

By Emily M. Aaldenberg and Minoru Tomozawa

ater and water vapor can degrade the mechanical strength of glass, promote crack growth, and cause fatigue.^{1,2}

Water has been found to enter through the fracture surface of glasses, 3,4,5 indicating that water ahead of the crack tip promotes the growth of cracks. Both structural and stress relaxation were found to occur faster at the glass surface than in the bulk when exposed to water. Liquid water or water vapor in the air can enter the glass through diffusion. At low temperatures, molecular water can remain in the glass. At high temperatures, most of the diffused molecular water readily reacts with the glass network to form immobile hydroxyls, $\equiv Si\text{-}OH.^{8,9}$

Although the large effect of water on glass properties and relaxation behavior has been observed, the mechanism by which a small quantity of water in the glass can cause this behavior has remained elusive. It is proposed that water entering the glass causes fluctuations in the composition that can lead to dynamic mechanical relaxation¹⁰ and pathways for crack growth. This research will establish the presence of composition fluctuations caused by water in silica glass, the primary network former in many glasses.

Composition fluctuations, crack growth, and relaxation

Fluctuations may play an important role in both the fracture process and the relaxation process in the presence of water. Zarzycki¹¹ proposed that glass, which has density fluctuations, would have low density domains which would act as pathways for a moving crack or as closed Griffith flaws in the glass. When water is present, this interpretation of crack propagation could be extended to composition fluctuations in which the crack may grow through water-rich pathways. The presence of tensile stress or damaged sites may also promote these composition fluctuations, as will be demonstrated by the formation of bubbles at low temperatures in damaged glass.

Water in glass can also lead to dynamic mechanical¹² or delayed elastic behavior representative of a time-dependent modulus giving

rise to stress relaxation behavior. The relaxation strength of the glass becomes large as composition fluctuations increase approaching the spinodal temperature. Here, the presence of composition fluctuations in the silica glass-water system was examined through three experiments: the memory effect, small angle X-ray scattering (SAXS), and the formation of bubbles at low temperature.

Memory effect

The memory effect in glass, where glass "remembers its past thermal history," takes place when glass has multiple relaxation times resulting from composition fluctuations. 14 This effect can be demonstrated through the crossover experiment in which glass is cooled from its equilibrium fictive temperature $T_i = T_1$ toward a temperature T_2 . When the glass T_4 reaches the crossover temperature T_x , where $T_2 < T_x < T_1$, the temperature of the furnace is switched to T_{\star} . T_{t} can be seen to change with time rather than remaining constant because portions of the glass relax faster and slower than the average. The memory effect in glass has been shown to occur in silica glass containing fluorine or OH, but not for pure silica glass. 15 Further confirmation that the memory effect is caused by composition fluctuations rather than density fluctuations can be gained by testing at temperatures approaching the spinodal.¹⁶

In this study, the memory effect of a silica glass containing 800–1,000 wt. ppm OH was investigated at various T_1 , T_2 , and T_{π} (example in Figure 1), with the differences T_1 – T_2 and T_1 – T_{π} constant. The sample tested at higher temperatures showed no discernible memory effect, while samples tested at lower temperatures showed that T_{τ} initially increases and subsequently decreases following the crossover to T_{τ} .

The presence of composition fluctuations in silica glass containing OH can be confirmed because composition fluctuations increase at lower temperatures.¹⁷ As the temperature of the crossover experiment was reduced, the spinodal temperature was approached, so larger fluctuations in composition led to a noticeable distribution in structural relaxation times for glass containing OH.

Small angle X-ray scattering

SAXS can demonstrate the presence of density and composition fluctuations in glass. Pure silica glass has only density fluctuations, which give rise to a SAXS intensity at zero scattering vector I(q=0) proportional to temperature. I(0) measured at room temperature can be seen to increase with increasing equilibrium T_f because the structure of the glass becomes frozen-in upon rapid cooling. The presence of composition fluctuations leads to an additional contribution to I(0), as has been demonstrated for fluorine-doped silica. I(0)

In order to show the presence of composition fluctuations in silica containing OH, two silica glasses were measured with equilibrium T_i =900-1,300°C. One glass

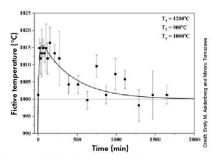


Figure 1. Time dependent T_t after crossover to T_x . Data fit (solid line) estimated from a model of two relaxation times.

contained 1,000 wt. ppm chlorine and <0.1 wt. ppm OH; the other contained 800–1,000 wt. ppm OH. The addition of chlorine was found to have no effect on the scattered intensity. 20 I(0) was calculated from a linear fit of the measured region q=0.05–0.15 Å 4 . For a constant T_p the glass containing OH has a greater scattering intensity (Figure 2). This is consistent with the hypothesis that the OH in the glass causes composition fluctuations.

Low temperature bubble formation

The previous two experiments involved composition fluctuations for silica glass containing predominantly reacted water, ≡Si-OH formed at high temperatures. This third study involves the diffusion of water at low temperatures, where molecular H,O is present. A silica sample with a final polish of cerium oxide was found to contain bubbles beneath the glass surface (Figure 3a), following a six-day water diffusion treatment in 250°C saturated water vapor pressure (29,800 Torr). The sample is estimated to have OH and H₂O diffusion depths of about 14 µm.21 Subsurface damage was revealed by etching the surface layer of a separate polished sample in an HF solution (Figure 3b).

The formation of bubbles typically occurs at temperatures above the glass transition temperature, T_s . It is surprising, then, that silica glass was able to form bubbles at temperatures so far below T_s . Bubbles form as a result of supersaturation of diffused water in glass. The subsurface damage may serve as a nucleation site for the bubbles (phase separated regions) to form because without any subsurface damage present, no bubbles formed after the same heat-treatment. This type of polishing-induced

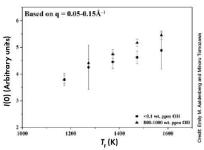


Figure 2. SAXS intensity as a function of the glass fictive temperature for two silica plasses.

damage, which represents closed cracks below the glass surface, is caused by dragging blunt ceria particles across the surface and is only revealed by etching. ^{22,23} Fluctuations and phase separation in the silica-water system at low temperatures are especially important because the crack growth and relaxation processes are typically studied at low temperatures, where molecular H₂O is present.

Acknowledgements

This research was supported by NSF DMR-1265100 and NSF DMR-1713670. Aaldenberg's graduate study is supported by Corning, Inc.

About the authors

Emily M. Aaldenberg completed her Ph.D. this spring under the advisement of Minoru Tomozawa in the materials science and engineering department at Rensselaer Polytechnic Institute. Contact Aaldenberg at aaldee@rpi.edu.

Editor's note

Aaldenberg will present the 2019 Kreidl Award Lecture at the Glass and Optical Materials Division Annual Meeting in Boston, Mass., on June 11, 2019.

References

¹Proctor B.A., Whitney I., Johnson J.W. Proc R Soc A. 1967: 297:534–557.

²Wiederhorn S.M. J Am Ceram Soc. 1967; 50(8):407-414.

³Tomozawa M., Han W.T., Lanford W.A. J Am Ceram Soc. 1991; 74(10):2573–2576.

⁴Lechenault F., Rountree C.L., Cousin F., Bouchaud J.P., Ponson L., Bouchaud E. *Phys Rev.* Lett. 2011; 106(16):165504.

⁵Hirao K., Tomozawa M. J Am Ceram Soc. 1987; 70(7):497-502.

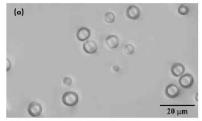


Figure 3. (a) Optical microscope image of bubbles formed after heat treatment of silica at 250°C saturated water vapor pressure. (b) Subsurface damage revealed by etching.

⁶Tomozawa M., Kim D.L., Agarwal A., Davis K.M J Non-Cryst Solids. 2001; 288:73–80.

⁷Lezzi P.J., Xiao Q.R., Tomozawa M., Blanchet T.A., Kurkjian C.R. J Non-Cryst Solids. 2013; 379:95–106.

⁸Davis K.M., Tomozawa M. J Non-Cryst Solids. 1995; 185:203–220.

⁹Doremus R.H. Diffusion of reactive molecules in solids and melts. New York: John Wiley & Sons, 2002; p. 85.

¹⁰Tomozawa M., Aaldenberg E.M. Phys Chem Glasses: Eur J Glass Sci Technol B. 2017; 58(4):156–164.

¹¹Zarzycki J. The "middle-range order" in glasses. Proceedings of the 10th International Congress on Glass; 1974 July 8; Kyoto, Japan. The Ceramic Society of Japan; 1974. p. 28–39.

¹²Reinsch S., Müller R., Deubener J., Behrens H. J. Chem Phys. 2013; 139(17):174506.

 ¹³Zener C. Elasticity and anelasticity of metals. New York: University of Chicago Press, 2002; p. 97–100.
¹⁴Macedo P.B., Napolitano A. J Res Natl Bur Stand.

¹⁵Koike A., Ryu S.R., Tomozawa M. J Non-Cryst Solids. 2005; 351:3797–3803.

1967; 71A:231-238

¹⁶Koike A., Tomozawa M. J Non-Cryst Solids. 2008; 354:3246–3253.

 $^{17}Bhatia\ A.B.,\ Thornton\ D.E.\ Phys\ Rev\ B.\ 1970;\ 2(8):3004–3012$.

¹⁸Golubkov V.V., Vasilevskaya T.N., Porai-Koshits E.A. J Non-Cryst Solids. 1980; 38:99-104.

¹⁹Watanabe T., Saito K., Ikushima A.J. J Appl Phys 2004; 95:2432–2435.

²⁰Kakiuchida H., Sekiya E.H., Saito K., Ikushima A.J. Jpn J Appl Phys. 2003; 42:L1526–L1528.

²¹Oehler A., Tomozawa M. J Non-Cryst Solids. 2004; 347:211–219.

Preston F.W. Trans Opt Soc. 1922; 23(3):141–164.
Suratwala T., Wong L., Miller P., ... Walmer D. J. Non-Crist Solids. 2006; 352:5601–5617.