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Abstract  –  Recurrent  neural  networks  (RNNs)  provide 
excellent performance on applications with sequential data such as 
speech recognition.  On-chip  implementation  of  RNNs  is difficult 
due  to  the  significantly  large  number  of  parameters  and 
computations. In this work, we first present a training method for 
LSTM  model  for  language  modeling  on  Penn  Treebank  dataset 
with binary weights and multi-bit activations and then map it onto 
a fully parallel RRAM array architecture (“XNOR-RRAM”). An 
energy-efficient  XNOR-RRAM  array  based  system  for  LSTM 
RNN  is  implemented  and  benchmarked  on  Penn  Treebank 
dataset.  Our  results  show  that  4-bit  activation  precision  can 
provide  a  near-optimal  perplexity  of  115.3  with  an  estimated 
energy-efficiency of ~27 TOPS/W. 

I. INTRODUCTION 

Recurrent neural networks (RNNs) have shown remarkable 
performance  on  artificial  intelligence  tasks  such  as  speech 
recognition [1], image caption [2], and language modeling [3]. 
Long-Short-Term  Memory  (LSTM)  [4]  and  Gated  Recurrent 
Units (GRU) [5] are the two most widely used RNNs. State-of-
the-art  RNNs  are  typically  deployed  on  large-scale  servers  in 
data centers due to their high demand on memory storage size 
and computational power requirements. For example, the LSTM 
model in [6] for Penn Tree Bank (PTB) [7] language modeling 
task contains 66M parameters and requires 51M floating-point 
multiply-and-accumulate  operations  (MACs)  per  word 
prediction.  Directly  mapping  this  model  onto  a  conventional 
processor would result in crippling energy consumption and is 
thus infeasible. 

To facilitate efficient hardware implementation and reduce 
computation energy and latency, researchers have been studying 
approaches to reduce the precision of weights and hidden states 
of  LSTMs  without  compromising  their  performance.  Straight-
through estimator (STE) has been used in [8] to train quantized 
LSTM  models.  Balanced  quantization  proposed  in  [9]  to 
quantize  the  weights  and  activations  to  multi-bit  values,  has 
shown  better  performance  on  a  2-bit/3-bit  precision  for 
weights/activations  compared  to  imbalanced  quantization 
scheme. Xu et al. [10] recently proposed an optimization method 
that quantizes the weights and activations to multi-bit values by 
alternatively optimizing binary codes and real coefficients. This 
method achieved better performance than full precision baseline 
with 3-bit/3-bit precision for weights/activations for an LSTM 
model. Hou et al. [11] showed that binarized LSTM can achieve 
promising  performance  in  character-level  language  modeling 

task. In addition to low-precision LSTM model training, model 
compression techniques have been recently explored to reduce 
the number of weights  of LSTMs  by  pruning  out unnecessary 
weights without hurting the accuracy of the models. Narang et 
al. [12] proposed a pruning-based method to reduce the number 
of  weights  in  RNNs  by  ~90%,  at  the  expense  of  reducing 
accuracy of the model by 10-20%. Wen et al. [13] proposed a 
method to learn compact structures in RNNs using group Lasso 
regularization.  

In  this  work,  we  present  a  training  method  for  an  LSTM 
model  for  language  modeling  on  PTB  dataset  with  binary 
weights  and  multi-bit  activations.  Unlike  rectified  linear  unit 
(ReLU)  activation  function  widely  used  in  modern  deep 
convolutional  neural  networks  (CNNs),  the  sigmoid  and ���ℎ  
activation functions in LSTM models suffer from  the gradient 
vanishing problem [14]. Thus, when we binarize the weights of 
LSTM models, careful selection of binary weight magnitude is 
required to stay away from the gradient-saturating region. This 
problem has not been considered by previous quantized LSTM 
training algorithms [9][10][11]. 

Exploiting  the  massive  parallelism  in  the  RNN  models, 
hardware RNN accelerators have been proposed in recent years. 
Lee  et  al.  [15]  proposed  an  RNN  accelerator  for  speech 
recognition  on  Xilinx  XC7Z045  FPGA  utilizing  only  on-chip 
memory with 6-bit quantized weights. Han et al. [16] presented 
an efficient FPGA accelerator for speech recognition with sparse 
LSTM on Xilinx XCKU060 FPGA. They quantized the weights 
to 12-bit without any accuracy loss, requiring two 4GB DRAMs 
as off-chip memory for data storage. Shin et al. [17] proposed a 
reconfigurable CMOS ASIC processor for CNN and RNN with 
quantization table-based matrix multiplication to reduce off-chip 
accesses.  

In  existing  hardware  accelerators  of  RNNs,  SRAM  is 
commonly  utilized  to  store  synaptic  weights  on  the  chip. 
However,  a  SRAM  cell  consumes  more  than  100  F2  (F = 
technology feature size) in area, constraining the capacity of on-
chip  weight  storage.  To  enhance  on-chip  storage,  researchers 
have  proposed  using  embedded  non-volatile  memories 
(eNVMs) with much less area (<10F2) such as resistive random 
access memory (RRAM) [18] and phase change memory (PCM) 
[19] to implement “analog” synaptic weights.  Long  et al. [20] 
proposed an analog RRAM crossbar array based implementation 
of  a  conventional  RNN  for  human  activity  detection.  Even 
though analog RRAM hold great advantages on area-efficiency, 
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the non-ideal analog weight characteristics (e.g. weight update 
nonlinearity, limited dynamic range) introduce notable accuracy 
degradation [21]. Therefore, it is more practical to use 
technologically more mature binary RRAM that have been 
demonstrated at Gb chip-level by industry as a near-term 
solution [22]. Our prior work [23] demonstrated a one-
transistor-one-resistor (1T1R) binary RRAM array based 
architecture, namely XNOR-RRAM, for implementing deep 
binary CNNs featuring binary inputs and binary weights. The 
proposed XNOR-RRAM features parallel read-out by activating 
all the wordlines (WLs) simultaneously and simulation results 
have shown ~33X improvement in energy- compared to 
traditional row-by-row read-out scheme with negligible 
accuracy degradation for MNIST and CIFAR-10 dataset.  

Since a number of prior works [9][10] have reported that 
binarized activations (when used together with binarized 
weights) will significantly degrade the performance of large 
LSTM models, in this work, we present an XNOR-RRAM based 
architecture to support LSTM networks with binary weights and 
multi-bit activations. We benchmark the area, latency, and 
energy of designs with different activation precisions and 
analyze the tradeoffs. The contribution of this work includes: 

 A new LSTM training method for language modeling is 
proposed featuring binary weights and multi-bit activations. 
The impact of binary weight magnitude when combined with 
different input and hidden state precisions on the language 
modeling performance is investigated. We found that careful 
selection of the binary weight magnitude helps to minimize 
the performance degradation. 

 An XNOR-RRAM based architecture is proposed for 
implementing LSTM models. Simulation results show 
negligible accuracy degradation on PTB in spite of the 4-bit 
quantization of partial sums due to the proposed hardware. 

 The area, latency, and energy of the proposed architecture is 
benchmarked with different activation precisions and the 
tradeoffs are analyzed. Benchmark results show that 4-bit 
activation could achieve a near-optimal accuracy with 
moderate area overhead and high energy-efficiency of ~27 
TOPS/W. 

  The rest of this paper is organized as follows. Section II 
introduces the background of LSTM models and explains the 
training algorithm. Section III describes the proposed XNOR-
RRAM based architecture for LSTM models. Section IV 
compares the performance on area, latency, and energy between 
designs with different precisions for input and hidden states. 
Section V concludes the paper. 

II. BINARY-WEIGHT MULTI-BIT-ACTIVATION LSTM 

A. Long Short-Term Memory (LSTM) 

In this paper, we consider LSTM model for word-level 
language modeling. The goal is to predict the next word given a 
sequence of words. The LSTM model starts with an embedding 
layer, which converts each word in a vocabulary to an 
embedding vector. Then multiple LSTM layers are stacked to 
extract the features of the input word based on context, followed 
by a softmax fully connected (FC) layer to predict the 
probability of each word in the vocabulary of the language. 

In an LSTM layer, cell states contain information from 
history, which are updated by current inputs and previous hidden 
states. Hidden states are then evaluated based on the updated cell 
states, current inputs and previous hidden states. The detailed 
model for an LSTM layer [4] is described in (1)-(6): 

 �� = �(�� ∙ [ℎ���, ��] + ��), (1) 

 �� = �(�� ∙ [ℎ���, ��] + ��), (2) 
  �� = tanh(�� ∙ [ℎ���, ��] + ��), (3) 
  �� = �� ∗ ���� + �� ∗ ��, (4) 
  �� = �(�� ∙ [ℎ���, ��] + ��), (5) 
 ℎ� = �� ∗ tanh (��), (6) 

where �, �, �, and � represent the forget, input, transform and 
output gate, respectively. Four corresponding weight matrices 

�� , �� , ��  and ��  transform the concatenated vector of 

previous hidden states ℎ�  and current input �� to obtain the gate 
values. Sigmoid �(�) and hyperbolic tangent tanh(�) functions 
are the activation functions.  

Let us denote the size of the LSTM layer as �, the vocabulary 
size as �, then the four matrices in each LSTM layer are all of 
size � × 2�, the weight matrix in the softmax FC layer is of size 
� × �, and the embedding matrix is of size � × �.  

B. Quantization of weights and inputs in LSTM layers 

When the LSTM layer size � or vocabulary size � is large, 
it is impractical to store all the weights and inputs on the chip. 
For example, Fig. 1 shows an LSTM model with two LSTM 
layers for language modeling on a 10,000-word-vocabulary 
Penn Treebank (PTB) dataset, where the overall LSTM model 
contains 6.2M parameters. Therefore, quantizing them could 
significantly reduce the memory storage stress and computation 
complexity. In this work, we propose a method that binarizes the 
weights and quantizes inputs to multi-bit precisions in the LSTM 
model such that the LSTM model is suitable for an XNOR-
RRAM array implementation. In particular, the binarizing 
function for the weights is:  

 ���(�) = ����(�(�)) ∗ ��, (7) 

where ����(�) returns +1 if � ≥ 0, otherwise returns -1. �(�) 
is the clip function that clips � to the range of [-1, 1].  

The �-bit input quantization function is: 
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Fig. 1. LSTM model structure. 

TABLE I. 2-BIT INPUT QUANTIZATION WITHIN [-1, 1] 

Level b1 (2/3) b0 (1/3) Value 
0 1�  1�  -1 
1 1�  1 -1/3 

2 1 1�  +1/3 
3 1 1 +1 

 



 ��(�) = � ��(�) ×
����

�
� ×

�

����
− 1, (8) 

where �(�) is the round function that rounds �  to its nearest 
integer number.  

We can see that the 2�  levels are uniformly-spaced and zero-
symmetric. For example, Table I shows the details of a 2-bit 
quantization scheme. The four quantization levels are {-1, -1/3, 
1/3, 1}. A 2-bit input can be represented as ����

������, where �� is of 
weight 2/3, ��  is of weight 1/3. ��  and ��  can be +1 or -1, 
represented as ‘1’ and ‘1�’, respectively. In general, a �-bit input 
can be represented as �������� … ��

������������������, where �� can be +1 or -1, 

and has the weight of 
��

����
, � = 0, 1, … , � − 1. 

 Therefore, the product of a �-bit input vector � and binary 
weight matrix �  can be reduced to sum of �  binary-input-
binary-weight matrix-vector multiplications as shown in 
equations (9)-(11): 

 � = ∑ �� ×
��

����

���
���  , (9) 

 � = ���� , (10) 

 ��� = ∑
����

����
× ��

���
���
���  , (11) 

where ��  is a binary (+1/-1) vector of x’s j-th bits, ��  is the 

weight binary magnitude, and �� is the sign matrix (+1/-1) of 
�. XNOR-and-bitcounting operation is used to implement the 
dot product between a 1-bit input vector and a binary weight 
vector and � shift-add operations are required to accumulate the 
XNOR-and-bitcounting results to implement the dot-product 
between a k-bit input vector and a binary vector. This process 
is described in Algorithm 1. 

C. Training Quantized LSTM 

The weights and inputs of both LSTM layers and the 
softmax FC layer are binarized or quantized using functions 
defined in (7) and (8). However, the sign and round functions 
are not differentiable, hindering the back propagation of 
gradients. To overcome this problem, we use straight-through 
estimator (STE) [24][25] to approximate the gradient of sign 
and round function during back-propagation with constant one. 
Dropout [6] has been employed to avoid overfitting the LSTM 
model. In this work, for 1-bit input precision, dropout ratio is 
0.05; for 2 to 5-bit input precisions, dropout ratio is 0.2; for 
floating-point input precision, dropout ratio is 0.4. 

Batch normalization [26] has been used in quantized 
convolutional neural networks or fully-connected networks to 
speed up training and improve generalization performance. 
However, batch normalization in LSTM model is not 
straightforward and is hypothesized [27] to hurt training due to 
repeated rescaling, and is only limited to input-to-hidden 
transition. Proper initialization of batch normalization 
parameters [28] is suggested to make batch normalization work. 
Layer normalization [29] is another option for speeding up and 
improving generalization performance of LSTM models, which 
computes the layer normalization statistics overall the hidden 
units in the same layer. An additional benefit of batch 
normalization or layer normalization in quantized LSTM model 

is rescaling the pre-activation values to reasonable input range 
for sigmoid or tanh functions. In this work, we applied a simple 
and easy-to-implement rescaling to the pre-activation values in 
both LSTM layers (12)-(15) and the FC layer (16): 

 �� = ���� ∗ (�� ∙ [ℎ���, ��]) + ���,  (12) 

 �� = �(�� ∗ (�� ∙ [ℎ���, ��]) + ��), (13) 

 �� = tanh��� ∗ (�� ∙ [ℎ���, ��]) + ���, (14) 

 �� = �(�� ∗ (�� ∙ [ℎ���, ��]) + ��), (15) 
 �� = �������(�� ∗ (�� ∙ ��) + ��), (16) 

where �� , �� , ��  and ��  are binary weight matrices in an 

LSTM layer and �� is binary weight matrix in the softmax FC 
layer; ��  is � -bit quantized input to each layer; ℎ�  is � -bit 
quantized hidden states of each LSTM layer; ��,  �� , ��, γ� and 

γ� are trainable scaling parameters, all initialized to 1 during 
training; ∗  means element-wise multiplication between two 
vectors. 

We find that the weight magnitude �� is crucial for binary-
weight multi-bit-input LSTM model training. Since the inputs 
are quantized within the range of [-1, 1] for each layer, if �� is 
too small, the pre-activation value will be too small, limiting the 
reachable range of activation values. If �� is too large, the pre-
activation values become too large, and may get stuck in small-
gradient regions of sigmoid and hyperbolic tangent functions in 
the beginning of the training process. To see this more clearly, 
let’s take an example of 1-bit input and LSTM layer of size �.  

Let us assume that the input binary vector is almost random 
and uncorrelated, which means each entry is +1 with probability 
of 0.5. Similarly, we assume that the associated weight vector 
is also random and uncorrelated, and the input vector and 
weight vector are also uncorrelated with each other. Then, the 
product of each entry of the input and weight vector is +�� and 
-�� with probability of 0.5 and 0.5, respectively. The variance 
of each product is equal to ��

� . The sum of � products has a 
variance of � ×  ��

� . The standard deviation of the weighted 

 

 
Algorithm 1: Dot product of binary weight matrix � and 
�-bit input vector �. 

1. Split � into � binary vectors {����, ����, … , ��} 
such that equation (9) satisfies. 

2. First compute multiplication between the MSB 
vector ����

�  and �� . 
� = ����

� × ��; 
3. Keep left-shifting � and add with the product 

between each following binary vector and weight 
matrix. 
for (� = � − 2; j ≥ 0; j--) { 
 � = � ≪ 1; 
 � = � + ��

� × ��; 

} 
4. Scale y to get the final product. 

� =
��

����
�. 

 
 



sum is √� × ��. When n is large, the weighted sum’s binomial 
distribution is close to a normal distribution. If �� is large, say, 
equal to 1, and �  = 256, then the standard deviation of the 
weighted sum is 16, which means most weighted sums will fall 
in a region of sigmoid or hyperbolic tangent function where 
gradient is almost zero. Therefore, proper ��  should be 
selected properly based on the size of LSTM layer. 

We train the LSTM model unrolled in 20 time steps, using 
stochastic gradient descent with momentum as the learning 
optimizer. The LSTM layer size � is equal to 256. The initial 
learning rate is 0.15 for the first 30 epochs, then decays by a 
factor of 0.85 till the end of 50 epochs. Batch size is 20. We 
sweep the ��  from 1/64 to 1/2 logarithmically for input 
precision from 1-bit to 5-bit. The performance of LSTM model 
for language modeling is measured by perplexity per word 
(PPW). Table II summarizes the perplexity on valid and test 
PTB dataset. Note that to reduce the performance gap between 
software and hardware fixed-point implementation, we also 
quantize intermediate variables such as cells states and pre-
activation values to 8-bit fixed-point values. During LSTM 
training, STE is used for the quantization for these variables as 
well. 

The baseline LSTM model with floating-point (FP) weights 
and floating-point inputs/activations achieves a test PPW of 
103.0. After we binarize the weights, the test PPW degrades 
slightly to 106.3 when ��  is equal to 1/4. As we further 
decrease the precision for the inputs/activations, the test PPW 

degrades further. As we can see from Table II, 4-bit 
input/activation precision is required to avoid significant PPW 
degradation. For very low input/activation precisions such as 1-
bit or 2-bit, �� should be smaller to achieve good PPW values. 
This is because the input variance is generally larger for lower 
precision when we quantize input to the range of [-1, 1]. For 
instance, inputs quantized to 1-bit values can only take -1 and 
+1, while inputs quantized to 5-bit values can take values closer 
to 0 such as -1/31 and 1/31. Therefore, careful selection of 
binary weight magnitude is required when the input is quantized 
during training to minimize the performance degradation of an 
LSTM model compared to its full-precision counterpart. 

III. XNOR-RRAM ARRAY ARCHITECTURE FOR LSTM 

A. Customized bit-cell for  XNOR function 

As explained in Section II, the fundamental operations of the 
proposed algorithm for the LSTM model are XNOR-and-
bitcounting operations. A customized RRAM bit-cell is utilized 
to efficiently implement XNOR function in the RRAM array. 
We only consider the pseudo-crossbar 1T1R array since the two-
terminal threshold switch selectors for true crossbar array are 
currently not technologically mature for large scale integration. 
As shown in Fig. 2, every two RRAM cells in the same column 
are grouped as one synaptic binary weight. “+1” is represented 
by two cells where the top one is in low resistance state (LRS) 
and the bottom one is in high resistance state (HRS), “-1” is 
represented in the reversed pattern [23]. The input pattern is 
coded similarly with two complimentary wordlines (WLs). With 
this setup, when input data is “-1”, the activated cell in “-1” 
weight cell is in LRS, leading to a large cell current, which can 
represent the bit-wise XNOR output of “+1”; for the cell of 
weight “+1”, the activated cell is in HRS, leading to a small cell 
current, which can be regarded as XNOR output of “-1”. As a 
result, XNOR function is successfully implemented in analog 
domain. Moreover, when multiple WLs are activated in parallel, 
the LRS-cells will dominate the contributions to the total bitline 
current (IBL). Assuming the on/off ratio of RRAM device is 

 
Fig. 2. The customized bit-cell design for implementing XNOR 
function in RRAM array [23]. Bit-counting results can be obtained by 
converting the total bitline current to digital outputs. 

 
Fig. 3. The diagram of adapted XNOR-RRAM array structure. To 
enable the computation with multi-bit input, a shift-and-add module is 
added to the periphery. 

TABLE II. PPW ON PTB VALID (TEST) DATASET 

�� 1/64 1/32 1/16 1/8 1/4 1/2 Baseline 

FP 
682.4 

(639.1) 
135.6 

(131.0) 
118.7 

(113.4) 
114.0 

(109.4) 
111.1 

(106.3) 
113.3 

(107.8) 
107.4 

(103.0) 

5 
682.4 

(639.1) 
137.5 

(132.4) 
118.9 

(114.6) 
114.2 

(109.6) 
112.3 

(108.0) 
122.6 

(114.8) 
-- 

4 
229.5 

(221.2) 
138.1 

(133.1) 
119.1 

(114.5) 
115.9 

(110.3) 
115.6 

(111.0) 
121.7 

(115.6) 
-- 

3 
188.1 

(181.3) 
139.3 

(133.4) 
123.7 

(118.1) 
120.1 

(116.3) 
127.4 

(121.3) 
140.8 

(133.4) 
-- 

2 
165.6 

(158.1) 
138.0 

(132.8) 
132.4 

(126.5) 
141.8 

(134.9) 
150.6 

(143.1) 
203.9 

(192.9) 
-- 

1 
164.6 

(157.0) 
152.5 

(146.6) 
158.3 

(152.1) 
176.1 

(165.9) 
267.6 

(254.2) 
362.9 

(345.7) 
-- 

 



sufficiently large (e.g. >100), IBL will be proportional to the 
XNOR-and-bit-counting result along the column. Therefore, the 
XNOR-and-bit-counting results can be obtained by converting 
the analog IBL to digital outputs. 

B. XNOR-RRAM architecture for LSTM  

      Fig. 3 shows the XNOR-RRAM array structure. Instead of 
the one-hot decoder for conventional memory array, a WL 
switch matrix is exploited to activate multiple WLs 
simultaneously to enable the fully parallel read operation. 
Multilevel sense amplifiers (MLSAs) are utilized to convert the 
analog IBL to digital outputs of fixed-point precision, and a look-
up table (LUT) based non-linear quantization method is used to 
generate the corresponding quantized bit-counting results as in 
[23]. Due to the layout pitch-match issue (the width of an MLSA 
block is much larger than an RRAM cell pitch), every 8 columns 
share one set of MLSA and LUT. In this work, a shift-and-add 
module is added to the peripheral circuitry to enable the 
computation with multibit input, i.e., � cycles will be consumed 
to generate the final result when the input is of �-bit precision.  

      Due to the intrinsic offset of sense amplifiers caused by 
process variation, the sensing pass rate (percentage of accurate 
sensing outputs) becomes worse when IBL increases (as cell 
currents are summed up for a large array), leading to inaccurate 
bit-counting results, which may significantly degrade the 
accuracy. Therefore, the large weight matrices in LSTM are split 
into multiple small matrices and implemented with small sub-
arrays. In this work, we conservatively use a relatively small 
sub-array size of 64 × 64 at the expense of larger number of sub-
arrays to cover all the weight matrices. Fig. 4 shows the system 
level architecture, where each gray box represents a processing 
engine (PE), i.e., an adapted XNOR-RRAM array with 
peripheral circuits. The PE array is scalable depending on the 
desired weight matrix size. Input vector buffer temporally stores 
both the incoming input vector at the current time step and its 
own hidden state ℎ��� from last time step. Activation functions 
(sigmoid and hyperbolic tangent) are implemented with LUTs.  

      A digital circuit block consisting of 8-bit multipliers and 
adders are placed after LUTs and used for updating ��  and ℎ�  
accordingly, as shown in Fig. 4. Cell state ��  is stored in a 
dedicated buffer. The computing process for one LSTM layer 
can be divided into 3 stages. In stage I, the partial sums, i.e., the 

bit-counting results, are read out from each sub-array (including 
shift-and-add) and then summed up through adder trees; the final 
sums go through the LUT based activation functions to generate 
four intermediate states �� , �� , ��  and �� . The precision of four 
intermediate states is set to be 8-bit. In stage II, two groups of 8-
bit multipliers are utilized to perform element-wise 
multiplication between ��  and ����  , ��  and �� , respectively. 
Then the corresponding products are added up to update ��  in 
the buffer, which is also quantized to 8-bit after addition. In stage 
III, the new ��  is passed through hyperbolic tangent function and 
is then multiplied by �� to generate ℎ�, which is then quantized 
to the desired precision and stored back to the input buffer for 
the computation in the next time step.  

      To reduce the number of SAs required in MLSAs, we apply 
nonlinear quantization to the partial sums before we add them 
up across different sub-arrays. Quantization levels are 
determined based on the software partial sum distribution using 
Lloyd-Max algorithm [23][30]. We investigate the impact of the 
MLSA resolution on test perplexity to find the lowest resolution 
required to preserve good language modeling performance. As 
shown in Fig. 5, test perplexity is unacceptably high when the 
MLSA resolution is 3-bit. By increasing the resolution to 4-bit, 
the test perplexity can be significantly reduced to near-optimal 
level with degradation of less than 5 in PPW for all the cases. 
Therefore, 4-bit MLSAs are chosen for our implementation. 
With 4-bit activation precision and 4-bit MLSAs, the test PPW 
is equal to 115.3 with a slight degradation of 12.3 in PPW 
compared to the full-precision software test result.  

IV. BENCHMARK ON AREA, LATENCY, AND ENERGY 

      In this section, we estimate the area, latency, and energy of 
the proposed XNOR-RRAM array based architecture using 
NeuroSim [31], an open-source estimator for RRAM based 
hardware accelerators. The hierarchy of the estimator consists of 
different levels of abstraction from the memory cell parameters 
and transistor technology parameters, to the gate-level sub-
circuit modules, and then to the array architecture.  

      We implemented one LSTM layer of size 256. The area, 
latency, and energy results for different activation precisions (1-
bit to 5-bit) are summarized in Table III. Even though the main 
array structure remains the same for multi-bit activations, the 
area overhead increases with precision due to shift-and-add 
modules and larger buffers for activation data storage. However, 
the growth in area is relatively insignificant since the other 
peripheral circuits such as MLSAs, LUTs, and multipliers 

 
Fig. 5. Test perplexity with different activation precisions considering 
the effect of nonlinear quantization of partial sums by MLSAs. 
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Fig. 4. The diagram of XNOR-RRAM array based architecture for 
implementing LSTM. Sub-array size is 64×64.  
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dominate the area. As expected, the latency for one layer 
computation increases for a higher input precision as more 
rounds of array computation need to be performed, and the 
energy-efficiency of the system correspondingly decreases from 
~79 TOPS/W (1-bit activation precision) to ~22 TOPS/W (5-bit 
activation precision). Considering both performance on 
perplexity and hardware overhead, the results suggest that 4-bit 
activation precision is a favorable option that provides near-
optimal accuracy with moderate area overhead and a high 
energy-efficiency of ~27 TOPS/W, which represents a 2.3× 
improvement compared to an SRAM based ASIC CNN/RNN 
accelerator [17]. 

V. CONCLUSION 

In this paper, we described an approach to train an LSTM 
model for language modeling on PTB dataset with binary 
weights and multi-bit activations to reduce the number of 
parameters by ~32X. Proper binary weight magnitude is selected 
to minimize the performance degradation. To efficiently 
implement the proposed LSTM in hardware, we presented a 
XNOR-RRAM array based architecture that can perform 
XNOR-and-bitcounting in the array. The PTB benchmark 
results suggest that binary-weight/4-bit-activation with 4-bit 
MLSAs can achieve a near-optimal perplexity with an estimated 
energy-efficiency of ~27 TOPS/W. Future works include 
investigating the impact of RRAM device variation on test 
perplexity and the related compensating techniques to pave the 
way for practical deployment. 
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TABLE III. COMPARISON BETWEEN DESIGNS WITH BINARY WEIGHTS AND 

DIFFERENT INPUT/ACTIVATION PRECISIONS  

Precision Perplexity 
Area 

(mm2) 
Latency 

(ns) 
TOPS/W 

5-bit 115.8 0.66 185.21 22.06 
4-bit 115.3 0.65 159.43 27.41 
3-bit 117.3 0.64 133.64 35.60 
2-bit 136.9 0.63 107.86 49.63 
1-bit 163.0 0.60 82.07 79.00 

 


