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We develop a phenomenological coarse–graining procedure for activity in a large network of neu-
rons, and apply this to recordings from a population of 1000+ cells in the hippocampus. Distribu-
tions of coarse–grained variables seem to approach a fixed non–Gaussian form, and we see evidence
of scaling in both static and dynamic quantities. These results suggest that the collective behavior
of the network is described by a non–trivial fixed point.

In systems with many degrees of freedom, it is natu-
ral to search for simplified, coarse–grained descriptions.
While this idea has a long history, our modern under-
standing is based on the renormalization group (RG).
In its conventional formulation, we start with the joint
probability distribution for variables defined at the mi-
croscopic scale, and then coarse–grain by local averaging
over small neighborhoods in space. The joint distribution
of coarse–grained variables evolves as we change the av-
eraging scale, and in most cases the distribution becomes
simpler as we move to larger scales. Thus, macroscopic
behaviors are simpler and more universal than their mi-
croscopic mechanisms [1–4]. Is it possible that simplifi-
cation in the style of the RG will succeed in the more
complex context of biological systems?

The exploration of the brain has been revolutionized
over the past decade by methods to record, simultane-
ously, the electrical activity of large numbers of neurons
[5–15]. Here we analyze experiments on 1000+ neurons
in the CA1 region of the mouse hippocampus. The mice
are genetically engineered to express a protein whose flu-
orescence depends on the calcium concentration, which in
turn follows electrical activity; fluorescence is measured
with a scanning two–photon microscope as the mouse
runs along a virtual linear track. Figure 1A shows a
schematic of the experiment, which has been described
more fully elsewhere [7, 11, 15]. The field of view is
0.5× 0.5 mm2 (Fig 1B), and we identify 1485 cells. Flu-
orescence signals are sampled at 30 Hz, images are seg-
mented to assign signals to individual neurons, and sig-
nals are denoised to reveal relatively infrequent transients
above a background of silence (Fig 2A).

In familiar applications of the RG, microscopic vari-
ables have defined locations in space, and interactions are
local, so it makes sense to average over spatial neighbor-
hoods. Neurons are extended objects, and make synap-
tic connections across distances comparable to our entire
field of view, so locality is not a useful guide. But in sys-
tems with local interactions, microscopic variables are
most strongly correlated with the near spatial neighbors.
We will thus use correlation itself as a proxy for neighbor-

hood. We compute the correlation matrix of all the vari-
ables, search greedily for the most correlated pairs, and
define a coarse–grained variable by the sum of the two mi-
croscopic variables in the pair [16], as illustrated in Fig 2.
This can be iterated, placing the variables onto a binary
tree; alternatively, after k iterations we have grouped the
neurons into clusters of size K = 2k, and each cluster is
represented by a single coarse–grained variable [17].

A technical point concerns the normalization of vari-
ables at each step of the coarse–graining. We start with
signals whose amplitude has an element of arbitrariness,
being dependent on the relations between electrical activ-
ity and calcium concentration, and between calcium con-
centration and protein fluorescence. Nonetheless, there
are many moments in time when the signal is truly zero,
representing the absence of activity. We want to choose
a normalization that removes the arbitrariness but pre-
serves the meaning of zero, so we set the average ampli-
tude of the nonzero signals in each cell equal to one, and
restore this normalization at each step of coarse–graining.

Formally, we start with variables {xi(t)} describing ac-
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FIG. 1: (A) Schematic of the experiment, imaging inside the
brain of a mouse running on a styrofoam ball. Motion of
the ball advances the position of a virtual world projected
on a surrounding toroidal screen. (B) Fluorescence image
of neurons in the hippocampus expressing calcium sensitive
fluorescent protein.
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FIG. 2: Fluorscence signals, denoising, and coarse–graining.
(A) Continuous fluorescence signals, raw in grey and denoised
in black, for three neurons in our field of view. Illustration of
our coarse–graining procedure, for two iterations. (B) Activ-
ity of 8 example neurons. The first step in every iteration is
to compute the hierarchy of correlations between all pairs of
neurons based on their activity. Then, maximally correlated
pairs are grouped together by summing their activity, nor-
malizing so the mean of nonzero values is one. Each cell can
only participate in one pair, and all cells are grouped by the
end of each iteration. Darker arrows correspond to stronger
correlations in the pair.

tivity in each neuron i = 1, 2, · · · , N at time t; since our
coarse–graining does not mix different moments in time,
we drop this index for now. We compute the correlations

cij =
〈δxiδxj〉

[〈(δxi)2〉〈(δxj)2〉]1/2
, (1)

where δxi = xi − 〈xi〉. We then search for the largest
nondiagonal element of this matrix, identifying the max-
imally correlated pair i, j∗(i), and construct the coarse–
grained variable

x
(2)
i = Z

(2)
i

(
xi + xj∗(i)

)
, (2)

where Z
(2)
i restores normalization as described above.

We remove the pair [i, j∗(i)], search for the next most
correlated pair, and so on, greedily, until the original N

variables have become bN/2c pairs. We can iterate this
process, generating NK = bN/Kc clusters of size K = 2k,

represented by coarse–grained variables {x(K)
i }.

We would like to follow the joint distribution of vari-
ables at each step of coarse–graining, but this is impos-
sible using only a finite set of samples [18]. Instead, as
in the analysis of Monte Carlo simulations [19], we follow
the distribution of individual coarse–grained variables.
This distribution is a mixture of a delta function exactly
at zero and a continuous density over positive values,

PK(x) ≡ 1

NK

NK∑
i=1

〈
δ
(
x− x(K)

i

)〉
= P0(K)δ(x) + [1− P0(K)]QK(x), (3)

where our choice of normalization requires that∫ ∞
0

dxQK(x)x = 1. (4)

Figure 3 shows the behavior of P0(K) and QK(x) from
the microscopic scale K = 1 out to K = 256.

If the coarse–grained activity of a cluster is zero, all
the microscopic variables in that cluster must be zero, so
that P0(K) measures the probability of silence in clus-
ters of size K. If neurons were independent, then this
probability would fall exponentially with K; in fact the
data are well described by

P0(K) = exp(−aK β̃), (5)
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FIG. 3: Scaling in the probabilities of silence and activ-
ity. (left) Probability of silence as a function of cluster size.
Dashed line is the expectation for independent neurons, and
the solid line is from Eq (5). (right) Distribution of activ-
ity at different levels of coarse–graining, from Eq (3). Larger
clusters corresponds to lighter colors.
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with β = 0.87 ± 0.03 [20]. This scaling suggests that
correlations among neurons are self–similar [21].

Coarse–graining replaces individual variables by aver-
ages over increasingly many microscopic variables. If cor-
relations among the microscopic variables are sufficiently
weak, the central limit theorem will drive the distribu-
tion of coarse–grained variables toward a fixed Gaussian
form; a profound result of the RG is the existence of non–
Gaussian fixed points. This seems to be what is happen-
ing with QK(x), as shown at right in Fig 3. There are
surprisingly small changes in this distribution, even as K
varies by two orders of magnitude. The changes that do
occur are leading to a very simple, exponential form at
large K, and there is no sign of approach to a Gaussian.

If correlations are self–similar, then we should be able
to see this in more detail by looking inside the clusters of
size K, which are analogous to spatially contiguous re-
gions in a system with local interactions. We recall that,
in systems with translation invariance, the matrix of cor-
relations among microscopic variables is diagonalized by
a Fourier transform, and that the eigenvalues λ of the
covariance matrix are the power spectrum or propagator
G(k). At a fixed point of the RG this propagator will be
scale invariant, λ = G(k) = A/k2−η, where the wavevec-
tor k indexes the eigenvalues from largest (at small k)
to smallest (at large k), and in d dimensions the eigen-
value at k is of rank ∼ (Lk)d, where L is the linear size
of the system. The number of variables in the system
is K ∼ (L/a)d, where a is the lattice spacing and the
largest k ∼ 1/a. Putting these factors together we have

λ = B

(
K

rank

)µ
, (6)

with µ = (2 − η)/d and B = Aa2−η. Thus scale invari-
ance implies both a power–law dependence of the eigen-
value on rank and a dependence only on fractional rank
(rank/K) when we compare systems of different sizes.

Figure 4 shows the eigenvalues of the covariance ma-
trix, Cij = 〈δxiδxj〉, in clusters of size K = 16, 32, 64, 128.
A power–law dependence on rank is visible, albeit only
over little more than one decade; perhaps more com-
pelling is the dependence of the spectrum on relative
rank, accurate over much of the spectrum within the
small error bars of our measurements. The best fit expo-
nent is µ = 0.71± 0.15.

In systems with local interactions, the spread of corre-
lations throughout the system takes time. If we are near
a fixed point of the RG, then we will see dynamic scal-
ing, with fluctuations on length scale ` relaxing on time
scale τ ∝ `z. Although interactions in the neural net-
work are not local, we have clustered neurons into blocks
based on the strength of their correlations, and we might
expect that larger blocks will relax more slowly. To test
this, we compute the temporal correlation functions for
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FIG. 4: Scaling in eigenvalues of the covariance matrix spec-
tra, Cij = 〈δxiδxj〉, for clusters of different sizes. Larger clus-
ter corresponds to lighter color. Solid line is the fit to Eq (6).

coarse–grained variables,

CK(t) =
1

NK

NK∑
i=1

〈δx(K)
i (t0)δx

(K)
i (t0 + t)〉. (7)

Qualitatively, the decay of CK(t) is slower at larger K,
but as we see in Fig 5 the correlation functions at differ-
ent K have the same form within error bars if we scale
the time axis by a correlation time τc(K). Although the
range of τc is small, we see that

τc(K) = τ1K
z̃, (8)

except for the smallest K where the dynamics are limited
by the response time of the fluorescent indicator molecule
itself. Quantitatively, z̃ = 0.11± 0.01.

Before interpreting these results, we make two obser-
vations which will be explored in detail elsewhere [22].
First, everything we have done here can be redone by
first discretizing the continuous fluorescence signals into
a binary on/off description of activity in single neurons,
as in Ref [23]. Again we see an approach to a fixed expo-
nential rather than Gaussian distribution and power–law
scaling; all exponents agree within error bars. We have
done the same experiment and analysis independently in
three different mice; importantly there are no “identified
neurons” in the mammalian brain, so we can revisit the
same region of the hippocampus in another animal, but
there is no sense in which we revisit the same network
of neurons. Nonetheless we see the same approach to a
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FIG. 5: Dynamic scaling. (left) Correlation functions for dif-
ferent cluster sizes [Eq (7)]. We show K = 1, 4, 16, 64, 128
(last one with error bars), where color lightens as K increases,
illustrating the scaling behavior when we measure time in
units of τc(K). (right) Dependence of correlation time on
cluster size, with fit to Eq (8).

fixed distribution and power–law scaling, with exponents
again agreeing within error bars; this is true even for β̃,
which has error bars in the second decimal place. These
results suggest, strongly, that behaviors we have identi-
fied via coarse–graining are independent of variations in
microscopic detail, as we hope.

Second, we need to consider the relationship of our ob-
servations to the salient qualitative fact about the rodent
hippocampus, namely that many of the neurons in this
brain area are “place cells” [24, 25]. Place cells are ac-
tive only when the animal visits a small, compact region
of space, and are silent otherwise; together the activity
in the place cell population is thought to form a cogni-
tive map that guides the animal’s navigation. We find
that the spatial localization of activity is preserved by
our coarse–graining procedure, although it was not de-
signed specifically to do this. In fact fewer than half of
the cells in the population that we study are place cells
in this particular environment, but after several steps
of coarse–graining essentially all of the coarse–grained
variables have well developed place fields. On the other
hand, the scaling behavior that we see is not a simple
consequence of place field structure. To test this, we
estimate for each cell the probability of being active at
each position, and then simulate a population of cells
that are active with this probability but independently
of one another. In smaller populations we know that this
independent place cell model fails to capture important
aspects of the correlation structure [23], and here we find
that it does not exhibit the scaling shown in Figs 3–5.

In equilibrium statistical mechanics problems with
local interactions, a fixed distribution and associated
power–law scaling behaviors are signatures of a system
poised near a critical point in its phase diagram. The idea
that networks of neurons might be near to criticality is
intriguing, and has been discussed for more than a decade
[26]. One version of this idea focuses on “avalanches” of
sequential activity in neurons [27, 28], by analogy to what
happens in the early sandpile models for self–organized
criticality [29]. A very different version focuses on the
distribution over microscopic states in the network at a
single instant of time [30, 31], and is more closely con-
nected to criticality in equilibrium statistical mechanics.
Related ideas have been explored in other biological sys-
tems, from biochemical and genetic networks [32–35] to
flocks and swarms [36, 37]. In our modern view, invari-
ance of probability distributions under iterated coarse–
graining—a fixed point of the renormalization group—
may be the most fundamental test for criticality, and has
meaning independent of analogies to thermodynamics.

Although often thought of in connection with critical
phenomena, a fundamental result of the RG is the exis-
tence of irrelevant operators, which means that successive
steps of coarse–graining lead to simpler and more univer-
sal models. Although the RG transformation begins by
reducing the number of degrees of freedom in the system,
simplification does not result from this dimensionality re-
duction but rather from the flow through the space of
models. The fact that our phenomenological approach
to coarse–graining gives results which are familiar from
successful applications of the RG in statistical physics
encourages us to think that simpler and more universal
theories of neural network dynamics are possible.
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