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Abstract. Hazardous driver states are the cause of many traffic accidents, and 

there is a great need for detection method of such states. This study thus pro-

poses a new classification method that is evaluated on a previously collected 

driving dataset, which includes combinations of four causes of hazardous driver 

states: drowsiness, high traffic density, adverse weather, and cell phone usage. 

The previous study was consisted of four sessions and eight scenarios within 

each session. Four physiological signals (e.g. electrocardiogram) and twenty 

vehicle kinematics signals (e.g. throttle, road offset) were recorded during each 

scenario. In both previous and present studies, the presence or absence of the 

different causes of hazardous driver states was classified. In this study, a new 

classifier based on principal component analysis and artificial neural networks 

is proposed. The obtained results show improvement across all classification 

accuracies especially when only vehicle kinematics data are used (mean of 

12.7%). 
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1 Introduction 

Hazardous mental or physical states are the cause of many traffic accidents. For in-

stance, fatigued driving resulted in an estimated 800 deaths and 41,000 injuries in the 

United States in 2015. Distracted driving, on the other hand, caused 1.25 million 

deaths worldwide in 2015, with an estimated 3,477 deaths in the United States alone 

[1].  

A system with the ability to detect hazardous driving states (HDS) and intervene in 

dangerous situations can mitigate the number of deaths and injuries, thus increasing 

driving safety. Although several such systems have been proposed (e.g. [2]), there is 

room for improvement. One important issue with such automated intervention sys-

tems is that they usually monitor a specific gesture or posture of the driver (e.g., 

hands-on/off the wheels) and do not identify the cause of HDS (e.g., stress). This 

study therefore aims to develop an automated system that not only detects HDS, but 

can also identify specific causes of HDS based on a combination of vehicle kinemat-



ics and driver physiology. The obtained results can be used to tailor the response of an 

intervention system to each cause of HDS.  

Many physical/physiological (e.g., fatigue) or cognitive/affective (e.g., anger) condi-

tions may cause HDS, and most causes of HDS therefore have both physical and men-

tal components. In this paper, we discuss four causes of HDS: distractions, fatigue, 

demanding driving conditions, and the driver’s characteristics. Distracted driving is 

perhaps the most infamous HDS, and can lead to catastrophic situations. Performing 

secondary tasks in addition to driving (e.g., using a cell phone) results in both visual 

distractions [3] and cognitive distractions [4]. Drivers need 7-12 seconds to regain 

situational awareness after each distraction [5], increasing the likelihood of accidents. 

Fatigue and drowsiness make driving even harder and affect both driver physiology 

[6] and vehicle kinematics [7]. Even if a driver is alert, difficult driving conditions 

like blizzards introduce a high level of mental demand. During such conditions, driv-

ers may devote all their mental resources and still not be able to drive effectively [3].  

Regardless of their causes, HDS can be assessed using three methods: physiological 

measurements, vehicle kinematics, and self-report questionnaires. Physiological sig-

nals can be unobtrusively recorded during driving and are correlated with many psy-

chological states (e.g. workload). A few examples of such signals in driving studies 

are the electrocardiogram (ECG) [8], which records heart rate [9], galvanic skin re-

sponse (GSR), which records the activity of the skin’s sweat glands [10], respiration 

rate (RR) [11], and skin temperature (ST) [12]. Vehicle kinematics, on the other hand, 

include signals such as longitudinal speed [13], rotation of the steering wheel [14], 

and the lateral lane position (distance from the lane center) [15].  

In our previous study [10], we exposed drivers to four different causes of HDS (mild 

sleep deprivation, adverse weather, cell phone use, and high traffic density), and col-

lected three different types of information: vehicle kinematics, physiological meas-

urements (RR, ST, GSR, and ECG), and driver characteristics (personality, mood, and 

stress level). We then created different classifiers to automatically identify the pres-

ence or absence of each of the four causes of HDS. The contribution of this study is to 

propose a new classification method that does not need to extract features from raw 

data and increases the classification accuracies. Of the three types of data from the 

previous study, vehicle kinematics and physiological measurements are used in this 

study.    

2 Study Setup and Protocol 

Study Setup: The dataset from the previous study includes data from 21 people (25.1 

± 8.7 years old, six females) who participated in four simulated driving sessions in the 

University of Wyoming driving simulator lab (WYOSIM). Of the four sessions, two 

were meant to mimic drowsy (mildly sleep-deprived) driving and were held in the 

early morning while it was still dark outside. In these two sessions, only night scenar-

ios were used in WYOSIM, and the participants were told to have less than 6 hours of 

sleep the preceding night. The other two sessions were meant to mimic alert driving, 

and participants were instructed to have more than 7 hours of sleep the preceding 

night.  These two sessions were held between 10 am and 5 pm, and only day scenarios 

were used in WYOSIM. The order of drowsy and alert driving sessions was random. 



Each session consisted of 8 scenarios (4 min/scenario) that represented all possible 

combinations of traffic density (high/low), weather (sunny/snowy), and cell phone use 

(phone/no phone), in random order. For low traffic density, participants drove on a 

highway with few cars (density factor 0.3 in WYOSIM); for high traffic density, they 

drove in a town with dense traffic (density factor 1.5) (Fig.1). In snowy weather, visi-

bility was lower than in sunny weather and the friction between the tires and the road 

was reduced to 60% of the sunny-weather value [16]. Furthermore, in the “cell 

phone” scenarios, participants used their cell phone to browse the Internet or send text 

messages [10].  

Measured signals: In each scenario, the g.USBamp signal amplifier (g.tec Medical 

Engineering GmbH, Austria) was used to record 4 physiological signals: electrocardi-

ogram, respiration, skin temperature, and galvanic skin response. Furthermore, 8 ve-

hicle kinematics signals were recorded: throttle force, lane number, lateral lane posi-

tion, road offset, longitudinal velocity, vertical velocity, and slip level of front and 

rear tires. In the previous study, three or more features were calculated from each raw 

signal (either physiology or vehicle kinematics), and the stepwise algorithm was used 

to select the best set of features. Then, three types of classifiers (support vector ma-

chine, decision tree, and  logistic regression) were used to classify the presence or 

absence of each of the four causes of HDS (traffic density, weather, cell phone, 

drowsiness) [10]. In this study, the raw signals were directly used as inputs to the 

classifiers. 

The contribution of this study: A classification method based on principal component 

analysis (PCA) and artificial neural networks (ANN) was implemented. Several bina-

ry ANN classifiers were used to classify the presence or absence of each cause of 

HDS. The computational advantage of the proposed method is that raw physiological 

and vehicle kinematics signals were used; therefore, there was no need for any pre-

processing or feature extraction methods. 

Let 𝜒 ∈  ℝ𝑛𝑠×𝑛𝑒×𝑛𝑡×𝑛𝑝×𝑛𝑚 denotes the previously collected data, where ns signi-

fies the number of subjects, ne is the number of sessions per subject, nt is the number 

of scenarios within each session, np is the number of data samples, and nm denotes the 

number of raw signals. In our study, ns=21, ne=4, nt=8, and five physiological signals 

with a sampling frequency of 512 Hz and eight vehicle kinematics signals with a 

sampling frequency of 60Hz  were recorded. Therefore, if only physiological signals 

are used, nm=4 signals and np=122,880 samples; if only vehicle kinematics signals are 

used, nm= 8 signals, and np=14,400 samples. The number of samples is calculated 

based on the sampling frequency and the length of each scenario (4 minutes). 

 

 

Fig.1. Town scenario (Left) and highway scenario (Right). 



In the PCA-ANN method, we first need to generate a data matrix, D, by stacking the 

raw signals. The matrix, D, is of size npm×nset, where npm=np×nm and nset=ns×ne×nt. 

Since npm is much larger than nset, the original covariance matrix (C′ = D DT) is a 

large-scale square matrix that requires prohibitively extensive computations to calcu-

late its eigenvectors. Instead, the covariance matrix with reduced dimensionality (C =
DT D) is used to allow easy calculation of eigenvectors. After calculating the eigen-

vectors of the covariance matrix with reduced dimensionality, the k best eigenvectors 

are selected (eigenvectors corresponding to the largest eigenvalues). The value of k is 

a hyperparameter that is selected by trial and error. In this study, k = 20 if only physi-

ology or only vehicle kinematics are used while k = 30 if both physiology and vehicle 

kinematics are used. Let Vk denotes the matrix of k best eigenvectors. In the next step, 

the input data for the ANN classifiers was then generated using W = DT D Vk, where 

W is the input data for the ANN [17]. Fig. 2 shows the structure of three-layer ANN 

classifiers with either 20 or 30 inputs and one output. For the first, second and third 

hidden layers, 25, 25 and 20 neurons are used, respectively. The hyperbolic tangent 

sigmoid function is chosen as the transfer function of all hidden layers as well as the 

output layer. For each cause of HDS, one ANN is developed using Levenberg-

Marquardt backpropagation algorithm as the training method. To train and test the 

classifiers, 75% and 25% of the data are used, respectively. The 4-fold cross-

validation method is used to validate the ANN classifiers, and the mean values of 

classification accuracies are reported. 

3 Result and Discussion 

In this section, the classification accuracies obtained from the new PCA-ANN method 

are compared to the results of the previous study. Table 1 shows the accuracies for 

three input types: physiology only, vehicle kinematics only, and both physiology and 

vehicle kinematics. The PCA-ANN method exhibits higher accuracy for classification 

of drowsiness using any input type, demonstrating a strong potential advantage over 

the previous methods. Likewise, the proposed method outperforms the previous 

methods when using vehicle kinematics to classify all four HDS causes, especially 

high/low traffic density (nearly 100% accuracy). In contrast, when using physiologi-

cal signals, the accuracy of the new PCA-ANN method varies significantly depending 

on the cause of HDS – from 16% worse to 23% better than the classification methods 

from the previous study. Overall, the obtained results show an improvement across all 

classification accuracies compared to the previous study: vehicle kinematics (mean 

improvement of 12.7%), physiological responses (mean improvement of 1.2%) and 

the combination of both (mean improvement of 2.7%). The high variation in differ 

 

 Fig.2. The proposed artificial neural network classifier. It uses 20 inputs for physio-

logical or vehicle kinematics only, and 30 inputs for the combination of them.   



Table 1. Classification accuracies obtained with different input data types using the 

classifiers from the previous study and using the proposed method (Physio: physiolo-

gy, Vk: vehicle kinematics, Ps: previous study, PCA-ANN: current study). 

 
Cell phone Alert vs. 

drowsy 

Highway 

vs. town 

Snowy 

vs. clear 

Physio (Ps) 81.8% 55.2% 86.8% 56.8% 

Physio (PCA-ANN) 69.9% 78.9% 70.5% 66.1% 

Vk (Ps) 64.3% 53.1% 83.3% 71.2% 

Vk (PCA-ANN) 74.1% 69.6% 99.9% 79.5% 

Both (Ps) 82.3% 55.2% 91.4% 71.5% 

Both (PCA-ANN) 75.9% 82.7% 81.5% 71.1% 

 

ferent nature of the inputs (raw data for PCA-ANN vs. extracted features in previous 

study) or due to the difference in classifiers. The exact reasons for the differences 

between the new method and the previous methods could be further investigated in 

future studies.  

The new PCA-ANN method does have a few negative aspects as well. For instance, 

since we do not know what properties of the raw data are being used for classification, 

it is more difficult to identify the specific effect of each cause of HDS on physiology  

and vehicle kinematics. Another drawback of the proposed method is the trial-and-

error process of choosing the ANN topology. 

4 Conclusion 

This study uses a previously collected driving dataset to test the performance of a 

PCA-ANN classification method in categorizing the presence or absence of four 

causes of HDS. Two types of data (physiological and vehicle kinematics) and their 

combination are used, and the obtained accuracies are compared with the results of 

the previous study. The highest classification accuracies of the proposed method were 

75.9% for cell phone use, 82.7% for alert vs. drowsy driving, 99.9% for low vs. high 

traffic density, and 79.5% for snowy vs. clear weather. Generally, the proposed meth-

od performed better than the method of the previous study when only vehicle kine-

matics data was used. In the case of physiological measurements only, however, the 

results vary significantly – the accuracy of the PCA-ANN method ranges from 16% 

worse to 23% better than the results of the previous study. This high variation in re-

sults indicates that different causes of HDS require different approaches to be classi-

fied accurately. 

As the next step, the developed HDS detection systems should be combined with 

intervention systems that will take actions to increase driver safety based on the de-

tected HDS. These intervention systems can then be tested in simulated and real driv-

ing to determine their effect on driver safety and satisfaction. 
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