep the �� from 1/64 to 1/2 logarithmically for input
precision from 1-bit to 5-bit. The performance of LSTM model
for language modeling is measured by perplexity per word
(PPW). Table II summarizes the perplexity on valid and test
PTB dataset. Note that to reduce the performance gap between
software and hardware fixed-point implementation, we also
quantize intermediate variables such as cells states and pre-
activation values to 8-bit fixed-point values. During LSTM
training, STE is used for the quantization for these variables as
well.

The baseline LSTM model with floating-point (FP) weights
and floating-point inputs/activations achieves a test PPW of
103.0. After we binarize the weights, the test PPW degrades
slightly to 106.3 when �� is equal to 1/4. As we further
decrease the precision for the inputs/activations, the test PPW

degrades further. As we can see from Table II, 4-bit
input/activation precision is required to avoid significant PPW
degradation. For very low input/activation precisions such as 1-
bit or 2-bit, �� should be smaller to achieve good PPW values.
This is because the input variance is generally larger for lower
precision when we quantize input to the range of [-1, 1]. For
instance, inputs quantized to 1-bit values can only take -1 and
+1, while inputs quantized to 5-bit values can take values closer
to 0 such as -1/31 and 1/31. Therefore, careful selection of
binary weight magnitude is required when the input is quantized
during training to minimize the performance degradation of an
LSTM model compared to its full-precision counterpart.

III. XNOR-RRAM ARRAY ARCHITECTURE FOR LSTM

A. Customized bit-cell for XNOR function

As explained in Section II, the fundamental operations of the
proposed algorithm for the LSTM model are XNOR-and-
bitcounting operations. A customized RRAM bit-cell is utilized
to efficiently implement XNOR function in the RRAM array.
We only consider the pseudo-crossbar 1T1R array since the two-
terminal threshold switch selectors for true crossbar array are
currently not technologically mature for large scale integration.
As shown in Fig. 2, every two RRAM cells in the same column
are grouped as one synaptic binary weight. “+1” is represented
by two cells where the top one is in low resistance state (LRS)
and the bottom one is in high resistance state (HRS), “-1” is
represented in the reversed pattern [23]. The input pattern is
coded similarly with two complimentary wordlines (WLs). With
this setup, when input data is “-1”, the activated cell in “-1”
weight cell is in LRS, leading to a large cell current, which can
represent the bit-wise XNOR output of “+1”; for the cell of
weight “+1”, the activated cell is in HRS, leading to a small cell
current, which can be regarded as XNOR output of “-1”. As a
result, XNOR function is successfully implemented in analog
domain. Moreover, when multiple WLs are activated in parallel,
the LRS-cells will dominate the contributions to the total bitline
current (IBL). Assuming the on/off ratio of RRAM device is

Fig. 2. The customized bit-cell design for implementing XNOR
function in RRAM array [23]. Bit-counting results can be obtained by
converting the total bitline current to digital outputs.

Fig. 3. The diagram of adapted XNOR-RRAM array structure. To
enable the computation with multi-bit input, a shift-and-add module is
added to the periphery.

TABLE II. PPW ON PTB VALID (TEST) DATASET

�� 1/64 1/32 1/16 1/8 1/4 1/2 Baseline

FP
682.4

(639.1)
135.6

(131.0)
118.7

(113.4)
114.0

(109.4)
111.1

(106.3)
113.3

(107.8)
107.4

(103.0)

5
682.4

(639.1)
137.5

(132.4)
118.9

(114.6)
114.2

(109.6)
112.3

(108.0)
122.6

(114.8)
--

4
229.5

(221.2)
138.1

(133.1)
119.1

(114.5)
115.9

(110.3)
115.6

(111.0)
121.7

(115.6)
--

3
188.1

(181.3)
139.3

(133.4)
123.7

(118.1)
120.1

(116.3)
127.4

(121.3)
140.8

(133.4)
--

2
165.6

(158.1)
138.0

(132.8)
132.4

(126.5)
141.8

(134.9)
150.6

(143.1)
203.9

(192.9)
--

1
164.6

(157.0)
152.5

(146.6)
158.3

(152.1)
176.1

(165.9)
267.6

(254.2)
362.9

(345.7)
--

sufficiently large (e.g. >100), IBL will be proportional to the
XNOR-and-bit-counting result along the column. Therefore, the
XNOR-and-bit-counting results can be obtained by converting
the analog IBL to digital outputs.

B. XNOR-RRAM architecture for LSTM

 Fig. 3 shows the XNOR-RRAM array structure. Instead of
the one-hot decoder for conventional memory array, a WL
switch matrix is exploited to activate multiple WLs
simultaneously to enable the fully parallel read operation.
Multilevel sense amplifiers (MLSAs) are utilized to convert the
analog IBL to digital outputs of fixed-point precision, and a look-
up table (LUT) based non-linear quantization method is used to
generate the corresponding quantized bit-counting results as in
[23]. Due to the layout pitch-match issue (the width of an MLSA
block is much larger than an RRAM cell pitch), every 8 columns
share one set of MLSA and LUT. In this work, a shift-and-add
module is added to the peripheral circuitry to enable the
computation with multibit input, i.e., � cycles will be consumed
to generate the final result when the input is of �-bit precision.

 Due to the intrinsic offset of sense amplifiers caused by
process variation, the sensing pass rate (percentage of accurate
sensing outputs) becomes worse when IBL increases (as cell
currents are summed up for a large array), leading to inaccurate
bit-counting results, which may significantly degrade the
accuracy. Therefore, the large weight matrices in LSTM are split
into multiple small matrices and implemented with small sub-
arrays. In this work, we conservatively use a relatively small
sub-array size of 64 × 64 at the expense of larger number of sub-
arrays to cover all the weight matrices. Fig. 4 shows the system
level architecture, where each gray box represents a processing
engine (PE), i.e., an adapted XNOR-RRAM array with
peripheral circuits. The PE array is scalable depending on the
desired weight matrix size. Input vector buffer temporally stores
both the incoming input vector at the current time step and its
own hidden state ℎ��� from last time step. Activation functions
(sigmoid and hyperbolic tangent) are implemented with LUTs.

 A digital circuit block consisting of 8-bit multipliers and
adders are placed after LUTs and used for updating �� and ℎ�
accordingly, as shown in Fig. 4. Cell state �� is stored in a
dedicated buffer. The computing process for one LSTM layer
can be divided into 3 stages. In stage I, the partial sums, i.e., the

bit-counting results, are read out from each sub-array (including
shift-and-add) and then summed up through adder trees; the final
sums go through the LUT based activation functions to generate
four intermediate states �� , �� , �� and �� . The precision of four
intermediate states is set to be 8-bit. In stage II, two groups of 8-
bit multipliers are utilized to perform element-wise
multiplication between �� and ���� , �� and �� , respectively.
Then the corresponding products are added up to update �� in
the buffer, which is also quantized to 8-bit after addition. In stage
III, the new �� is passed through hyperbolic tangent function and
is then multiplied by �� to generate ℎ�, which is then quantized
to the desired precision and stored back to the input buffer for
the computation in the next time step.

 To reduce the number of SAs required in MLSAs, we apply
nonlinear quantization to the partial sums before we add them
up across different sub-arrays. Quantization levels are
determined based on the software partial sum distribution using
Lloyd-Max algorithm [23][30]. We investigate the impact of the
MLSA resolution on test perplexity to find the lowest resolution
required to preserve good language modeling performance. As
shown in Fig. 5, test perplexity is unacceptably high when the
MLSA resolution is 3-bit. By increasing the resolution to 4-bit,
the test perplexity can be significantly reduced to near-optimal
level with degradation of less than 5 in PPW for all the cases.
Therefore, 4-bit MLSAs are chosen for our implementation.
With 4-bit activation precision and 4-bit MLSAs, the test PPW
is equal to 115.3 with a slight degradation of 12.3 in PPW
compared to the full-precision software test result.

IV. BENCHMARK ON AREA, LATENCY, AND ENERGY

 In this section, we estimate the area, latency, and energy of
the proposed XNOR-RRAM array based architecture using
NeuroSim [31], an open-source estimator for RRAM based
hardware accelerators. The hierarchy of the estimator consists of
different levels of abstraction from the memory cell parameters
and transistor technology parameters, to the gate-level sub-
circuit modules, and then to the array architecture.

 We implemented one LSTM layer of size 256. The area,
latency, and energy results for different activation precisions (1-
bit to 5-bit) are summarized in Table III. Even though the main
array structure remains the same for multi-bit activations, the
area overhead increases with precision due to shift-and-add
modules and larger buffers for activation data storage. However,
the growth in area is relatively insignificant since the other
peripheral circuits such as MLSAs, LUTs, and multipliers

Fig. 5. Test perplexity with different activation precisions considering
the effect of nonlinear quantization of partial sums by MLSAs.

T
e

s
t

P
e

rp
le

x
it

y

Fig. 4. The diagram of XNOR-RRAM array based architecture for
implementing LSTM. Sub-array size is 64×64.

Partial
Sums

LUT based Activations

Adder Tree

it utft ot

Ct

In
p

u
t

V
e

ct
o

r
B

u
ff

e
r

ht

tanh

Ct-1

Ct

element-wise
multiplication

dominate the area. As expected, the latency for one layer
computation increases for a higher input precision as more
rounds of array computation need to be performed, and the
energy-efficiency of the system correspondingly decreases from
~79 TOPS/W (1-bit activation precision) to ~22 TOPS/W (5-bit
activation precision). Considering both performance on
perplexity and hardware overhead, the results suggest that 4-bit
activation precision is a favorable option that provides near-
optimal accuracy with moderate area overhead and a high
energy-efficiency of ~27 TOPS/W, which represents a 2.3×
improvement compared to an SRAM based ASIC CNN/RNN
accelerator [17].

V. CONCLUSION

In this paper, we described an approach to train an LSTM
model for language modeling on PTB dataset with binary
weights and multi-bit activations to reduce the number of
parameters by ~32X. Proper binary weight magnitude is selected
to minimize the performance degradation. To efficiently
implement the proposed LSTM in hardware, we presented a
XNOR-RRAM array based architecture that can perform
XNOR-and-bitcounting in the array. The PTB benchmark
results suggest that binary-weight/4-bit-activation with 4-bit
MLSAs can achieve a near-optimal perplexity with an estimated
energy-efficiency of ~27 TOPS/W. Future works include
investigating the impact of RRAM device variation on test
perplexity and the related compensating techniques to pave the
way for practical deployment.

ACKNOWLEDGMENT

This work is in part supported by NSF/SRC E2CDA
program under NSF grant 1740225 and SRC contract 2018-NC-
2762, NSF grant 1652866, and C-BRIC, one of six centers in
JUMP, a SRC program sponsored by DARPA.

REFERENCES

[1] A. Graves et al., “Towards end-to-end speech recognition with recurrent
neural networks,” International Conference on International Conference
on Machine Learning (ICML), pp. II-1764-II-1772, 2014.

[2] J. Donahue et al., “Long-term recurrent convolutional networks for visual
recognition and description,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39(4), pp. 677-691, 2015.

[3] I. Sutskever et al., “Sequence to sequence learning with neural networks,”
Neural Information Processing Systems, pp. 3104-3112, 2014.

[4] S. Hochreiter et al., “Long short-term memory,” Neural Computation,
9(8), pp. 1735-1780, 1997.

[5] K. Cho et al., “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” arXiv:1406.1078, 2014.

[6] W. Zaremba et al., “Recurrent neural network regularization,” arXiv:
1409.2329, 2014.

[7] M. P. Marcus et al., “Building a large annotated corpus of English: The
Penn Treebank,” Computational linguistics, 19(2), pp. 313-330, 1993.

[8] I. Hubara et al., “Quantized Neural Networks: Training Neural Networks
with Low Precision Weights and Activations,” arXiv:1609.07061, 2016.

[9] S. Zhou et al., “Balanced quantization: An effective and efficient
approach to quantized neural networks,” Journal of Computer Science
and Technology, vol. 32, no. 4, pp. 667-682, 2017.

[10] C. Xu et al., “Alternating Multi-bit Quantization for Recurrent Neural
Networks,” International Conference on Learning Representations
(ICLR), 2018.

[11] L. Hou et al., “Loss-aware binarization of deep networks,” International
Conference on Learning Representations (ICLR), 2017.

[12] S. Narang et al., “Exploring Sparsity in Recurrent Neural Networks,”
International Conference on Learning Representations (ICLR), 2017.

[13] W. Wen et al., “Learning Intrinsic Sparse Structures within Long Short-
Term Memory,” International Conference on Learning Representations
(ICLR), 2018.

[14] Y. Bengio et al., “Learning long-term dependencies with gradient descent
is difficult,” IEEE Transactions on Nerual Networks, vol. 5, no. 2, pp.
157-166, 1994

[15] M. Lee et al., “FPGA-Based Low-Power Speech Recognition with
Recurrent Neural Networks,” IEEE International Workshop on Signal
Processing Systems (SiPS), pp. 230-235, 2016.

[16] S. Han et al., “ESE: Efficient Speech Recognition Engine with Sparse
LSTM on FPGA,” International Symposium on Filed-Programmable
Gate Arrays (FPGA), pp. 75-84, 2017

[17] D. Shin et al., “DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN
Processor for General-Purpose Deep Neural Networks,” IEEE
International Solid-State Circuits Conference (ISSCC), pp. 240-241,
2017.

[18] S. Park et al., “Neuromorphic speech systems using advanced ReRAM
based synapse,” IEEE International Electron Devices Meeting (IEDM),
pp. 25.6.1-25.6.4, 2013.

[19] G. W. Burr et al., “Experimental demonstration and tolerancing of a large-
scale neural network (165,000 synapses), using phase-change memory as
the synaptic weight element,” IEEE International Electron Devices
Meeting (IEDM), pp. 3498-3507, 2014.

[20] Y. Long et al., “ReRAM crossbar based recurrent neural network for
human activity detection,” International Joint Conference on Neural
Networks (IJCNN), pp. 939-946, 2016.

[21] P.-Y. Chen et al., “Mitigating effects of non-ideal synaptic device
characteristics for on-chip learning,” IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 194-199, 2015.

[22] R. Fackenthal et al., “A 16Gb ReRAM with 200MB/s write and 1GB/s
read in 27nm technology,” IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), pp. 338-339, 2014.

[23] X. Sun et al., “XNOR-RRAM: A scalable and parallel resistive synaptic
architecture for binary neural networks,” Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1423-1428, 2018.

[24] G. Hinton, “Neural networks for machine learning,” Coursera, video
lectures, 2012.

[25] Y. Bengio, “Estimating or propagating gradients through stochastic
neurons,” arXiv:1305.2982, 2013.

[26] S. Ioffe et al., “Batch Normalization: Accelerating Deept Network
Training by Reducing Internal Covariate Shift,” arXiv:1502.03167, 2015.

[27] C. Laurent et al., “Batch normalized recurrent neural networks,” IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2657-2661, 2016.

[28] T. Cooijmans et al., “Recurrent Batch Normalization,” International
Conference on Learning Representations (ICLR), 2017.

[29] J. L. Ba et al., “Layer Normalization,” arXiv:1607.06450, 2016.

[30] J. Max et al., “Quantizing for minimum distortion,” IRE Transactions on
Information Theory, 6(1), 7-12, 1960.

[31] P.-Y. Chen et al., “NeuroSim+: An integrated device-to-algorithm
framework for benchmarking synaptic devices and array architectures,”
IEEE International Electron Devices Meeting (IEDM), pp. 6.1.1-6.1.4,
2017.

TABLE III. COMPARISON BETWEEN DESIGNS WITH BINARY WEIGHTS AND

DIFFERENT INPUT/ACTIVATION PRECISIONS

Precision Perplexity
Area

(mm2)
Latency

(ns)
TOPS/W

5-bit 115.8 0.66 185.21 22.06
4-bit 115.3 0.65 159.43 27.41
3-bit 117.3 0.64 133.64 35.60
2-bit 136.9 0.63 107.86 49.63
1-bit 163.0 0.60 82.07 79.00

