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Abstract. Hazardous driver states are the cause of many traffic accidents, and
there is a great need for detection method of such states. This study thus pro-
poses a new classification method that is evaluated on a previously collected
driving dataset, which includes combinations of four causes of hazardous driver
states: drowsiness, high traffic density, adverse weather, and cell phone usage.
The previous study was consisted of four sessions and eight scenarios within
each session. Four physiological signals (e.g. electrocardiogram) and twenty
vehicle kinematics signals (e.g. throttle, road offset) were recorded during each
scenario. In both previous and present studies, the presence or absence of the
different causes of hazardous driver states was classified. In this study, a new
classifier based on principal component analysis and artificial neural networks
is proposed. The obtained results show improvement across all classification
accuracies especially when only vehicle kinematics data are used (mean of
12.7%).
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1 Introduction

Hazardous mental or physical states are the cause of many traffic accidents. For in-
stance, fatigued driving resulted in an estimated 800 deaths and 41,000 injuries in the
United States in 2015. Distracted driving, on the other hand, caused 1.25 million
deaths worldwide in 2015, with an estimated 3,477 deaths in the United States alone
[1].

A system with the ability to detect hazardous driving states (HDS) and intervene in
dangerous situations can mitigate the number of deaths and injuries, thus increasing
driving safety. Although several such systems have been proposed (e.g. [2]), there is
room for improvement. One important issue with such automated intervention sys-
tems is that they usually monitor a specific gesture or posture of the driver (e.g.,
hands-on/off the wheels) and do not identify the cause of HDS (e.g., stress). This
study therefore aims to develop an automated system that not only detects HDS, but
can also identify specific causes of HDS based on a combination of vehicle kinemat-



ics and driver physiology. The obtained results can be used to tailor the response of an
intervention system to each cause of HDS.

Many physical/physiological (e.g., fatigue) or cognitive/affective (e.g., anger) condi-
tions may cause HDS, and most causes of HDS therefore have both physical and men-
tal components. In this paper, we discuss four causes of HDS: distractions, fatigue,
demanding driving conditions, and the driver’s characteristics. Distracted driving is
perhaps the most infamous HDS, and can lead to catastrophic situations. Performing
secondary tasks in addition to driving (e.g., using a cell phone) results in both visual
distractions [3] and cognitive distractions [4]. Drivers need 7-12 seconds to regain
situational awareness after each distraction [5], increasing the likelihood of accidents.
Fatigue and drowsiness make driving even harder and affect both driver physiology
[6] and vehicle kinematics [7]. Even if a driver is alert, difficult driving conditions
like blizzards introduce a high level of mental demand. During such conditions, driv-
ers may devote all their mental resources and still not be able to drive effectively [3].
Regardless of their causes, HDS can be assessed using three methods: physiological
measurements, vehicle kinematics, and self-report questionnaires. Physiological sig-
nals can be unobtrusively recorded during driving and are correlated with many psy-
chological states (e.g. workload). A few examples of such signals in driving studies
are the electrocardiogram (ECG) [8], which records heart rate [9], galvanic skin re-
sponse (GSR), which records the activity of the skin’s sweat glands [10], respiration
rate (RR) [11], and skin temperature (ST) [12]. Vehicle kinematics, on the other hand,
include signals such as longitudinal speed [13], rotation of the steering wheel [14],
and the lateral lane position (distance from the lane center) [15].

In our previous study [10], we exposed drivers to four different causes of HDS (mild
sleep deprivation, adverse weather, cell phone use, and high traffic density), and col-
lected three different types of information: vehicle kinematics, physiological meas-
urements (RR, ST, GSR, and ECG), and driver characteristics (personality, mood, and
stress level). We then created different classifiers to automatically identify the pres-
ence or absence of each of the four causes of HDS. The contribution of this study is to
propose a new classification method that does not need to extract features from raw
data and increases the classification accuracies. Of the three types of data from the
previous study, vehicle kinematics and physiological measurements are used in this
study.

2 Study Setup and Protocol

Study Setup: The dataset from the previous study includes data from 21 people (25.1
+ 8.7 years old, six females) who participated in four simulated driving sessions in the
University of Wyoming driving simulator lab (WYOSIM). Of the four sessions, two
were meant to mimic drowsy (mildly sleep-deprived) driving and were held in the
early morning while it was still dark outside. In these two sessions, only night scenar-
ios were used in WYOSIM, and the participants were told to have less than 6 hours of
sleep the preceding night. The other two sessions were meant to mimic alert driving,
and participants were instructed to have more than 7 hours of sleep the preceding
night. These two sessions were held between 10 am and 5 pm, and only day scenarios
were used in WYOSIM. The order of drowsy and alert driving sessions was random.



Each session consisted of 8 scenarios (4 min/scenario) that represented all possible
combinations of traffic density (high/low), weather (sunny/snowy), and cell phone use
(phone/no phone), in random order. For low traffic density, participants drove on a
highway with few cars (density factor 0.3 in WYOSIM); for high traffic density, they
drove in a town with dense traffic (density factor 1.5) (Fig.1). In snowy weather, visi-
bility was lower than in sunny weather and the friction between the tires and the road
was reduced to 60% of the sunny-weather value [16]. Furthermore, in the “cell
phone” scenarios, participants used their cell phone to browse the Internet or send text
messages [10].

Measured signals: In each scenario, the g.USBamp signal amplifier (g.tec Medical
Engineering GmbH, Austria) was used to record 4 physiological signals: electrocardi-
ogram, respiration, skin temperature, and galvanic skin response. Furthermore, 8 ve-
hicle kinematics signals were recorded: throttle force, lane number, lateral lane posi-
tion, road offset, longitudinal velocity, vertical velocity, and slip level of front and
rear tires. In the previous study, three or more features were calculated from each raw
signal (either physiology or vehicle kinematics), and the stepwise algorithm was used
to select the best set of features. Then, three types of classifiers (support vector ma-
chine, decision tree, and logistic regression) were used to classify the presence or
absence of each of the four causes of HDS (traffic density, weather, cell phone,
drowsiness) [10]. In this study, the raw signals were directly used as inputs to the
classifiers.

The contribution of this study: A classification method based on principal component
analysis (PCA) and artificial neural networks (ANN) was implemented. Several bina-
ry ANN classifiers were used to classify the presence or absence of each cause of
HDS. The computational advantage of the proposed method is that raw physiological
and vehicle kinematics signals were used; therefore, there was no need for any pre-
processing or feature extraction methods.

Lety € R™s*MeXMeXNpXNm denotes the previously collected data, where ns signi-
fies the number of subjects, n. is the number of sessions per subject, n; is the number
of scenarios within each session, n, is the number of data samples, and nm denotes the
number of raw signals. In our study, n&=21, n.=4, n=8, and five physiological signals
with a sampling frequency of 512 Hz and eight vehicle kinematics signals with a
sampling frequency of 60Hz were recorded. Therefore, if only physiological signals
are used, nn=4 signals and n,=122,880 samples; if only vehicle kinematics signals are
used, n,= 8 signals, and n,=14,400 samples. The number of samples is calculated
based on the sampling frequency and the length of each scenario (4 minutes).

Fig.1. Town scenario (Left) and highway scenario (Right).



In the PCA-ANN method, we first need to generate a data matrix, D, by stacking the
raw signals. The matrix, D, is of size npmXnge;, Where npm=npyxnm and nge=nsxnexn.
Since npm is much larger than ny, the original covariance matrix (C' = D DT) is a
large-scale square matrix that requires prohibitively extensive computations to calcu-
late its eigenvectors. Instead, the covariance matrix with reduced dimensionality (C =
DT D) is used to allow easy calculation of eigenvectors. After calculating the eigen-
vectors of the covariance matrix with reduced dimensionality, the k best eigenvectors
are selected (eigenvectors corresponding to the largest eigenvalues). The value of k is
a hyperparameter that is selected by trial and error. In this study, & = 20 if only physi-
ology or only vehicle kinematics are used while £ = 30 if both physiology and vehicle
kinematics are used. Let Vi denotes the matrix of & best eigenvectors. In the next step,
the input data for the ANN classifiers was then generated using W = DT D Vy, where
W is the input data for the ANN [17]. Fig. 2 shows the structure of three-layer ANN
classifiers with either 20 or 30 inputs and one output. For the first, second and third
hidden layers, 25, 25 and 20 neurons are used, respectively. The hyperbolic tangent
sigmoid function is chosen as the transfer function of all hidden layers as well as the
output layer. For each cause of HDS, one ANN is developed using Levenberg-
Marquardt backpropagation algorithm as the training method. To train and test the
classifiers, 75% and 25% of the data are used, respectively. The 4-fold cross-
validation method is used to validate the ANN classifiers, and the mean values of
classification accuracies are reported.

3 Result and Discussion

In this section, the classification accuracies obtained from the new PCA-ANN method
are compared to the results of the previous study. Table 1 shows the accuracies for
three input types: physiology only, vehicle kinematics only, and both physiology and
vehicle kinematics. The PCA-ANN method exhibits higher accuracy for classification
of drowsiness using any input type, demonstrating a strong potential advantage over
the previous methods. Likewise, the proposed method outperforms the previous
methods when using vehicle kinematics to classify all four HDS causes, especially
high/low traffic density (nearly 100% accuracy). In contrast, when using physiologi-
cal signals, the accuracy of the new PCA-ANN method varies significantly depending
on the cause of HDS — from 16% worse to 23% better than the classification methods
from the previous study. Overall, the obtained results show an improvement across all
classification accuracies compared to the previous study: vehicle kinematics (mean
improvement of 12.7%), physiological responses (mean improvement of 1.2%) and
the combination of both (mean improvement of 2.7%). The high variation in differ
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Fig.2. The proposed artificial neural network classifier. It uses 20 inputs for physio-
logical or vehicle kinematics only, and 30 inputs for the combination of them.




Table 1. Classification accuracies obtained with different input data types using the
classifiers from the previous study and using the proposed method (Physio: physiolo-
gy, Vk: vehicle kinematics, Ps: previous study, PCA-ANN: current study).

Cell phone  Alert vs. Highway Snowy

drowsy vs. town vs. clear
Physio (Ps) 81.8% 55.2% 86.8% 56.8%
Physio (PCA-ANN) 69.9% 78.9% 70.5% 66.1%
Vk (Ps) 64.3% 53.1% 83.3% 71.2%
Vk (PCA-ANN) 74.1% 69.6% 99.9% 79.5%
Both (Ps) 82.3% 55.2% 91.4% 71.5%
Both (PCA-ANN) 75.9% 82.7% 81.5% 71.1%

ferent nature of the inputs (raw data for PCA-ANN vs. extracted features in previous
study) or due to the difference in classifiers. The exact reasons for the differences
between the new method and the previous methods could be further investigated in
future studies.

The new PCA-ANN method does have a few negative aspects as well. For instance,
since we do not know what properties of the raw data are being used for classification,
it is more difficult to identify the specific effect of each cause of HDS on physiology
and vehicle kinematics. Another drawback of the proposed method is the trial-and-
error process of choosing the ANN topology.

4 Conclusion

This study uses a previously collected driving dataset to test the performance of a
PCA-ANN classification method in categorizing the presence or absence of four
causes of HDS. Two types of data (physiological and vehicle kinematics) and their
combination are used, and the obtained accuracies are compared with the results of
the previous study. The highest classification accuracies of the proposed method were
75.9% for cell phone use, 82.7% for alert vs. drowsy driving, 99.9% for low vs. high
traffic density, and 79.5% for snowy vs. clear weather. Generally, the proposed meth-
od performed better than the method of the previous study when only vehicle kine-
matics data was used. In the case of physiological measurements only, however, the
results vary significantly — the accuracy of the PCA-ANN method ranges from 16%
worse to 23% better than the results of the previous study. This high variation in re-
sults indicates that different causes of HDS require different approaches to be classi-
fied accurately.

As the next step, the developed HDS detection systems should be combined with
intervention systems that will take actions to increase driver safety based on the de-
tected HDS. These intervention systems can then be tested in simulated and real driv-
ing to determine their effect on driver safety and satisfaction.
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