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Abstract. Intelligent systems infer human psychological states using three types
of data: physiological, performance, and intrinsic factors. To date, few studies
have compared the performance of the data types in classification of psycholog-
ical states. This study compares the accuracy of three data types in classification
of four psychological states and two game difficulty-related parameters. Thirty
subjects played nine scenarios (different difficulty levels) of a computer game,
during which seven physiological measurements and two performance variables
were recorded. Then, a short questionnaire was filled out to assess the perceived
difficulty, enjoyment, valence and arousal, and the way the participant would
like to change two game parameters. Furthermore, participants’ intrinsic factors
were assessed using four questionnaires. All combinations of the three datasets
were used to classify six aspects of the short questionnaire into either two or
three classes using three types of classifiers. The highest accuracies for two-
class and three-class classification were 98.4% and 81.5%, respectively.
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1 Introduction

An intelligent cybernetic system can use affective computing techniques to infer
the user’s affective and cognitive states, then modify its behavior accordingly to en-
sure a positive user experience. For example, this approach is frequently used in com-
puter games to intelligently adapt game difficulty to suit the player’s mood and abil-
ity, thus providing a pleasant gameplay experience [1, 2]. The user’s affective and
cognitive states can be assessed using three types of data: physiological measure-
ments, task performance, and intrinsic factors [3].

Physiological measures from either the central or peripheral nervous system can
be used to quantitatively estimate psychological states in real time (during the task
itself) without the user’s active participation. They include the electroencephalogram
(EEG), [4] which records the electrical activity of the brain, electrocardiogram (ECG)
[5], which monitors electrical activity of the heart (specifically heart rate), galvanic



skin response (GSR) [5], which records the activity of the skin’s sweat glands, skin
temperature, respiration rate [6], and eye movement. All of the above physiological
signals were also analyzed in this study. Task performance is a task-specific concept
and is thus not as generalizable as physiology, but is also frequently used to assess
psychological states; in the case of games such as Pong, it is often defined simply as
the in-game score [7]. In this study, participants’ in-game score was recorded as well.
Finally, a participant’s intrinsic factors such as personality can provide significant
information, but are generally combined with physiology or task performance to clas-
sify cognitive and affective states. In this study, participants were asked to fill out four
questionnaires that assessed several intrinsic factors such as extraversion.

Playing a computer game may evoke several complex affective and cognitive
states, such as mental workload [2], enjoyment, anger, hate, and love [6]. Alternative-
ly, several studies have used two-dimensional models of emotion such as the valence-
arousal system to asses in-game emotion [8]. In contrast, however, when designing
systems that adapt game difficulty based on cognitive and affective states, most re-
searchers only focus on a single psychological aspect such as perceived task difficul-
ty. Thus, few studies have compared the ability of affective computing techniques to
classify multiple different psychological states within the same game.

This study examines the accuracy of three different input datasets (physiology, per-
formance, intrinsic factors) for classification of four different cognitive and affective
variables (perceived difficulty, enjoyment, valence, arousal) and two different desired
changes to game difficulty (ball speed, paddle size) in a computer-based game of
Pong. Accurate classification of psychological states is perhaps the most critical sci-
entific challenge of any game difficulty adaptation algorithm, and can be done using
automated classification algorithms such as support vector machines (SVM), linear
discriminant analysis [4]. Our ultimate goal is to have the computer game react to
these states and adapt its difficulty to ensure the optimal game experience or the user;
however, as the first step, this paper is limited to offline classification of psychologi-
cal states. The objective is to find the most informative features for psychological
state classification.

2 Materials and Methods

Study Setup: In the study, we evoked different cognitive and affective states in 30
healthy university students (24.2 + 4.4 years old, 11 females) using different difficulty
levels of a computer game that was reused from our previous arm rehabilitation study
[7]. It is a Pong game consisting of two paddles and a puck on a board (Fig. 1, left).
The bottom paddle is controlled by the participant while the top paddle is s controlled
by the computer. If the puck passes a player’s paddle and reaches the top or bottom of
the screen, the other player scores a point and the puck is instantly moved to the mid-
dle of the board, where it remains stationary for a second before moving in a random
direction. The game difficulty can be adjusted using two parameters: the ball speed
and the paddle size (with the paddle size being the same for both paddles at all times).
The player moves their paddle left and right by tilting the Bimeo (Kinestica, Slovenia)
arm rehabilitation device (Fig. 1, right) left and right.



Measured Data: For classification of the different affective and cognitive states,
three types of data were collected: game performance, physiology, and intrinsic fac-
tors. The performance dataset includes two game performance measures: in-game
score and the amount of arm movement, which is recorded by the Bimeo. To monitor
the impact of intrinsic user factors on performance and physiology, four question-
naires were filled out: the learning and performance goal orientation measure [9],
behavioral inhibition/activation scales [10], a self-efficacy scale [11], and a Big Five
personality measure [12]. Two g.USBamp signal amplifiers and associated sensors
(g.tec Medical Engineering GmbH, Austria) were used to record six types of physio-
logical signals: 8-channel EEG, 2-channel electrooculogram (EOG), ECG, respiration
[13], GSR, and ST. All physiological signals were sampled at 256 Hz. The EEG
channels were recorded from prefrontal, frontal and central areas of brain based on the
10-20 placement system [14]: AF3, AF4, F1, F2, F5, F6, C1, and C2. As EEG signals
are severely affected by eye activity, a 2-channel EOG was recorded to not only pro-
vide more physiological information but also to use as a reference signal with which
to denoise the EEG signals. One EOG channel reflected up-down movement while the
other one reflected left-right movement of the eyes. To record the EOG, small ECG
electrodes (Kindall) were placed according to suggestions in the literature [4]. Finally,
a seventh physiological signal (point of gaze on the screen in two dimensions) was
recorded using an eye tracker (Gazepoint, Canada).

Study Protocol: The study protocol started with a 2-minute baseline recording of
physiological signals, during which participants did not do anything and were in-
structed to relax. The main part of experiment then consisted of nine trials (test peri-
ods), each two minutes long. The nine trials consisted of all possible combinations of
ball speeds (slow, medium, fast) and paddle sizes (small, medium, large), played in
random order. After each trial, a short questionnaire was filled out to assess six pa-
rameters: perceived difficulty (1-7), enjoyment (1-7), valence (1-9, with 1 being very
positive and 9 being very negative), arousal (1-9), desired changes to ball speed (-2 to
2, where -2 means decrease by 2 levels), and desired changes to paddle size (-2 to 2,
where 2 means increase by two levels). It should be noted that the order of difficulty
settings was preset, and that the participant’s desired changes to the ball speed and
paddle size were not actually used to adapt difficulty.

Contribution of this study: The perceived difficulty, enjoyment, valence and
arousal obtained from the questionnaires were classified into either two (low/high) or

Fig. 1. The Pong game (left) and the BIMEO device (right).



three (low/medium/high) classes based on all combinations of the three recorded da-
tasets (performance, physiology, intrinsic factors). All three datasets also included the
current ball speed and paddle size. For 2-class classification, the class “low” was de-
fined as 1-3 for all categories while the class “high” was defined as 5-7 for perceived
difficulty and enjoyment or 7-9 for valence and arousal. In 3-class classification, the-
low, medium and high ranges were 1-2, 3-5 and 6-7 for perceived difficulty and en-
joyment; they were 1-3, 4-6 and 7-9 for valence and arousal. Similarly, the partici-
pants’ desired changes to game difficulty settings were mapped into either two (in-
crease /decrease) or three (increase/no change/decrease) classes. For both ball speed
and paddle size, 1 and 2 were mapped to the class “increase” while -1 and -2 were
mapped to “decrease”. For two-class classification, the “no change” class was
dropped.

As a basis for classification into two or three classes, we first used the stepwise
feature selection algorithm [13] to find the most informative set of features. Then,
three different classifiers (SVM with a linear kernel, decision tree, or ensemble deci-
sion tree) were used to classify combinations of the different datasets (performance,
physiology, intrinsic factors) into two or three classes for each of the six possible
outcome variables (perceived difficulty, enjoyment, valence, arousal, desired ball
speed and paddle size change) separately. The classifiers were validated using 10-fold
crossvalidation method using all selected data points (independent from participant).

3 Results

Table 1 presents the 2-class classification accuracies for all combinations of the in-
put datasets. The highest accuracy is obtained for classification of desired changes of
ball speed using physiological measurements. For the other five classification cases,
the combination of all datasets yields the most accurate classifier, with the lowest
classification accuracy (86.9%) obtained for perceived difficulty.

Table 2 presents the 3-class classification accuracies for all combinations of the in-
put datasets. The highest accuracy is obtained for emotional valence using the combi-
nation of all datasets. Physiology yielded the most accurate classifier for three of the
six classification cases; the other three classification cases, the combination of all
three datasets yielded the highest classification accuracy. The lowest classification
accuracy was obtained for the desired paddle size change.

Table 1. Two-class classification accuracies all combinations of datasets. If the
classification method is not mentioned, the support vector machine was used. (Ph:
Physiology, In: Intrinsic factors, Pe: Performance, *: Ensemble decision tree is used)

Classification cases Ph In Pe Ph&In Ph&Pe In&Pe All
Difficulty level 85.8%  *83.5%  *79.1% 85.7% 86.6% *83.0%  86.9%
Enjoyment 87.8%  *80.9%  73.3% 85.7% 85.4% *81.7%  86.5%
Valence 89.2%  *91.1%  88.8% 92.8% 94.9% *93.0%  93.9%
Arousal 89.0% *87. % 76.8% 89.8% 87.7% *86.3%  89.4%
Speed change 98.4%  *97.2%  92.0% 96.5% 97.9% *95.3%  96.6%

Paddle size Change  98.3% 92.2% 91.4% 97.5% 98.8% 92.4% 97.8%




Table. 2. Three-class classification accuracies for all combinations of datasets. If the
classification method is not mentioned, the support vector machine was used. (Ph:
Physiology, In: Intrinsic factors, Pe: Performance, *: Ensemble decision tree is used)

Classification cases Ph In Pe Ph&In Ph&Pe In&Pe All
Difficulty level 76.6%  *70.0%  65.2% 77.4% 77.9% *71.1%  81.1%
Enjoyment 68.8%  *69.1% 51.8% 70.1% 65.5% 64.8% 71.4%
Valence 70.7%  *67.0%  55.6% 75.6% 73.3% *66.3%  76.2%
Arousal 68.8%  *67.9% 54.8% 67.8% 66.7% *63.3%  66.7%
Speed change 80.0%  *77.0%  *70.7% 80.0% 77.4% *78.5%  81.5%

Paddle size change 74.1%  *722%  55.9% 75.6% 72.2% 73.0%  781%

4 Discussion

The obtained results compared the classification accuracy of game players’ psy-
chological states using all combinations of physiological signals, performance, and
intrinsic factors. The physiological dataset was the most informative of the three indi-
vidual datasets, dataset of the three, and the combination of all three datasets yielded
the best accuracy for 8 of the 12 classification cases. As the classifiers are highly ac-
curate, our next step will be to use them in a real-time manner: the participant’s psy-
chological state will be classified, and the game will then adapt its difficulty in a way
that is expected to increase player motivation. Since the classifiers are not computa-
tionally demanding, a real-time version of the classification procedure is feasible.
Prior to real-time implementation, the training dataset should be expanded to include
more than three possible discrete values of ball speed and paddle size, thus allowing
the psychological state classification to also be useful for very high and very low dif-
ficulties. Furthermore, it may be possible to further increase classification accuracy
and improve the user experience by including a history of previous difficulty levels
and psychological states that they evoked, thus allowing the computer to estimate how
participants reacted to certain difficulty levels in the past.

5 Conclusions

In this study, three sets of classifiers are used to classify four affective/cognitive
parameters of Pong game players into either 2 or 3 classes. The proposed classifiers
can also determine how participants would like to change the game difficulty to make
it more fun. Three data sets (physiological signals, game performance, and intrinsic
factors are used as the input of the classifiers. Among the 2-class classifiers, the high-
est accuracy was obtained for desired ball speed change (98.4%) while the lowest was
obtained for perceived difficulty level (86.9%). Among the 3-class classifiers, the
highest accuracy was obtained for desired ball speed change (81.5%) while the lowest
was obtained for psychological arousal (68.8%). As the next steps, additional im-
provements will be made to increase the classifiers’ robustness, and the classifiers



will then be used to adapt game difficulty in response to players’ psychological states,
thus improving the gameplay experience.
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