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Abstract

This paper is dedicated to the study of the topologies and nesting configurations
of the components of the zero set of monochromatic random waves. We prove
that the probability of observing any diffeomorphism type and any nesting ar-
rangement among the zero set components is strictly positive for waves of large
enough frequencies. Our results are a consequence of building Laplace eigen-
functions in euclidean space whose zero sets have a component with prescribed
topological type or an arrangement of components with prescribed nesting con-
figuration. © 2018 Wiley Periodicals, Inc.

1 Introduction

Forn > 1 let E1(R") denote the linear space of entire (real-valued) eigenfunc-
tions f of the Laplacian A whose eigenvalue is 1,

(1.1) Af + f =0.
The zero set of f is the set

V(f)={xeR": f(x) =0}
The zero set decomposes into a collection of connected components, which we de-
note by C( /). Our interest is in the topology of V( /) and of the members of C( f).
Let H(n — 1) denote the (countable and discrete) set of diffeomorphism classes of
compact, connected, smooth (n — 1)-dimensional manifolds that can be embedded
in R”. The compact components ¢ in C( f) give rise to elements 7(c¢) in H(n — 1)
(here we are assuming that f is generic with respect to a Gaussian measure SO
that V(f) is smooth; see Section 2). The connected components of R” \ V(f)
are the nodal domains of f, and our interest is in their nesting properties, again
for generic f. To each compact ¢ € C(f) we associate a finite connected rooted
tree as follows. By the Jordan-Brouwer separation theorem [11], each component
¢ € C(f) has an exterior and interior. We choose the interior to be the compact
end. The nodal domains of f, which are in the interior of ¢, are taken to be the
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vertices of a graph. Two vertices share an edge if the respective nodal domains
have a common boundary component (unique if there is one). This gives a finite,
connected rooted tree denoted e(c), the root being the domain adjacent to ¢ (see
Figure 4.1). Let T be the collection (countable and discrete) of finite connected
rooted trees. Our main results are that any topological type and any rooted tree can
be realized by elements of £1(R").

THEOREM 1.1. Givent € H(n — 1) there exists f € E1(R") and ¢ € C(f) for
which t(c) = t.

THEOREM 1.2. Given T € T there exists f € E1(R") and ¢ € C(f) for which
e(c)=T.

Theorems 1.1 and 1.2 are of basic interest in the understanding of the possible
shapes of nodal sets and domains of eigenfunctions in R” (it applies equally well
to any eigenfunction with eigenvalue A2 > 0 instead of 1). Our main purpose,
however, is to apply it to derive a basic property of the universal monochromatic
measures ¢ and py whose existence was proved in [16]. We proceed to introduce
these measures.

Let (S", g) be the n-sphere endowed with a smooth Riemannian metric g. Our
results apply equally well with S” replaced by any compact smooth manifold M
we restrict to S” as it allows for a very clean formulation. Consider an orthonormal
basis {¢; }]O-il for L?(S", g) consisting of real-valued eigenfunctions, Ag¢h; =
—Ajz.qﬁj. A monochromatic random wave on (S”, g) is the Gaussian random field

f = fn,)b

(1.2) f=0"7 3 ae.

Aj €[A,A+m,]

where the a;’s are real-valued i.i.d. standard Gaussians, a; ~ N(0, )r, ny = n(A)
is a nonnegative function satisfying n(1) = o(A) as A — oo, and D, 5 = #{j :
Aj € [A, A + n]}. When choosing n = 0 the A’s we consider in forming the f;, ;’s
are the square roots of the Laplace eigenvalues. To a monochromatic random wave
we associate its (compact) nodal set V() and a corresponding finite set of nodal
domains. The connected components of V(f) are denoted by C(f), and each
c € C(f)yields at(c) € H(n —1). Each ¢ € C(f) also gives a tree end e(c)
in T that is chosen to be the smaller of the two rooted trees determined by the
inside and outside of ¢ C S”. The topology of V(f) is described completely by
the probability measure p¢(r) on H(n — 1) given by

1
KC(f) "= T po Z 8t(c)»
IC() r
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where §; is a point mass at ¢ € H(n — 1). Similarly, the distribution of nested ends
of nodal domains of f is described by the measure wy(s) on T given by

1
KX (f) = |C(f)| Z 86’(0)’
cec(f)
with . being the point mass at e € 7.
The main theorem in [16] asserts that there exist probability measures ¢ and
pux on H(n — 1) and T, respectively, to which ue(r) and puyx(r) approach as
A — oo, for almost all / = f,, 3, provided that for every xo € S™

(1.3) Sllgl(% )|8§8£ [Cov(fn’fi(u), fnxa (v)) — Cov(fo)é‘)(u), fo)go(v))” =o(1)

as A — oo. Here, ry, = o(1), an())L 0 Txo,S™ — R is the localized wave on
Ty,S™ defined as fn’fok(u) = foa(expy (). and 3O is the Gaussian random
field on Ty,S™ characterized by the covariance kernel Cov( (1), foo (v)) =

i{u—v,w)
J SxoS" €

universal in that they only depend on the dimension n of M.

Monochromatic random waves on the n-sphere equipped with the round metric
are known as random spherical harmonics whenever n = 0. It is a consequence of
the Mehler-Heine [12] asymptotics that they satisfy condition (1.3) for all xo € S”.
Also, on any (S", g) the fields f; ; with n — oo satisfy condition (1.3) for all
xo € S". Finally, monochromatic random waves f, 5 on (S",g) with n = c,
for some ¢ > 0, satisfy condition (1.3) for every xo € S” satisfying that the set
of geodesic loops that close at xo has measure O (see [4]). On general manifolds
one can define monochromatic random waves just as in (S”, g). Monochromatic
random waves with 7 = 0 on the n-torus are known as arithmetic random waves.
They satisfy condition (1.3) for all xo € T" if n > 5, and on T” with2 <n < 4
provided we work with a density one subsequence of A’s [8]. On general (M, g)
monochromatic random waves with n = ¢ for some ¢ > 0 satisfy condition (1.3)
for every xo € M satisfying that the set of geodesic loops that close at x¢ has
measure 0 (see [4]). Examples of such manifolds are surfaces without conjugate
points and manifolds whose sectional curvature is negative everywhere.

Our main application of Theorems 1.1 and 1.2 is the following result.

¢x0 dw (see Section 2). The probability measures jtc and px are

THEOREM 1.3. Let (S", g) be the n-sphere equipped with a smooth Riemannian
metric. Let uc and py be the limit measures (introduced in [16]) arising from
monochromatic random waves on (S, g) for which condition (1.3) is satisfied for
every xg € S™.
(1) The support of uc is H(n—1). That is, every atom of H(n—1) is positively
charged by uc.
(ii) The support of ux is all of T. That is, every atom of T is positively charged
by px.
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Remark 1.4. Theorem 1.3 asserts that every topological type that can occur will
do so with a positive probability for the universal distribution of topological types
of random monochromatic waves in [16]. The reduction from Theorems 1.1 and
1.2 to Theorem 1.3 is abstract and is based on the “soft” techniques in [14,16] (see
also Section 2). In particular, it offers us no lower bounds for these probabilities.
Developing such lower bounds is an interesting problem. The same applies to the
tree ends.

Remark 1.5. Theorem 1.3 holds for monochromatic random waves on general com-
pact, smooth Riemannian manifolds (M, g) without boundary. Part (i) actually
holds without modification. The reason that we state the result on the round sphere
S™ is that, by the Jordan-Brouwer separation theorem [11], on S” every compo-
nent of the zero set separates S” into two distinct components. This gives that the
nesting graph for the zero sets is a rooted tree. On general (M, g) this is not nec-
essarily true, so there is no global way to define a tree that describes the nesting
configuration of the zero set in all of M for all ¢ € C(f). However, according
to [15] almost all ¢’s localize to small coordinate patches and hence our arguments

apply.
We end the introduction with an outline of the paper. Theorem 1.1 forn = 3

(which is the first interesting case) is proved in [16] by deformation of the eigen-
function

(1.4)  u(x,y,z) =sin(wx)sin(wy) + sin(wx) sin(zwz) + sin(mwy) sin(wz).

The proof exploits that the space H(2) is simply the set of orientable compact
surfaces that are determined by their genus. So in engineering a component of a
deformation of f to have a given genus it is clear what to aim for in terms of how
the singularities (all are conic) of f = 0 resolve.

For n > 4, little is known about the space H(n — 1) and we proceed in Section
3 quite differently. We apply Whitney’s approximation theorem to realize ¢ as
an embedded real analytic submanifold of R”. Then, following some techniques
in [7] we find suitable approximations of f € E;(R") and whose zero set contains
a diffeomorphic copy of ¢. The construction of f hinges on the Lax-Malgrange
theorem and Thom’s isotopy theorem. Regarding Theorem 1.2, the case n = 2
is resolved in [16] using a deformation of sin(srx) sin(7y) and a combinatorial
chessboard-type argument. In higher dimensions, for example n = 3, we proceed
in Section 4 by deforming

(1.5) u(x,y,z) = sin(mrx) sin(mwy) sin(w z).

This f has enough complexity (as compared to the u in (1.4)) to produce all ele-
ments in 7 after deformation. However, it is much more difficult to study. Unlike
(1.4) or sin(x) sin(;r y), the zero set u~1(0) in (1.5) has point and 1-dimensional
edge singularities. The analysis of its resolution under deformation requires a lot
of care, especially as far as engineering elements of 7. The payoff as we noted is
that it is rich enough to prove Theorem 1.2.
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In Section 2 we review some of the theory of monochromatic Gaussian fields and
their representations. Section 3 is devoted to the proof of Theorem 1.1. Section 4
is devoted to the proof of Theorem 1.2. The latter begins with an interpolation
theorem of Mergelyan type for elements in E1(R"). We use that to engineer de-
formations of (1.5) that achieve the desired tree end, this being the most delicate
aspect of the paper.

2 Monochromatic Gaussian Waves

Our interest is in the monochromatic Gaussian field on R”, which is a special
case of the band-limited Gaussian fields considered in [16], and which is funda-
mental in the proof of [16, theorem 1.1]. For 0 < « < 1, define the annulus
Ay = {€ € R" : a < |€| < 1}, and let 0, be the Haar measure on A, normalized
so that 0,(Ay) = 1. Using that the transformation £ — —£ preserves A,, we
choose a real-valued orthonormal basis {¢; }}?‘;1 of L?(Aq, 0g) satisfying

2.0 ¢j (=§) = (=D ¢;(€). nj €{0.1}.

The band-limited Gaussian field Hj 4 is defined to be the random real-valued func-
tions f on R” given by

2.2) fO) =D bji" j(x)
j=1
where
(2.3) ¢j(x) = / ¢j (£)e ¥ day (£),
Rﬂ

and the b;’s are identically distributed, independent, real-valued, standard Gauss-
ian variables. We note that the field H} o does not depend on the choice of the
orthonormal basis {¢; }.

The distributional identity Z;’;l ¢j (&)pj(n) = 6(§ —n) on Ay together with
(2.1) lead to the explicit expression for the covariance function:

Q4 Covn ) i= B (S0 0) = [ (@)

From (2.4), or directly from (2.2), it follows that almost all f’sin Hj o are analytic
in x [2]. For the monochromatic case @ = 1 we have

1 Jv(|x_y|)

2.5) Cov(x,y) = Gy =y

where to ease notation we have set

Here there is also a natural choice of a basis for LZ(S"~!,do) = L?*(A1, ;t1)
given by spherical harmonics. Let {Y’ ,fl ZfZI be a real-valued basis for the space of
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spherical harmonics £ (S" 1) of eigenvalue £(£ +n—2), whered; = dim £, (S"1).
We compute the Fourier transforms for the elements of this basis.

PROPOSITION 2.1. Forevery{ > 0andm = 1,2,...,dy, we have

(2.6) erz|§”*1 (x) = (271)% it Ynl; (i) Jé-i-v(lxl)‘
x| ) Ix]®

PROOF. We give a proof using the theory of point pair invariants [17], which
places such calculations in a general and conceptual setting. The sphere S”~!,
with its round metric, is a rank 1 symmetric space, and (x, y) for x,y € S*~!
is a point pair invariant (here (,) is the standard inner product on R” restricted
to S"71). Hence, by the theory of these pairs we know that for every function
h:R — C we have

@) L D Y3 do(5) = MY (),

where Y is any spherical harmonic of degree £ and A, ({) is the spherical transform.
The latter can be computed explicitly using the zonal spherical function of degree £.
Fix any X € S~ ! and let Z ffc be the unique spherical harmonic of degree £ that is

rotationally invariant by motions of S”~1! fixing X and so that Z f; (¥) = 1. Then,
2.:8) MO = [ DZEG) da()

The function Z ﬁ (y) may be expressed in terms of the Gegenbauer polynomials [9,
(8.930)] as

()
2.9 Zt(y) = LU
(2.9) O /)

Now, for x € R”,

flsn (x) = he ([, 9)) Ye(Gda (),
Valora () = [ he({g.5) VG0 ()

where we have set i, (1) = e *If. Hence, by (2.7) we have

Yhlsn—1(x) = An () V5 (%)

with
. L .
A (€) = /S . e"'x'<|xl’y)zf;(y')da(y')
(2.10) Zov a1
vol(S"™%) —itlx| 2yv—1
= — C/(t)(1 —t7)" "2 dt.
G ), e ma =
The last term in (2.10) can be computed using [9, (7.321)]. This gives
n ¢ Jov(|x])
A (0) = @m)2 it ==

as desired. O
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COROLLARY 2.2. The monochromatic Gaussian ensemble Hy, 1 is given by ran-
dom f’s of the form

> L Jeen(IxD
@ =enES S b Y |x| el

{=0m=1

where the by ,,,’s are i.i.d. standard Gaussian variables.

The functions
() e et
X X

with |£| = 1, and those in (2.2) for which the series converges rapidly (e.g., for
almost all f in Hy 1), all satisfy (1.1), that is, f € E{(R"). In addition, consider
the subspaces Py and T7 of E1(R") defined by

J
P span{xHYé(l |)£+v—(|x|).320,m=1,2,...,dg},
X

|x [V

e (xss) + e_l(sz) el(x9$) — e_l(x9$)
T1 := span{x — > , X > 2 lEl =1
1

PROPOSITION 2.3. Let f € E1(R") and let K C R" be a compact set. Then, for
anyt > 0 and ¢ > O there are g € Py and h € Ty such that

If —gllcixy <e and | f —hllcix) <e.

That is, we can approximate | on compact subsets in the C'-topology by elements
of Py and T}, respectively.

PROOF. Let f € Ej. Since f is analytic we can expand it in a rapidly conver-
gent series in the Y,f;’s. That is,

oo dyg
10 =3 Y amethri( ).

{=0m=1
Moreover, for r > 0,
oo dg
@.11) | G0 do = 30 3 lam )P
Sn—l (—om=1

In polar coordinates, (r, 8) € (0, +00) x S"1, the Laplace operator in R” is given
by

A=+

and hence for each £, m we have that

2.12)  r2ay (1) + (n = Dra, ,(r) + (> =Ll + 1 —2)ap¢(r) = 0,
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where £ is some positive integer. There are two linearly independent solutions to
(2.12). One is r Y Jy4,(r) and the other blows up as r — 0. Since the left-hand
side of (2.11) is finite as r — 0, it follows that the a,, ¢’s cannot pick up any
component of the blowing-up solution. That is, for r > 0

Je40 ()
am,((r) = cl,m—:—‘;
for some ¢, ¢ € R. Hence,
o0 dg
Jev (X))
(2.13) S =) cim m(lxl) +|;|u :

{=0m=1
Furthermore, this series converges absolutely and uniformly on compact subsets,
as do its derivatives. Thus, f can be approximated by members of P as claimed
by simply truncating the series in (2.13).
To deduce the same for 77 it suffices to approximate each fixed

Y ER /()
") T

To this end let £, —£1, &2, —&5, ..., En, —En be a sequence of points in S”~! that
become equidistributed with respect to do as N — oo. Then, as N — oo,

N

1 o _—

@14) 2 3 (e TEEYLE) + (D' Y ) ) —
j=1

[ e ovi@ do.
Sn—l

The proof follows since

(27_[)7 ZYK (l |) J€+v(|x|) /;n_l e_i(x,E)Yrﬁ(é) do_(%-)

|x[¥

Indeed, the convergence in (2.14) is uniform over compact subsets in x. Il

Remark 2.4. For Q C R” open, let E;(£2) denote the eigenfunctions on €2 satis-
fying A f(x) + f(x) = 0 for x € Q. Any function g on 2 that is a limit (uniform
over compact subsets of 2) of members of £; must be in £1(€2). While the con-
verse is not true in general, note that if = B is a ball in R”, then the proof of
Proposition 2.3 shows that the uniform limits of members of E; (or Py or T7) on
compact subsets in B is precisely £1(B).

With these equivalent means of approximating functions by suitable members
of Hy,1, and particularly E1(R"), we are ready to prove Theorems 1.1 and 1.2.
Indeed, as shown in [16] the extension of condition (p4) of [15, theorem 1] suffices.
Namely, for ¢ € H(n—1) itis enough to find an f € Ty with £ ~1(0) containing ¢
as one of its components for Theorem 1.1, and for 7 € T it suffices to find an
f € Ty such that e(c) = T for some component ¢ of f~1(0).
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3 Topology of the Zero Set Components

In this section we prove Theorem 1.1. By the discussion above it follows that
given a representative ¢ of a class 1(¢) € H(n — 1), it suffices to find f € E;(R")
for which C( f') contains a diffeomorphic copy of c.

PROOF OF THEOREM 1.1. To begin the proof we claim that we may assume
that ¢ is real analytic. Indeed, if we start with ¢ smooth, of the desired topological
type, we may construct a tubular neighborhood V7 of ¢ and a smooth function

Hz:Vz— R withd = HZ'(0).

Note that without loss of generality we may assume that infyey, |V Hz(x)| > 0.
Fix any € > 0. We apply Thom’s isotopy theorem [1, theorem 20.2] to obtain the
existence of a constant 8z > 0 so that for any function F with | F—Hzl|c1(y,) < 8z
there exists W : R” — R” diffeomorphism with

Ve (@) = FH0)N Vs

To construct a suitable F we use Whitney’s approximation theorem [19, lemma 6],
which yields the existence of a real analytic approximation F' : Vz — R™¢ of
Hp that satisfies |FF — Hz|c1qy,) < 8z It follows that ¢ is diffeomorphic to
¢ := W (C) and c is real analytic as desired.

By the Jordan-Brouwer separation theorem [11], the hypersurface ¢ separates
R” into two connected components. We write A, for the corresponding bounded
component of R” \ ¢. Let A? be the first Dirichlet eigenvalue for the domain A,
and let &1, be the corresponding eigenfunction:

(A +2A%)hy(x) =0, x¢€ A,
h)(x) =0, X €c.

Consider the rescaled function
h(x) = hy(x/1),

defined on the rescaled domain A4, := {x € R"” : x/A € A.}. Since (A+1)h =0
in AA. and d(AA.) is real analytic, 4 may be extended to some open set B, C R”
with A4, C B, so that

(A + Dh(x) =0, xe€ B,
h(x) =0, X € Ac,

where Ac is the rescaled hypersurface Ac := {x € R” : x/A € ¢}. Note that since
hj, is the first Dirichlet eigenfunction, then we know that there exists a tubular
neighborhood V. of Ac on which infyey,, [|[VA(x)| > O (see lemma 3.1 in [3]).
Without loss of generality assume that V). C Bc.

We apply Thom’s isotopy theorem [1, theorem 20.2] to obtain the existence of
a constant § > 0 so that for any function f with || /' — &|lc1(y,,) < 8 there exists
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Yy o R" — R" diffeomorphism so that
Wr(Ae) = f7H0) N Ve

Since R” \ B, has no compact components, Lax-Malgrange’s theorem [13, theo-
rem 3.10.7] yields the existence of a global solution f : R” — R to the elliptic
equation (A 4+ 1) f = 0in R” with

If =hlcra,) <9

We have then constructed a solutionto (A+1) f = 0inR”,i.e., f € E1, for which
/7~ 1(0) contains a diffeomorphic copy of ¢ (namely, ¥ #(Ac)). This concludes the
proof of the theorem. 0

We note that finding a solution to (A + 1) f = 0 for which C( f) contains a dif-
feomorphic copy of c is related to the work [7] of A. Enciso and D. Peralta-Salas.
In [7] the authors seek to find solutions to the problem (A —¢) f = 0in R” so that
C(f) contains a diffeomorphic copy of ¢, where ¢ is a nonnegative, real analytic
potential and c is a (possibly infinite) collection of compact or unbounded “tenta-
cled” hypersurfaces. The construction of the solution f that we presented shares
ideas with [7]. Since our setting and goals are simpler than theirs, the construction
of f is much shorter and straightforward.

4 Nesting of Nodal Domains

The proof of Theorem 1.2 consists of perturbing the zero set of the eigenfunc-
tion ug(x1,...,Xx,) = sin(wxy)---sin(wx,) so that the zero set of the perturbed
function will have the desired nesting. The nodal domains of up build an n-
dimensional chessboard made out of unit cubes. By adding a small perturbation
to ug the changes of topology in ual (0) can only occur along the singularities of
uy ! (0). Therefore, we will build an eigenfunction f satisfying —A f = f by pre-
scribing it along the singularities L = (J, pez UZj:l,i;éj{(xl’ ..., Xp) € R
X;i = a, xj = b} of the zero set of ug. We then construct a new eigenfunction
ug = up + ¢f that will have the desired nesting among a subset of its nodal do-
mains. The idea is to prescribe f on the singularities of the zero set of ug in such
a way that two adjacent cubes of the same sign will either glue or disconnect along
the singularity. The following theorem shows that one can always find a solution
f to —Af = f with prescribed values on a set of measure zero (such as L).
We prove this result following the first step of Carleson’s proof [5] of Mergelyan’s
classical theorem about analytic functions.

THEOREM 4.1. Let K C R” be a compact set with Lebesgue measure 0 and so
that R" \ K is connected. Then, for every § > 0 and h € C*(R") there exists
f :R" — R satisfying

-Af=f and Slllfp{lf—hlJr IVf = Vh|} <.
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Remark 4.2. In the statement of the theorem the function & € C2Z(R") can be
replaced by & € C}(Q), where @ C R” is any open set with K C . This is
because C?(R") is dense in C}(R2) in the C !-topology.

PROOF. Consider the sets
A={(¢,0x,0,...,0x,0) : ¢ € ker(A + 1)},
B={($,9x0,....0x,9) : ¢ € CZR")},

and write Ak, B for the restrictions of A, B to K. Both Ax and Bk are subsets

of the Banach space @ZZO C(K), and clearly Ax C @"'”CO. It follows that the
claim in the theorem is equivalent to proving that

4.1 Bx C Aghco.

To prove (4.1), note that a distribution D in the dual space (P}_, C(K))* can be
identified with an (n + 1)-tuple of measures (v, v1,...,v,) with v; € (C(K))*
foreach j = 0,1,...,n. Thatis, for each (Yo, ¥1,...,¥n) € @;;0 C(K),

n
42 Do) = Y [ v dvy.
j=0"XK
Since A_K"'"CO = (AcHt, proving (4.1) is equivalent to showing that for each

D € (B¢ C(K))* satisfying D(®) = 0 for all ® € Ak, one has that D(®) =
0 for all ® € Bg. Using that each D € (Pj_, C(K))* is supported in K, we
have reduced our problem to showing that

If D € (Br_o C(K))* satisfies D(¥) = 0 V¥ € A,

(4.3) then D(®) =0 VO € B.

We proceed to prove the claim in (4.3). Fix D € (Pj_oC(K))* so that
it satisfies the assumption in (4.3). Given ¢ € CZ2Z(R") we need to prove that
D(¢,0y,¢,...,0y,¢) = 0. Consider the fundamental solution

1 1

N N = )
) = = Dyam =y

where w, is the volume of the unit ball in R”. Note that there exists C > 0 so that
oN C
—(x, Y)' R T—
‘ dyj |x =yt

forall j = 0,1,...,n. Therefore, for y fixed, N(x, y) and 37]\;()6’ y) are locally
integrable in R”. In particular, N(x, y)|dvo(y)|dx and %(x, »)|dvj(y)|dx are
J
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integrable on the product K x R”, where the v;’s are as in (4.2). Also, note that

d(y) = /}AR” (A + 1)¢p(x)N(x,y)dx and

a¢p oN
0= [ B Dpw .
dyj R dyj
By these observations, and since K has measure zero, we may apply Fubini to get

D@y 8y, 9)
_ [P
-/ P0M00) + 3 [ 5y 02

_ / / (A + DG(x)N(x, y)dx dvo(y)
K "\ K

- ON
A — dx dvj
+J§1/K/Rn\1<( DO (e )y ()

_ / / (A + DG(x)N(x, y)dx dvo(y)
R"\K JK

- N
3 Lo Jo 8+ 0055 s )

:/ (A + D) (x) F(x)dx,
R7\K
where

" AN
F(x) = /K NG ) dvo() + Y /K o ) (),
j=1 /

The claim that D(¢, 9,9, ..., 0dy,¢) = 0 follows from the fact that F(x) = 0
for x € R3\ K. To see this, let R > 0 be large enough so that K C B(0, R). Then,
for x € R"\ B(0, R), the map ¥*(y) := N(x, y)isinker(A+1)|p(o,r)- Applying
Proposition 2.3, we know that there exists a sequence {{}'}¢ C ker(A + 1) for
which

{—o00

lve =¥l crso.ry — O
Hence, by the assumption in (4.3), for each x € R” \ B(0, R)

0= D(wx, 3y1 Wx, e, aynlﬂx)
(4.4) B = [ N o
- /K N(x. )dvo(y) +; /K oy, 52 () = Fo),

Now, the integral defining F'(x) converges absolutely for x € R” \ K and defines
an analytic function of x in this set. Since F'(x) vanishes for x € R” \ B(0, R) and
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R™ \ K is connected, it follows that
F(x) =0 forallx € R"\ K,

as claimed. O

4.1 Construction of the Rough Domains

We will give a detailed proof Theorem 1.2 in R3 since in this setting it is easier
to visualize how the argument works. In Section 4.6 we explain the modifications
one needs to carry in order for the same argument to hold in R”.

Let ug : R3 — R be defined as

uo(x,y,z) = sin(wx) sin(wy) sin(wz).

Its nodal domains consist of a collection of cubes whose vertices lie on the grid
Z3. Throughout this note the cubes are considered to be closed sets, so faces
and vertices are included. We say that a cube is positive (resp., negative) if ug is
positive (resp., negative) when restricted to it. We define the collection B of all
sets €2 that are built as a finite union of cubes with the following two properties:

e R3\ Q is connected.
e All the cubes in 2 that have a face in d2 are positive.

We define B~ in the same way only that the faces in d€2 should belong to negative
cubes.

In what follows, we define the “engulf” and “join” operations on the set of cubes
that will allow us to create any nesting configuration. These operations are inspired
by those introduced in [16] but do not coincide with them despite having the same
names.

Engulf operation. Let C € BT. We define the “engulf” operation as follows.
We define E(C) to be the set obtained by adding to C all the negative cubes that
touch C, even if they share only one point with C. By construction E(C) € B™.
If C € B7, the set E(C) is defined in the same form only that one adds positive
cubes to C. In this case E(C) € B*.

P&y

C E(C)
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Join operation. Given C € Bt U B~ we distinguish two vertices using the
lexicographic order. Namely, for any set of vertices I' C Z3, fori € {1,2,3} we
set

AP = {(x], x5, x3) € T : xf = min{x; : (x1,%2,x3) € T'}} C Z°.

In the same way we define A", replacing the minimum function above by the
maximum one. For C € BT UB™,let ¢ = C NZ3 be the set of vertices of cubes
in C. We then set

v1(C) = ATH(AFX(AF¥(Tc))) and v-(C) = AT"(A5™(A5™(T¢))).

Given the vertex v4+(C) we define the edge e (C) to be the edge in dC that has
vertex v4(C) and is parallel to the x-axis. The edge e—(C) is defined in the same
way.

We may now define the “join” operation. Given C; € BT and C, € BT we
define J(Cy, C2) € BT as follows. Let C; be the translated copy of C, for which
e+ (C1) coincides with e—(Cz). We “join” C; and C5 as

J(C1,Ca) = C1 UG,

In addition, for a single set C we define J(C) = C, and if there are multiple
sets C1, ..., Cy, we define

J(C1,...,Cn) = J(C1,J(C2, J(C3, ... J(Cuey, Cp)))).

DEFINITION 4.3 (Rooted trees). Let Too := (Jreo NK. A rooted tree is charac-
terized as a finite set of nodes 7' C T satisfying

e geT,

] (kl,...,kg_H) eT = (k1,...,kg) €T,

o (ki,....kg,j)eT = (ky1,...,kg,i) e T foralli <j.

To condense notation, if v € T is a node with N children, we denote the children
by (v, 1),...,(v,N).

Given a tree T we associate to each node v € T a structure C, C R3 defined as
follows. If the node v € T is a leaf, then C, is a cube with a prescribed sign. For
the rest of the nodes we set

Co = J(E(C@w,1)):-- - E(Cv,n))),

where N is the number of children of the node v. See Figure 4.2 for an illustration
of this operation. It is convenient to identify the original structures E(Cy, j)) with

the translated ones £ (C(v, ;) that are used to build Cy. After this identification,

N

Cy = | J E(Ce, ).
j=1



ZERO SET OF MONOCHROMATIC RANDOM WAVES

(1,2,1)  (1,2,2) (3,1,1) 3,3,1)  (3,3,2)

°CDY) /=@ 0 S=0

FIGURE 4.1. Example of a tree and a transversal cut of the correspond-
ing nesting of nodal domains. All the domains in figures below are la-
beled after this example.

E(Cy)

/

E(C?)

FIGURE 4.2. This picture shows J(E(Cy), E(C;)). The edge
e+(E(Cy) = e_(E(Cy) is depicted in red.

4.2 Building the Perturbation

357

Let v € T be a node with N children. We define the set of edges connected

to Cy on which the perturbation will be defined.

e We let Eioin(Cy) be the set of edges in dC, through which the structures
{E(C, j))}j.vzl are joined. We will take these edges to be open. That is,

the edges in &join(Cy) do not include their vertices.
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o We let Eexi(Cy) be the set of edges in Sex(Cy) that are not in &oin(Cy).
Here Sex(Cy) is the surface

(4.5) Sext(Cp) i= {x € R? : dipy (x, U§V=1 Cy,j) = 1}.

If v is a leaf, we set Sext(Cy) = dCy. All the edges in Eex(Cy) are taken
to be closed (so they include the vertices).

o We let &,i(Cy) be the set of edges that connect Sex(Cy) With Sexi(Co, ;)
for some j € {1,2,..., N}. If v is a leaf, then we set &y (Cy) = @.

Remark 4.4. Note that if v € T and C, € B7, then E(Cy) \ Cy is the set of
positive cubes that are in the bounded component of Sext(Cy) and touch Sex¢(Cy).
Also, if a negative cube in R3 \ C, is touching Cy, then it does so through an edge
in 6ext(cv)~

gext (C(1,2)>

Eext(Cr1,2,2)) E + .

S
mt i
l/ \Lgint(c(ll))
Eext(Cl12.1) Eion(C(1,2))
4 A 2

Remark 4.5. Given a node v with children {(v, j)}szp let G(C(y, j)) be the set of
edges in {x € R3: d(x, Cw,j)) = 1}. Itis clear that foreach j = 1,2,..., N the
set G(C(y,;)) is connected. Also, Eexi(Cy) = UJN=1 G(Cw, ) \ Eoin(Cy). Since

the edges in &join(Cy ) are open, the structures Eex((Cy) are connected.

We proceed to define a perturbation /2 : K — R, where

K = | €ex(Co) U Em(Co) U Eioin(Co).

veT

We note that by construction K is formed by all the edges in Cg. Also, it is
important to note that if two adjacent cubes have the same sign, then they share an
edge in K. The function 4 is defined by the rules A, B, and C below.

(A) Perturbation on E.(Cy). Let v € T and assume C, € B~. We define h
on every edge of e (Cy) to be 1. If C, € BT, we define & on every edge
of Eext(Cy) to be —1.

Rule A is meant to separate C,, from all the exterior cubes of the same sign that
surround it. Note that for all v € T we have Eex((Cy) N Eext(Cy, ;) = D, where
(v, j) is any of the children of v, so Rule A is well-defined.
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(B) Perturbation on &y (Cy). Let e be an edge in &y (Cy). Then, we already
know that / is 1 on one vertex and —1 on the other vertex. We extend &
smoothly to the entire edge e, at which it has a unique zero at the midpoint
of e, and so that the absolute value of the derivative of % is > 1. We also
ask for the derivative of & to be 0 at the vertices. For example, if the edge
is {(a,b,z) : z € [0,1]} where a,b,c € 7Z, we could take h(a,b,z) =
cos(z).

Rule B is enforced to ensure that no holes are added between edges that join a
structure Cy, with any of its children structures C,_j).

Next, assume C,€B~. Note that for any edge e in &join(Cy) we have that the
function % takes the value 1 at their vertices, since those vertices belong to edges
in £ (Cy) and the function /4 is defined to be 1 on E(Cy). We have the same
picture if C, € B, only that / takes the value —1 on the vertices of all the joining
edges. We therefore extend / to be defined on e as follows.

(C) Perturbation on &uin(Cy). Let v € T and assume C, € B~. Given an
edge in Ejoin(Cy) we already know that & takes the value 1 at the vertices
of the edge. We extend & smoothly to the entire edge so that it takes the
value —1 at the midpoint of the edge, and so that it only has two roots at
which the absolute value of the derivative of & is > 1. We further ask &
to have zero derivative at the endpoints of the edge. For example, if the
edge is {(a,b,z) : z € [c,c + 1]} where a,b,c € Z, we could take
h(a,b,z) = cos(2rz). In the case in which C, € BT we need h to take
the value +1 at the midpoint of the edge.

Rule C is meant to glue the structures { £(Cyy, j))}jy:l through the middle point of
the edges that join them, without generating new holes.

Remark 4.6. By construction the function /4 is smooth in the interior of each edge.
Furthermore, since we ask the derivative of /4 to vanish at the vertices in K, the
function % can be extended to a function 4 € C!(2) where @ C R? is an open
neighborhood of K.

DEFINITION 4.7. Givenatree T, let h € C1(2) be defined following Rules A, B,
and C and Remark 4.6, where Q C R? is an open neighborhood of K. Since K is
compact and R3\ K is connected, Theorem 4.1 gives the existence of f : R3> — R
that satisfies

—Af =f and supllf —hl+||Vf = Vhl} = 5.
For ¢ > 0 small

We will show in Lemma 4.9 that the perturbation was built so that the nodal
domain of u, corresponding to v € T is constituted by the deformed cubes in

U;Vzl E(C,j)) \ C(v,j) after the perturbation is performed.
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We illustrate how Rules A, B, and C work in the following examples. In what
follows we shall use repeatedly that the singularities of the zero set of u¢ are on
the edges and vertices of the cubes. Therefore, the changes of topology in the zero
set can only occur after perturbing the function uo along the edges and vertices of
the cubes.

Example 1. As an example of how Rules A and B work, we explain how to create a
domain that contains another nodal domain inside of it. The tree corresponding to
this picture is given by two nodes, 1 and (1, 1), that are joined by an edge. We start
with a positive cube C; 1) € B and work with its engulfment C; = E (Ca,n) €
B~. All the edges of C(y,1) belong to Eex¢(C(1,1)). Therefore, the function u, takes
the value —& on Eexi(C1,1)). Also, all the positive cubes that touch C(y,1y do so
through an edge in Eexi(C(1,1)). It follows that all the positive cubes surrounding
C(1,1) are disconnected from Cy, 1) after the perturbation is performed. The cube
C(1,1) then becomes a positive nodal domain €2(q 1) of u, that is contractible to a
point.

Q) M transversal cut of €

Next, note that all the negative cubes that touch C(y 1) (i.e., cubes in E(C(y, 1)) \
C(1,1)) do so through a face whose edges are in Eexi(C(1,1)), or through a vertex
that also belongs to one of the edges in Eext(C(1,1)). Therefore, all the negative
cubes are glued together after the perturbation is performed and belong to a nodal
domain €2 that contains the connected set Eext(C(1,1))-

Up until this point we have seen that €21 contains the perturbation of the cubes
in E(C1,1)) \ Cq1,1)- We claim that no other cubes are added to €21. Indeed,
all the negative cubes that touch the boundary of E(C(; 1)) = Cp do so through
edges in & (C1). Then, since u, takes the value & on Ex(C1), all the surrounding
negative cubes are disconnected from E(C(y,1)) after we apply the perturbation.
Since along the edges connecting dC(; 1y with dC; the function u, has only one
sign change (it goes from —e to €) it is clear that 21 can be retracted to 92y 1).

Example 2. Here we explain how Rule C works. Suppose we want to create a
nodal domain that contains two disjoint nodal domains inside of it. The tree corre-
sponding to this picture is given by three nodes, 1, (1, 1), and (1, 2). The node 1 is
joined by an edge to (1, 1) and by another edge to (1,2). Assume that C(; ;) and
C(1 2) belong to BT. Then, C; = E(C1,1)) U E(C(1,2)) € B~. When each of
the structures E(C(q,1)) or E(C(q,1)) are perturbed, we get a copy of the negative
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nodal domain in Example 1. Since in C; the structures E(C; 1)) and E(C(1 1))
are joined by an edge, the two copies of 27 will also be glued. The reason for this
is that the function u, takes the value —e in the middle point of the edge joining
E(C(,1y) and E(C(1,1)). Therefore, a small negative tube connects both struc-
tures.

joining cubes Q]

4.3 Local Behavior of the Zero Set

In this section we explain what our perturbation does to the zero set of ug at a
local level. Given a tree T and € > 0, let

Ug =ug +¢f

be defined as in Definition 4.7. Using that f is a continuous function and that we
are working on a compact region of R” (we call it D), it is easy to see that there
exists a 69 > 0, so that if 75 is the §-tubular neighborhood of K, then u, has no
Zeros in 7:3‘3 N Cg as long as § < §p and

e = 182,

where ¢; is some positive constant that depends only on || f||co(py- This follows
after noticing that |ug| takes the value 1 at the center of each cube and decreases
radially until it takes the value O on the boundary of the cube.

The construction of the tubular neighborhood 7y yields that in order to under-
stand the behavior of the zero set of u., we may restrict ourselves to study it inside
Ts for § < 6p. We proceed to study the zero set of u, in a §-tubular neighborhood
of each edge in K. Assume, without loss of generality, that the edge is the set of
points {(0,0,z) : z € [0, 1]}.

Vertices. At the vertex (0, 0, 0) the function & takes the value 1 or —1. Assume
h(0,0,0) = —1 (the study when the value is 1 is identical). In this case, we
claim that the zero set of u.(x, y, z) near the vertex is diffeomorphic to that of the
function £, (x, y,z) := uo(x, y,z) — ¢ provided § (and hence ¢ = &(§)) is small
enough. To see this, for n > 0 set V3 to be one of the connected components of
u;l (B(0, n)) intersected with 7.
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We apply the version of Thom’s isotopy theorem given in [7, theorem 3.1],
which asserts that for every smooth function £ satisfying

(4.6) s = Lllc1(v,y = minin/4, 1 inf[|Vuell},
n

there exists a diffeomorphism ® : R3 — R3 making
D1 0)NVy) =L710) N V.

We observe that the statement of [7, theorem 3.1] gives the existence of an o > 0
so that the diffeomorphism can be built provided [|[{s — u| c1(y,) < «. However, it
can be tracked from the proof that o can be chosen to be as in the right-hand side
of (4.6).

Applying [7, theorem 3.1] to the function £,, we obtain what we claim provided
we can verify (4.6). First, note that [us — €ellci(y,) = le(f — Dlci(y,)- Itis
then easy to check that

4.7) ue —Lellcr (v, < c2¢

for some ¢z > 0 depending only on ||V f'|[co(p)- Next, we find a lower bound for
the gradient of u, when restricted to the zero set u; !(0). Note that for (x, y,z) €
Ts Nu;1(0) we have

Ve (x. y. 2)

= e” -7 f(x,y, Z)(cot(nx), cot(my), cot(nz)) +Vf(x,y, z)”

4.8) 1
e IIVf(x,y,Z)II) + 0(e5)

> e(é - IIVf(x,y,Z)II) + 09,

On the other hand, since ||V (Hess uz(x, y,z), (x,y,2))|| = O(n) forall (x,y,z) €
Vy, we conclude

1
@ i1Vl > o~ 19/, 21) + 0 + 0

whenever § is small enough.

By using the bounds in (4.7) and (4.9), it is immediate to check that (4.6) holds
provided we choose n = ¢3¢ for a constant ¢3 > 0 depending only on f and for §
small enough.

In the following image the first figure shows the zero set of ug near 0. The other
two figures are of the zero set of £¢(x, y, 7).
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This shows that at each vertex where & takes the value —1 the negative cubes that
touch the vertex are glued together while the positive ones are disconnected.

Edges. Having dealt with the vertices we move to describe the zero set of the
perturbation near a point inside the edge.

There are three cases. In the first case (case A) the perturbation /4 is strictly
positive (approximately €) or strictly negative (approximately —¢) along the edge.
In the second case (case B) the perturbation f is strictly positive (approximately
€) at one vertex and strictly negative (approximately —e) at the other vertex. In the
third case (case C), the edge is joining two adjacent structures so the perturbation f
takes the same sign at the vertices (it is approximately €) and the opposite sign (it
is approximately ¢) at the midpoint of the edge having only two zeros along the
edge.

In case A the zero set of u.(x, y, z) near the edge is diffeomorphic to the zero
set of the map £.(x, y,z) := uo(x, y, z) —¢&. The proof of this claim is the same as
the one given near the vertices, so we omit it. In the picture below the first figure
shows the zero set of 1y near the edge while the second figure shows the zero set
of l.

This shows that two cubes of the same sign, say negative, that are connected
through an edge are going to be either glued if the perturbation takes the value
—1 along the edge or disconnected if the perturbation takes the value +1 along the
edge.

In case B, it is clear that the only interesting new behavior occurs near the points
on the edge at which the function f* vanishes. Since [|h — flc1(@) < ﬁ and
h(0,0,b) = 0, there is only one point at which f vanishes; say the point is
(0,0,b). Note that f was built so that (0,0, b) is the only zero of f along the
edge. We claim that the zero set of u, near (0,0, b) is diffeomorphic to the zero
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set of the map £¢(x, y,2) := uo(x,y,z) —&f(0,0,z). The proof of this claim is
similar to the one given near the vertices, so we omit it. The only relevant differ-
ence is that in order to bound ||Vu,|| from below, one uses that | Vu.(x, y,2)| >
eV f(x. y.2)| = [[Vuo(x, . 2)| and that [[Vuo(x, y,2)| = O(B) in a ball of
radius B centered at (0, 0, b), while |V £(0,0,b)|| > 1 — 1—(1)0. Of course, if one is
away from the value z = b, then the analysis is the same as that of case A. The
first figure in the picture below shows the zero set of u¢ along the edge, while the

second figure shows the zero set of £, when £(0,0, z) = cos(7z).

This shows that two consecutive cubes sharing an edge along which the perturba-
tion changes sign will be glued on one half of the edge and disconnected along the
other half.

In case C, the zero set of u, is diffeomorphic to that of

Le(x,y,2) = uo(x,y,2) +¢£(0,0,2)

where [ satisfies |7 — fllciq) < ﬁ and 4(0,0,0) = 4(0,0,1) = 1 and
h(0,0, %) = —1. The zero set of £, when f(0,0,z) = cos(2rz) is plotted in the
figure below.

This shows that two cubes that are joining two consecutive structures will be glued
through the midpoint while being disconnected at the vertices.

4.4 Definition of the Nodal Domains

Given a tree 7 and ¢ > 0 we continue to work with
Us = Uug + £f,

as defined in Definition 4.7. Fix v € T, and suppose it has N children. Assume
without loss of generality that C,, € B™. Forevery j € {1,2,...,n} the perturbed
function u, takes the value & on Ex(C(y,;)), and Eext(C(y,j)) is connected. It
follows that for each j € {1,2,..., N} there exists a positive nodal domain N, )
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of u, that contains Eex((C(y, ;)). We define the set 2, = Q4 (¢) as

N
(4.10) Qy = UN(”J)'

Jj=1

Throughout this section we use the description of the local behavior of u;l (0) that
we gave in Section 4.3. In the following lemma we prove that €2, is a nodal domain
of ug.

LEMMA 4.8. Let T be a tree and for each € > 0O let ug be the perturbation defined
in (4.7). Then, for eache > 0 and v € T, the set Qy = Qy(¢e) defined in (4.10) is
a nodal domain of u..

PROOF. Let v € T and suppose v has N children. Assume without loss of
generality that C,, € B~. By definition, Q2, = U§V=1 N, j) where N, ;) is the
nodal domain of u, that contains Eex(Cy,;)). To prove that 2, is itself a nodal
domain, we shall show that N, ;) = N, j41) forall j € {1,2,..., N —1}.

Fix j € {1,2,..., N —1}. The structures E(Cyy, ;)) and E(C(y,j+1)) are joined
through an edge e; in &oin(Cy). If we name the middle point of e; as m;, then by
rule C we have ug(mj;) = ef (m;) <O0.

The edge e; is shared by acube ¢; € E(Cy,j)) andacube cj11 € E(C(y,j+1))-
Note that every cube in E(C(y, j)) has at least one vertex that belongs to an edge
in Eex(Cry,j)) (same with E(C(y,;4+1))). Let p; be a vertex of ¢; that belongs
to an edge in Eex(C(y,)). In the same way we choose ¢; to be a vertex in ¢; 1
that belongs to an edge in Eex((C(y,j+1)). In particular, by rule A we have that
ug(pj) < 0andug(g;) <O.

Clo+1)

g Cj+1

g

iy
Dj J

Co)

FIGURE 4.3.
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Since ¢; and ¢j41 are negative cubes, there exists a curve y; C u; !((—00,0))
that joins p; with ¢; while passing through the middle point m;. See Figure 4.2
for an illustration.

Finally, since p; € Eexi(Cv,j)) € N,y 4j € Eext(Crw,j+1)) € Nw,j+1), and
yj is a connected subset of u; ! ((—o0, 0)), we must have that Nw,jy = Nw,j+1)»
as claimed.

In the following lemma we describe the set of cubes that end up building a nodal
domain after the perturbation is performed.

LEMMA 4.9. Let T be a tree and for each € > 0 let ug be the perturbation defined
in (4.7). For each v € T with N children we have
N
lim Q, () = U1 E(Cw,) \ Cov.j)-

J =
PROOF. First, we show that all the cubes in U]N=1 E(Cw,j)) \ Cw,j) glue to-
gether to form part of €2, after the perturbation is performed. Assume, without
loss of generality, that C,, € BT. Then, Cw,j) € B~ for every child (v, j) of v.
All the cubes in Uj—vzl E(Cw,j)) \ Cw, ;) have an edge in Ex(Cy, ;)). Since such
cubes are positive and u, takes the value & on Eex(C(y, j)), it follows that the cubes
become part of the nodal domain that contains Eex(Cy, ;)). 1That is, all the cubes

in U]N=1 E(Cw,j)) \ C(v,j) become part of 2, after the perturbation is added to
Ugp.

Second, we show that no cubes, other than those in UJN=1 E(Cw,j)) \ Cw,j)
will glue together to form part of €,. Indeed, any other positive cube in R3 \
U]N=1 E(C(y, ) touching 8(U]N=1 E(C(y,;))) does so through an edge in Eex( (Cy).
Since the function u, takes the value —e on Eex (Cy), those cubes will disconnect
from UJN=1 E(C(y,)) after we perturb. On the other hand, any positive cube in

—_ . N
Uj-vzl C,j) € B~ touches UJN=1 E(C(y, ) through edges in | ;2 Eext(Cv, },i))
where N; is the number of children of (v, j). Since f takes the value —e on
UlN:jl Eext(C(v, j,iy)- the cubes in U]N=1 C(v, j) will also disconnect from

N
U E(Cwi) \ C, - O
j=1
It is convenient to define the partial collections of nested domains. Given a
tree 7', a perturbation u,, and v € T, we define the collection 2}, = Q7 (¢) of all
nodal domains that are descendants of €2, as follows. If v is a leaf then Q} = Q,.
If v is not a leaf and has N children, we set

N
Qr=Qu Qg
j=1
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Remark 4.10. A direct consequence of Lemma 4.9 is the following. Let T be a
tree, and for each & > 0 let u, be the perturbation defined in (4.7). Foreachv € T,

slg% Q;‘j(e) = Cy.
4.5 Proof of Theorem 1.2

We will use throughout this section that we know how the zero set behaves at a
local scale (as described in Section 4.3). Let T be a tree, and for each ¢ > 0 let
U, be the perturbation defined in (4.7). We shall prove that there is a subset of the
nodal domains of u, that are nested as prescribed by 7. Since for every v € T
the set €2, is a nodal domain of u,, the theorem would follow if we had that for all
veT:

(1) Q’(“v HC int(2}) for every (v, j) child of v.

(ii) SZ’(kv’j) N Q?v,k) = g forall j # k.
(iii) R3\ £} has no bounded component.
Statements (i), (ii), and (iii) imply that R3 \ 2, has N + 1 components. One
component is unbounded, and each of the other N components is filled by QZ‘U’J.)
for some j. We prove statements (i), (ii), and (iii) by induction. The statements are

obvious for the leaves of the tree.

Remark 4.11. The proof of claim (iii) actually shows that €2, can be retracted to the
arc connected set UJN=1 Q?v’j) U Uj-v:_ll yj where y; C 2, is the curve introduced
in Lemma 4.8 connecting Eex(Cy, j)) With Eex(C(y,j+1)) that passes through the
midpoint of the edge joining E(C(y, j)) with E(C(y,j+1))-

Proof of Claim (i). Since Q} = Q, U U§V=1 Q. ;> we shall show that there
exists an open neighborhood I, ;y of QZ‘U,].) so that U, ;) C Q5.

Assume without loss of generality that C,, € B1. Then, for every child (v, j),
all the faces in dCy, ;) belong to cubes in Cy, ;) that are negative. Also, all the
other negative cubes in R3 \ C(v,j) that touch dC(,_jy do so through an edge in
Eext(Cv, jy)- Since the function u, takes the value & on Eex((Cyy, j)), all the negative
cubes in C(y ;) are disconnected from those in R3\ C(v, ) after the perturbation is
performed. While all the negative cubes touching Cy, ;) are disconnected, an open
positive layer L, ;) that surrounds szv P is created. The layer Ly, ;) contains the
grid Eex(C(y,;)) and so it is contained inside £2,. The result follows from setting
Uw,j) = Lw.j) YL, j):

Proof of Claim (i1). This is a consequence of how we proved the statement (i)
since both Q?v M and Q’("v k) are surrounded by a positive layer inside 2.

Proof of Claim (iii). Note that limg_,¢ UJN=1 Q¥ . (g) = Uszl C(v,j) and

(,j)
that by the induction assumption R3 \ Uszl Q?v ;) has no bounded components.

On the other hand, we also have that limz—¢ Q2,(¢) = U§v=1 E(Cw, )\ Cw,j)-
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This shows that, in order to prove that R3 \ Q¥ has no bounded components, we
should show that the cubes in U;Vzl E(Cw,j)) \ Cw,j) glue together to those in

Uj-vzl C(v,j) leaving no holes. Note that all the cubes in U]I-v:1 E(Cw, )\ Cw,j
are attached to the mesh U]N=1 Eext(C(v, j)) through some faces or vertices.

Assume without loss of generality that C, € Bt. Foreach j € {1,2,..., N}
the layer L, ;) is contained in €2, and all the cubes in E(Cy) \ Cy are glued to the
layer through an entire face or vertex. The topology of €2, will depend exclusively
on how the cubes in E(Cy, j)) \ C(y,;) join with or disconnect from each other
along the edges that start at Ex(Cy, ;)) and end at a distance 1 from Eex(Cy, j))-
The function u, takes the value & on Eex(C(y,;)). Also, note that if a pair of
positive cubes in the unbounded component of R3 \ Ly, ;) share an edge e that
starts at Eex¢(C(y, j)) and ends at a distance 1 from it, then the end vertex belongs to
Eext(Cy), and the function u, takes the value —e¢ at this point. Since the function u,
has only one root on e, we have that no holes are added to €2, when applying the
perturbation to those two cubes. For cubes in the bounded component that share

an edge, one argues similarly and uses the value of u, on UZNZ’I Eext(Cy, j,i) Where
Nj is the number of children of (v, j).

To finish, we note that two consecutive structures E(C(y, j)) and E(C(y, j+1))
are joined through an edge separating two cubes as shown in Figure 4.3. The
function u, is negative (approximately equal to —¢) at the vertices of the edge and
is positive at the middle point (approximately equal to +¢). Since along the edge
u, was prescribed to have only two roots, no holes are introduced when joining the
structures.

4.6 Higher Dimensions

The argument in higher dimensions is analogous to the one in dimension 3. We
briefly discuss the modifications that need to be made in this setting. Let

uog(x1,...,xn) = sin(mwxy) ---sin(wxy).

We will work with cubes in R” that we identify with a point ¢ € Z". That is, the
cube corresponding to ¢ = (¢1,...,¢p) € Z" is givenby ¢ = {x € R" : x; €
[ck,ck + 1]}. As before, we say that a cube is positive (resp., negative) if ug is
positive (resp., negative) when restricted to it. The collection of faces of the cube



ZERO SET OF MONOCHROMATIC RANDOM WAVES 369

cis Ui<j<n Uxieler,cit131x € R 0 X € [eg, cx + 1] Vk # i}. The collection

of edges is
U U Hc(a;i,aj)

I<i,j=<n a;€{ci,ci+1}
aj€lcj.cj+1}

where each edge is described as the set
He(aj.aj) ={x e R" : x; = a;, xj = aj, xx € [ck,cx + 1] Vk #1,j}.

We note that if two cubes of the same sign are adjacent, then they are connected
through an edge or a subset of it. In analogy with the R3 case, we define the
collection Bt of all sets 2 that are built as a finite union of cubes with the following
two properties:

e R™\ Q is connected.
e If ¢ is a cube in BT with a face in 9B ™, then ¢ must be a positive cube.

We define B~ in the same way only that the cubes with faces in 02 should be
negative cubes.

Engulf operation. Let C € BT. We define E(C) to be the set obtained by
adding to C all the negative cubes that touch C, even if they share only one point
with C. By construction E(C) € B™. If C € B, the set E(C) is defined in the
same form only that one adds positive cubes to C. In this case E(C) € B™.

Join operation. Given C € Bt U B~ we distinguish two vertices using the
lexicographic order. For C € BT U B™, let ¢ = C N Z" be the set of its
vertices. We let vy (C) be the largest vertex in I'c and v—_(C) be the smallest
vertex in I'c. Given the vertex v4 (C) we define the edge e (C) to be the edge in
dC that contains the vertex vy (C) and is parallel to the hyperplane defined by the
X1,...,Xp—p coordinates. The edge e_(C) is defined in the same way.

Given C; € B* and C, € B* we define J(Cy, C2) € BT as follows. Let 52 be
the translated copy of C, for which e (C1) coincides with e_ (62). We “join” C;
and C; as J(Cy,Ca) = C1 U Co.

In addition, for a single set C we define J(C) = C, and if there are multiple sets
Cy,...,Cy wedefine J(Cy,...,Cy) = J(C1,J(Ca, J(C3,...J(Ch_1,Cp)))).

Definition of the rough nested domains. Given a tree 7 we associate to each
node v € T a structure C,, C R” defined as follows. If the node v € T is a leaf,
then C, is a cube of the adequate sign. For the rest of the nodes we set C, =
J(E(Cw,1)),---+ E(C@w,N))), where N is the number of children of the node v.
We continue to identify the original structures E(C(y, j)) with the translated ones

E (C(v, ) that are used to build Cy. After this identification,

Cy = Uj-vzl E(C(v,j)).
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Building the perturbation. Let v € T be a node with N children. We define
the sets of edges Eex((Cy), Eint(Cy), and Eioin(Cy) in exactly the same way as we
did in R3 (see Section 4.2). We proceed to define a perturbation 7 : K — R,
where

K = | €xt(Cy) U Eni(Cy) U Eioin(Co).

veT

The function /4 is defined by the rules A, B, and C below. Let y : [0, 00] —
[—1, 1] be a smooth increasing function satisfying

x(0)=-1, x(1/2)=0, and yx(¢)=1 forr>1.
We also demand
4.11) 7 (0)=0 and y'(1/2) > 1.

(A) Perturbation on Eext(Cy). Let v € T and assume C,, € B~. We define h
on every edge of £ (Cy) to be 1. If C, € B, we define h on every edge
of Eext(Cy) to be —1.

(B) Perturbation on &y (Cy). Let He(a;,aj;) be an edge that touches both
Eext(Cy) and Eexi(Cy,¢)) for some of the child structures Cg, gy of Cy.
Assume C, € B™. Then we know that we must have i|¢, (c,) = 1 and
h|£exl(c(v,l)) = —1. Let x;,, ..., xj, be the set of directions in Hc(a;,a;)
that connect Eexi(Cy) and Eexi(Cy,¢)). We let

h|Hc(aigaj) HC(ai’aj) — [_1, 1]
be defined as

k
h(x1,...,xn) = x Z(Xim —¢ip,)?
m=1

With this definition, since whenever x € Eexi(C(y,¢)) We have x;,, = ¢,
forallm = 1,2,...,k, we get h(x) = x(0) = —1. Also, whenever
x € Exi(Cy) we have that there exists a coordinate x;,, for which x;,, =
¢i,, + 1. Then, Y, (xi, — ci,,)> > 1 and so h(x) = 1. Note that 1 van-
ishes on the sphere S = {x € R” : anzl(xim — i)} = %} and that
|VR|| > 1 0on S because of (4.11). If C, € BT, simply multiply y by —1.

(C) Perturbation on Ein(Cy). Let v € T and assume Cy, € B~. We set

n—2 2
2¢i, + 1
h(x1,...,xn) = x| 2 E (xi"_lkT) ,
k=1

where i} ranges over the indices {1, 2,...,n}\ {i, j }. With this definition,
whenever x is at the center of the edge H.(a;,a;) we have h(x) = x(0) =
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—1. Also, if x € dH(a;,aj) we have (xj — @)2 = 1 for some k, and
so h(x) = 1. Also note that & vanishes on a sphere of radius % centered
at the midpoint of H.(a;, a;) and that the gradient of 4 does not vanish on
the sphere because of (4.11). If C, € BT, simply multiply y by —1I.

Remark 4.12. By construction the function / is smooth in the interior of each
edge. Furthermore, since according to (4.11) we have x’(0) = 0 and (1) = 0,
the gradient of /& vanishes on the boundaries of the edges in K. Therefore, the
function % can be extended to a function 7 € C1(Q2) where @ C R” is an open
neighborhood of K.

Given a tree T, let h € C'(Q) be defined following Rules A, B, and C and
Remark 4.12, where & C R” is an open neighborhood of K. Since K is compact
and R” \ K is connected, Theorem 4.1 gives the existence of f : R” — R that
satisfies

—Af =/ and sup{lf —hl+ VS = Vhl} = 155

For ¢ > 0 small, set
Ug := Uy + &f.
The definitions in Rules A, B, and C are analogues to those in dimension 3. For
example, when working in dimension 3 on the edge e = {(0,0,2) : z € [0, 1]}, we
could have set

h(0,0,2) = x(z) ife € &n(Cy) with Cy € B~

and
h(0,0,z) = x(2lz = 1/2])) ife € &oin(Cy) With Cy € B™.

Note that all the edges in Cg are edges in K. Also, it is important to note that if
two adjacent cubes have the same sign, then they share a subset of an edge in K.

If two adjacent cubes are connected through a subset of £ (Cy), then the cubes
will be either glued or separated along that subset. This is because the function f
is built to be strictly positive (approximately ¢) or strictly negative (approximately
—e¢) along the entire edge.

If two adjacent cubes share an edge through which two structures are being
joined, then they will be glued to each other near the midpoint of the edge. This is
because f is built so that it has the same sign as the cubes in an open neighborhood
of the midpoint of the joining edge.

If two adjacent cubes in C, of the same sign share a subset of an edge in
Hc(ai,aj) € En(Cy), then with the same notation as in Rule B, there exists
a subset of directions {xj,, ..., Xi, } C {Xi,...,Xj} so that the set R =
{x € Hc(ai,aj) : xi,, € |y, ci, + 1]Vt =1,2,... 5} is shared by the
cubes. By construction, the cubes will be glued through the portion R of R
that joins (¢i,, . ....Ci, ) with the point (z1,...,Zzs) near the midpoint (c;,,, +

%, ooy Cipyy %), while being disconnected through the portion R, of ‘R that joins
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the point (21, . .., zs) with (¢i,, +1,...,¢i,, +1). Thisis because f is prescribed
to have the same sign as the cubes along R1, while taking the opposite sign of the
cubes along R».

Let C, € B, with C, = U]Z-V=1 E(C(y,¢))- Using a similar argument to the
one given in R3 one obtains that all the cubes in Eext(Cw,0)) \ Crw,ey Will glue
together to form a negative nodal domain €2, of u,. We sketch the argument in
what follows. All the negative cubes in R” \ C, that touch C, do so through
an edge in £ (Cy) since they will be at distance 1 from the children structures
{Cw,0)}¢- Since the perturbation f takes a strictly positive value (approximately
+¢) along any edge in & (Cy), the negative cubes in R” \ C, will be separated
from those in Cy. Simultaneously, for each £, all the cubes in E(Cy ¢)) \ Cy,¢)
are glued to each other since they are negative cubes that touch Eex(C(y,¢)), and
Eext(C(v,0)) 1s a connected set on which the perturbation f takes a strictly negative
value (approximately —e&). This gives that £ (C(y,¢)) belongs to a negative nodal
domain of u,, and that the negative cubes in E(C, ) \ C(y,¢) are glued to the
nodal domain after the perturbation is performed.

Furthermore, two consecutive structures E(C(y ¢)) and E(C(y ¢4 1)) are joined
through an edge in &y (Cy). This edge, which joins a negative cube in E(C, ¢))
and a negative cube in E(C(, ¢+1)), has its boundary inside Eex((Cy,¢)). Since
S is strictly positive (approximately +&) on Eex((C(y,¢)), We know that the parts
of the two cubes that are close to the boundary will be disconnected. However,
since the perturbation was built so that f is strictly negative (approximately —¢)
at the midpoint of the edge, both negative cubes are glued to each other. In fact,
one can build a curve y; contained inside the nodal domain that joins Eex(Cy,¢))
with Eext (C(v,¢4-1))- It then follows that all the cubes in U]]-V=1 E(C,0))\C(v,¢) are
glued to each other after the perturbation is performed, and they will form the nodal
domain €2, of u, containing UZ=1 Eext(C(v,0))- One can carry the same stability
arguments we presented in Section 4.3 to obtain that at a local level there are no
unexpected new nodal domains. For this to hold, as in the R3 case, the argument
hinges on the fact that in the places where both #¢ and f vanish, the gradient of
f is not zero (as explained at the end of each rule). Finally, Rule B is there to
ensure that the topology of each nodal domain is controlled in the sense that when
the cubes in Eex((C(y,¢)) \ C(v,¢) glue to each other they do so without creating
unexpected handles. Indeed, the cubes in Eex((C(y,0)) \ Cv,¢) can be retracted

N N-1 o N
to the set [Jy—; QF, ¢ U Ur=1 ve where QF ;) := Qy ¢ U Uyl @
{(v,€,j): j=1,2,..., Ny} are the children of (v, £).

The argument we just sketched also shows that the nodal domains 2, with v €

T are nested as prescribed by the tree 7. Indeed, claims (i), (ii), and (iii) in the

Ekv,ﬁ,j) and
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proof of Theorem 1.2 are proved in R” in exactly the same way we carried the
argument in R3.
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