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Abstract

Due to its tropical origin and adaptation, rice is significantly impacted by cold stress, and

consequently sustains large losses in growth and productivity. Currently, rice is the second

most consumed cereal in the world and production losses caused by extreme temperature

events in the context of "major climatic changes" can have major impacts on the world econ-

omy. We report here an analysis of rice genotypes in response to low-temperature stress,

studied through physiological gas-exchange parameters, biochemical changes in photosyn-

thetic pigments and antioxidants, and at the level of gene and protein expression, towards

an understanding and identification of multiple low-temperature tolerance mechanisms. The

first effects of cold stress were observed on photosynthesis among all genotypes. However,

the tropical japonica genotypes Secano do Brazil and Cypress had a greater reduction in

gas exchange parameters like photosynthesis and water use efficiency in comparison to the

temperate japonica Nipponbare and M202 genotypes. The analysis of biochemical profiles

showed that despite the impacts of low temperature on tolerant plants, they quickly adjusted

to maintain their cellular homeostasis by an accumulation of antioxidants and osmolytes like

phenolic compounds and proline. The cold tolerant and sensitive genotypes showed a clear

difference in gene expression at the transcript level for OsGH3-2, OsSRO1a, OsZFP245,

and OsTPP1, as well as for expression at the protein level for LRR-RLKs, bHLH, GLYI, and

LTP1 proteins. This study exemplifies the cold tolerant features of the temperate japonica

Nipponbare and M202 genotypes, as observed through the analysis of physiological and

biochemical responses and the associated changes in gene and protein expression pat-

terns. The genes and proteins showing differential expression response are notable candi-

dates towards understanding the biological pathways affected in rice and for engineering

cold tolerance, to generate cultivars capable of maintaining growth, development, and

reproduction under cold stress. We also propose that the mechanisms of action of the

genes analyzed are associated with the tolerance response.
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Introduction

Climate change can strongly influence agriculture with temperature extremes, cold tempera-

tures being a significant cause of damage in limiting crop yield. Although rice (Oryza sativa
L.), is one of the world’s most important crops consumed as a major part of the diet [1], it is

sensitive to cold compared to the temperate crops such as wheat and barley, due to its origin

and adaptation for cultivation in tropical and subtropical regions of the world.

The sensitivity and symptoms of plants to cold stress vary with the growth stage. Rice,

exposed to cold stress at the vegetative stage, shows symptoms like yellowing of leaves, lower

stature, and decreased tillering [2]. Other symptoms include damage to the photosynthetic

machinery, more specifically the ultrastructure of chloroplasts, altering the light-harvesting

chlorophyll antenna complexes [3] and/or modifying thylakoid structures [4], and an overall

reduction in photosynthetic processes by cold temperatures thereby leading to a deficit in

plant energy resources.

Under cold stress, reactive oxygen species (ROS) accumulation is induced [5] and can

cause severe damage to various cellular components such as altering the membrane lipid com-

position due to excess accumulation of malondialdehyde (MDA), and an increase in antioxi-

dants that can scavenge ROS and protect rice plants against oxidative damage [6].

In this research report we present results on the physiological responses of a sample of rice

O. sativa sub-species japonica genotypes to cold stress, estimated through quantification of

photosynthetic parameters, ROS mediated damage, accumulation of antioxidants and osmo-

lytes, that distinguish the sensitive and tolerance rice phenomes. In addition, we present here

the analyses of several stress-responsive genes OsBURB-16, OsGH3-2, OsSFR6, ZFP245,

OsACA6, Ctb1, OsSAP1, OsTPP1 and OsSRO1a (S1 Table) that can potentially contribute

towards the observed mechanisms of tolerance.

Results and discussion

Rice is a major global food crop and a model crop for cereals. To understand the basis of accli-

mation stability under cold, we used a set of rice genotypes contrasting in their tolerance

towards cold and evaluated the photosynthetic, biochemical, gene and protein expression

response parameters. The results we describe here suggest the presence of complex mecha-

nisms that involve the interaction of many biochemical and physiological pathways along with

hormonal cross-talk contributing to cold tolerance.

The analysis of cold-stress-responsive gene expression at the transcript and protein level,

along with the phenotypic response, provides an understanding of cold stress tolerance mecha-

nisms in the multiple plant systems. This information is needed since there is little information

available on the signaling pathways responsible for low-temperature acclimation and the dif-

ferential expression of genes at the transcript and proteins level that provide a crucial role in

chilling stress signaling [7,8].

The response of photosynthetic parameters to cold stress

The first effects of cold stress on plants are observed in photosynthesis [9], which was found to

be highly affected in the rice genotypes studied (Fig 1A). However, Secano do Brazil and

Cypress display > 80% reduction compared to Nipponbare and M202. The reduced air and

leaf temperature usually reduce the evaporative demand [10,11], observed as reduced transpi-

ration in all genotypes studied (Fig 1B). However, the tolerant genotypes displayed the highest

water use efficiency in comparison to sensitive ones under cold stress (Fig 1C). Under well-

watered conditions all the genotypes showed very similar levels but on exposure to stress there

was a significant reduction by about 75%.

Analysis of cold tolerance in rice by gene and protein expression analysis
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The chilling stress caused direct effects on stomata, provoking two potential causes of sto-

matal closure. In Secano do Brazil and Cypress, the direct inhibition of mesophyll photosyn-

thesis (Fig 1A) caused a rise in ci (Fig 1D), with an associated stomatal closure (Fig 1E) [12,13].

In Nipponbare and M202, the stomata were the primary target of the chilling stress and their

closure led to a reduction in ci, prompting a decline in photosynthesis [10,14]. Photo-inhibi-

tion can be one of the primary causes of reduction in photosynthesis after cooling [15–16] and

is characterized by a reduction in Quantum Efficiency of PSII [17]. A significant reduction

was seen in Secano do Brazil and Cypress under stress, but for the same conditions, the toler-

ant genotypes did not suffer photoinhibition (Fig 1F). The fluorescence parameter Fv’/Fm’ is

regarded as a suitable assay for plant tolerance and sensitivity to cold [18], due to inherent tol-

erance or physiological acclimation.

Biochemical parameters affected by cold-stress

When plants are exposed to low-temperature stress, Chlorophyll biosynthesis is affected (Fig

2A), and the results of the experiment show that Nipponbare and M202 do not sense the stress

like the sensitive genotypes Secano do Brazil and Cypress, which show a significant impact on

the biosynthesis of Chlorophyll (Fig 2A). According to [17], this is because the impact on

Chlorophyll biosynthesis is due to down-regulation of gene expression and protein abundance

of several enzymes involved in tetrapyrrole metabolisms described in other studies [19,20,21].

The anthocyanins, which are induced by environmental stresses [22], have a role in modify-

ing the quantity and quality of captured light [23], by protecting from the effects of UV-B [24],

and scavenging of reactive oxygen intermediates under stress. However, our data showed a

Fig 1. Response in physiological parameters of rice genotypes treated to low temperature stress. Plants under

control (28˚ C) and stress (10˚ C) conditions show response in: A) Photosynthesis, B) Transpiration Rate, C) Water

use efficiency (WUE), D) Intracellular CO2 concentration (Ci), E) Stomatal conductance, F) Fv’/Fm’. Data are

expressed as the result of five replications (plants). The asterisks indicate significance at P � 0.01 (analyzed by

Student’s t-test) for comparison of stress treatment vs control, and between control plants for difference to

Nipponbare, as standard tolerant genotype.

https://doi.org/10.1371/journal.pone.0218019.g001
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significant reduction in M202 by about 50% and by about 75% in Secano do Brazil, while

Cypress showed no difference between the control and stressed plants (Fig 3A). These results

do not support the hypothesis that anthocyanins are needed to serve an auxiliary photo-pro-

tective role in leaves, because this variation is independent of the concentrations of chlorophyll

Fig 2. ROS mediated damage evaluated in different rice genotypes treated to low temperatures. Plants under

control (28˚ C) and stress (10˚ C) conditions showed response in: A) Chlorophyll content, B) Hydrogen peroxide

H2O2 and C) Lipid peroxidation MDA. Data was expressed as the mean of five replications. The asterisks indicate

significance at P � 0.01 (analyzed by Student’s t-test) for comparison of stress treatment vs control, and between

control plants for difference to Nipponbare, taken as standard tolerant genotype.

https://doi.org/10.1371/journal.pone.0218019.g002
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(Figs 2A and 3A). However, the anthocyanins are found predominantly associated with leaf

mesophyll [25], a location that is unsuitable for screening out UV-B but ideal for the scaveng-

ing of oxygen radicals produced by chloroplasts. The phenolic content showed an increase in

all genotypes, with the highest content in the sensitive genotypes Secano do Brazil and Cypress

(Fig 3B). This increase may help in restricting the penetration of UV-B into the inner tissues of

the plant [26], and contribute to their antioxidant ability, which inhibits lipid peroxidation by

trapping the lipid alkoxyl radicals [27,28].

Proline and soluble sugars are also known to protect rice from damage due to cold stress

[29]. Proline content was found to be enhanced by cold stress in all genotypes (Fig 4A), with

the tolerant lines showing a higher synthesis in control and stress conditions, with results simi-

lar to that obtained earlier [30]. Proline is involved in the removal of stress-related excess H+,

maintains oxidative respiration at optimal cytosolic pH [31], acts as a reservoir of carbon and

nitrogen, and increases protein water-binding ability through its hydrophobic interactions

with the surface residues of proteins [32].

Soluble sugars like glucose and sucrose can accumulate in plants under stress, and act as

osmoprotectants against freezing/dehydration damage as described previously [33]. The toler-

ant genotypes (Nipponbare and M202) showed no significant difference in glucose content,

although the sensitive genotypes showed a decrease (Fig 4B). In contrast, the sucrose content

showed a high increase in the tolerant genotypes compared to the control, while for the sensi-

tive genotypes a significant drop was observed (Fig 4C). Such an increase in sucrose has been

documented previously [34], suggesting that an increase under low temperature can be a use-

ful marker for cold tolerance in rice.

Many plant subcellular locations such as the cell wall, plasma membrane, mitochondria,

and chloroplast, at the site of thylakoid electron transport; and the nucleus are intrinsically

responsible for producing ROS in response to stress [35,36,37]. To avoid disastrous damage to

protein and lipid components, plants have numerous antioxidant systems. Among these, ROS

(e.g. H2O2) can cause cellular and tissue damage by degradation of polyunsaturated lipids to

form MDA, which is a reactive aldehyde causing toxic cellular stress [38]. Nipponbare, despite

showing the highest H2O2 production under stress (Fig 2B), showed the lowest damage on the

plasma membrane (Fig 2C); whereas the tolerant M202 under stress, with no significant H2O2

induction, showed damage with MDA induction. In contrast, the sensitive genotypes had high

production of H2O2 and MDA, causing a great impact on the cell membranes, as shown previ-

ously [39].

The antioxidant enzymes SOD, POD and CAT, present in tolerant genotypes can compete

against ROS formation [40], providing antioxidant activity to offer protection from oxidative

stress damage [41].These enzymatic mechanisms, found among plants challenged to cold and

other abiotic stresses, function in ROS scavenging by the reduction of superoxide radicals into

H2O2 as analyzed here for the SOD (Fig 3C), CAT (Fig 3D) and POD (Fig 3E) expression

activities that catalyze H2O2 into H2O and protect the plant cells from H2O2 accumulation

[42]. The bulk of H2O2 from SOD catalysis remains biologically toxic. SOD activity observed

under stress (Fig 3C) in cold tolerant genotypes, can limit plant damage from ROS, and is

lower in cold-sensitive genotypes. H2O2 production by SOD enzymes can also function in oxi-

dative stress signaling, to play the role of a secondary messenger and protect reactions leading

to induced CAT and POD activity in plants [43]. Biochemical analysis of cold-sensitive geno-

types revealed that the lower increase of CAT and POD activity could reduce the efficiency of

the plant cells to scavenge damaging free radicals. The analyses suggest that most of the plant’s

response in increasing antioxidant activity has an important role towards cold stress tolerance.

The high stability and increased rate of CAT and POD activity are known to confer cold-

induced oxidative stress tolerance [44,45].

Analysis of cold tolerance in rice by gene and protein expression analysis
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DPPH application was used to measure free radicals as a measure of stress tolerance [46].

The increase in DPPH radical scavenging (Fig 3F), observed in Nipponbare and M202, also

appears to be correlated with the degree of plant stress tolerance [47,48]. Cold tolerance has

been quantified by measuring the reduction in growth rate and cell membrane stability [49].

The DPPH assay reveals a higher antioxidant capacity in the tolerant genotypes (Fig 3F), sup-

porting the relationship between antioxidant capacity and cold tolerance. The observed rela-

tionship between CAT and POD activity, and cell membrane stability, supports the

importance of sustaining an optimum antioxidant content under stress for the expression of

cold tolerance. Cold-tolerance in plants is generally associated with a higher antioxidant capac-

ity that is induced under stress, compared to the response of cold-sensitive plants [50].

Gene expression responses to cold-stress treatment

To support our studies on phenotypic and biochemical responses to cold stress of tolerant and

sensitive rice genotypes, a bibliographic review was conducted and identified several stress-

responsive genes under low-temperature conditions. From this literature, we selected nine

cold-regulated genes, and their expression behavior was characterized in the four different

genotypes at different time points after stress (3h, 6h, 24h, and 48h) in the vegetative plant

growth stages (Fig 5). Cold acclimation can involve alterations in gene expression and changes

in the levels of particular proteins following cold treatment [51].

The plant cell wall, which can be considered a layer to safeguard against abiotic stress such

as cold [36], is a complex structure inserted in a physiologically active pectin matrix, cross-

linked with structural proteins and, depending on the tissue/organ, with lignin [52,53]. The

OsBURP16 gene, encodes a putative precursor of PG1β, a subunit that regulates the activity of

Fig 3. Non enzymatic antioxidants and enzymatic antioxidants were evaluated in different rice genotypes treated

to low temperatures. Plants under control (28˚ C) and stress (10˚ C) conditions showed response in: A) Anthocyanin

content, B) total phenolic content, C) superoxide dismutase (SOD) activity, D) catalase CAT activity, E) Peroxidase

activity, and F) 2,2-diphenyl-1-picrylhydrazyl-DPPH activity. Data are expressed as the result of five replications. The

asterisks indicate significance at P � 0.01 (analyzed by Student’s t-test) for comparison of stress treatment vs control,

and between control plants for difference to Nipponbare, taken as standard tolerant genotype.

https://doi.org/10.1371/journal.pone.0218019.g003
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polygalacturonase (PG), an enzyme which hydrolyzes pectin, and changes the composition of

the plant cell wall [54]. Our data showed that the expression of OsBURP16 was induced maxi-

mally in sensitive genotypes (Secano do Brazil and Cypress) and had an increased transcript

level with time, while Nipponbare and M202 had little variability in the same period (Fig 5).

Therefore, the OsBURP16 gene can be considered as an indicator of cold stress sensitivity [54].

Unlike OsBURP16, OsACA6 exhibited an increased level of expression in tolerant genotypes

Fig 4. Response of rice plants to temperature treatments, with control (28˚ C) and stress (10˚ C) conditions

showing differential response in osmolyte content. A) Proline, B) Glucose content and C) Sucrose content. Data are

expressed as the mean of five replications. The asterisks indicate significance at P � 0.01 (analyzed by Student’s t-test)

for comparison of stress treatment vs control, and between control plants for difference to Nipponbare, taken as

standard tolerant genotype.

https://doi.org/10.1371/journal.pone.0218019.g004
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and Secano do Brazil (sensitive), however, Nipponbare had a higher expression. Located in the

plasma membrane are pumps or antiporters, which act on the cold response pathway involving

the influx of Ca2+ from the apoplast to cytosol [55].

Under cold stress, plants exhibit a decrease in H2O2 and MDA content, with an increase in

membrane stability, CAT, SOD and APX expression [35], and proline content [29]. These

changes have been shown to indicate a positive response of cold tolerance in transgenic

tobacco [56].

The OsGH3-2 and Ctb1 genes show early and maximal induction after 3 h of stress and

decrease with time in the tolerant Nipponbare and M202, while in Cypress and Secano do Bra-

zil there is an increase in expression with time (Fig 5). The overexpression of OsGH3-2 [57],

has been shown to decrease drought resistance and stomatal closure, as well as increase water

loss and improvement of cold and oxidative stress tolerance in rice at the vegetative stage. On

the other hand, [58] report that in association with CAT, Ctb1 participates directly in the regu-

latory pathway of small-RNAs and promotes cold-tolerance at the reproductive stage.

Fig 5. Relative expression of genes (S1 Table) conferring stress tolerance to low temperatures in rice. Stress

tolerance related genes are shown in a time-course of 03–48 h after stress initiation. Data are results from three

biological replicates and are expressed as the relative quantification (RQ) ratio of fold change of stress treatment to

control.

https://doi.org/10.1371/journal.pone.0218019.g005
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OsSRO1a and OsSAP1 were quickly induced after 3 h, reaching a maximum at 48 h in Nip-

ponbare and M202 (Fig 5). For the sensitive genotypes, we found the same pattern, although

the expression was lower. SRO are proteins involved in ADP-ribose conjugation, DNA repair,

apoptosis, transcription, and chromatin remodeling [59]. They possess a C-terminal

RCD1-SROTAF4 domain and interact with AP2/EREBP and transcription factors OsDREB2A
[60]. In rice, OsSRO1 has a role in drought and oxidative stress tolerance, stomatal closure and

H2O2 accumulation [61]. SAPs can interact with proteins via their zinc-finger domains [62],

such as OsSAP1 with cytoplasmic kinase OsRLCK253 [63]. OsSAP1 can regulate the stress

responses by either modulating the expression of genes or by interaction with other proteins

[64]. Altogether, our results suggest that this interaction may have relevance in stress physiol-

ogy and cold-acclimation.

Trehalose-6-phosphate phosphatase (TPP) is a sugar storage metabolic regulator and acts

in protection against abiotic stress [65,66]. In rice, overexpression has shown increased toler-

ance to abiotic stresses [67,68]. Our data showed that the OsTPP1gene is induced after 24 h

and increases more at 48 h in the tolerant genotypes, while Cypress and Secano do Brazil show

a slight induction at 3 h that goes down completely after 48h (Fig 5). These results agree with

other studies [69], that show overexpression of OsTPP1is enhanced in salt and cold tolerance

of rice. Moreover, they also showed that in plants with high expression of OsBURP16 there is a

decrease in trehalose content.

Among the genes studied for expression under cold stress, OsZFP245 and OsSFR6 showed

the highest induction in the tolerant genotypes, with the peak induction at 48 h. In Cypress,

OsSFR6 showed increased expression unto 24 h. However, in the sensitive Secano do Brazil

both genes (OsZFP245 and OsSFR6) were induced early with maximal expression at 3 h, and

sensitive Cypress induced OsSFR6 early with the highest expression at 24h (Fig 5). Located in

the nucleus, OsSFR6 acts to induce Cold-On Regulated (COR) genes via transcription factors

CRT⁄DREs 2A and CBFs 1–3 [70], and OsZFP245, a zinc finger protein gene with the role of

increasing proline content and antioxidant enzymes [71,72].

A model for low-temperature tolerance mechanisms (Fig 6) was developed by integrating

information on gene expression response to cold in the genotypes, to improve our understand-

ing of how stress is perceived by cells and how the regulatory cascade of signals act to promote

tolerance to suboptimal temperatures.

Stress is perceived by cells through molecular signals, which in turn, induce a concomitant

expression of multiple genes (cited in the text). They act in the perception and induction of

damage caused by suboptimal temperatures generating responses that may, for example,

increase the activity of antioxidant and osmoprotectant enzymes, and result in greater toler-

ance to stress.

Differential protein expression under cold-stress

To improve our understanding on the response of rice plants to cold stress, we used a compar-

ative proteomics approach to study the effect of cold stress on rice genotypes differing in toler-

ance and observed differential protein expression between tolerant and sensitive genotypes (S1

Table).

The leucine-rich repeats protein kinases (LRR-RLKs) play an important role in regulating

plant responses to abiotic stress [73], supported by our data that shows tolerant genotypes

have higher expression compared to the sensitive. These results were also observed earlier [74],

which supports that GsLRPK increases kinase activity in the presence of cold stress and

increases expression of low-temperature- responsive genes, resulting in an enhancement in the

tolerance to cold stress. Other kinases like the Fructokinase-2, Phosphoribulokinase, and

Analysis of cold tolerance in rice by gene and protein expression analysis
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Nucleoside diphosphate kinase 1 genes are also regulated by environmental stresses and show

the same expression behavior in tolerant genotypes.

GF14 shows significant homology with protein kinase-dependent regulatory proteins [75].

In rice, the 14-3-3 proteins GF14b, GF14c, GF14e and GF14f, interact with target proteins that

are involved in stress response [76]. GF14-a showed low expression in sensitive genotypes and

high expression for GF14-f, suggesting that they may be involved in mechanisms of tolerance

and/or acclimatization to adverse environmental conditions.

The bHLH proteins are a group of transcription factors that carry out key roles in phyto-

chrome signal transduction, cell fate determination and stomatal differentiation [77]. These

transcription factors are stress-inducible under drought, cold or high-salinity and are brassi-

nosteroid-responsive[77,78], and this inductive behavior was also observed in the cold tolerant

M202 and Nipponbare genotypes.

In plants, methylglyoxal a by-product of glycolysis, is toxic and causes damage to cells, and

high cellular concentrations are generated from unfavorable environmental conditions

[79,80]. Glyoxalase proteins are very important for limiting methylglyoxal levels, and for

this, the plants have a glyoxalase system with multiple isoforms of both GLYI and GLYII pro-

teins[81,82,83]. Due to its role in methylglyoxal detoxification, over-expression of glyoxalase

system in plants confers significant tolerance against adverse environmental conditions

[79,84,85,86,87,88]. Evidence of increased tolerance was demonstrated by elevated protein

expression (Putative glyoxalase I) in the tolerant genotypes studied.

Lipid transfer proteins (LTPs) play an important role in abiotic stress tolerance [89], and

can facilitate the inter-membrane exchange and transfer of various amphiphilic molecules

Fig 6. Model displaying mechanisms of tolerance to low temperatures in rice. The regulatory cascade indicates the

perception and induction of damage in response to low temperatures, the response in gene expression changes to the

stress treatment, as well as the induction of biochemical responses (S3 Table) leading to low temperature tolerance,

with an increase in concentration due to the presence of ROS. Abbreviations shown indicate the changes in

components affected. Pm: Plasma membrane; Cw: Cell wall; Ch: Chloroplast; N: Nucleus; Grey arrow: Calcium efflux

Black arrows: Cold perception; X: Degradation of pectin caused by increased polygalacturonase induced by increased

expression of OsBURP16; Red arrow: Induction; Blue arrow: Induction of cold tolerance; Between brackets: Increase

in concentration due to ROS. Dotted: Association of Ctb1 and CAT for miRNA induction. Upward arrows: Increased

concentration due to induction of ROS; X: Association of Ctb1 and CAT for miRNA induction. The regulatory cascade

of perception and induction of damage in response to low temperatures, and response of genes to the stress treatment,

as well as the induction of biochemical responses leading to tolerance to low temperatures, leading from an increased

concentration of ROS.

https://doi.org/10.1371/journal.pone.0218019.g006
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including phospholipids, glycolipids, steroids, acyl-CoAs, and fatty acids [90]. Transcript levels

of LTPs increased in response to drought [91], salt [92] and cold [93] and the increase of non-

specific lipid-transfer protein 1 expression in tolerant genotypes give more support to its role

of increasing tolerance to abiotic stress.

Conclusions

This study supports that the genotypes Nipponbare and M202 have tolerance to low tempera-

tures with the evidence of physiological responses, such as photosynthesis showing lower

reduction, better efficient use of water without suffering photoinhibition, or reduction in the

Quantum Efficiency of PSII. The biochemical profile showed that for the same genotypes,

chlorophyll biosynthesis was not affected. Among the anthocyanins, a significant decrease in

their content was observed, which identified pigments associated with the leaf mesophyll that

act directly in the elimination of oxygen radicals produced by the chloroplasts. Accumulation

of proline, glucose, and sucrose was also observed, these being osmoprotectants against freez-

ing and dehydration damage. Antioxidants in the same tolerant genotypes, despite showing

high production of H2O2 under stress, did not cause a high impact on the plasma membrane

or the high activity of the antioxidant enzymes. SOD, CAT, POD and DPPH enzymes play an

important role in stress tolerance. Differential expression of genes and proteins: the genes

OsGH3-2, OsSRO1a, OsZFP245 and OsTPP1; and the LRR-RLKs, BHLH, GLYI, and LTP1 pro-

teins, showed a clear difference in expression between tolerant and sensitive, thus suggesting

that these genes are good candidates for identification of low-temperature tolerant genotypes

in rice that are capable of maintaining growth, development, and production at the desired

agronomic levels. Finally, based on our studies, a schematic representative model of cold toler-

ance in rice (Fig 6) is proposed outlining mechanisms of action of the genes analyzed with dif-

ferential responses in resistant genotypes, with the objective of improving our understanding

of the operation of tolerance to low temperatures. To summarize the results, our analysis

shows for the first time the role of different antioxidants and osmolytes in modulating the

physiological responses contributing to tolerance. In addition, this report also identifies mark-

ers for screening of cold tolerance in multiple rice genotypes, along with few putative protein

markers identified from LCMS/MS analysis.

Materials and methods

Plant growth conditions and cold stress treatment

Seeds of the genotypes temperate japonica Nipponbare and M202 (tolerant), and the tropical

japonica Cypress and Secano do Brazil (sensitive) from the USDA mini-core collection [94]

were sterilized, immersed in deionized water and germinated in the dark for five days. After

germination, seedlings of the same size were transplanted into 500 ml capacity plastic pots

filled with commercial substrate (Redi-earth) with known water retention capacity and weight.

All the individual genotypes in the pots were grown in a Conviron growth chamber set at26/

22˚ C ±1˚C day/night temperature and light intensity of 600 μmolm-2s-1, with day/night cycle

of 14/10h, and kept in trays filled with water simulating flooded conditions with periodic com-

mercial fertilization using Miracle-Gro (Scotts Miracle-Gro Products) for the entire period of

the experiment.

Fifteen days after transplanting, the uniformly growing plants were divided into two groups

with 20 pots each, five pots per genotype, each containing one plant. One group was kept

under ideal conditions (28˚ C) and served as control, while another set of trays was used for

low treatment temperature (10˚ C) as described [95] with adaptations. For both treatments,

the plants were kept under the conditions described for a period of 72h. For this experiment,
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the experimental design was a complete randomized design and the data were submitted to

analysis of variance (ANOVA) and Student’s t-test (1%), using the SAS 9.3 statistical program

(SAS Institute, Cary, NC).

For the analysis of gene expression, 2 cm leaf tissue fragments were collected at four times

3h, 6h, 24h, and 48h, after low-temperature initiation, while the samples for the biochemical

and proteomic analyses were collected only at 72 hours. The photosynthesis and photochemi-

cal efficiency of PSII were evaluated using the second fully expanded leaf at 72h using a porta-

ble photosynthesis meter (LI-6400XT; LI-COR) at a CO2 concentration of 370 μmol mol-1light

intensity of 1,000 μmol m-2 s-1 and 55% to 60% relative humidity.

Biochemical analysis

Chlorophyll content was estimated following the method of [96], using absorbance for chloro-

phyll a at 663 nm and chlorophyll b at 645 nm, that was measured with a UV-Vis spectropho-

tometer. The hydrogen peroxide content was determined as described [97], with absorbance at

390 nm. Malondialdehyde (MDA) Buffer solution was made with 0.07% NaH2PO42H2O and

1.6% Na2HPO4, 1% H2O2, and 20% trichloroacetic acid containing 0.5% thiobarbituric acid.

The absorbance of the supernatant was read at 532nm and MDA concentration was calculated

using the MDA extinction coefficient of 155 mM-1cm-1 [98]. Anthocyanin was quantified as

described [99], the absorbance measured at 525 nm and the anthocyanin concentration calcu-

lated in mg/gm of fresh weight using the millimolar extinction coefficient of 31.6. The content

of phenolics in the extract was determined according to [100] with some modifications, with

absorbance measured at 760 nm.

For the determination of Superoxide dismutase (SOD), Catalase (CAT) and total Peroxi-

dases (POD), the total proteins were extracted as described [101]. Total Superoxide dismutase

activity, the basis of its ability to inhibit the photochemical reduction of nitroblue tetrazolium

(NBT) [102], was assayed as described [103] with some modifications, the absorbance of the

reaction mixture measured at 560 nm. Catalase enzyme activity was assayed as described

[104], with the decrease in H2O2 assayed by a decrease in optical density at 240 nm, and the

activity calculated using the extinction coefficient of 40 mm-1 for H2O2. The peroxidase (POD)

activity was determined using the method of [105].

The antioxidant activity of the extracts, based on the scavenging activity of the stable

1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical, was determined following [106]. The

absorbance at 517 nm was used to calculate [(A0-A1)/A0] x 100 where A0 is the absorbance of

the control, and A1 is the extract. Glucose was estimated using 3,5-dinitrosalicylic acid (DNS)

according to the method described [107]. The absorbance was recorded at 570 nm where glu-

cose served as the standard. The sucrose was estimated using the method described by [108],

and the absorbance was recorded at 620 nm. Free proline content was determined according

to the procedure of [109], and the red color intensity was measured at 520 nm.

Analysis of Gene expression

Total RNA was extracted, using Trizol reagent (Invitrogen), from rice genotypes and cDNA

was synthesized using 2 μg total RNA treated with DNAse using GoScript reverse transcription

system (Promega). RT-qPCR reactions were performed using GoTaq qPCR Master Mix (Pro-

mega) with Ubiquitin as an internal reference gene [110]in a 96-CFX thermocycler(Bio-Rad).

The temperature increase (0.5˚ C 10 s-1) from 55˚C to 95˚C was used for the analysis of the

melting curve. Non-transcribed RNA was also run as a negative control. For qPCR analysis the

primers were selected based on literature searches on their role in cold tolerance and sequences

derived from accession numbers obtained from rice genome databases were used for primer
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designing using IDT primer designing tool. The primers used are listed in S2 Table. The rela-

tive expression differences for each of the samples in individual experiments was determined

by normalizing the Ct value for each gene in relation to Ubiquitin Ct value and the relative

fold change was calculated using the equation 2-ΔΔCt [111]. The expression analysis was per-

formed with three biological replicates and two technical replicates. Total RNA isolated from

three different leaves collected from three different plants under control and treatment are

treated as biological replicates while an aliquot of same sample for each sample was duplicated

serving as technical replicates. Data were used in the analysis of variance (ANOVA) and Stu-

dent’s t-test (1%), using the statistical program SAS 9.3 (SAS Institute, Cary, NC).

Analysis of protein expression

Total protein of four rice genotypes used in this work was extracted using the Protein Isolation

Buffer and methodology as described by [95]. The protein concentration in each sample was

determined by the Bradford assay [112] using bovine albumin as the standard (Fraction V,

Sigma). Total protein samples were loaded onto SDS-PAGE-Gel, with samples of 90 μg of pro-

tein. Spots of interest, showing differences were excised from the gel and digested using the

protocol described by [113]. All MALDI-MS and MS/MS analyses were performed using

Ultraflex II MALDI-TOF/TOF mass spectrometer (Bruker Daltonik, Bremen, Germany). All

LC-MS/MS was performed using Bruker Amazon-SL quadrupole ion trap mass spectrometer

with a captive spray ionization source. The resulting LC-MS/MS spectra were analyzed by Sky-

line-daily 3.6.9 software and shown in S1 Table [114].
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ciency.
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and Cypress) genotypes in response to cold stress.
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