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Abstract

It is shown that the topologies and nestings of the zero and nodal sets of random
(Gaussian) band-limited functions have universal laws of distribution. Qualita-
tive features of the supports of these distributions are determined. In particular,
the results apply to random monochromatic waves and to random real algebraic
hypersurfaces in projective space. © 2018 Wiley Periodicals, Inc.

1 Introduction

Nazarov and Sodin [26,30] and very recently in [27] have developed some pow-
erful general techniques to study the zero (“nodal”) sets of functions of several
variables coming from Gaussian ensembles. Specifically, they show that the num-
ber of connected components of such nodal sets obey an asymptotic law. In [29]
we pointed out that these may be applied to ovals of a random real plane curve, and
in [21] this is extended to real hypersurfaces in P”. In [15] the barrier technique
from [26] is used to show that “all topologies” occur with positive probability in
the context of real sections of high tensor powers of a holomorphic line bundle of
positive curvature on a real projective manifold.

1.1 Gaussian Band-Limited Functions

In this paper we apply these techniques to study the laws of distribution of
the topologies of a random band-limited function. Let M = (8", g) denote
the n-sphere with a smooth Riemannian metric g. Choose an orthonormal basis
{¢; }JO.‘;O of eigenfunctions of its Laplacian

Agi + t7¢i =0,
O=ty<t1y <tp <---.

(1.1
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Fix o € [0, 1] and denote by Eaq,(T) (T a large parameter) the finite-dimen-
sional Gaussian ensemble of functions on M given by

(12) S = fur(®) = > ¢di(x),

(XTStj <T
where ¢; are independent real Gaussian variables of mean 0 and variance 1. If
o = 1, which is the important case of “monochromatic” random functions, we
interpret (1.2) as
(1.3) f) = Y i),

T-n(T)<t; <T

where n(T) — oo with T', and n(T') = o(T'). The Gaussian ensembles Epq,q (T)
are our «-band-limited functions, and they do not depend on the choice of the or-
thonormal basis {¢; }. The aim is to study the nodal sets of a typical f in Epnq,q(T)
as T — oo.

1.2 Nodal Set of f and Its Measures
Let V(f) denote the nodal set of f, that is,

V(f) ={x:f(x) =0}

For almost all /s in Epq,o(T) with T large, V(f) is a smooth (n — 1)-dimensional
compact manifold. We decompose V'(f) as a disjoint union |_| cec(f) ¢ of its con-
nected components. The set S” \ V(f) is a disjoint union of connected compo-
nents |_|weQ( £ where each w is a smooth, compact, n-dimensional manifold
with smooth boundary. The components w in 2( f) are called the nodal domains
of f. The nesting relations between the ¢’s and w’s are captured by the tree X(f)
(see Section 2), whose vertices are the points w € Q( f) and edges e run from w
to @’ if w and @’ have a (unique!) common boundary ¢ € C(f) (see Figure 1.1).
Thus the edges E(X(f)) of X(f) correspond to C(f).

As mentioned above, Nazarov and Sodin have determined the asymptotic law
for the cardinality |C(f)| of C(f) as T — oo. There is a positive constant 8,
depending on n and « (and not on M) such that, with probability tending to 1 as
T — oo,

(1.4) CC ~ Bra iy NOIM)T™:

@2m)"
here wj, is the volume of the unit n-ball. We call these constants 3, o the Nazarov-
Sodin constants. Except for n = 1, when the nodal set is a finite set of points
and (1.4) can be established by the Kac-Rice formula (814 = —= - V1 + a + «2),
these numbers are not known explicitly.

In order to study the topologies of the components of C( f) and of the nesting
trees X(f), we introduce two measure spaces. Let H(n — 1) be the countable'

I That H (n — 1) is countable follows, for example, from the Cheeger finiteness theorem [12,
theorem 7.11, p. 340], i.e., that there are only finitely many differomorphism types satisfying certain
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FIGURE 1.1. To the right: the nesting tree X(f) corresponding to a
fragment of the nodal picture in Figure 1.2, to the left, containing 17
nodal domains (where we neglected some small ones lying next to the
boundary). Figure 1.2 is essential for deciding which components merge
on the sphere outside of the fragment.

FIGURE 1.2. A nodal picture of a spherical harmonic. The blue and red
are positive and negative domains, respectively, and the nodal set is the
interface between these.

set of diffeomorphism types of compact (n — 1)-dimensional manifolds that can be
embedded in §”, and let 7 denote the set of finite rooted trees. As discrete spaces
they carry measures and define the discrepancy D between w and v by

(1.5) D(u,v) = Sjplu(A) —v(4)],

where the supremum is taken with respect to all subsets A of H(n — 1) (resp., T).

Associating to ¢ € C(f) its topological type® #(c) gives a map from C(f) to
H(n —1). Similarly, each ¢ € C(f) is an edge in the tree X( f) so that removing
it leaves two rooted trees. We let e(c) be the smaller one (if they are equal in size
choose either one of them) and call it the end of X( f') corresponding to c. Hence
e gives a map from C(f) to 7.

geometric conditions. See also Lemma 4.4 below and its derivation from the Cheeger finiteness
theorem in Section 4.9.
2Throughout the paper, by the “topological type” of ¢ we mean “diffeomorphism type.”
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With these associations we define the key probability measures jic( r) and iy r)
that measure the distribution of the topologies of the components of V() and of
the nesting ends of X( f) by

1
(1.6) el = e > b
cec(f)
and
1
(1.7) HX(f) = e D Be(e)s
IC(f)] e

where J¢ is a point mass at £.

1.3 Statement of the Main Result

Our main result is that as 7 — oo and for typical f € Enq,(T) the above
measures converge to universal laws (that is, probability measures) on H(n — 1)
and T, respectively:

THEOREM 1.1.

(1) There are universal probability measures icn,o on H(n — 1) and px 5 o
on T, depending only on n and o but not on M, such that for every € > 0,

(1.8)  P{f € EmalT):max[D(uc(ry. kena). D(nx(rys Hxna)] > €}

tends to 0 as T — oo.
(2) The support of pc.n . is

supp pen,e = H(n —1),
and the support of Lx n o IS
Supp x,na = T.

Remark 1.2. The most difficult case of part (2) of Theorem 1.1 is the monochro-
matic case @ = 1. The proof of this for n > 2 is given in the companion paper [11].

Remark 1.3. Though formulated for the sphere with arbitrary smooth metric, The-
orem 1.1 holds on general compact smooth Riemannian manifolds with no bound-
ary. Though the Jordan-Brouwer theorem might fail for other manifolds (hence the
nesting graph might fail to be a tree), it still holds locally, which is sufficient for all
our needs.

The measures ¢ (ry and px( ) carry a lot of information. If
F:Hn—-1)— P
is a P-valued topological invariant, then one can define the P -distribution of

f € gM,a (T)
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to be

1
HED = 6] Y SFaey:
ceC(f)
i.e., W ( r) is the pushforward of pe( ) to P. Theorem 1.1 then gives the universal
distribution of u g (ry; namely, it is simply the pushforward of jic n,o. The same
applies to any Q-valued map G: 7 — Q. Of special interest in this connection are
Betti distributions and domain connectivities.
The first is the vector of Betti numbers given by

F(c) = Betti(c) = (B1(c). .. .. Bi(c)).

where B (c) is the j Betti number of ¢. Here we are assuming n = 2k or 2k + 1
with k£ > 0 (these Betti numbers give the rest, since ¢ is connected, by applying
Poincaré duality). The image of H(n — 1) under F can be shown to be P,, which
is (Zzo)k if n is odd and (Zzo)k_1 X (2Z>p) if n is even. Thus Theorem 1.1
yields the universal distribution of the vector of Betti numbers according to a law
WBetti,a.n ON P and whose support is P,. We show that Upeii,o,» has finite total
mean (which is not a formal consequence of Theorem 1.1):

k
Z (Z YJ)MBetti,n,a({y}) < 0.

yeP, j=1

For the domain connectivity distributions let G: 7 — N be the function that
assigns to each rooted tree one plus the degree (i.e., number of neighbors) of the
root. Now the root of e(c) in 7 corresponds to a nodal domain w of f, and G(e(c))
is the connectivity m(w) of w, that counts the number of its boundary components.
The measure (g sy is essentially the connectivity measure:

1
1.9) MO "= 7577 Z (Sm(w) on N,
NI, 5,

Theorem 1.1 yields a universal distribution for these connectivities according
to a law pur,,,o on N and whose support is N. Since the means over N of each
measure in (1.9) is (see Section 2.4)

o2
(NI

it follows that the mean of the law pur ,  is at most 2.

1.4 Applications

The extreme values of o, namely 0 and 1, are the most interesting. The case o =
1 is the monochromatic random wave (and also corresponds to random spherical
harmonics), and Berry [6] has suggested that it models the individual eigenstates
of the quantization of a classically chaotic Hamiltonian. The examination of the
count of nodal domains (for n = 2) in this context was initiated by [7, 8], and



280 P. SARNAK AND 1. WIGMAN

the latter suggest some interesting possible connections to exactly solvable critical
percolation models.

The law ur,1 gives the distribution of connectivities of the nodal domains
for monochromatic waves. Barnett and Jin’s numerical experiments [5] give the
following values for its mass on atoms:

connectivity 1 2 3 4 5 6 7
UT2,1 91171 | .05143 | .01322 | .00628 | .00364 | .00230 | .00159
connectivity 8 9 10 11 12 13 14
HUT,2,1 .00117 | .00090 | .00070 | .00058 | .00047 | .00039 | .00034
connectivity 15 16 17 18 19 20 21
UT.2,1 .00030 | .00026 | .00023 | .00021 | .00018 | .00017 | .00016
connectivity 22 23 24 25 26
UT,2,1 .00014 | .00013 | .00012 | .000098 | .000097

The case ¢ = 0 corresponds to the algebro-geometric setting of a random real
projective hypersurface. Let W, 1 s be the vector space of real homogeneous poly-
nomials of degree ¢ in n + 1 variables. For f € W, 11, V(f) is a real projective
hypersurface in P"*(R). We equip W41, with the “real Fubini-Study” Gaussian
coming from the inner product on W, ; given by

(1.10) (f g) = [ £8P dx
Rn-l—l

(the choice of the euclidian length |x| plays no role [29]). This ensemble is essen-
tially Eaq,0(¢) with M = (S", 0), the sphere with its round metric (see [29]).

Thus the laws ¢ ;0 describe the universal distribution of topologies of a ran-
dom real projective hypersurface in P” (with respect to the real Fubini-Study
Gaussian). It is interesting to compare this with the more familiar case of com-
plex hypersurfaces. For those the generic (i.e., on a Zariski open set) hypersur-
face is smooth connected and of a fixed topology. Over R these hypersurfaces are
very complicated and have many components. The main theorem asserts that if
“generic” is replaced by “random,” then order is restored in that the distribution of
the topologies and Betti numbers is universal, at least when # — oo.

If n = 2 the Nazarov-Sodin constant f ¢ is such that the random oval is about
4% Harnack; that is, it has about 4% of the maximal number of components that it
can have [25,29]. The measure ur 2,0 gives the distribution of the connectivities
of the nodal domains of a random oval. Barnett and Jin’s Monte Carlo simulation
for these yields:

connectivity 1 2 3 4 5 6 7
MT,2,0 .94473 | .02820 | .00889 | .00437 | .00261 | .00173 | .00128
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connectivity 8 9 10 11 12 13 14
MUT,2,0 .00093 | .00072 | .00056 | .00048 | .00039 | .00034 | .00029

connectivity 15 16 17 18 19 20 21
MUT,2,0 .00026 | .00025 | .00021 | .00019 | .00016 | .00014 | .00013

connectivity 22 23 24 25 26
MUT,2,0 .00011 | .00011 | .00009 | .00008 | .00008

From these tables it appears that the decay rates of ur,2,1({m}) and pr,2,0({m})
for m large are power laws m™7, with y approximately 2.149 for « = 1 and 2.057
for « = 0. These are close to the universal Fisher constant 187/91 that governs
related quantities in critical percolation [18].

The only cases for which there is an explicit description of H(n — 1) are n = 2
and n = 3. Forn = 2, H(n — 1) is a point, namely the circle S!. Forn = 3,
H (2) consists of all the orientable compact surfaces, and these are determined by
their genus g, a nonnegative integer. Thus H(2) = Zxo, and ¢, 3, 1S @ mea-
sure on Zxg that has finite mean (see Section 2). It would be very interesting to
Monte Carlo the distributions p¢,3,0 and p¢,3,1 and to learn more about their pro-
files. The only features that we know about the universal laws are that they are
probability measures and that they charge every atom and in some special case that
their “means” are finite.

1.5 Outline of the Paper

We turn to an outline of the proof of Theorem 1.1, and also the content of the var-
ious sections. Most probabilistic calculations for the Gaussian ensembles Eq,q (T)
start with the covariance kernel

(1.11) Ka(T:x.p) :=Ee[f() S = D ¢ix)$;(»)

aT<t;<T

(with suitable modifications if @ = 1).

The behavior of Ky as T — oo is decisive in the analysis, and it can be studied
using microlocal analysis and the wave equation on M x R; see Section 2 for more
details. We have

(1.12)  Ko(T3x,y) = Ko(T;x,y) = Bpo(T -d(x,y)) + O(T™H

1
Do (T)
uniformly for x, y € M, where d(x, y) is the (geodesic) distance in M between
x and y,

1

Dy(T) = Vol(M)

/ Ky (T; x, x)dVol(x),
M
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and for w € R”

(1.13) Bn,a(w) = Bn,a(|w|) =

o [ et enae
Ag

with

Ay ={w o < |w| < 1}.
Thus for x and y roughly 1/ T from each other, Ky is approximated by the univer-
sal kernel Bj o, whereas if x and y are a bit further apart, then the correlation is
small.

The estimate (1.12) allows one to compute local quantities for the typical f in
Em,a(T), for example, the density of critical points (see the Kac-Rice formula in
Section 2), or the (n — 1)-dimensional volume of V( f'). While these are interesting
and, in fact, useful for us, for example, in bounding from above the Betti numbers
using Morse theory, the topology of V(f) is global and lies beyond these purely
local quantities. It was a major insight of Nazarov and Sodin [30] that most compo-
nents ¢ of V(f) and w of Q( f) are small, that is, are of diameter at most O(1/T),
and that the components that are further than this scale of 1/ 7 apart are (almost)
independent. This simultaneously semilocalizes the problem of the distribution of
the topologies and also explains the concentration feature that most f’s have the
same distribution as well as the universality.

Moreover, it separates the analysis into different parts, the first being the study
of the problem for the scaling limits determined by (1.12) and (1.13). We call these
the “scale-invariant models,” and they are translation-invariant isotropic Gaussian
fields on R” determined by (1.13). We denote them by g, o and review their prop-
erties in Section 2. Once these are understood one has to couple the scale-invariant
theory with the global analysis after decomposing M into pieces of size 1/T.

In Section 2 we review some “standard” theory such as properties of the fields
On,«. the Kac-Rice formula, and some elementary topology. Sections 3, 4, and 5
are concerned with proving the analogue of Theorem 1.1 for the fields gy o. The
measure spaces H(n — 1) and 7 are noncompact so that weak limits of probability
measures need not be probability measures. In terms of technical novelty, this issue
is a central one for us. In Section 3 we prove the existence as weak limits of ¢ n,o
and px n,o associated with the g o’s. The proof is relatively soft and follows
closely the component-counting analysis of [26,30]. The main difference is that our
random variables are conditioned to count a given topological type (respectively,
tree end). This requires a number of modifications and extensions, especially of
various inequalities (see Section 3.2, Section 6.4, and Section 7.4).

Section 4 is devoted to a proof that the universal limit measures ¢ o and
X n,« are in fact probability measures. This requires establishing some tight-
ness properties for the tails of our families of measures (see Proposition 4.3). The
Kac-Rice formula allows us to show that most components ¢ of a typical V(f)
are gotten from S”~! with a bounded number of surgeries. However, this is not
sufficient to control their topologies uniformly. To limit these we examine further
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the geometries of the components. We show that for most components there are
uniform bounds from above for their volumes, diameter, and curvatures. With this,
versions of Cheeger’s finiteness theorem (see Lemma 4.4 in Section 4.2) allows us
to restrict their topological types and hence to establish the desired tightness prop-
erty. For the case of tree ends a similar but much simpler analysis gives the desired
control on the geometry of nodal domains, yielding the corresponding tightness.
Section 5 is concerned with a proof that for the g, o’s the limit measures ¢ »,o
and px n.o have full support (i.e., that they charge every atom). For the cases
0 < o < 1 this is straightforward (see Section 5.2). The case @« = 1 presents
us with a second technically novel problem. We resolve it for n = 2 and for the
measure [y 2,1 in this section. This makes use of some auxiliary lemmas about
approximating functions in C(K), K € R? compact, by solutions u of

Au+u=20

in R?. This is combined with a combinatorial analysis of the zero sets of perturba-
tions of

u(x1, x2) = sin(xq) - sin(xy).

The general case of the support of these measures for n > 3 is established in the
companion paper [11].

Section 6 gives semilocal analysis concerning the g, o’s with a decomposition
of M into pieces at scale 1/ 7 to study the typical members of Exq,4(7"). Section 7
ends with a proof of Theorem 1.1 by combining or gluing the semilocal pieces of
M. Again, we follow closely the analysis of the counting of the number of com-
ponents in [26,30]. This requires a number of modifications and extensions (for
example, see the proof of Proposition 6.8 in Section 6.4 or the proof of Proposition
7.2 in Section 7.4), and we spell these out in some detail.

2 Basic Conventions

We review some material that will be used in the text. We begin with a quanti-
tative local Weyl law for M.

2.1 Quantitative Local Weyl Law

The modern treatments of Weyl’s law with remainder involve construction of a
parametrix for the wave equation on M x R as developed first in [17,20]. For the
spectral window that we treat, a parametrix for a small fixed time interval suffices.
The recent papers [9, 10], which we will use as a reference, go beyond what we
need in that they allow 7(7T) to be bounded in the case « = 1. Their goal is
a remainder term of o(7"~1), and for that they assume some properties of the
geodesic flow. Since we assume that n(7) — oo (in fact, that n(T) = T8 for
some 0 < 8 < %) and we are content with a bound of O(7"~!) for the remainder,
the analysis from [9, 10] is simpler, and we don’t need to impose any conditions on

M = (S", g).
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Specifically, as pointed out in equation (5) of [10], the remainder R(x, y,T)
(our T is their A) in their equation (4) is O(T™~1), and this is proved without any
assumptions on the geodesic flow (see [17, theorem 4.4]). In their analysis of the
main term in (4) leading to their theorem 1, there is a parameter €, which they
allow to go to 0 and which makes use of the non-self-focal condition. If we fix €
a large constant so that the parametrix constructed in their section 2 is used only
for |t| < %, then no conditions on the geodesic flow are used and one obtains their
theorem 1 with the weaker O(1) replacing their o(1). This leads to: uniformly for
x,yeM

Kr(x.p) = > ¢;(x)p;j(y) = T"Bp(T -d(x.y)) + O(T"1),
t;j<T
where

Bu(w) = By(w]) = / e((w. E)E.
|E1<1

Henceif 0 <7’ < T,

Kr(x.y)=Kr(x.y) = Y $i(x)¢;(»)
2.1 T'<t;<T

= T By (T - d(x. y)) + O(T" V),
where
Buy(w) = / e((w. £))dE.

y<lél<1

In particular, if 0 < o < 1 is fixed, then we obtain the desired Weyl asymptotics
that we will use for the Enq,q(T)’s.
For the monochromatic case o = 1,

T')T =1—n(T)/T =1-TF1,

and hence

02 Kr(x,y) = Kr(x,y) = np(T)T" ™' By1 (T - d(x, )
+O(T" ! + P*T"2(Td(x, y))),

where

Bu(w) = By (lwl) = / e((w. £))dvy ().
|€]=1

and vy is the spherical Haar measure on S”~!. We also need to control the deriva-
tives of K7 (x, y) with respect to x and y when x and y are very close (within 1/ 7T
of each other). Using geodesic normal coordinates about a point xo in M and the
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exponential map from T, (M) identified with (R”, 0) to M, [9] shows, say in the
case o = 1 (which is the most difficult one), that

(2.3) Kt (expr (%),expr(%)) =nnT" ' By1(u—v) + O(T" ™),

and this holds uniformly together with any fixed number of derivatives with respect
to u and v. They establish this for M real analytic in [9] and for the general
C > case in [10].

Our discussion above does not apply directly to the interesting special case of
M being the standard round sphere S” and E,4,1(T") being the space of spherical
harmonics of a given degree, since for these 7 is bounded. However, in that case the
classical Mehler-Heine asymptotics for Gegenbauer polynomials yield a version of
(2.3), and all the results in this paper apply equally well to these “monochromatic
waves.”

2.2 Scale-Invariant Fields

The semiclassical approximations (2.1), (2.2), and (2.3) lead to the study of the
scaled Gaussian fields at a point xo € M, and these in turn to the scale-invariant
Gaussian fields g, o on R”. They are defined as follows.

Let ¢, j = 1,2,..., be areal-valued o.n.b. of L?(Ag,dvy) with0 < o < 1
and L2(S"!,dvy) if o = 1 (here A is the annulus o < |£| < 1 and dvy its Haar
measure). Set

¥ = / U Ee((x. E)dva = C;(x) + 5 (x)
Rn

to be the real-valued cosine and sine transforms. Define a random f(x) by

o0

2.4) FO0) ~ D (@ Ci(x) + by S (%),

Jj=1

where a;, b; are independent N (0, 1) Gaussian variables. The space of such f’s
is denoted by G, ¢, and the corresponding probability measure on the measurable
subsets of G o by Py o. The Gaussian fields g, o are then (Gp o, Pn,a)-

From the definitions one checks that for x, y € R”,

o0

Z(Cj (X)Cj(y) + Sj(x)S; ()

j=1

- / e((x — y.£)dva ()
R~
= Fu(x — ) = Covpalx — ) = Ef[f(x) - fO)].

2.5)
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It follows that g, . = (Gn,a, Pn,«) is a translation- and rotation-invariant random
field [2,4]. That is, if B is a (measurable) subset of G o, then

Ppo(B) = Ppo(RB)

for any rigid motion R of R” (here Rf(x) := f(Rx)). Moreover, since Vg (x)
is analytic in x, almost all f’s in G,  represent analytic functions on R”. This
follows, for example, from the series (2.4) converging uniformly on compacta in x
for a.a. (almost all) choices of the Gaussian variables a;, b;; see Appendix A for
more details.

Of special interest is @ = 1, for which one can choose as o.n.b. of L2(S"~!, v;)
the special harmonic Y,,l1, Il >0andm = 1,...,d;. A computation [11] shows
that the ensemble g, 1 has a representation

oo d;
f(x) (271)”/22 Z blm m(| |)Jl+v(| |) with v = %

I=0m=1 |x|v

and b; ,, independent N (0, 1) Gaussians.

2.3 Kac-Rice

To illustrate the use of the covariance and its asymptotic approximation above,
we review the computation of expected zero volume and/or critical points number
for random fields. These are computed using the Kac-Rice formula. Let m < n,
H : D — R™, be a smooth random field on a domain D € R” and Z(H; 5) be
either the (n — m)-volume of H~1(0) (for m < n) or the number of the discrete
zeros (for m = n).

We set Jg(x) to be the (random) Jacobi matrix of H at x and define the zero
density of H at x € D as the conditional Gaussian expectation

(2.6) K1(x) = Ki;5(X) = ¢H(x)(0) - E[|det Jg (x)| | H(x) = 0],

where ¢fr(x)(0) is the probability density function of H(x) evaluated at 0 € R™.
With the notation above the Kac-Rice formula (metatheorem) states that, under
some nondegeneracy condition on H,

E[Z(H;D)| = [Kl(x)dx.

Concerning the sufficient conditions that guarantee that (2.6) holds, a variety of
results is known [2,4]. The following version of Kac-Rice merely requires the
nondegeneracy of the values of H(x) (vs. the nondegeneracy of (H(x), Jg(x)) in
the appropriate sense, as in the other sources), to our best knowledge, the mildest
sufficient condition.

LEMMA 2.1 (Standard Kac-Rice [4, theorem 6.3]). Let H : D — R™ be an a.s.
(almost surely) smooth Gaussian field such that for every x € D the distribution of
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the random vector H(x) € R™ is nondegenerate Gaussian. Then

2.7 E[Z(H:D)] = / K1 (x)dx
D

with the zero density K1(x) as in (2.6).

The Gaussian density (2.6) is a Gaussian integral that, in principle, could be
evaluated explicitly. However, in practice, it is not easy to control K (x) uniformly
in both x and the field H. The following lemma was proved in [30]; it offers an
easy and explicit upper bound for the discrete number of zeros (in case m = n),
uniformly with respect to H.

LEMMA 2.2 ([30, lemma 2]). Letm > 1, B € R™ a ball, and H : B — R™ an
a.s. Cl-smooth random Gaussian field. Then we have

E[|VH (x)|?]"/?

2.8) BlZ(HB)] = € swp o m H (x) - Ho)]) 172

x€eB

- Vol(B).

for some universal constant C = C(m) > 0, where

IVH(x)|* = |9; H;|?
i,j

is the Hilbert-Schmidt norm.

Note that both the denominator and the numerator of the right-hand side of (2.8)
may be expressed in terms of the covariance matrix (7;; (x, x));;, and its second
mixed derivatives (075,74 (X, X));j1m evaluated on the diagonal x = y. If H is
stationary, then the fraction on the right-hand side of (2.8) does not depend on x,
so that in the latter case (2.8) is

(2.9) E[Z(H; B)] < C(H) - Vol(B)

with C(H ) expressed in terms of the covariance of H and a couple of its derivatives
at the origin x = 0.

We now apply Lemma 2.2 for counting critical points of a given stationary
field F by using H = VF.

COROLLARY 2.3 (Kac-Rice upper bound). Let D C R™ be a domain, and let
F:D — R™ an a.s. C*-smooth stationary Gaussian random field such that for
x € D the distribution of V F(x) is nondegenerate Gaussian.

(1) Forr > 0 let A(F;r) be the number of critical points of F inside B(r) C
D. Then

E[A(F:r)] = O(Vol(B(r))).

where the constant involved in the O-notation depends on the law of F only.
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2) Forr > 0 let .Z(F; r) be the number of critical points of the restriction
Flap(r) of F to the sphere dB(r) € D. Then

E[A(F;r)] = O(Vol(dB(r))),
where the constant involved in the O-notation depends on the law of F only.

Note that the total number N¢ (F; r, u) of nodal components of F lying in By, (r)
is bounded by the number A(F;r,u) of critical points of F in By, (r). Hence
Corollary 2.3 allows us to control the expected number of the former by the volume
of the ball B(r) (bearing in mind the stationarity of F'). Similarly, the second part
of Corollary 2.3 allows us to control the expected number of nodal components
intersecting 0By, () in terms of the volume of dBy, (r). This approach is pursued in
Section 3.3.

PROOF OF COROLLARY 2.3. The first part of Corollary 2.3 is merely an appli-
cation® of (2.9) (following from Lemma 2.2) on the stationary field H = V F. For
the second part we decompose the sphere dB(r) into (universally) finitely many
coordinate patches, thus reducing the problem to the euclidean case, and apply
Lemma 2.2 on the restrictions of the gradient of F'[3p() on each of the coordinate
patches separately. Note that the total volume is of the same order of magnitude
r"~1 as dB(r), so that the second statement of the present corollary follows from
summing up the individual estimates (2.8), bearing in mind that upon passing to
the euclidean coordinates we are losing stationarity of the underlying random field
(though the nondegeneracy of the gradient stays unimpaired). O

2.4 Some Remarks on the Topology of V( )

We end this background material section with some elementary remarks about
the topology of V(). For the random f € £7,4(M) (and T large) a component ¢
of V(f) is a smooth hypersurface in S8”; hence it can be embedded in R” and
gives a point in H(n — 1). It is known that ¢ separates S” into two connected
components [22]. From this it follows that the nesting graph X( f) is a tree and
that

XNl = 12N =EX(UNDI+1=ICHI+1.

The mean of the connectivity measure pr( sy from (1.9) is equal to

> 1
Zm'ﬂr(f)(m)=m > d),

m=1 veX(f)

where d(v) is the degree of v. Now

AEX (NI = D d).
veX(f)

3 Alternatively, it follows directly from Lemma 2.1.
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and hence

- C2AEXU 2
2o = e =2 i)

m=1
It follows that the means of the universal domain connectivity measures (i1, o are
at most 2. We do not know whether these are equal to 2 or not.

The proof that the universal Betti measures [Beti,o,n (Page 279) has finite (to-
tal) mean also follows from a finite individual bound. If M is 8" with its round
metric, the eigenfunctions are spherical harmonics and any element of Exq,4(7)
is a homogeneous polynomial of degree t = (7). According to [23] the total
Betti number of the full zero set V() of f (which we can assume is nonsingular)
is at most ¢”. Nazarov and Sodin’s theorem (1.4) asserts that the number of con-
nected components of a typical V(f) for f in Eaq,4(T) is cp o - 1", from which
the finiteness of the total mean of the pgei,o,n ON (Z Zo)k follows.

3 Scale-Invariant Model

3.1 Statement of the Main Result

Let F : R” — R be an a.s. smooth stationary Gaussian random field. Here the
relevant limit is considering the restriction F'|g(r) of F to the centered radius-R
ball B(R), and taking R — oo. The covariance function of F is rg : R” x R" —
R, defined by the standard abuse of notation as

rr(x,y) =rr(x —y) =E[F(x)F(y)].
and the spectral measure (density) dpr is the Fourier transform of rr on R”.

Notation 3.1. Let ' € R” be a (deterministic) smooth hypersurface and R > 0 a
(large) parameter.
(1) For H € H(n — 1) let N¢(T, H; R) be the number of connected compo-
nents of I" lying entirely in B(R), diffeomorphic to H .
(2) Forc € C(I") let e(c) be the rooted subtree of X(I") cut by ¢, with vertices
corresponding to domains w € Q(I") lying inside c.
(3) For G € T let Nx(T', G; R) be the number of edges ¢ € C(f) in the
nesting tree of I" corresponding to components ¢ € C(I") lying entirely in
B(R) with e(c) isomorphic to G.
(4) We use the shorthand

NA(F:- ) = N(F7H(0),-.-)
in either of the cases above.

Our principal result of this section (Theorem 3.3 below) asserts that, under some
assumptions on F, as R — oo, the numbers

N.(F;-,R),

suitably normalized, converge in mean (i.e., in L!).
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DEFINITION 3.2 (Axioms on F').

(p1) The measure dp has no atoms.
(p2) For some p > 6,

/nxupdp(x) < 0.

Rﬂ
(p3) supp p does not lie in a linear hyperplane.

Axiom (p2) implies [4, p. 30] that F is a.s. C3-smooth, and axiom (p3) im-
plies that the distribution of (F(x), VF(x)) is a.s. nondegenerate. Finally, axiom
(p1) guarantees that the action of translations (or shifts) on F are ergodic, which
is a crucial ingredient in Nazarov-Sodin theory (see Theorem 3.4 below). From
(2.5) it is clear that axioms (pl), (p2), and (p3) hold for the g, ’s considered in
Section 2.2.

For this scale-invariant model Nazarov and Sodin proved [30, theorem 1] that
under axioms (pl)—(p3) on F there exists a constant § = S(F') such that

Nc(F: R) Wn
b E[ Vol(B(R) ! @y ] -0
and in particular, for every € > 0
Nec(F; R) Wn
G2 P{ Vol(B(R) P @yt |~ 6} —0

and they gave some sufficient conditions on F for the positivity of 8. The following
theorem refines the latter result; it will imply the existence of the limiting measures
in Theorem 4.2, part (1), below.

THEOREM 3.3 (cf. [30, theorem 1]). Let F : R" — R be a random field whose
spectral density p satisfies the axioms (pl)—(p3) above. Then we have for every
H € H(n—1)and G € T that there exist constants cc(H) = cc.r (H) = cc;p(H)
and cx (G) = cx.F(G) = cx;p(G) so that as R — oo,

Nc(F, H: R)
. e[ Nartaay — <] o
| E[N—X(F’G;R) —cX-F(G)H 0.
Vol(B(R)) ’
The statement (3.3) is to say that, as R — oo, we have the limits
N+(F’.;R) —c..r()
Vol(B(R)) N

in L!. Using the same methods as in the present manuscript (and [30]) it is possible
to prove that these limits are also valid a.s.; however, we were not able to infer
the analogues of the latter statement for the Riemannian case (1.2). The rest of
the present section is dedicated to the proof of Theorem 3.3, eventually given in
Section 3.3.
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3.2 Integral-Geometric Sandwiches
Let 7,, be the translation operator
7, R" > R"”
acting on (random) functions, by (1, F)(x) = F(x — u). More precisely, we
consider a Gaussian random field F : R” — R”" as a probability space (A =

C(R"), o7, P), where of is the o-algebra generated by the cylinder sets of the
form

{feA f(xj)ed;,j=1,...k}
with some x; € R", andintervals A; C R, j = 1,...,k, and P the corresponding
Gaussian measure, as prescribed by Kolmogorov’s theorem. Under axiom (p2),
P is supported on the smooth functions (e.g., C1(R")).

In this section we reduce the various nodal counts into a purely ergodic ques-
tion; the latter is addressed using the following result (after Wiener and Grenander-
Fomin-Maruyama; see [30, theorem 3] and references therein):

THEOREM 3.4.

(1) Let F be a random stationary Gaussian field with spectral measure dp.
Then if dp contains no atoms, the action of the translations group

(uF)(x) = F(x —u)
is ergodic (“F is ergodic”).
(2) Suppose that F is ergodic, and the translation map R" x C(R") — C(R")
(3.4) (u, F) » o, F
is measurable with respect to the product o-algebra B(R") x < and < .

Then every random variable ®(F) with finite expectation E[|®(F)|] < oo
satisfies

1
lim ————— O(ty, F)d E[®(F)],
R0 VOI(B(R)) / (tuF)du = E[S(5)]
B(R)
convergence a.s. and in L'.

To reduce the nodal counting questions into an ergodic question we formulate
the “integral-geometric sandwich” below. To present it we need the following no-
tation first.

Notation 3.5.
(1) Foru € R” and T" a smooth hypersurface let
N, ;R u) := N(t,T,-; R)

(i.e., the centered ball B(R) in Notation 3.1 is replaced by By, (R)), and use
the shortcut

N.(F,-: R, u) := N.(F~Y0),-: R, u).
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(2) For each of the (random or deterministic) variables N.( - - - ) already defined,
N*(--+) is defined along the same lines with “lying entirely in B(R)” re
placed by “intersects B(R)”.

Remark 3.6. Our approach will eventually show that the difference between
NA(F,-;R,u) and N*(F,-;R,u)

is typically negligible (see the proof of Theorem 3.3 below). It will imply “semilo-
cality,” i.e., that “most” of the nodal components (resp., tree ends) of F are con-
tained in balls of sufficiently big radius R >> 1; bearing in mind the natural scaling,
these correspond to nodal components (resp., tree ends) of the band-limited func-
tions f in (1.2) lying in radius-R /T geodesic balls on M (see also Lemma 7.4).

LEMMA 3.7 (cf. [30, lemma 1]). Let I" be a (deterministic) closed hypersurface.
ThenforO <r<R HeHmn-—1),and G € T, one has

/ NA(T,-;r,u)du < N.(T,-; R)
B(R—-r)

Vol(B(r))
(3.5)
/ N*(T,-;r,u)du
B(R+r)

with N.(T, - ; R) standing for N¢(T, H; R) (resp., Nx (T, G; R)), and similarly for
the other counts involved in (3.5). That is, (3.5) asserts two different sandwich
inequalities, with N'(---) replaced by either N¢(---) or Nx () in each case.

Vol(B(r))

PROOF. We are only going to prove the sandwich inequality corresponding to
Ne; namely, that for H € H(n -1

/ Ne(T, H; r,u)du
B(R—r)
(3.6) =< Nc(r H;R)

Vol(B(r))

/ NZ (T, H;r,u)du,

B(R+r)

Vol(B(r))

with the inequality for Ny proven along similar lines. Let y € B(R) be a con-
nected component of I'. Put

Gu(y) = [ B(v.r) = {u:y S B(u.r)}
VEY

and

G*(y) = U B,r)={u:ynBu,r)# o}
vey
We have, for every v € y,

G«(y) € By(r) € G*(y),
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and thus, in particular,
(3.7 Vol(G«(y)) = Vol(B(r)) < Vol(G*(y)).
Summing up (3.7) for all components y € B(R) diffeomorphic to H, we obtain

Y Vol(Gu(y)) = Vo(B(r) - Ne(T. H:R) = ) Vol(G*(y)).

YSB(R), YSB(R),
y=H y=H

(3.8)

Exchanging the order of summation and the integration

Vol(G«(y)) = / du,

G« (y)
we obtain
> ez [ [ X i|a
ySB(R), —p) V:YCBy(r),

_ / NeGu, r: H, T)du,
B(R-r)
since if u € B(R — r) then B, (r) € B(R). Similarly,

> Vol(GH(y)) < [[ > l]du

ySB(R), B(R+7) VIVﬂB}i(T)#E,
(3.10) y=§ v=H
= / NZ (T Hr,u)du,
B(R+r)

since if y € B(R) and for some u

B,(ryNny # @,
then necessarily u € B(R + r). The statement (3.6) of the present lemma for

connected components of I' then follows from substituting (3.9) and (3.10) into
(3.8) and dividing by Vol B(r). O

The following lemma is instrumental to applying the ergodic theory (Theorem
3.4); its proof will be given in Appendix A. Recall that, as in the beginning of
Section 3.2, we understand a Gaussian random field F as a probability space
(A, o7, P) consisting of a sample space A = C(IR") of continuous functions f(x),
equipped with the o-algebra .o/ and the Gaussian measure P, same as above.

LEMMA 3.8. Let F be a random field satisfying the assumptions of Theorem 3.3.
(1) Then for everyr >0, H € H(n — 1), and T € X the maps N¢(F, H;r)
and Nx (F, G;r) are random variables (i.e., the map w +— N.(F,-;r) is
measurable on the sample space A).
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(2) For almost every sample pointw € A, r >0, H e Hn—1),and T € X,
the function

x> N(F,-;x,r)

is locally constant and, in particular, measurable on a compact domain.
(3) Foreveryr,R >0, H € H(n — 1), and T € X, the function

(w,x) > N(F,-;x,r)
is measurable on A x B(R).

3.3 Proof of Theorem 3.3: Existence of the L1-Limits for Topology
and Nestings Counts via Ergodicity

PROOF. As before, we are only going to prove the result for N, the proofs for
Nx being identical (just replace the counting variables below respectively). Let
H € H(n — 1), and fix € > 0 small and r > O arbitrary, and apply (3.6) on
I = F~10):

| A" 1 NC(F,H;r,u)d
( - E) Vol B(R —r) Vol(B(r)) "
B(R-r)
- Nc(F, H; R)
Vol(B(R))
r\”n 1 NC*(F,H,r,u)
<(1+ E) Vol B(R + 1) / Vol(B(r)) ™
B(R+r)
F" 1 N(F, H;r,u) +Z(w Fir)
= (1 + E) Vol B(R + r) / Vol(B(r)) a
B(R+r)

where Z (1, F; r) is the total number of components ¢ of F ~!(0) intersecting By, (r)
(of any topological class), where

Z(F;r,u) < ,Z(tuF;r)

is bounded by the number ﬂ(ruF ;1) of critical points of F|p, () (see Corollary
2.3 and the remark following it immediately), and

n
Vol(B(R + r)) = Vol(B(R)) - (1 + %) .
Recall the definition

Ne(F,H;r,u) =N, F,H;r),
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where 7, is the translation by u, and r is controlled so that 5 < €:

1 / Ne(w,F, H:;r) Ju

= 9%BER=D Vol(B(r))
B

R—r)
Ne(F, H; R)
3.11) < OB )

du.

< (14 1 / Ne(wF.H:r) + A(wy F:r)

Vol B(R + r) Vol(B(r))
B(R+7)

Note that, by Corollary 2.3, for every r > 0 and H € H(n — 1), the functional
Nc(F, H:r)

Vol(B(r))
is measurable and is of finite, uniformly bounded expectation (i.e., L), and hence,
by the stationarity of F, so are its translations. Moreover, the translation map (3.4)

is continuous with respect to the relevant o-algebras as in part (2) of Theorem 3.4.
It then follows from Theorem 3.4 that both

F > @y, (F) =

1 NC(TMF’H;r)d
Vol B(R +7) / Vol(B(r)) "
B(R+r1)
and
1 NC(TM F? H’ r)
Vol B(R —r) Vol(B(r))
B(R—r)

converge to (the same) limitin L!,

1 / Ne(w F H:r)
Vol B(R) Vol(B(r))
B(R)

du — c(H;r) = E[®g.,].

Observe that, if we get rid of ./Z((‘CMF ; 7) from the right-hand side of 3.11, then,
up to e, both the left-hand side and the right-hand side of 3.11 converge in L! to
the same limit ¢(H; ). We will be able to get rid of A(t, F; r) for r large; it will
yield that as r — oo, we have the limit

c(H;r) — c(H),
where the latter constant is the same as
ce;r(H) = c(H),

prescribed by Theorem 3.3. To justify the latter we use the same ergodic argument
on
Aty F:r)
> —
Vol(B(r))
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Theorem 3.4 yields the L! limit
1 / A‘(Tu F e )

Vol B(R + 1) Vol(B(r))
B(R+r)

_ ﬂ(tuF;r) . 1
= E|:V01(B(r))j| =o;)

by Corollary 2.3. Hence (3.11) implies
J=o(+))
=0(e+—|;
r

g[|Ne(F. H:R)
Vol(B(R))
the latter certainly implies the existence of the L!-limits
c(H) = rlgr(;O c(H;r),

ar

as R — oo, with

—c(H:;r)

the L!-convergence
Ne(F, H; R)
Vol(B(R))
claimed by Theorem 3.3. O

—c¢(H)

4 Topology and Nesting Not Leaking

4.1 Topology and Nesting Measures

Let F : R" — R be a stationary Gaussian random field and R > 0 a big
parameter. We may define the analogous measures to (1.6) and (1.7) for F and
express them in terms of the counting numbers NV.(F,-; R) in Notation 3.1:

He(F;RZ = |C(F Z St(c)
(4 1) ceC(F;R)
) 1
:m Z Ne(F,H;R) -0y
’ HeH(n-1)

on H(n — 1), and
1
CFR 2 %= |C(F R 2

ceC(F;R)

(4.2) uxryr = ZNX(F G:R)-ég

onT.
Theorem 4.2 below first restates Theorem 3.3 in terms of convergence of prob-

ability measures (4.1) and (4.2), and then asserts that there is no mass escape to
infinity so that the limiting measures are probability measures.
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Notation 4.1. For a Gaussian field F satisfying the assumptions of Theorem 3.3,
given H € H(n — 1) and G € T, the latter theorem yields constants c..f ()
satisfying (3.3). We may define the measure (cf. (3.2)):

2 )"
4.3) Ke(F) = (2r) E ce;r(H) -8,
Brn.aw
AN HeH(m—1)

and similarly
(2m)"

lgn,awn

Y ex:r(G)- 5.

GeT

Ux(F) =

THEOREM 4.2. Let F : R" — R be a stationary Gaussian field whose spectral
density p satisfies the axioms (p1)—(p3) in Definition 3.2.

(1) Forevery He Hn—1),G € T, and e > 0,
44 P{max(|pcry.r(H) — per)y(H)I,
. lux(Fy:R(G) — ux(F)(G)|) > €} -0

as R — oo.
(2) The limiting topology measure [Lc(Fy is a probability measure.
(3) The limiting nesting measure [Lx(fy is a probability measure.

PROOF OF THEOREM 4.2, PART (1). To prove the statement of (4.4) on

lery;R(H) — piecr) (H)],
we notice that the L!-convergence in (3.3) implies that for every € > 0
P ( Nc(F, H; R)
Vol(B(R))
via Chebyshev’s inequality. This, together with (3.2) and the definition (4.3) of

Me(Fy, finally implies the statement (4.4) of Theorem 4.2, part (1), for pe(ry;r
with the proof for iy (F); g being identical to the above. U

—ce.r(H)| > e) -0

The rest of the present section is dedicated to proving the latter parts of Theorem
4.2, namely, that there is no escape of topology and nesting to infinity. In fact, in
the course of the proof we will gain more information on the possible geometry
of typical nodal components, controlling the geometry in terms of the gradient; in
Appendix B we give a shorter proof at the expense of using more abstract tools
(such as the monotone convergence theorem), and, consequently, more limited un-
derstanding of the geometry of nodal components. Note that part (2) is equivalent
to

Z ce;F (H) = Bnawn(2m)™",
HeH(n-1)
and similarly for part (3).
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4.2 Proof of Theorem 4.2, Part (2)

Let F : R” — R be a stationary Gaussian field; from this point and until the
end of this section we will assume that F' satisfies the assumptions of Theorem 4.2,
namely axioms (p1)—(p3). The following proposition, proved in Section 4.3, states
that with high probability the gradient of F is bounded away from 0 on most of the
nodal components of F'; i.e., with high probability F' is “stable” in this sense.

PROPOSITION 4.3 (Uniform stability of a smooth Gaussian field). For every e > 0
and n > 0 there exists a constant B = B(e,n) > 0 so that for R sufficiently big the
probability that |V F(x)| > B on all but at most nR? components of F~1(0) lying
in B(R)is>1—e.

The following lemma, proved in Section 4.9, exploits the “stability” of a func-

tion in the sense of Proposition 4.3 to yield that in this case the topology of a nodal
component is essentially constrained to a finite number of topological classes.

LEMMA 4.4. Given B > 0, C < 00, and V < oo there exists a finite subset
K=K(@B,C,V,n) S Hn—1)

of H(n — 1) with the following property. Suppose that G:R" — R is a (determin-
istic) smooth function, and 3 is a connected component of G = 0 that is contained
in a ball B C R" and satisfies the following:
(i) Forallx € 3
IVG(x)| = B.
(ii) The volume of 3 is Vol,—1(3) < V.
(iii) The C%-norm of G on B is bounded.:
1Gllc2) = C.
Then 3 € K.

PROOF OF THEOREM 4.2, PART (2), ASSUMING PROPOSITION 4.3 AND LEM-
MA 4.4. To prove that there is no escape of probability we will show that there exist
B,V > 0and C > 0 as in Lemma 4.4 so that the expected number of components
of F that do not satisfy the conditions of Lemma 4.4 on a fixed euclidean ball is
arbitrarily small. To make this precise, for a collection A € H(n — 1) of topology
classes we define N¢(F, A; R) to be the number of nodal components ¢ € C(F)
of F lying entirely in B(R) of the topology class lying in A; in particular, for
H € H(n — 1) we have

Ne(F,H; R) := Ne(F, {H}; R).

For the limiting measure ji¢(F) to be a probability measure it is sufficient to prove
tightness: for every § > 0 there exists a finite

Ao = Ao(8) € H(n—1)
so that
4.5) E[Nce(F,H(n — 1)\ Ap; R)] < §- R";
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Ao will be chosen as A9 = K(B8, C, V,n) with some (8,C,V) = (8,C, V)($) to
be determined.

Now let A € H(n — 1) be arbitrary. We are going to invoke the integral-
geometric sandwich (3.5) of Lemma 3.7 again; to this end we also define

NZ(F, A; R)

to be the number of those components ¢ € C(F) of F~! of topological class in A4
merely intersecting B(R), and

NZ(F, Asru) := Ny (F(-+u), A;r)

is the number of components as above intersecting in a u-centered radius-r ball.
Summing up the right-hand side of (3.5) for all H € A in this setting, we have for
every

O<r<R

the upper bound

1 " ‘
Ne(F.A:R) = (s / N, A: v, u)du

B(R+7)
(4.6) 1
— F. A; A(u Fir))d
< wgey | WelF A + A Fin)du
B(R+r)
(see Corollary 2.3).

Now we take the expectation of both sides of (4.6). Since by Corollary 2.3 and
the stationarity of F, uniformly

E[A(ty F:7)] = Or—oo(r"™ 1)

with the constant in the O-notation depending only on F, given § > 0, we can
choose a sufficiently big parameter r > r¢(8) so that, after taking the expectation,
(4.6) is

4.7) E[Nc(F, A; R)] < (§ + 1) -E[Nc(F, A;r)] + g - R".

From (4.7) it is clear that in order to prove the tightness (4.5), it is sufficient to find
a finite Ag € H(n — 1) so that

EINC(F. H(n— 1)\ dg: )] < 37"

is arbitrarily small; the upshot is that r is fixed (though arbitrarily big).
Take € = €(8) > 0, a parameter to be chosen later. We will now define Ag to be
of the form

AO = K(ﬁ’ C, V? n)a
as in Lemma 4.4 applied on B = B(r), with (8, C, V') chosen as follows:
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(1) Assuming that r > ro(6) is sufficiently big so that we may apply Proposition
)

4.3 in B with n = {¢ to obtain a number # > 0 so that outside of an event
of probability < ¢, we have
IVF|>p

on all but at most

components in B.
(2) Since for every r > 0 the expected C2-norm

[Fllc2@) < o0

is finite, given r > 0 and € > 0 we may find C = C(r) > O sufficiently big
so that

€
PlllFllc2@i > C} < z

(3) Since, by Kac-Rice (Lemma 2.1), the total expected nodal volume of F
inside B(r) is finite, equaling

E[Vol,_1(F~Y0)nB) =c-r"
with some ¢ = ¢(F) > 0, we may find V = V(r) sufficiently big so that,

outside of an event of probability < £, the volume of all but at most

6 b
S
16
components of F on B is
Vol,—1(3) < V.

Consolidating all above, with the (8, C, V) just chosen, we conclude that outside
an event Ag C A in the ambient probability space A of probability

4.8) P(80) < 5.
we have || F|¢c2z) < C, and also [VF| > B and
VOln—l(S) <V

on all but at most % - 1" exceptional nodal components 3 of F on B. Hence, by
Lemma 4.4 and by choosing

Ao = K(B,C,V,n),

the topological classes of these “good” components all lie in Ag. That is, on A\ Ay,
the topologies of at most %-r” nodal components of F on B(r) arein H(n—1)\ Ag;
equivalently, on A \ Ag we have the pointwise bound

(4.9) Ne(F,H(n — 1)\ Ag;r) < gq’”.
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One then has (d P being the underlying probability measure on A)
E[Nc(F, H(n — 1)\ Ag: 1)]

= /j\/’C(F, H(n—1)\ Ao;r)dP
Ao

(4.10) + / Ne(F, H(n — 1)\ Ag: r)dP
A\Agp

)
< /NC(F,H(n — 1)\ Ao;r)dP + gr”,
Ao

by the pointwise bound (4.9) on A \ Ag.
We claim that the exceptional event Ay does not contribute significantly to the
expectation on the right-hand side of (4.10), more precisely, that

@11 [ Ne(E =)\ dgirap < o
Ao

for r > ro(8) sufficiently big independently of A. In fact, we make the evidently
stronger claim for the fotal number of nodal components

(4.12) //\/'c(F;r)dP < g-r”,
Ao

valid for r > ro(§) sufficiently big (here the independence of A is self-evident), and
Ay satisfying (4.8) with € < €o(8) sufficiently small. However, (4.12) (implying
(4.11)) follows as a simple conclusion of Nazarov-Sodin’s Ll—convergence (3.1).
The tightness (4.5) finally follows upon substituting (4.11) into (4.10), and then
into (4.7). [l

The rest of the present section is dedicated to the proofs of Proposition 4.3 (Sec-
tion 4.3—Section 4.7), part (3) of Theorem 4.2 (Section 4.8), and also Lemma 4.4
(Section 4.9); an estimate on small nodal domains (Lemma 4.12) will be invoked
in the course of the proofs of Proposition 4.3 and Theorem 4.2, part (3).

4.3 Proof of Proposition 4.3: Uniform Stability of Smooth Random Fields

First we formulate a different notion of stability and prove that F is stable with
arbitrarily high probability; in the end we will prove that a stable function neces-
sarily satisfies the property in Proposition 4.3.

Notation 4.5. In what follows, the letters ¢; and C; will designate various positive
(“universal”) constants depending on F' only; ¢; and C; will stand for “sufficiently
small” and “sufficiently big” constants, respectively, and may be different for dif-
ferent lemmas.
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DEFINITION 4.6 (Stability). Let F : R” — R be a smooth random Gaussian
field, § > 0, @, 8 > 0 small, R > 0 be the (big) radius of the ball (R — 00),
and T > 0 a sufficiently large constant. Cover B(R) with approximately (R/T)"
balls (or squares) D; of radius 7 so that the covering multiplicity is bounded by
a universal constant ¥ > 0; i.e., each point x € B(R) belongs to at most x of the
{D;}. Denote G; to be balls centered at the same points as D;, with radii 37". Note
that the covering multiplicity of {G;} is bounded by

co(n) - k.

(1) We say that F is («, B)-stable on a ball G; if it does not contain a point x
with both F(x) < « and |[VF(x)|| < B, and otherwise F is («, B)-
unstable on G; .

(2) We say that F is (8, o, B)-stable if F is stable on all of G; except for up to
SR" ones.

The (3, o, B)-stability notion also depends on 7" and on our covering (and hence
on R), but we will control all the various constants in terms of 7" and x only.
The parameter T will be kept constant until the very end (see Lemma 4.8), and
k = k(n) is absolute. We will suppress the dependence on the various parameters
from the definition of stability if the latter are clear; typically § will be a given
small number, and @ and 8 will depend on 4.

PROPOSITION 4.7. For every € > 0 and § > 0 there exist o, B > 0 depending on
€,8 and the law of F so that F|p(R) is (8, a, B)-stable with probability > 1 — e.

LEMMA 4.8. For every € > 0 and n > 0, there exist To, § > 0, and an event £
of probability P(E) < € such that for all T > Ty and (a,B) if F ¢ € and F is
(8, a, B)-stable, then |V F(x)| > B on all but nR"™ components of F~1(0).

The proofs of Proposition 4.7 and Lemma 4.8 will be given in Section 4.4 and
Section 4.7, respectively.

PROOF OF PROPOSITION 4.3 ASSUMING PROPOSITION 4.7 AND LEMMA 4.8.
Given € > 0 and n > 0 we invoke Lemma 4.8 with ¢/2 instead of ¢ to obtain
T > Ty, § > 0, and the exceptional event £ of probability P(£) < €/2, as
prescribed. Now we apply Proposition 4.7 with € replaced by €/2 again, and §
obtained as above to yield («, 8, y) so that F is (8, «, B)-stable with probability
< 1 — ¢/2. It then follows from the way we obtained § as result of an application
of Lemma 4.8 that, further excising £ of probability P(£) < €/2 from the stable
event of probability > 1—¢/2, the number of nodal components I" of g~1(0) failing
to satisfy |V F(x)| > B is at most 1 - R™; this occurs with probability > 1 —e. [J

4.4 Proof of Proposition 4.7

We will adopt the standard notation 0V, v = (a1, ..., an) € ZZ ), to denote the
corresponding partial derivative; |[v| = vy + - -+ v,. We will need some auxiliary

lemmas.
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LEMMA 4.9. There exists a constant ¢y = co(k) > 0 depending only on k with
the following property: Let G = {G;};<k be a collection of radius 3T balls lying
in B(R) such that each point x € B(R) lies in at most k of them. Then G contains
co - K balls that are in addition 4-separated.

LEMMA 4.10. For every € > 0 and r > 0 there exist Co = Co(€) > 0 with the
Jfollowing property. With probability > 1—¢, for every (possibly random) collection
{xi }i<k of points satisfying d(x;,xj) > 4 fori # j, we may choose K /2 points,
up to reordering {x; }; < /2, satisfying

n/2

R
sup |0VF(x)| < Cy i
lv|=r, VK

Typically, K is of the order of magnitude K ~ R"; informally, in this case
Lemma 4.10 states that the derivatives around most of the points are uniformly
bounded.

PROOF OF PROPOSITION 4.7 ASSUMING LEMMAS 4.9 AND 4.10. For a given
tuple («, B), let K be the number of («, B)-unstable balls of F. Our goal is to show
that we may choose suitable « = «(6) and 8 = B(§) so that K < §R"™,§ > 0, is
an arbitrarily small given number.

By Lemma 4.9 we may choose

(4.13) K=c-K

unstable balls of F that are in addition 4-separated, and up to reordering the G;, let
{xi};, . g» Xi € Gi, be some points satisfying

(4.14) |F(x;)] <a and |VF(x;)| <8,

as postulated by the definition of F being unstable on G;.

Now we are going to excise a small neighborhood around each of the x; where
one may control the values and the gradient, slightly relaxing (4.14). To this end we
introduce a small parameter y = y(§) to be chosen in the end. Taylor-expanding
F around x; shows that on B(x;,y)

(4.15) |IF(x)| <a+B-y+Co sup [IVF(x)|-y?
xe'g(:xi’y)
and
(4.16) IVF(x)|<B+C3z sup [F(x)|-y.
x€|11)3|(ji’y)

Now we invoke Lemma 4.10 with € replaced by €/2 and r = 2; since the G; are
4-separated for i < K the hypothesis d(x;, xj) > 2 fori # j of Lemma 4.10 is



304 P. SARNAK AND 1. WIGMAN

indeed satisfied. Hence, up to reordering, we have fori < K /2:

Rn/2
4.17) sup |0V F(x)| < Cy4
lv|=2,
B(x;,y)

with probability > 1 — ¢/2. Substituting (4.17) into (4.15) and (4.16) yields for
x € B(xi,y),i < K/2:

|[F(x)] <A and |VF(x)| < B,

’

with
Rn/2
(4.18) A=a+B-y+c3——=-y?
VK
and
Rn/Z
(4.19) B=B4c3

= "V
VK
Now let A4, p be the random variable
Aa.p = Vol({x : |[F(x)| < A, |[VF(x)| < B}).

On recalling (4.13) and the definition of K as the total number of unstable balls
of F on B(R) (Definition 4.6), our proof above shows that with probability >
1 —€/2 for A and B defined as above we have that

1 ~
(4.20) Aap > 3 ceay” = esy" - K.

On the other hand, by the independence of F(x) and V F(x) for a fixed x € R?,
and since the distribution of
(F(x),VF(x)) e R**!
is nondegenerate Gaussian by axiom (p3) on F, for every x € B(R),
P(F(x)| < A, |[VF(x)| < B) < C44 - B".
Therefore, as
Asn= [ 2an(F@.VF@)x

B(R)
with x4, the appropriate indicator, the expectation of A4, g may be bounded as

E[A4 5] < CsAB" - R".

Invoking Chebyshev’s inequality, we may find a constant C¢ > 0 so that with
probability > 1 — ¢/2 we may bound

4.21) As.B < C6AB"R".
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Excising both the unlikely events of probability < €/2 as above we may deduce
that with probability > 1 — € both (4.20) and (4.21) occur, implying that

csy?- K < C¢AB"R"
Rn/2 Rn/Z n
SCa(a+ﬁ-y+C3 — -)/2)-<,B+C3 ~-y| R
NG VR
upon recalling (4.18) and (4.19). Using a simple manipulation shows that with
probability > 1 — € the number of unstable balls of F is bounded by

Rn/2 Rn/2 n
(4.22) K§C7~y_”<a+,3-y+ '72)'(l3+ y| R,

vk vk

valid for every y < 1.
Let § > 0 be a given small number, and assume by contradiction that

(4.23) K >§-R".
Then (4.22) is

4.24) K <§&-R",
where

2
L (« y B yl/n
= C7(;+ﬂ+ 51/2)(y(n_1)/n + 577

It is then easy to make & arbitrarily small by first choosing y and subsequently «
and f sufficiently small; in particular, we may choose «, 8, and y so that £ < §,
which, in light of (4.23), contradicts (4.24). O

4.5 Proofs of the Auxiliary Lemmas 4.9-4.10

PROOF OF LEMMA 4.9. Define the graph G = (V, E), where V = {G;} and
(Gi,Gj) € Eif d(G;,Gj) < 4. Consider an arbitrary node G; = B(x;,3T) and all
the balls G; lying within distance 4 of G;. In this case necessarily

Gi € B(x;,6T + 4),
whence, by a volume estimate, there are at most
c1=ci1(k,T) =k(6T +4)"/3T)" >0

such Gj, so that the degree of G; in G is at most d(G;) < ¢1 — 1. Now we start
with an arbitrary vertex vy = G;, and delete all the vertexes connected to v; we
then take v, to be any other vertex and continue this process. When this process
terminates (we enumerated all the vertexes of the graph), we end up we at least
cl_1 - K vertexes; i.e., we proved our claim with ¢ := cl_l. |
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PROOF OF LEMMA 4.10. Lete > 0 and r be given. Since there are only finitely
many v with |u| < r, we may also assume that v is given. By Sobolev’s imbedding
theorem [1, theorem 4.12, p. 85], there exists an m > 1 and a constant C; =
Ci(m,r) > 0 so that for every x € R”

10V F(x)| < C1l| Fll gm-2(B(x.1)-
and hence we have

(4.25) sup |0V F(x)| < C1l|Fllgm2(B(x; 2))-
x€B(x;,1)

Note that the separateness assumption of the present lemma on {x;} implies that
the balls { B(x;, 2)}, _ g are disjoint. Therefore, summing up the squared right-hand
side of (4.25) fori < K, we have

K

K
sup  [VF(x)> < C2Y | Fllgmacs 2

(4.26) ;xEB(x,-,l) : ,; (Blxr.2)

2 2

= Cl ' ||F||H’”~2(B(R+3T))'

Now, as

||F||§1m~2(B(R+3T)) = Z / |8UF(X)|2 dx,
lvl=mp(RY3T)

bearing in mind the stationarity of F, we have

E[||F”§-I’"~2(B(R+3T))]: C2 - Vol(B(R +3T)) < C5 - R",

where C3 = )| < E[|0V F(0) |2] > 01is a sum of Gaussian moments. Therefore,
by Chebyshev’s inequality, for C4 sufficiently big we have

(4-27) ||F||§1m~2(B(R+3T)) <Cq4- R"

with probability > 1 — €. Substituting (4.27) into (4.26) implies via Chebyshev’s
inequality that at least K /2 of the K summands in (4.27) are bounded by

(4.28) sup |9V F(x)|* <2C{-C4R"/K < CsR"/K;
x€B(x;,1)

i.e., up to reordering the indexes, the inequality (4.28) holds for all i < K/2. The
statement of the present lemma finally follows upon taking the square root on both
sides of (4.28), bearing in mind that
2
sup  |VF(x)]? = ( sup |8UF(x)|) :
x€B(x;,1) x€B(x;j,1)
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4.6 An Estimate on the Number of Small Components
of Smooth Random Fields

In this section we prove an estimate on small components of a field F that is
instrumental in pursuing the proof of both Lemma 4.8 and part (3) of Theorem 4.2.
We start by defining “small” components of F'.

DEFINITION 4.11.

(1) We say that a nodal component of F~1(0) is £-small if it is adjacent to a
domain of volume < £.
(2) For R > 0 let Nggy(F: R) be the number of £-small components of
F~1(0) lying entirely inside B(R).
LEMMA 4.12 (cf. [30, lemma 9]). There exist constants cg, Cy > 0 such that
E[Negsm(F; R
lim sup —[ gsm( )l < Cp- £,
R—o0 R"
To prove Lemma 4.12 we first formulate the following auxiliary result, whose
proof is going to be given at the end of this section.

LEMMA 4.13 (cf. [30, lemma 13]). Let X € R" be a domain and h € C*(X) a
(deterministic) function, and denote

1021 (x)| := max |0%h(x)|.
la|=2

There exist numbers g > 0,0 <€ < 1, s > 0, co > 0, and a constant Cy > 0
depending only on n and &y such that if &€ < &g is sufficiently small, then

ﬁ
Nf—sm(h;R) = COSCO([ |82h|qu)

B(R)

1
s+T
x( / |h|_(1_€)~||Vh||_(”_€)dx) .

B(R)

(4.29)

PROOF OF LEMMA 4.12 ASSUMING LEMMA 4.13. With / replaced by the ran-
dom field F and X = B(R), we apply Lemma 4.13 and take the expectation to
yield
E[Né—sm(F; B(R))]

Ky 1

s+1 s+1
fclé“’E[( / |82F|qu) ( / IFI_(l_E)'IIVFII_(”_E)dx) ]

B(R) B(R)
s 1

s+1 s+F1
gclgCOE[/ |82F|qu] E[(/ |F|—<1—e).||VF||—<"—f>dx)] .

B(R) B(R)
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By Holder’s inequality

E[XY] <E[XP?]V/? .E[y9]'/4
with % + é =1,p = %, q = s + 1, and by the independence of F(x) and
V F(x) at each x € B(R), we have

s
s+1

BN (i) = e[ [ 2 ia ]
B(R)

(4.30) =
( / E[IFI‘“‘G’]-E[IIVFII‘(”‘G)]dX) '
B(R)
< CE% - Vol(B(R)),

by the stationarity of F', its smoothness and nondegeneracy, and the finiteness of
all the Gaussian moments involved in the right-hand side of (4.30), computing in
the spherical coordinates. U

PROOF OF LEMMA 4.13. Let B C R” be the unit ball, and ¢ = ¢g(n) > n be a
large constant. There exists [14, theorem 3, p. 143] a constant C; = C;(g) such
that

(4.31) sup [2(x) — h(0)] = C1|[Vh|La(B)

x€B

For each of the Ng_y (; X') small nodal domains lying in X, we may find a ball
of volume < £, centered at a critical point of 4 with at least one zero at its boundary
h(x1) = 0 for some x; € dB; by choosing the minimal such ball, we may assume
that it lies entirely inside the domains, and hence that the balls corresponding to
different domains are disjoint. Let B = By, (R) be an arbitrary such ball centered
at xg; its radius is

(4.32) R < C,Vol(B)!/".

Applying the inequality (4.31) above on /i(xg + &) to transform B into a unit ball,
we have (since, by assumption, the ball center x¢ is a critical point of &, we have
supp [|[VA(x)| = supg [|VA(x) — Vh(xo)|D.

R-sup [Vh()] < C3(q)R™9 - R?|[8%h| La(B)»

so that, upon recalling (4.32),
(4.33) sup | VA(x)|| < C4Vol(B)Y/" =148 h|| La(p);
B

we rewrite the latter inequality as

(4.34) 102R]| 4 gy < CaVol(B)/" V4| Vh(x)| ",



TOPOLOGIES OF NODAL SETS 309

which holds for every x € B. In addition, we have
sup A = sgp{llh(X) — h(xo0)[I} + [1(x0) — h(x1)]

<2 S;P{Ilh(X) — h(xo)}.

so that, scaling (and translating) the inequality (4.31) as before, we obtain

sup |7()]| < CsR - R™4||Vh||a(p) < CsR sup IVAX)||

< C7Vol(B)* "4 |67 h| o).
appealing to (4.33) for the last inequality. As above, we choose to rewrite the latter
inequality as
(4.35) 102114 gy < CsVol(BYX "~/ |h(x)| ",
forall x € B.
Let € > 0 be a small but fixed number. We multiply (4.34) raised to the power

(n — €) by (4.35) raised to the power (1 — €) and integrate the resulting inequality
on B to obtain (note that the left-hand side is constant)

1371135y Vol(B) < CoVol(B) / [ (0)| =17V |Tdx,
B
where s = (n + 1 — 2¢)/q and

umofi-)o-ofi)

”32}1”23?3) < CoVol(B)' / |h(x)|—(1—e)|Vh(x)|—(n—e)dx
B

or, equivalently,

with = 7 — 1. Itis easy to choose the parameters g and € > 0 so that both z, s > 0
are positive.

All in all, the above shows that there exist positive constants 7,5 > 0, € > 0,
and Cy > 0 such that if B is a ball centered at xo € R” of volume

Vol(B) < & < &
such that Vi(xg) = 0 and A has at least one zero on the boundary dB, then

s/(1+s)
1 < Coet/(+9) . (/ |92h|4 dx)
B

(4.36) s
: (/ |h|—<1—€)|Vh|—("—€)dx) .
B
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For each of the Vg (h; X) nodal domains lying in X, we may find a ball of
volume < &, centered at a critical point of 4 with at least one zero at its boundary;
balls corresponding to different domains are disjoint. Summing up (4.36) for the
various balls as above, and using Holder’s inequality we finally obtain the statement
(4.29) of the present lemma. O

4.7 Proof of Lemma 4.8: Gradient Bounded Away from 0
on Most of the Components

PROOF. First, by Kac-Rice (Lemma 2.1) and the stationarity of F,
E[Vol(F~1(0) N B(R))] = c¢F - R™;

hence, by Chebyshev, there exists a C, > 0 such that with probability > 1 —€/2
we have
Vol(F~1(0) N B(R)) < C» - R".
Therefore, with probability > 1 — ¢/2 the number of nodal components I' C
F~1(0) of diameter diam(I") > T is
G
(4.37) Naiam>7(g; R) < T R",

where we invoked the isoperimetric inequality. Next, using Lemma 4.12, with
probability > 1 — ¢/2 there are at most

(4.38) Cs £ R"

components that are £-small.

In light of the above we only have to deal with components I" of diameter < T
that are not £-small. Assume that F is (8, o, f)-stable, and let Ng_ypseabie (F; R)
denote the number of components I" of F~1(0) that fail to satisfy

IVE|r| > B.

and let I" be such a component. Since {D; } covers B(R) there exists a ball D; that
intersects I'; in this case necessarily I' C G;. Then the gradient

IVF(x)|r| > B

is bounded away from O on I" unless F' is unstable on G;; the stability assumption
on F ensures that there are at most §R” of such G;. Therefore the total number of
components I' that are contained in one of the unstable G; and are not £-small is

TN
(4.39) <Cy4- F -SR".

Finally, we consolidate the various estimates: (4.37) and (4.38) (each one oc-
curring with probability > 1 — €/2) and (4.39) to deduce that outside an event of
probability < ¢, if F is (8, &, B)-stable, then

n

& T
Nﬂ—unstable = 72 - R" + C3 ‘Ecan + Cy- ? . SR" <n- R”’
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where

1 e T"
= . —_ —-8 .
n Cs (T+f + i“ )

The constant 7 may be made arbitrarily small by choosing the parameters 7" > Ty
sufficiently big, & sufficiently small, and then § sufficiently small, independent of
(o, B). This concludes the proof of the present lemma. O

4.8 Proof of Theorem 4.2, Part (3)

PROOF. For every m let 7T, be the (finite) set of tree ends with m vertices, so

that
T = U Tm.
m=>1
For a collection S € T of tree ends we define Ny (F,S; R) to be the number of
nodal components ¢ € C(F) of F lying entirely in B(R), whose corresponding
tree end e(c) € S isin S (up to isomorphism). In particular, for G € 7 we have
Nx (F,G:R) := Nx(F.{G}: R).
For M > 1 let

m>M
be the collection of all tree ends with at least M vertices. Proving that the limiting
measure Ly () i a probability measure in this setup is equivalent to tightness; i.e.,
for every € > 0 there exists an M > 0 sufficiently big so that
(4.40) E[Nx(F,Sym; R)] <e€-R".

We are going to invoke the integral-geometric sandwich (3.5) of Lemma 3.7
again; to this end we also define
Ny (F,S; R)

to be the number of those components ¢ € C(F) of F~! with e(c) € S merely
intersecting B(R), and

Ny (F.S:ru) :== Ny (F(-+u),S:r)
is the number of components as above intersecting in a u-centered radius-r ball.

Summing up the right-hand side of (3.5) for all G € S in this setting, we have for
every

O0<r <R
the upper bound
1
Nx(F,S;R) < Vol(B(r)) / Ny ( rou)du
441 | B(R+r)
—_— F.S; A(w F;r))d
EVO](B(F)) / (Nx (F,S;r.u) + A(vy Fir))du
B(R+7)

(see Corollary 2.3).
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Now we take expectation of both sides of (4.41). Since by Corollary 2.3 and the
stationarity of F, uniformly

E[JZ((TMF;’")] = 0r—>oo(rn_1)

with the constant involved in the O-notation depending only on F', given € > 0,
we can choose a sufficiently big parameter r > ro(€) so that, after taking the
expectation of both sides, (4.41) is

R " €
(4.42) E[Nx (F,S;R)] < (74— 1) -]E[Nx(F,S;r)]+§-R".
Following Definition 4.11, given a small parameter £ > 0 we denote

Ng—sm(F; r,u)

to be the number of £-small nodal components lying entirely inside B(u, r). Now,
if a radius-r ball B contains a tree end with at least M vertices, then there exist at
least M /2 domains of volume

Vol B(r)
<p—— 7
- M
lying entirely in B. Therefore, for the choice of the parameter
(4.43) & =2Vol B(r)/M,

this (since, by the above and the local tree structure of the nesting graph, we can
only have as many tree roots corresponding to domains of volume > & as those
domains in the subtree with volume < &) implies that

(4.44) Nx (F.Sprir,u) < 2Nggm(Fir,u).

On the other hand, Lemma 4.12 states that there exist constants cg, Co > 0
(depending only on the law of F) such that for r > 0 sufficiently big

(4.45) E[Né—sm(F; rou)] = E[Né—sm(F; r)] < COSCOrn~

Now given € > 0, choose r > rqo(¢) sufficiently big so that (4.42) holds. Substitut-
ing (4.45) into (4.44) and then finally into (4.42) now yields

E[N (F, Sar: R)] < (R + r)" - 2Co£% + % R" <¢-R"

provided that & is sufficiently small, which is the case if M is sufficiently big
(4.43). O

4.9 Proof of Lemma 4.4: Cheeger Finiteness Theorem

PROOF. The version of Cheeger’s finiteness theorem given in [12, theorem 7.11,
p. 340] states that, given numbers d, V, A > 0, there exist only finitely many
diffeomorphism classes of compact (n — 1)-dimensional Riemannian manifolds 3
with diameter diam(3) < d and volume Vol,—1(3) > V, and whose sectional
curvatures A(x) = A3z, (x) corresponding to a (u, v)-plane at a point x € 3
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satisfy |[A(x)] < A. Here we verify the requisite conditions for this version of
Cheeger’s finiteness theorem.

First, endow 3 with the Riemannian metric induced as a submanifold of R”,
the latter with its standard euclidean metric. We need to show that §, V, C above
control the sectional curvatures (pointwise), diameter, and the (n — 1)-dimensional
volume (from below) of 3.

For the sectional curvatures one can express them in terms of G and its first two
derivatives. For example, for n = 3 a classical formula [31, pp. 139-140] for the
(Gauss) curvature A of 3 at x € 3 is given by

H(G)(x) VG'(x)
VG(x) 0
IVG(x)|* ’

(4.46) Alx) =

where H (x) is the Hessian

9?2G
H(G = i
(@0 (8xi8xj)i,j=1,2,3

From (4.46) it is clear that our assumptions imply that
(4.47) sup [A(x)| = B(B.C),

Z€3
where B(f, C) depends explicitly on 8 and C.

For dimensions n > 4 there is a similar formula for the curvatures in terms of
the first and the second derivatives of G, the only division being by |VG(x)|. The
explicit formula [3] for the Riemannian curvatures at 3 at a point x € 3 shows that
the analogue of (4.47) is valid in any dimension. That is, the sectional curvatures
Ay v (x) in the (u, v)-plane at a point x satisfy

max max|Ay ,(x)| < Br(B,C),
X€3 u,v ’

where again B, (8, C) depends explicitly on § and C.

To bound the diameter of 3 from above and the Vol,—1(3) from below, we
examine 3 locally near a point x. After an isometry of R” we can assume that
x =0and

VG(0) = (0,0,...,8),

where by assumption || > B. The hypersurface 3 near 0 is a graph of x, over
(x1,...,Xn—1). So using these first n — 1 coordinates to parametrize 3 we have its
line element (first fundamental form)

n—1
dS2 = Z 8ij dxi dxj,
i,j=1
where
96 | 96
ox; 0x;
gij = 6ij + la 2/ )

(axn
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i=12,....n—1,j = 1,2,...,n — 1. It follows that for n > O there is a
y = y(B, C) > 0such that for x = (x1,...,xs—1) With |x| < y, the metric g and
the euclidean metric satisfy

(1+n'E <g(x)<(1+nE.

That is, this radius-y euclidean ball is (1 + 1) quasi-isometric to its image 3. Thus
this image has (n—1)-dimensional volume bounded from below by ¢, 1"~ (with
cn—1 a dimensional constant), so that the required lower bound for Vol,_1(3) is
satisfied.

For the diameter, we cover 3 with N such balls that are (1 4+ 1) quasi-isometric
to a euclidean (n — 1)-ball of radius y. We can do this in such a way so that
each point of 3 is covered at most ¢, _, times (again, c,_, depending only on
n — 1). From this it follows that N is at most c,/l_lVoln_l(B), which in turn is at
most ¢, _, - V. The diameter of 3 is then at most N(1 + 1)y, which is a quantity
depending only on V', C, and . With this we have all the requirements to apply
Cheeger’s theorem [12, theorem 7.11, p. 340], and Lemma 4.4 follows. O

5 Support of the Limiting Measures

Recall that g, : R” — R are the isotropic Gaussian fields defined in Section 2.
As the spectral density of g, satisfies axioms (pl)—(p03), Theorem 4.2 implies that
the measures

Kena = [e(e) and Hene = KX(gq):
on H(n — 1) and T, respectively (Notation 4.1), are probability measures satis-

fying (4.4); these are the same as in Theorem 1.1, as established in Section 7.
Theorem 5.1 below asserts that both have full support for all n > 2, o € [0, 1].

THEOREM 5.1. Forn > 2, a € [0, 1], let e n,o and pix n o be the limiting topol-
ogy and nesting probability measures corresponding to g via Theorem 4.2.

(1) Foralln > 2, a € [0, 1], the support of pic.n,« is H(n — 1).

(2) Foralln > 2, a € [0, 1], the support of ux n o is T.

To prove Theorem 5.1 we formulate the following couple of propositions proven
below; the former is applicable on g, with o € [0, 1), whereas the latter deals only
with g;.

PROPOSITION 5.2. Let F : R® — R be a stationary random field with spectral
density p satisfying axioms (p1)—(p3), H € H(n — 1), and G € T. Assume that
the interior of the support supp p of p is nonempty. Then
E F,H;R .. E F,G;R
lim inf ZEVCC Vo0 and timint BNXC )
R—00 Vol B(R) R—o0 Vol B(R)

PROPOSITION 5.3. Foreveryn > 2, H € H(n — 1), and G € T we have

.. E[Nc(g1. H: R)] .. E[Nx(g1.G: R)]
lim inf >0 and liminf
R—o0 Vol B(R) R—o0 Vol B(R)

> 0.
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PROOF OF THEOREM 5.1 ASSUMING PROPOSITIONS 5.2 AND 5.3. Recall that
Me(ge) @and fx(q,) are as in Notation 4.1. Propositions 5.2 and 5.3 imply that the
numbers

{ccoa(H) HeH®m-1) and {cx,,(G)}geT
are all positive for either o € [0, 1) or @ = 1, respectively. U

5.1 Towards the Proof of Propositions 5.2 and 5.3
Here we formulate a result (Lemma 5.5 below) asserting that if it is possible to
represent a certain topology or nesting at all for a random field F, then it will be
represented by a positive proportion of components of F'. First a bit of notation.
Notation 5 .4.
(1) Let £ € R” be a symmetric set (i.e., invariant with respect to £ — —§).
We define the space of X-band-limited real-valued functions

(51) Fi:\ = {h(x) — ZCEeZHi(S,X) : VE c i‘c_g — Q
éeg
finite

of functions on R”.
(2) Let F : R” — R be a Gaussian field, and p its spectral measure. Denote

FFr = F supp o
where supp p is the support of p.

LEMMA 5.5. Let F : R" — R be a smooth Gaussian field, and H € H(n — 1)
(resp., G € T) such that there exists a ball D C R™ and a (deterministic) function
h € FF with a nodal component ¢ € C(h), ¢ = H (resp., e(c) = G) lying entirely
in D, and, in addition, Vh does not vanish on h™1 (0) N D. Then

E[Nc(F, H; R)] =0 ( E[Nx (F,G; R)] - 0).

lim inf ., liminf
Reoo  Vol(B(R)) TP % Vol(B(R))
PROOF OF LEMMA 5.5. Let ro > 0 be the radius of D. We claim that the
assumptions of the present lemma imply that for some r¢ > 0, the expected number
of nodal components of type H inside a radius rg ball is

(5.2) E[Nc(F,H:;rg)] >0 and E[Nx(F,G;rg)] > 0.
With (5.2) established, we may find
I > k(rg)R"

radius-rg disjoint balls
{B(xi.ro)}i<r1,
so that
1
Ne(F,H;R) =Y Ne(F, H; xi, ro).

i=1
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Hence, by the linearity of the expectation and the translation invariance of F we
have
1
E[Nc(F, H; R)] = Y E[Ne(F, H; x;,ro)] = I - EINe(F, H:ro)],
i=1
and therefore

.. E[Nc(F, H; R)]
lim inf
R—o0 R™

and the same holds for Ny (F, G; R).
Now to see (5.2) let #(p) be the reproducing kernel Hilbert space, i.e.,

H(p) = F(L*(p)),

the image under the Fourier transform of the space of square-summable Hermitian
functions

> k(ro) - E[N¢(F, H;rg)] > 0,

g:R" >R
with

(5.3) lglliag = f 12(0)? dp(x) < oo,
R~

g(—x) = g(x), endowed with the inner product

(81, 22)n(p) = (81, 82)12(p)

(see Section 2). Let {e }x>1 be any orthonormal basis of #H(p) so that for every
g € H(p) we have the equality
o0

(5.4) g=Y (g e

k=1
with the series on the right-hand side of 5.4 converging in H(p); the equality (5.4)
is H(p), i.e., modulo the equivalence relation induced by || - ||12(,) = 0 with the
seminorm (5.3).

Since by the axiom (p2) (equivalent to the a.s. smoothness of F'), as k — oo,
the {ey (x)} are sufficiently rapidly decaying uniformly on compact subsets of R”,
the equality (5.4) also holds in C"*(B), where m > 1 and B € R” is an arbitrary
compact domain. We may write

(5.5) F(x) =) &er(x)
k=1

with {§¢ }x>1 i.i.d. standard Gaussians. While the series on the right-hand side
of (5.5) a.s. does not converge in the Hilbert space H(p) by the aforementioned
uniform rapid decay of e; on compacta, the series on the right-hand side of (5.5)
converges uniformly on compacta, together with all the derivatives; i.e., here we
can differentiate the equality (5.5) termwise.
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Now, given a function & € Fr and aball D C R” as appear in Lemma 5.5, and
€ > 0, using a standard mollifier, we may find an element g € H(p) of the Hilbert
space such that

€
(5.6) Ih = gllcipy < 5-

Taking into account the rapid decay of {e;} on D, and comparing (5.4) to the
representation (5.5), we obtain that

PUF —gllcipy <€/2) >0,
and, combining it with (5.6), finally
(57) P(”F—]’l”cl(D) <6)>0.

Let ¢ € C(h) be as in the assumptions of Lemma 5.5. Since V& does not vanish
on ¢, by an application of the standard Morse theory, any sufficiently small C -
perturbation of 4 would admit a nodal component diffeomorphic to ¢ (that is, of
diffeomorphism class H), still lying in D. In other words, there exists an €9 > 0
such that if for some smooth function g defined on D we have ||g — /| c1(py < €0,
then there exists a component ¢’ € C(g), ¢’ =~ ¢ =~ H, lying in D. An application
of (5.7) with € = €9 > 0 as above yields that the probability of F~1(0) containing
a nodal component ¢ = H diffeomorphic to H lying in D is strictly positive,
which, in its turn certainly implies (5.2), sufficient to conclude the proof of the
present lemma. 0

5.2 Proof of Proposition 5.2

PROOF. According to Lemma 5.5 it suffices to produce a C2-function / in Fg
with the required properties. We are assuming that supp p has nonempty interior
(specifically for F' = gy, 0 < o < 1). We first show that in this case the restriction
of Ff to B, where B is a ball centered at 0 and of some (finite) radius, and m > 0,
is dense in C™(B). Let B(&p, ro) be an open ball contained in supp p, and let ¢ be
a smooth, nonnegative function supported in B(0, 1) with

[ s@as=1.
R~
For 0 < € < 1 and B a multi-index, the function

ﬂ[ 1 (s—so }
968 | o "\ e )

is supported in B(&g, ro). Now

B _
(5.8) d |: 1 ¢(é§- 50)i|e2ni($,x)ds —

0EB | (roe)" "\ erg
Rn

€ro

(_1)2,31' (anl)ﬂl (27Txn)B” / 1 ¢(é§ — 50)62”i<$’x)d5§.
o (ro€)”
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As € — 0 the right-hand side of (5.8) converges to
(5.9) (—D)ZB Qrx)Pr - Qrxy)Pr - 271 E0X),

uniformly on compacta in x.

From the above it follows by replacing the integral on the right-hand side of
(5.8) by Riemann sums that the functions in (5.9) can be approximated uniformly
on B by elements of F. In fact, the same holds in C™(B) for any fixed m > 0.
On the other hand, it is well known that finite linear combinations of xP , that is
polynomials, are dense in C"™(B).

With this the required / can be found as follows. Givenan H € H(n—1) we can
construct a tubular neighborhood of H in R” (we first realize H as differentiably
embedded by definition), and then a C2-extension f to R” such that V(f) = H
and V f # 0 on H. Now apply the approximation above to obtain an & € FF for
which V(h) has a nonsingular component diffeomorphic to H. The argument for
constructing an & with a given tree end is the same. This completes the proof of
Proposition 5.2. 0

5.3 Proof of Proposition 5.3 for n = 2: Monochromatic Waves Attain All
Nesting Trees

In the case that @ = 1 it is no longer true that the restrictions of the functions in
E, = .7:91
are dense in C™(B). In fact, any member of Fyg, satisfies
Au+u =0,

and hence any uniform limit of such functions will satisfy the same equation. Now
fora« = 1 and n = 2, H(1) consists of a single point, and the only issue, as
discussed in [26], in proving that their constant B, i is positive is to produce one
function in £, with a nonsingular component. As the authors note, the J-Bessel
function does the job. What remains for n = 2 is the case of tree ends and to show
that we can find an & € E; with a given tree end.

The construction is in two steps. First we need a modified approximation lemma
for restricting £ functions to finite sets; this result follows from the general result
in [11], necessary for dealing with the higher-dimensional cases, but for dimen-
sion 2 and finite sets K, one can give a simple proof. The one given below was
suggested by the referee.

LEMMA 5.6 ([11]). If K € R? is finite, then the restrictions of functions in E1 to
K attain the whole of C(K).

PROOF. By linear algebra, the statement of Lemma 5.6 is equivalent to showing
that there are no nontrivial linear relations between point evaluations at different
points. Suppose that

(5.10) > arfx) =0

k=1
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is satisfied for every f € Ep for some {ay}1<k<n S R. Now define the function
A() :R? > Ras

n
AE) =) age?m e,
k=1
A(-) naturally extends to an analytic function 4 : C? — C. Recalling the standard
notation e(y) = e2”", since, by the definition of E1, the equality (5.10) holds for
every function of the form

(5.11) Fx) =" cee((E. x))

£es!

finite
for some {cg} C C satisfying c_g = ¢g, by appropriately choosing f’s of the form
(5.11) we may deduce that A(-) vanishes on the unit circle S! € R2.
In what follows we show that A is the zero function on C?2, sufficient to yield
the statement of Lemma 5.6. First consider the connected curve

C={t=(1.6)eC? E +£ =1}

since the function A is analytic on C and vanishes on S I = ¢ N R2 it must
vanish on the whole of C. For 1 < k < n we write x; = (bg,cx) € R?, and
with no loss of generality we may assume that all the by are distinct (otherwise
we rotate the plane), and that maxy<, by = b,. Now choose 1 € R, take § =

(—ipt, /1 + u?) € C, and let © — oo. As, by above, A(§) = 0 on C, we have
n
0=A() = Z ay e Hbx e(v/1+ pck)
k=1
=(1+ ouﬁoo(l))aneh“b”e(\/l + pen).

This certainly implies that a, = 0, and, continuing by induction, we may conclude
that all the a; = 0 must vanish, as claimed above. O

To prove Proposition 5.3 we will apply Lemma 5.6. To produce our / (this being
the second step below) we perturb a specific function ¢ (x1, x2) in E:

(5.12) ¢(x1,x2) = sin(wxy) - sin(mwxp).
PROOF OF PROPOSITION 5.3, n = 2. For any finite K C 72 and
n:K—{-1,1},
we can find Y € E; such that
(5.13) ¥ (k) = n(k)
for every k € K. For € > 0 sufficiently small, the function
(5.14) P(x1,X2) = @p yse(x1,X2) 1= P(x1,X2) + € - P (x1, X2),

with ¢ given by (5.12), will have its nodal lines in a big compact ball containing
K close to those of ¢. The manner in which the simple crossing in Figure 5.1 of
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FIGURE 5.1. A singularity resolution.

the nodal lines at each k € K will resolve for € small, that is, into one of those in
Figure 5.1 (bottom) will depend on the sign of ¥ (k) (and the sign of ¢ (k)). In what
follows we show that by prescribing the signs of v at the cross points it is possible
to impose that the function (5.14) attains a given G € T for € > 0 sufficiently
small.

More precisely, we prove by induction on m > 1 the following statement: for
every G € T with m vertices there exist a finite K C Z?2 and a selection of signs
{n}kek» and a compact domain D C R?, so that prescribing the signs (5.13) for
¥ on K yields, for € > 0 sufficiently small, a tree end of ¢ (as in (5.14)) restricted
to D, isomorphic to G. First we build any end of the “chain” form, as in Figure
5.6; that includes the induction basis m = 1 (the trivial tree as in Figure 5.2). As
is obvious, this is clearly possible in view of the picture in Figure 5.3, where our
chain is grown with the set of k’s involved highlighted.

Now we assume by the induction hypothesis that all the tree ends G € 7 with
m < M vertices can be attained (in the sense of the induction statement above),
and we are going to prove now that the same is true for G € T with M vertices. To
this end we introduce two operations, engulf and join, which will be instrumental to
“constructing” G from trees with a smaller number of vertices (that is, prescribing
the appropriate signs via (5.13), provided that the corresponding signs were readily

4@

FIGURE 5.2. Creating the trivial tree.

FIGURE 5.3. Chain of length 4 implementation.
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constructed for smaller trees). These operations are carried out on certain figures
connected to finite subsets, K € Z2, and can be achieved by choosing {n(k)}recx
suitably.

Start with the box of 4 lattice points (see Figure 5.2, to the left), which by choos-
ing n(k) to be suitable £1 at the vertices yields the picture in Figure 5.2 to the right,
represented by a single point in 7 (the leftmost tree in Figure 5.6). Engulf is the
operation of enclosing the figure at hand with one new oval. This is done by choos-
ing (uniquely) the squares on the boundary of the figure as indicated in the picture
in Figure 5.4. The join is done by taking two figures and joining the right lowest
corner of one to the left highest corner of the other, as in Figure 5.5.

The figures formed will always have a highest single square at the top and a
lowest single square at the bottom, so that there is no ambiguity (this property is
true to start off and is preserved by the two operations). A second point is that
engulfing any figure that arises is always possible. The only potential problem is
that the join may introduce a nonconvex kink of the shape, as in Figure 5.7. This
could lead to a block in engulfing. However, as indicated in the example in Figure
5.8, this does not cause a problem. At any further stage these kinks don’t interact,
and one can always engulf.

Let us now formally perform the induction step. Given a tree end G € T with
M > 2 vertices, it is either the engulf of a smaller tree ends G’ (with M — 1
vertices), or the join of two tree ends G’ of M’ > 2 vertices and G” of M" >
2 vertices whence M = M’ + M” — 1 and we have M', M" < M denote
{ng: (k) }reg (resp., {ng'(k)}rex and {ng»(k)}rek~) the corresponding signs
obtained from the induction hypothesis applied on G’ (resp., G/, G”). Then, by
the definition of the engulf (resp., join) procedure we obtain a prescription of the
signs {ng (k)}reg on a bigger set K that yields a tree end isomorphic to G on a
corresponding domain D € R?, which concludes the induction step, and therefore
also the present proof. O

6 Semilocal Nodal Counts on M
6.1 Local Results

Here we formulate a local result (Theorem 6.2 below) around a point x € M,
after blowing up the coordinates according to the natural scaling of

f = fur : M =R,
olf¥aen

FIGURE 5.4. Engulfing a single square (above). The corresponding
trees are exhibited below.
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FIGURE 5.5. Joining two figures. The corresponding trees are exhibited

to the right.
@ I I [

FIGURE 5.6. Chain tree ends.

inside outside

FIGURE 5.7. A “kink”. It does not pose a serious problem.
ASA

FIGURE 5.8. Engulfing a figure with a “kink”.

the band-limited Gaussian functions (1.2). Recall that for H € H(n — 1) (resp.,
G € T) Theorem 6.2 yields constants cc;q(H) (resp., cx;q(G)) corresponding to
the limiting random fields g, of f, under the same natural scaling around x.
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Notation 6.1.

(1) For x € M and r > 0, let B(x,r) € M be the geodesic ball in M of
radius r.
(2) For H e Hin — 1) (resp., G € T) let
Ne(fa;r, Hix,r)
(resp., Nx (fo:7. G; x, r)) be the number of components of fa_.} (0) lying
in B(x,r) of class H (resp., corresponding to a nesting tree isomorphic
to G).

(3) In the situation as above N*( fy.T,-; X, r) is the number of those merely
intersecting B(x,r).

THEOREM 6.2 (cf. [30, theorem 5]). Forevery H € Hn—1),G € T, andx € M

we have
Ne(foer, H:x, B
lim limsup P C(fa’T T) —ccg(H)| > €, =0,
R—oo T—oo Vol(B(R))
N AR G; xa B
lim limsup P c{air r) —cx4(G)| > €f =0.
R—o0 T—oo VO](B(R))

6.2 Proof of Theorem 6.2

Let f be defined as in (1.2). For a fixed point x € M we blow up the coordinates
around x and consider f on a small geodesic ball B(x,e9) € M. That is, we
define the Gaussian field

S @) = f(expyT ™),
u € Tx(M) = R” lying in the euclidean ball
u € B(eg-T) C R".
Since M is a compact manifold for r sufficiently small, independent of x,
(6.1) N(fo-5x,1) = N(fxss 57T,

the right-hand side of the latter equality being of a random field defined on the
euclidean space.
The random field f.r is Gaussian with covariance kernel

Kair (u.v) 1= E[f;7 () - fur (0)] = E[f(exp uT 1)) - f(expy(wT 1))
= Ko(T;uT 1 oT ™Y,
(cf. (1.11)), and (1.12) implies that, as T — oo,
(6.2) Ity U, V) & Bpo(lu —v]) = Elgn,o () - gn,a(v)]-

Hence, for every x € M fixed, the fields { fx.7 }7, defined on growing domains,
converge on R” to g, to be formulated more precisely. In particular, as f and gy
are defined on different probability spaces, we need to couple them, i.e., define on
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the same probability space. We now formulate the following proposition that will
imply Theorem 6.2 proved immediately after.

PROPOSITION 6.3. Let x € M, R > 0 be sufficiently big, § > 0 be given, H €
H(n—1), and G € T. Then there exists a coupling of f and go and Ty = To(R, 5)
sufficiently big so that for all T > Ty outside an event of probability < § we have

N(ga,-;R—l)SM( xé) < Ni(gar-: R+ 1).

Proposition 6.3 will be proven in Section 6.3 immediately below.

PROOF OF THEOREM 6.2 ASSUMING PROPOSITION 6.3. Theorem 6.2 follows
from Proposition 6.3 and Theorem 3.3 applied on g4 at once. 0

6.3 Some Preparatory Results Towards the Proof of Proposition 6.3

The proof of Proposition 6.3 is quite similar to the proof of the analogous state-
ment on nodal count from [30, lemmas 6—7]; here we need to check that the topo-
logical and the nesting nodal structure rather than merely the nodal count is stable
under the perturbation. In order to prove Proposition 6.3 we need to excise the
following exceptional events A;, 1 <i < 4.

Let 6 > 0 be a small parameter that will control the probabilities of the dis-
carded events, f > 0 a small parameter that will control the quality of the various
approximations, and M > 0 a large parameter. Given R and 7" big, we define

Ar=AM(RT:B) =l fx;T —9a||cl(§(2R)) > Bl
Az = A2(R. T8, M) = {ll fx;7lc2(Bary) = 57 M},
Az = A3(R;8, M) = {ll9allc2(Bar)) = 57t M3,

and the “unstable event”

AR, T:p) = { min max{| frr (], IV fur (o)} < 28,
u€eB(2R)

The following lemma from [30] is instrumental in proving that for f and gq
suitably coupled, the exceptional events have small probability. Recall that we
have (6.2); more precisely, (1.12) implies that the covariance function of fx.r
together with its derivatives converge uniformly to the covariance function of g,
and its respective derivatives.

LEMMA 6.4 ([30, lemma 4]). Given x € M, R > 0, and v > 0, there exists a
coupling of [ and go and Ty = To(R, v) with

E[ll fe:r = 8ellcr3ary) < v
Jorall T > Ty.

From this point on we will avoid mentioning coupling, which will be understood
implicitly. The following is a simple corollary from Lemma 6.4.
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LEMMA 6.5. For R > 0 sufficiently big given and B,§ > 0, there exists Ty =
To(R, B,8) so that for T > Ty the probability of A1 is
(6.3) P(A1(R,T;B)) <6
arbitrarily small.

The following lemma yields a bound on the probability P(A,) and P(A3).

LEMMA 6.6.
(1) For every R > 0 sufficiently big there exists M = M(R) > 0 so that for
all§ >0
(6.4) P(A3(R; 8, M)) < 6.
(2) For R > 0 there exists M(R) > 0 and To = To(R) so that for all T > Ty
and § >0
(6.5) P(AL(R,T;6,M)) <.

PROOF. For (6.4) we may choose M to be

M = Elllgallc2B @Ryl <
finite by [2, theorem 2.1.1]. The estimate (6.4) with M as here then follows by
Chebyshev’s inequality.

In order to establish (6.5) we observe that by the Sudakov-Fernique comparison
inequality [2, theorem 2.2.3] and (1.12) applied to both K.7 and its derivatives
for all M; > M, there exists Top = To(R, M) such that for all T > Ty

Elll fx;7lc2Bary)] < M1-
Hence (6.5) follows from using Chebyshev’s inequality as before. Using M in-
stead of M will also work with (6.4). Il
Finally, for the unstable event A4 we have the following bound:

LEMMA 6.7 ([30, lemma 5]). For R > 0 sufficiently big given, M > 0, and § > 0,
there exist B = B(R, M,8) > 0and Ty = To(R, M, ) > 0 so that forall T > Ty
outside Ay U As the probability of Ay is

(6.6) P(As(R, T; B) \ (A2(R, T8, M) U A3(R; 8, M))) <6

arbitrarily small.

6.4 Proof of Proposition 6.3
PROPOSITION 6.8 (cf. [30, lemma 6]). Outside of A1 U Ag we have

N(ga. s R—1) S N(fe;1.: R) < NA(go.+: R+ 1).

PROOF OF PROPOSITION 6.3 ASSUMING PROPOSITION 6.8. Since the proba-
bility of the events A;, i = 1,...,4,1is < 46 for T > Ty(R, ,8) by Lemmas
6.5-6.7, the statement of Proposition 6.3 follows from Proposition 6.8 at once upon
replacing § by %, bearing in mind (6.1). U
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PROOF OF PROPOSITION 6.8. Modifying the proofs of [30, lemmas 6 and 7],
here we only prove the somewhat more complicated case of tree ends: outside of
A1 U A4 for G € T one has

(6.7) Nx (9o, G; R — 1) < Nx(fx;T,G: R),
with the inequality
NX(fx;T’ G:R) < NX(ga» G;R+1),
and their analogues for nodal components topology following along the same lines.
Outside A1 U A4 we have
(6.8) | fx;1 — 8allcr(Bary) < B
and also
(6.9) min max{| fx;r|. [V fxr[} > B, min max{|ge|. [Vgal} > B.
B(2R) B(2R)

For ¢ € [0, 8] consider

gt = 0a + % : (fx;T — Ga)-

We claim that for all ¢ € [0, 8], g has no critical zeros in B(2R), i.e., points
y € B(2R) such that g;(y) = 0 and Vg;(y) = 0. Otherwise, let o € [0, 8] and
Yo € B(2R) be such that g;,(yo) = 0, Vgs,(yo) = 0. This contradicts (6.9), as
then

|9 (¥0)| = |g20(¥0) — %0 “(fre;t (Vo) — 9a(¥0)) | = %)|fx;T(J’O) —ga(o)| < B
by (6.8), and
Vo (0)] = [V (vo) — % V(fe — 80) (¥0)
= DV fer — 5)30)] < B.

B
again, by (6.8). That concludes the proof of the nonexistence of critical zeros of
g:,t €0,B]in B2R).

Now, since under the assumptions of Proposition 6.8 we excluded the event
A1 U Ay, which implies that the various components y of g, !(0) are regular and
bounded away from each other. Moreover, Nazarov-Sodin [30, lemmas 6 and 7]
showed that each component y lies in an annulus inside

yi={yeR":d(y.y) <1},
bounded by the two hypersurfaces go(x) = £+, where B > 0 is assumed to be
sufficiently small; different components y correspond to different, pairwise disjoint
annuli.
Since A was excluded, for every ¢ € [0, 8], g;(y) > 0 is positive on g3 1(8)
and g;(y) < O is negative on g, !(—pB). Therefore, for every y component of
g lying in B(R) and ¢ € [0, 8], g;1(0) contains at least one component lying
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in y1. A standard result from differential topology asserts that a 1-parameter family
g: . y1 — R, t € [0, ], defined on the open bounded annulus y; so that for all
t € [0, a] the function g; admits no nondegenerate critical points (i.e., it is a Morse
function), the zero sets {g; !(0)} are diffeomorphic; note that, by the above, there
is no nodal intersection with the boundary dy;, as here g; is strictly positive or
negative.

By the above, for every y component of g3 !(0) lying in B(R) and 7 € [0, A]
there exists a unique component y’ of g;1(0) lying in y; € B(R + 1) (by the
above, components cannot merge or split in y;; new components would also gen-
erate a critical point). In particular, the correspondence y + y! is well-defined
and injective between components of g, ! (0) lying in B(R) and the components of
g7 1(0) lying in B(R + 1), and moreover y and y’ are diffeomorphic.

Furthermore, the nesting tree of g; is preserved: there exists an injective map
¢! 1 Qo — € between the vertices of the nesting trees of gg = g and gy,
respectively, such that w,w’ € g are connected by an oval y of gojl(O) if and
only if ¢ (), ¢’ (w') € Q; are connected by the oval y? of g;1(0). Equivalently,
if @ is the domain lying inside y; and outside y», then ¢’ () is the domain lying
inside y{ and outside y} (by Jordan’s theorem in this setting; see Section 2). No
new ovals are created inside ovals corresponding to y € B(R — 1), as otherwise
there would exist critical zeros, which were already ruled out.

Now let ¢ € C(gq) be a nodal component of gy lying in B(R — 1), with e(c)
isomorphic to a given rooted tree G. By the above, for every ¢t € [0, ] the nesting
tree end e £71(0) (c") is isomorphic to e(c), and hence to G. As

¢ C{y:d(y,c) <1} S B(R),
(6.7) is implied, as claimed. Il

7 Proof of Theorem 1.1: Gluing Local Results on M
7.1 Proof of Theorem 1.1

In this section we finally prove Theorem 1.1 with the measures

(7.1) Ken,e = HC(gy)
and
(7.2) MX na = UX(gq):

as in Notation 4.1; both pe(g,) and px(,,) are probability measures by virtue of
Theorem 4.2, parts (2) and (3), respectively. First we formulate the following the-
orem that will imply Theorem 1.1 at once; for H € H(n — 1) (resp., G € T)
let Ne(f, H) (resp., Nx (f, H)) be the total number of components ¢ € C(f) of
topological class H (resp., such that e(c) is isomorphic to G).

THEOREM 7.1. Forevery H € H(n — 1) and G € T, we have

E[ M — Vol M ~cc;ga(H)H -0
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Nx (f.G)
E|: 7 — Vol M - cx .4, (G) } — 0.

PROOF OF THEOREM 1.1 ASSUMING THEOREM 7.1. As mentioned above, we
take the postulated limiting measures ¢ n,o and Ly, o to be given by (7.1) and
(7.2), respectively. Since these are probability measures having the full support
H(n — 1) and T, respectively, by virtue of Theorems 4.2 and 5.1, the only thing
remaining to be proven is (1.8).

Here we only prove (1.8) for uc, i.e., that for all e > 0

(7.3) PLf € EmalT) : D(pery Hena) > €5 — 0,

the proof for uy(r) being identical. Let € > 0 be given. Bearing in mind the
definition (4.3) of pc.n.a = He(g) and (3.2), Theorem 7.1 implies that for every
H € H(n — 1) we have

(7.4) Plluccry(H) — pena(H)| > € — 0
as T — oo. Let

H(n—1) = {Hp}r>1
be any enumeration of the (countable) family H(n — 1) of (n — 1)-dimensional
topological classes that can be embedded in S” (equivalently, embedded in R"),
and for K > 1 let
Hn—1;K)={H; : k < K}.
Now, since jic,n « 1S a probability measure, there exists K = K(¢) sufficiently big
so that

(15) Hema(Hn— 1)\ Hin = 1:K)) < 7.

For every 6 > 0 and Hy € H(n — 1; K) we employ (7.4) with ¢ replaced by ¢ /2K
to obtain ~ _
To(Hy) = To(H, K, €, 6)

such that

(7.6) Plkecr) (H) = tenaH)] > o} < 2
- 4KJ T 2K

Let

To = To(€, §) = max To(Hy) and C C H(n—1;K),
<

a subcollection of topology classes. Summing up (7.6) for H; € C and using the
triangle inequality, we obtain

€ )
@) P{leir)(©) = menal©) > 2} < 3.

holding for every T > Tpy, with the exceptional event of probability < g indepen-
dent of C. In particular, for C = H(n — 1, K), (7.7) is

]
@8)  Pllhein(H—1.K) = pena(H = 1K) > 2} < 2.
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and since both pc( sy and ¢ n,q are probability measures, by taking the comple-
ment

Hn—-1)\Hmn-1;K),

(7.8) is equivalent to

73{WC(]’)(H(H -1\ H(n—-1;K))
(7.9)

M| oo

€
—pena(Hn—1)\ Hn — 1;1{))‘ > Z} <
Taking into account (7.5), (7.8) implies that

5
(7.10) P{,uc(f)(H(n—l)\H(n—l;K)) > %} <3

In light of all the above we may use (7.7), (7.10), and (7.5) to finally write for
every

ACHm-1)
and T > Ty(e, §),

P{lnecn (D) = pena(A)] > €}
(7.11) = P{‘Mc(f)(A NHn—1;K)) — pena(ANH@m —1; K))‘ > 6/4}

5 6
+ P{ucr)y(A\ Hin — 1;K)) > €/2} < Sty = 8.

where the exceptional event of probability < § is independent of A. Since § > 0
was arbitrary, and Ty is independent of A, recalling the definition (1.5) of the dis-
tance D(-,-) between probability measures on H(n — 1), (7.11) implies the con-
vergence result claimed in (7.3), which, as mentioned above, was the only missing
detail for completing the proof of Theorem 1.1. U

7.2 Proof of Theorem 7.1
PROOF. We write the absolute value as
[ I=11++]]-
with |b|+ = max(b,0) and |b|— = max(—b, 0). To prove Theorem 7.1 it is then
sufficient to bound each of

E['M —Vol/\/l-c.;ga(-)‘ ]
™ n

The latter is the content of Proposition 7.2 to follow immediately. O
PROPOSITION 7.2. Forevery H € Hn — 1) and G € T,

NA(S)

(7.12) ]E[ ——Vol/\/l-c.;ga(-)‘ }—>0.
r +
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Proposition 7.2 will be proved in Section 7.4, only in the (most subtle) case

NA(f,-
(7.13) E (f) _ Vol M - x4, (G) — 0,
" ’ n
the other three cases (choosing X or 7, | - |+ or | - |-) being proved along similar

(but somewhat easier) lines.

7.3 Some Preparatory Lemmas Towards the Proof of Proposition 7.2

Excising Very Small and Very Long Domains
DEFINITION 7.3. Let &, D > 0 be parameters.

(1) A component ¢ € C(f) is &-small if it is a boundary of a nodal domain
whose volume in M is < §T7". Let N¢g—sm(f) be the total number of
&-small components of f on M.

(2) For D > 0 a nodal component ¢ € C(f) is D-long if its diameter is
> D/T. Let N¢;poiong(f) be their total number.

(3) Given parameters D, > 0, a nodal component ¢ € C(f) is (D, §)-
normal, if it is not £-small or D-long.

(4) For G € T let Nx:norm(f: G) be the total number of (&, D)-normal com-
ponents ¢ € C(f) of f such that e(c) is isomorphic to G.

(5) For x € M, r > 0 let Nx:.norm(f. G; x,r) (resp., N;;norm(f, G:;x,r))
be the number of those ¢ contained in the geodesic ball B(x,r) € M
(resp., intersecting B(x, r)). (Here we use Jordan’s theorem on the sphere
to choose those vertices of e(c) lying inside B(x,r) for Ny norm(--+) or
intersecting it for Ny :norm (- <+ ).)

By the definition of normal ovals, we have

D
(714) NX*;n()rm(f; G;X,r) S NX;norm(f’ G;x’r + 7)

(as we discarded the very long ovals), and uniformly
(7.15) Nitznom(f. G x,r) < 71 T"Voly B(x, r)
by a volume estimate (as we discarded the very small domains).

LEMMA 7.4 (cf. [30, lemma 8]). There exists a constant Co > 0 such that the
following bound holds for the number of D-long components:
lim sup EINC;D 1ong (/)] <Co- i
T—o0 rr D
A proof, given in this generality in [30] and omitted here, is by taking a D/ T -net
on M and using the Kac-Rice estimate (2.8).

LEMMA 7.5 (cf. [30, lemma 9] and Lemma 4.12 in the scale-invariant case). Then
there exist constants cg,Co > 0 so that we have the following estimate on the
number of &-small components:

p E[NC;E—sm(f)] <

lim su < Cq - £,

T—o0 I
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The proof of Lemma 7.5, omitted here, is very similar to the proof of Lemma
4.12, given in Section 4.6.

Integral-Geometric Sandwich on M for Normal Components

LEMMA 7.6 (Integral-geometric sandwich on a Riemannian manifold, cf. [30,
lemma 1] and Lemma 3.7 in the scale-invariant case). Let G € T. Given € > 0,
there exists n > 0 such that for every r < n,

NY. "G x,
NX;norm(f, G)<(1+ 6)/ X,norm(f X,r) I
M

(7.16) Vol(B(r))

+ £ Vol (B (r)) + Og(1).

The proof of Lemma 7.6 is very similar to that for Lemma 3.7, and we omit it
here.

Remark 7.7.

(1) Note the differences between (7.16) and the analogous statement (3.5) in
the scale-invariant case. First, the (1 + ¢€) factor in (7.16) manifests the
perturbed volumes of small geodesic balls on M as compared to the eu-
clidean balls. We then need to account for a (exclusive to Ny ) situation
where a component ¢ € C(f) is contained in some geodesic ball B (r),
but the corresponding tree end is not, which may be bounded by the vol-
ume estimate (7.15) responsible for the first extra term in (7.16). The other
peculiar Og (1) term in (7.16) may be taken as at most the vertex number
of G.

(2) For the lower bound the following inequality holds outside an event of
arbitrarily small probability only:*

(1 —6)/ NX;norm(f, G;X,r)
M

VOl(B(r)) dx = NX;norm(f, G)

Uniform Bound for the Number of Components in Small Balls

LEMMA 7.8. For r sufficiently small, depending only on M, we have the following
uniform bound.:

EWNe(f:x.0)] = 00" - T"),

with the constant involved in the O-notation depending on M only.
PROOF. First, the nodal components count is bounded
C(f) < E[A(S)]
by the number of critical points of f. To bound the latter we use Lemma 2.2 on
G =V}/

4 The reason that this may not always hold is again, that in the noneuclidean case the graph end
e(c) may fail to be lying in a geodesic ball, even if ¢ is.
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understood in a coordinate patch around x. We claim that (1.12), applied on
Ko (T; x, y) and its derivatives, implies that the expression

n/ » .. 121n/
17 EIVGWPP?  _  El(fy )i, "2 _ o™
(detE[G(x) - G(x))/?  (detE[V f(x)- Vf(x)]"/?

on the right-hand side of (2.8) is uniformly bounded, with the constant involved in
the O-notation depending only on 7.

First, we observe that the denominator of (7.17) is the determinant of the covari-
ance matrix X (x) of V f(x). We know from (1.12) that, after scaling by T, the
entries of X (x) converge uniformly to the entries of the nondegenerate covariance
matrix of Vg. Hence, properly scaled,

detE[V £(x) - V £(x)']

is bounded away from 0. Concerning the numerator E[| f;; (x)|] of (7.17), we may
use the triangle inequality to bound

E[l(fij GDIPT < Y E[fij(x)?]

i’j

after scaling by T (consistent with the scaling of the denominator); the latter is
uniformly bounded, due to (1.12) applied to the corresponding fourth-order mixed
derivative. Hence (2.8) implies the statement of the present lemma. O

7.4 Proof of Proposition 7.2

PROOF. Throughout the course of this proof we will assume with no loss of
generality that M is unit volume Vol M = 1, and for a given G € T we will use
the shorthand

(7.18) Cx = Cx:g,(G).

As mentioned above, we only show (7.13) here.
Let R > 0 be a large number, so that D/R is sufficiently small, and R/T < 7
as in Lemma 7.6, sufficiently small, so that

Volw(Bx(R/T) | _ . Vol(B(R+D)

(7.19) Vol(B(R/T)) Vol(B(R))

uniformly for x € M.



TOPOLOGIES OF NODAL SETS 333

Apply Lemma 7.6 with r = %; by the triangle inequality for | - |+ we have
(recall (7.18))
|

EHN'T;norm(f’ G)
"
Ng norm (s G: X, R/ T)

= E_/M‘(l T2 NoBR L D)X

+ O(T™" + £ Volp(Bx(R/T)))

(7.20) E / Nxnom (£ Gix, (R + D)/T)
VolB(R + D) ¢

— Vol M - cx

dx]

_|._

X dx:|
+

M
IE[-/\/’X;norm(f’ G;x, (R + D)/T)]
+ 0(6 / VolB(R + D) dx)

+ O(T™" + £~ Volu(Bx(R/T))),
by (7.14) and (7.19). Observe that the integrand

IE[-/\/’X;norm(f7 G;X, (R + D)/T)]
Vol B(R + D)

is uniformly bounded by Lemma 7.8. Hence (7.20) is
IE|: NX;norm(fv G) ]
+

" — Vol M - cx

NX;norm(fa G;x» (R + D)/T)
= E[/ VOIB(R + D) X +dx}

+O0(e + T7" + Vol (B2 (R/T))),

Since the latter error term O(---) could be made arbitrarily small, it is then
sufficient to prove that
dx]
+

E[/ NX;norm(f’G;x’(R + D)/T) N
dx dP(w) — 0,

VolB(R + D)
M
_// NX;norm(f»G;x,(R—i-D)/T)
= -
AM +

cx (G, x)

(7.21)

VolB(R + D)

where A is the underlying probability space, and P is the probability measure

on A.
Now consider the event
cx | > e};

Nx(f.G:x,R/T)
Vol B(R + D)

ATG:x,R = {
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note that though formally the values of 7" can attain a continuum variety in R, only
countably many of them would yield genuinely different functions f in (1.2) and
their by-products, such as A7 G:x,gr, SO we may assume that any limit 77 — oo
is along this countable system; from this point on we will neglect this difference,
which will save us from dealing with various measurability issues. Then by Theo-
rem 6.2, for every x € M,
(7.22) lim limsup P(A7,G:x,R+D) = 0.
R—o00 T—o0

We claim that there exists a sequence’ { R i }j—soo (€.2., Rj € Z integers) so that
the limit (7.22) is almost uniform with respect to x € X; that is, for every n > 0
there exists M, € M with Vol M, > 1 — 7 such that
(7.23) lim lim sup P(A7,G;x,R;+D) = 0.

Rj—00 T—o00 XxEMy

To see (7.23), we first apply an Egorov-type theorem on the limit in (7.22) with
respect to R — oo: working with the sets

1
Enk = U {x e M :P(Ar,G:x,r+D) > X for T sufficiently big

R>n integer

yields that for some M, with Vol(M) > 1 — 2

lim sup lim P(A7,G;x,R;+D) =0;
Rj—o0xeMy T—o0
this is not quite the same as the claimed result (7.23), as the order of sup ¢ », and
the lim sup with respect to T — oo is wrong. We use an Egorov-type argument
once again, with respect to the limit lim7_, o, to mollify this. Fix an integer r > 0,
and let R; = Rj() > 0 be sufficiently big so that

_ 1
(7.24) sup lim P(A1,G;x,R;+D) < e

xeMy T—o0

Define the monotone decreasing sequence of sets

2
Fn = U {x e M, 3P(AT,G;x,R_,-+D) > o[

T>m

Since, by (7.24),

ﬂszz,

m>1
we may find m = m(r) sufficiently big so that Vol(F,)) < 2,% Therefore the
claimed result (7.23) holds on
My \ U Fm(r)

r>1

3 As above, this will simplify our treatment of measurability; with some more effort we could
work with an arbitrary countable sequence, or even a continuum of { R}.
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i.e., further excising the set |, | Fin(r) of volume < Z from M.
We then write the integral (7.21) as

// NX;norm(fv G;x, (R + D)/T) _
VolB((R + D))
A

e

MAT.G:x.R+D MA\ATG:x.R+D

dx dP(w)
+

cx

(7.25)

First, on A \ A7,G.x,R+D, the integrand of (7.25) is

NX;norm(f’ G;x,(R+ D)/T)
VolB((R + D)/ T)
_|[Mx (L. G:ix, (R+ D)/T)
- VolB((R + D)/ T)

—cx (G, x)

—+

—cx (G, x)

569

and hence the contribution of this range is

/ / NX;norm(f’G;xa(R+D)/T) —c
VolB((R + D)/T) X

+
M A\AT G:x.R+D

5/ / edxdP(w) <e.

M A\AT.G:x.R+D

(7.26)

dx dP(w)

335

On Ar,G:x,R+p We use the volume estimate (7.15), which yields uniformly on

xeM
/ NX;norm(f’G;x’(R_'_D)/T) —c
VolB(R + D) I,
AT.G:x.R+D
< / NX;norm(f’ G,X,(R+D)/T)
- VolB(R + D
(7.27) ArGiersp CBR+D) ¥
- / g-17n Volpm(Bx((R+ D)/ T))
VolB(R + D)

AT.G:x.R+D

(1 +E ' P(A1,6:x,R+D)-

IA

Similarly to the above, uniformly on w € A, we have

NX;norm(f’ G;x’ (R + D)/T)
(7.28) / Vol B(R + D) BN

M\M,,

dP(w)

dP(w)

dP(w)

dx < (1+e& 'n.
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The uniform estimates (7.27) and (7.28) imply that

/ / NX;norm(ﬁG;xv(R+D)/T) ¢
VolB(R + D) X,
M AT G:x.R+D

< (14 e)& 1 sup P(AT,G;x,R+D) + 1),
xeMn

dx P(w)

and upon substituting the latter estimate and (7.26) into (7.25), and then to the
integral (7.21), we finally obtain

NX;norm(f’ G:x,(R+ D)/T)
E —Cx dx
VolB(R + D)
J’_
<e+ (1+e)¢ ( sup P(AT.Gix.R+D) + 1),

XEM,y,

which could be made arbitrarily small for each sufficiently small choice of £ ex-
cising the very small components, and using (7.23). This concludes the proof of
(7.21), sufficient to yield the conclusion of the present proposition. U

Appendix A Measurability of Nodal Counts

PROOF OF LEMMA 3.8. We address briefly the issue of the measurability of
various counts, such as N¢(F, H;r) as functions of the Gaussian field F'. These
functions are refinements of the counting functions AV(G,-) in [27], where the
measurability is discussed on pages 31 and 43, and one can extend their arguments
to deal with our A’s. Rather than doing that, we give a direct analysis for our
Gaussian fields g, o as defined in Section 2.2, and we take this opportunity to
explicate their meaning. We are only going to prove the measurability statements
for N¢ with respect to w € A, the proof of the measurability of AN’y being identical.
First we establish part (1) of Lemma 3.8.

The functions on R” are given as “a-linear functions”

(A1) Fo(x) =) aj&i(x),
j=1

where the £;(x) are the Fourier transforms of v; (as in Section 2.2) and w =
(a1,az,...) € RN with aj’siid. N(0, 1) Gaussian variables on R (see [2]). The
&;’s are smooth (even analytic) functions on R”, which together with their deriva-
tives are rapidly decreasing in j for x in compact subdomains of R”. The series
(A.1) converges for almost all w and defines a function on R” that is our Gaussian
field.

In more detail, we equip RN = {w : o = (a1,a2,...)} with the o-algebra
</ generated by the cylinder sets {w : a; € A;, j = 1,...,k}, where A; are
subintervals of R. We form the probability space P = (RN, .7, i), where j is
the product Gaussian; ;0 = w1 X p2 X --- and p; is the standard N (0, 1) Gaussian
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on each factor. It is clear that for a fixed x € R”, F,(x) is a Gaussian on R with
mean 0 and variance

o[ Fo(x)?] Z £ (x)%.

More generally, the k-dimensional vector (Fy(x1),..., Fy(xg)) for distinct
X1,X2,..., X € R" is a Gaussian with mean (0,0, ..., 0) and covariance

o0
EolFo(x) - Fo()] = Y &(x)- &) = talx —y)
J=1
as in (2.5) for our g, o’s. This yields a concrete realization through F,(x), w € P,
of the mean zero stationary (isotropic) Gaussian field with covariance Vg (x — ).
In order to examine the typical F, (x) and to define the functions N we remove
various p-null sets. To this end let W = {w; };>1 be the weights w; = j —4 (with
A > 0 fixed). The function f : RN — [0, 0o] given by f(w) = Z;’;l laj|Pwj is
defined and ./ -measurable, and by the monotone convergence theorem

Eolf(w)] = ) wj < cc.
j=1

Hence f is finite except on a u-null set, and we restrict to this almost full set of
w’s
o0
12(W) := {a) Y lajPwy < oo}.
j=1
The set /2 (W) is also a Hilbert space, being a /2 sequence space; whether we view
[2(W) as a measure space P N /2(W) with measure j or a linear Hilbert space will
be made clear.
Let Q C R” be a domain with  compact; then forr > 1, B > A'H , there is a
number C, o p < 0o such that

sup | D¥Ej(x)| < Cra.5i 8.
k<r,

XEQ

Hence for x € 2, we have

o0
ID¥F(x)| <) laj|Cra.pi~®
ji=1
00 1/2 00 1/2
< Cr,Q,B . (Z |aj|2wj) . (Z j—ZB+A)
j=1 j=1

Hence the linear map

(A.2) T:12(W) > CH(Q)
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with + > 0, given by (A.1), is bounded (i.e., is a continuous map between these
Banach spaces). Now the open sets in /% (W) (with its topology) are measurable as
subsets of RN (i.e., they are in &); hence we conclude that

(A3) w > F,(x) is measurable as a map [2(W) — C'(Q).

Since Q is arbitrary, we conclude that for @ € I2(W), we have F,(x) € C®(R").

In order to study (or even define) our functions N¢(F,, H; r) we first examine
N as a function from C?(Q2) to R. Let Q@ = B(0, r) be the ball centered at 0 of
radius r in R”. The sets

B ={f € CY(Q): f(x) =0, Vf(x) = 0 for some x € Q}
and
By ={f € CY(Q): f(x) =0and V f(x) L Ty(dS) for some x € IN}

(i.e., By consists of f so that there exists some zero x € dQ2 of f on the boundary
such that V f'(x) is orthogonal to the tangent space to €2 at x), are closed subsets
of C1(Q). For f in the open subset

®=C'(Q)\ (B1U By),

the zero set V( f) has finitely many connected components that are fully contained
in ©, and these are nonsingular. Of these, let N¢( f, H; r) be the number of such
components diffeomorphic to H. Having removed B; and B» it follows by the
stability argument presented within the proof of Proposition 6.8 in Section 6.4 and
the boundedness of the map (A.2) that each of the topologies of the fully contained
connected components of V() are unchanged for g in a small-enough neighbor-
hood of f in ©.

We are ready to define N¢(F,,, H;r) for almost all w. According to (A.3) we
have a measurable decomposition

12(W)=T"Y(By UBy) uT }(0).

By the generalization of Bulinskaya’s lemma for higher dimensions (see, e.g., [4,
prop. 6.111), T=1(By U B») is u-null. We define N¢(F,, H;r) on the full set
T~1(®) by the composition

Ne: T 1 @) L @ 209, o
The second map is continuous and the first measurable; hence N¢(Fy, H;r) is
defined for almost all @ and is measurable.

As a final remark, note that although A is measurable, its determination on a
particular good w is in general undecidable. The reason is that in high dimensions
there is no decision procedure to determine if a given component of V( ) is a given
H in H(n — 1) (see [24]).

For part (2) note that almost surely F is smooth on B(R). Therefore for almost
all o € A, Ne(Fy, H:; x,r) is locally constant with respect to x € B(R) outside
of a measure zero set and, in particular, measurable. Finally, in order to establish
part (3) of Lemma 3.8 we combine both parts (1) and (2). Namely, since, by part
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(2), for almost all w € A, x — N¢(Fy, H; x,r) is locally constant on a set of full
measure in B(R), we may write for almost all (w, x) € A x B(R):

Ne(Fy, H:;x,r) = nli)n;oNc(Fw, H:;|nx|/n,r),

measurable as a limit of measurable functions; here for a vector x € R” we denote

[x] = (lxa]..o. [xn ) O
Appendix B An Alternative Proof for Topology Not Leaking

Here we present an alternative, shorter proof of Theorem 4.2, part (2), invok-
ing some abstract tools not employing the uniform stability of Proposition 4.3. A
similar argument yields a proof of Theorem 4.2, part (3).

PROOF OF THEOREM 4.2, PART (2). We reuse all the notation of Section 4.2,
and, as in the proof presented in Section 4.2, we aim at proving tightness: for every
8 > 0 there exists a finite

Ao = Ao(8) S H(n — 1)
so that for R > 0 sufficiently big we have
B.1) E[Nc(F,H(n — 1)\ Ao; R)] < §- R";
instead of constructing A¢ explicitly, we will merely show its existence using some

abstract tools. Likewise, we apply (4.6), the integral-geometric sandwich, and take
the expectation of both sides to yield that

B2 EWN(F A R)] < (§ ; 1) ENG(R. A + 5 R

valid for r > ro(§) sufficiently big. From (B.2) it follows that in order to prove the
tightness (B.1) it is sufficient to find a finite A9 € H(n — 1) so that

(B.3) E[Ne(F, Hn — 1)\ Ag: )] < %r”

is arbitrarily small for r fixed (though arbitrarily big).
Now, the expectation

E :=E[Nc(F;r)] < oo

of the total number of nodal components (of unrestricted topology) is finite. Using
the fact that the collection H(n — 1) of diffeomorphism types is countable, let
H(n —1) = {Hj};j>1 be an enumeration of H(n — 1). We then have

Ne(Fir)y =Y Ne(F.Hjir),
Jjz1
where all of {N¢(F, Hj;r)}j>1 are nonnegative random variables (i.e., measurable
on functions on the sample space). By the monotone convergence theorem we then
have
E =E[N¢(F:r)] = Y E[N(F. Hj:r)l.

Jj=1
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so that the series
ZE[NC(F, Hj;r)] < oo
Jjz1

is convergent.

Hence, by taking a tail of a convergent series, there exists a number jo =
jo(8,r) = jo(r) sufficiently big so that

)
B.4 E F,Hj; —r"
(B.4) > EWe(F. Hyin) <
J=Jo
(recall that r > rg is fixed but sufficiently big). Now we choose
Ao = {Hj}j<jo’
we then have

Ne(F H(n—=1)\ Ag:r) = Y Ne(F. Hj:r),
J>Jjo
so that, upon applying the monotone convergence theorem in a fashion similar to

the above (again, using the measurability of all N¢(F, H;; r) on the sample space),
we obtain

)
ENC(F, Hn = 1)\ Ao:r)] = | EING(F, Hj;r)) < ;"
J>Jjo
by (B.4), which is precisely (B.3), that is readily proven to be sufficient for the
tightness (B.1) via (B.2). [l
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