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Abstract

In Generalized Linear Estimation (GLE) prob-
lems, we seek to estimate a signal that is ob-
served through a linear transform followed by
a component-wise, possibly nonlinear and noisy,
channel. In the Bayesian optimal setting, Gener-
alized Approximate Message Passing (GAMP) is
known to achieve optimal performance for GLE.
However, its performance can significantly de-
grade whenever there is a mismatch between the
assumed and the true generative model, a situa-
tion frequently encountered in practice. In this
paper, we propose a new algorithm, named Gener-
alized Approximate Survey Propagation (GASP),
for solving GLE in the presence of prior or model
mis-specifications. As a prototypical example, we
consider the phase retrieval problem, where we
show that GASP outperforms the corresponding
GAMP, reducing the reconstruction threshold and,
for certain choices of its parameters, approaching
Bayesian optimal performance. Furthermore, we
present a set of State Evolution equations that ex-
actly characterize the dynamics of GASP in the
high-dimensional limit.

1. Introduction

Approximate message passing (AMP) algorithms have be-
come a well established tool in the study of inference prob-
lems (Donoho et al., 2009; Donoho & Montanari, 2016;
Advani & Ganguli, 2016) that can be represented by dense
graphical models. An important feature of AMP is that its
dynamical behavior in the large system limit can be exactly
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predicted through a dynamical system involving only scalar
quantities called State Evolution (SE) (Bayati & Monta-
nari, 2011). This relationship paved the way for a series of
rigorous results (Rangan & Fletcher, 2012; Deshpande &
Montanari, 2014; Deshpande et al., 2016). It also helps clar-
ify the connection to several fascinating predictions obtained
through the replica analysis in statistical physics (Mézard
et al., 1987). In the optimal Bayesian setting, where one
has perfect information on the process underlying data gen-
eration, AMP has been empirically shown to achieve opti-
mal performances among polynomial algorithms for many
different problems. However, in the more realistic case
of mismatch between the assumed and the true generative
model, i.e. when AMP is not derived on the true posterior
distribution, it may become sub-optimal. A possible source
of problems for the AMP class of algorithms is the out-
break of Replica Symmetry Breaking (Mézard et al., 1987),
a scenario where an exponential number of fixed point and
algorithmic barriers dominate the free energy landscape ex-
plored by AMP. This phenomena can be accentuated in case
of model mismatch: a notable example is maximum likeli-
hood estimation (as opposed to estimation by the posterior
mean, which corresponds to the low temperature limit of a
statistical physics model.

These considerations are well known within the physics
community of disordered systems (Krzakala et al., 2016),
where the problem of signal estimation is informally re-
ferred to as “crystal hunting”. Estimation problems in high
dimensions are characterized by a complex energy-entropy
competition where the true signal is hidden in a vast and po-
tentially rough landscape. In a wide class of problems, one
observes the presence of a algorithmically “hard” phase for
some range of values for the parameters defining the prob-
lem (e.g. signal-to-noise ration). In this regime, all known
polynomial complexity algorithms fail to saturate the in-
formation theoretic bound (Ricci-Tersenghi et al., 2019).
While reconstruction is possible in principle, algorithms
are trapped in a region of the configuration space with low
overlap with the signal and many local minima (Antenucci
et al., 2019a; Ros et al., 2019).

In a recent work (Antenucci et al., 2019b), a novel message-
passing algorithm, Approximate Survey Propagation (ASP),
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was introduced in the context of low-rank. The algorithm
is based on the /-step Replica Symmetry Breaking (1RSB)
ansatz from spin glass theory (Mézard et al., 1987), which
was specifically developed to deal with landscapes popu-
lated by exponentially many local minima. It was shown
that ASP on the mismatched model could reach the perfor-
mance of (but not improve on) matched AMP and do far
better than mismatched AMP (Antenucci et al., 2019a;b). In
the present paper, we build upon these previous works and
derive the ASP algorithm for Generalized Linear Estimation
(GLE) models. Since the extension of AMP to GLE prob-
lems is commonly known as GAMP, we call Generalized
Approximate Survey Propagation (GASP), our extension
of ASP. We will show that also in this case, in presence of
model mismatch, (G)ASP improves over the corresponding
(G)AMP.

2. Model specification

An instance of the general class of models to which GASP
can be applied is defined, for some integer M and N, by
an observed signal y € R™ and an M x N observation
matrix F'. Clearly, this scenario encompasses also GLE. We
denote with F*, i € [M], the rows of F and refer to the
ratio « = M/N as the sampling ratio of F. We consider a
probability density distribution p(x) on a (possibly discrete)
space XV, x C R, defined as:

1
pla) = e MHur(®), (1)

where, following statistical physics jargon, 3 plays the role
of an inverse temperature, Z is a normalization factor called
partition function (both Z and p implicitly depend on 53, y
and F'), and H, r is the Hamiltonian of the model, that in
our setting takes the form:

N

M
Hyr(@) =D Lyu (F*,@) + > r(z:). ()

i=1

Here (e, ) denotes the scalar product and we call £ and r the
loss function and the regularizer of the problem respectively.

In this quite general context, the purpose of GASP is to ap-
proximately compute the marginal distribution p(z;), along
with some expected quantities such as e.g. £ = E,x. The
approximation entailed in GASP turns out to be exact under
some assumptions in the large /N limit, as we shall later
see. A crucial assumption in the derivation of the GASP
algorithm (and of GAMP as well), is that the entries of F’
are independently generated according to some zero mean
and finite variance distribution.

Although the general formulation of GASP, presented in
Sec. 2 of the SM, is able to deal with any model of the form
(1), we will here restrict the setting to discuss Generalized
Linear Estimation (Rangan, 2011).

In GLE problems, p(x) is sensibly chosen in order to in-
fer a true signal xy € RYN . whose components are as-
sumed to be independently extracted from some prior F,
x0; ~ Pp Vi € [N]. The observations are indepen-
dently produced by a (probabilistic) scalar channel P°":
Y ~ P (o | (F*, ).

It is then reasonable to choose £(y, z) = —log P*"'(y|z),
r(z) = —log Py(x) and 8 = 1, so that the probability den-
sity p(x) corresponds to the true posterior P(x|F,y) x
P"(y|x, F)Py(x), where  denotes equality up to a nor-
malization factor. We refer to this setting as to the Bayesian-
optimal or matched setting (Barbier et al., 2018). Notice that
in the 5 1 oo limit p(z) concentrates around the maximum-
a-posteriori (MAP) estimate. If 8 # 1 or if the Hamiltonian
doesn’t correspond to the minus log posterior (e.g, when P
and P°" used in the Hamiltonian do not correspond to true
ones) we talk about model mismatch.

As a testing ground for GASP, and the corresponding State
Evolution, we here consider the phase retrieval problem,
which has undergone intense investigation in recent years
(Candes et al., 2015; Dhifallah & Lu, 2017; Chen et al.,
2018; Goldstein & Studer, 2018; Mondelli & Montanari,
2018; Sun et al., 2018; Mukherjee & Seelamantula, 2018).
‘We examine its noiseless and real-valued formulation, where
observations are generated according to the process

Lo NN(OvIN)a (3)
Fl'~N(0,1/N) Vupe[M],Vie[N], (4
Yu ~ |[(F", o). &)

for some M and N, such that « = M/N > 1. For such
generative model, we will focus on the problem of recover-
ing x( by minimizing the energy function H,, r(x) of Eq.
(2), in the case

Uy 2) = (y = |2 (©)
r(xz) = %/\ 2%, (7

Since the setting assumed for inference corresponds to MAP
estimation in presence of a noisy channel, we are dealing
with a case of model mismatch. The effect of the parameter
A on the estimation shall be explored in Sec. 7, but we
assume A = 0 until then. The optimization procedure will
be performed using the zero-temperature (i.e. S 1T 00)
version of the GASP algorithm.

3. Previous work on Approximate Message
Passing for Phase Retrieval

Generalized approximate message passing (GAMP) was
developed and rigorously analyzed in Refs. (Rangan, 2011)
and (Javanmard & Montanari, 2013). It was then applied
for the first time to the (complex-valued) phase retrieval
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problem in Ref. (Schniter & Rangan, 2015). In Ref. (Barbier
et al., 2018) the authors report an algorithmic threshold for
the perfect recovery of oy, ~ 1.13, when using matched
AMP on the real-valued version of the problem. This is to
be compared to the information theoretic bound oyt = 1.

The performance of GAMP in the MAP estimation set-
ting, instead, was investigated in Ref. (Ma et al., 2018;
2019). A “vanilla” implementation of the zero tempera-
ture GAMP equations for the absolute value channel was
reported to achieve perfect recovery for real-valued signals
above g ~ 2.48. The authors were able to show that the
algorithmic threshold of GAMP in the mismatched case can
however be drastically lowered by introducing regulariza-
tion a regularization term ultimately continued to zero. The
AMP.A algorithm proposed in (Ma et al., 2018; 2019) uses
an adaptive Lo regularization that improves the estimation
threshold and also makes the algorithm more numerically
robust compensating a problematic divergence that appears
in the message-passing equations (see Sec. 1.3 in the SM
for further details).

Another important ingredient for AMP.A’s performance is
initialization: in order to achieve perfect recovery one has to
start from a configuration that falls within the basin of attrac-
tion of the true signal, which rapidly shrinks as the sampling
ratio o decreases. A well-studied method for obtaining a
configuration correlated with the signal is spectral initial-
ization, introduced and studied in Refs. (Jain et al., 2013;
Candes et al., 2015; Chen & Candes, 2015): in this case the
starting condition is given by the principal eigenvector of
a matrix obtained from the data matrix F' and the labels y
passed through a nonlinear processing function. The asymp-
totic performance of this method was analyzed in (Lu & Li,
2017), while the form of the optimal processing function
was described in (Mondelli & Montanari, 2018; Luo et al.,
2019). However, since the SE description is based on the
assumption of the initial condition being uncorrelated with
the data, in AMP.A the authors revisited the method, propos-
ing a modification that guarantees “enough independency”
while still providing high overlap between the starting point
and the signal.

With the combination of these two heuristics, AMP.A is able
to reconstruct the signal down a1 =~ 1.5. In the present pa-
per we will show that, with a basic continuation scheme, the
1RSB version of the zero temperature GAMP can reach the
Bayes-optimal threshold o, & 1.13 also in the mismatched
case, without the need of spectral initialization.

3.1. GAMP equations at zero temperature

Here we provide a brief summary of the AMP equations
for the general graphical model of Eq. (1), in the 8 1 oo
limit. This is both to allow an easy comparison with our
novel GASP algorithm and to introduce some notation that

will be useful in the following discussion. There is some
degree of model dependence in the scaling of the messages
when taking the zero-temperature limit: here we adopt the
one appropriate for over-constrained models in continuous
space. Details of the derivation can be found in Sec. 1 of
the SM, along with the specialization of the equations for
phase retrieval.

First, we introduce two free entropy functions associated to
the input and output channels (Rangan, 2011):

. 1
©"(B,A) = max —r(x) — §AJ:2 +Bz  (8)

(u = w)?

out
V,y) = —
" (w, V,y) max Y

We define for convenience ™" = (B!, A*) and et =
@™ (w!,, V*=1,y,). In our notation the GAMP message
passing equations read:

wh =Y Flait—glmtvi! (10)
9 = O™ (1
Il = =020t (12)
Al =cp ) T, (13)
"
Bl =Y Flg, +a " Al (14)
w
it = g™ (15)
AL = 0pe (16)
Vi=cp) Al (17)

where cp = 1 >0 wiFL )2. It is clear from the equations
that the two free entropy functions are supposed to be twice
differentiable. This is not the case for phase retrieval, where
GAMP encounters some non-trivial numerical stability is-
sues: during the message-passing iterations one would have
to approximately evaluate an empirical average of 92 @ﬁ”t’t,
containing Dirac’s §-function. This is the problem encoun-
tered in AMP.A of Ref. (Ma et al., 2018). We will see that
this problem is not present in GASP thanks to a Gaussian

smoothing of the denoising function.

4. Generalized Approximate Survey
Propagation

The (G)ASP algorithm builds on decades of progress within
the statistical physics community in understanding and deal-
ing with rough high-dimensional landscapes. The starting
point for the derivation of the algorithm is the partition
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function of m replicas (or clones) of the system {x®}7" ;:

m N
" :/Hdeg e B i Hy r(®) (18)

a=11i=1

Note that, while this probability measure factorizes trivially,
setting m # 1 can introduce many important differences
with respect to the standard case, both from the algorith-
mic and from the physics standpoints (Monasson, 1995;
Antenucci et al., 2019b).

We write down the Belief Propagation (BP) equations as-
sociated to the replicated factor graph, where messages are
probability distributions associated to each edge over the
single-site replicated variables Z; = (z},...,27). We
make the assumption that the messages are symmetric un-
der the group of replica indexes permutations. This allows
for a parametrization of the message passing that can be
continued analytically to any real value of m. The resulting
algorithm goes under the name of 1RSB Cavity Method or,
more loosely speaking, of Survey Propagation (with refer-
ence in particular to a zero temperature version of the IRSB
cavity method in discrete constraint satisfaction problems),
and led to many algorithmic breakthroughs in combinato-
rial optimization on sparse graphical models (Mézard et al.,
2002; Braunstein et al., 2005; Krzakata et al., 2007). One
possible derivation of the (G)ASP algorithm is as the dense
graph limit of the Survey Propagation equations, in the
same way as AMP is obtained starting from BP. The deriva-
tion requires two steps. First, BP messages are projected
by moment-matching onto (replica-symmetric) multivariate
Gaussian distributions on the replicated variables € R™,
which we express in the form

v(Z) /dh E_ﬁ(h_i)z H e_ﬁ(xu_h)z; (19)

a=1

Then, messages on the edges are conveniently expressed in
term of single site quantities. We note that, some statistical
independence assumptions on the entries of the measure-
ment matrix are crucial for the derivation, as goes for AMP
as well. While the starting point of the derivation assumed
integer m, the resulting message passing can be analytically
continued to any real m. Applying this procedure to the
GLE graphical model of Eq. (1) we obtain the GASP equa-
tions. Here we consider the 5 1 oo limit to deal with the
MAP estimation problem. Details of the GASP derivation
and the finite 5 GASP equations are given in Sec. 2 of the
SM. Particular care has to be taken in the limit procedure,
as a proper rescaling with 3 is needed for each parameter.
For instance, as the range of sensible choices for m shrinks
towards zero for increasing (3, we rescale m through the
substitution m < m/f.

Relying on the definitions given Egs. (8) and (9), we intro-

Algorithm 1 GASP(m) for MAP

initialize g, = 0V

initialize V{, V1, @; Vi to some values

for t = 1 to ¢, do
compute wy,, gy, '), T}, Vpu using (22,23, 24, 25)
compute Ay, A; using (26,27)
compute B;, Z;, Ag i, Aq; Vi using ( 28, 29, 30, 31)
compute V0, V! using (32, 33)

end for

duce the two 1RSB free entropies:

. 1 in
6 (B, Ag, rym) = Jog [ Dz e VA A
m
o)

1 out
¢Out(w,V0,%,y,m) :Elog/Dz eme (w+¢70z,vl,y).
(21)

Here f Dz denotes the standard Gaussian integra-
tion [dz exp(—z%/2)/v2m. Using the shorthand no-
tations qSiin’t = ¢"(BL AL AL,m) and @Ot =
™ (wh, Vo~ Vi yu,m)  (notice the shift in the
time indexes), and using again the definition cp =
11N 2oni(Fl')? (hence Ecp = 1/N in our setting), the
GASP equations read:

wh=Y FlEt =gl mVyT V) (22

9, = a; oLt (23)
G, = 20v, 60" — (g),)? (24)
Iy, =—02¢%"" +mlf , (25)

Ay =cp> T, (26)

At = cp i T, 27

Iz
Bl =) Fl'gl, — &' (mAj — A}) (28)
Iz

il = o™t (29)
Ab ;= =204, 80" — () (30)
AL =056 — mAb . (31)

Vi =cr ) Ap; (32)

Vi =cr Z Al (33)

The computational time and memory complexity per itera-
tion of the algorithm is the same of GAMP and is determined
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by the linear operations in Egs. (22) and (28). With respect
to GAMP, we have the additional (but sub-leading) com-
plexity due to the integrals in the input and output channels.
In some special cases, the integrals in Egs. (20) and (21)
can be carried out analytically (e.g. in the phase retrieval
problem).

Notice that GASP iteration reduces to standard GAMP it-
erations if Vg and Ag are initialized (or shrink) to zero,
but can produce non-trivial fixed points depending on the
initialization condition and on the value of m.

We remark the importance of setting the time-indices cor-
rectly in order to allow convergence (Caltagirone et al.,
2014). The full algorithm is detailed in Alg. 1.

The expressions for the special case of the absolute value
channel (6) and L, regularization (7) can be found in Sec.
2.4 of the SM. An important comment is that the divergence
issue arising in AMP.A, in the same setting, does not affect
GASP: the discontinuity in the expression for the minimizer
of Eq. (9) is smoothed out in the IRSB version by the
Gaussian integral in Eq. (20). We also note that, in phase
retrieval, a problematic initialization can be obtained by
choosing configurations that are exactly orthogonal to the
signal, since the message-passing will always be trapped in
the uninformative fixed-point (due to the Z5 symmetry of
the problem). However, for finite size instances, a random
Gaussian initial condition will have an overlap p = (&, ¢)

of order O (1 / VN ) with the signal, which allows to escape

the uninformative fixed point whenever it is unstable (i.e.
for high «).

In Fig. 1 (Top and Middle), we show the probability of a per-
fect recovery and convergence times of GASP for the real-
valued phase retrieval problem, for different sampling ratios
« and values of the symmetry-breaking parameter m, with
A = 0. The initial condition is given by V§=° = V=0 =1
and &'=° ~ N(0, Iy). Notice that standard Gaussian ini-
tialization is able to break the symmetry of the channel and,
at large ¢, GASP matches the fixed points predicted by SE
(see next Section) with a small initial overlap with the true
signal (p*=% = 10~3). In order to achieve signal recovery
at low «, the symmetry-breaking parameter has to be in-
creased. In correspondence of values m ~ 100, we report
an algorithmic threshold around a;\EO ~ 1.5. This thresh-
old is comparable to the one of AMP.A, without exploiting
adaptive regularization and spectral initialization as AMP.A
(and which could be employed also for GASP).

We report that, at fixed m, when « is increased above a
certain value the message-passing will stop converging. The
oscillating/diverging behavior of the messages can however
be exploited for hand-tuning m, in the absence of a replica
analysis to support the selection of its most appropriate
value. More details can be found in Sec. 3 of the SM.

m=
0.8 r m=
1

0.6 s 1

succ. prob.

02} y |

1.4 1.6 1.8 2 2.2 2.4

08 L 1

=1000)
3
L
o

p(t

0.4 m=100 |

Figure 1. (Top) Probability of perfect recovery of the true signal
using GASP (Alg. 1), as a function of the sampling ratio o =
M/N. (Middle) GASP and SE result after t = 103 iterations. Start
att = 0 with p = 1072 for SE and & ~ AN(0, Iy) for GASP
(N = 103, averaged over 100 samples). (Bottom) Overlap p
with the true signal predicted by SE dynamics at « = 2 and initial
overlap p = 0.1 (black lines) compared to 10 GASP trajectories
for each value of m. Here N = 10*.
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We presented here the zero-temperature limit of the GASP
message-passing to solve the MAP problem. Refer to Sec.
2 of the SM for a more general formulation dealing with the
class of graphical models in the form of Eq. 1.

5. State Evolution for GASP

State Evolution (SE) is a set of iterative equations involving
a few scalar quantities, that were rigorously proved to track
the (G)AMP dynamics, in the sense of almost sure conver-
gence of empirical averages (Javanmard & Montanari, 2013)
in the large NV limit and with fixed sampling ratioaw = M/N.
Following the analysis of Ref. (Rangan, 2011) for GAMP,
in order to present the SE equations for GASP we assume
that the observation model y,, ~ P°"(e | (F", x()) is such
that can be expressed in the form y* ~ h((F*", xq), ) for
some function h(z, ), with & a scalar- or vector-valued
random variable modeling the noise and sampled according
to some distribution P. We also set F!* ~ N (0,1/N) i.i.d..
The recursion is a closed set of equations over the variables
pt,ab, AL, AL pt,gb, Vi and VY Initializing at time ¢ = 0
the variables p, qo, Vo and V7, the SE equations for ¢t > 1:

p' = aE[0.0,0™ (W', Vi VI h(z,€),m)]  (34)
i = oE[ ( wdf’“‘ VL VE L ym) ] (35)
Af = aE[20y, o™ (w', Vg1, Vi y,m)] — g5 (36)

At —O(E[ 82 outw ‘/Ot 1 ‘/115 1,2-/7 )} —|—mA6,
37)

where the expectation is over the process wt ~ N (0, qt 1),
2~ N(p 1 qp ot Blag] — (p"1)? /g™ 1), € ~ Pe and
y ~ h(z,£). Also, we have a second set of equations that
read:

E[zo0p¢™(B", Aj), A})] (38)
qo = E[(9p¢"(B', A}, At m))”] (39)
=E[ - 204,¢"(B", Ab, AL, m)] — ¢ (40)
E[03¢" (B!, Aj, A7)] — mV{ 41)

where the expectation is over the Markov chain z¢ ~ P,
Bt ~ N(ﬁtif(), (jé)

The trajectories of Vi, Vi, A and A% in GASP concentrate
for large N on their expected value given by the SE dy-
namics. In order to frame the GASP State Evolution in
the rigorous setting of Ref.(Javanmard & Montanari, 2013),
we define a slightly different message-passing by replacing
their GASP values for a given realization of the problem
with the correspondent sample-independent SE values. Also,
we replace cp with the expected value 1/N. Let us define
the denoising functions:

= 0,0 (w, Vg " Vi ym)  (42)
= dpo™ (B, AL, AL, m) (43)

out (

w,y,t)
n"(B,1)

n

vectorized
out (

and their extensions n°(w,y,t) =

(n?ut(wl, Y1, t), RS n WM, YM t)) and nin(wv Yy, t) =
(n™(Bu,t),...,n"™(Bn,t)). The modified GASP message-
passing then reads

wt — FT]in(Bt_l,t _ 1)

Om( = 17yat_1)
(44)

d"n"(B't—1)  (45)

diym
Bt _ FT nout(wt’yvt) _

where the divergence terms are given by

. 1 & .
di' = <> 0p" (B
=1
1 M (46)
4" =5 > 0™ (W, yus t)
p=1

Message-passing (44, 45) falls within the class of AMP
algorithms analyzed in Ref. (Javanmard & Montanari, 2013)
(under some further technical assumptions, see Proposition
5 there). Therefore, it can be rigorously tracked by the SE
Eqgs. (34,41) in the sense specified in that work. In particular,
denoting here &' = 1™ (B",t), we have have almost sure
converge in the large system limit of the overlap with the
true signal and of the norm of &' to their SE estimates:

. A — t

Jim (& @o) = p (47)
. 1,y ot

MmN @2 = a0 “%)

In Fig. 1(Bottom), we compare the SE dynamics to the
original GASP one (Alg. 1). We compare SE prediction for
the evolution of the overlap p to that observed in 10 sample
trajectories of GASP at N = 1000, for a sampling ratio of
o = 2 and different values of m. The initial estimate &'=°
in GASP was set to be a mixture &'=" ~ N(O, In)+0.1xo.
Therefore we initialize SE with p=° = 0.1, and ¢'=° =
1+ (p'=)%. Moreover, we set V{=% = V=% = 1 for both.
As expected, we observe a good agreement between the two
dynamics.

6. Effective Landscape and Message-Passing
Algorithms

The posterior distribution of statistical models in the hard
phase is known to be riddled with glassy states (Antenucci
et al., 2019a) preventing the retrieval of the true signal, a
situation which is exacerbated in the low temperature limit
corresponding to MAP estimation.

Within the replica formalism, the 1RSB free energy provides
a description of this complex landscape. The Parisi parame-
ter m allows to select the contributions of different families
of states. More specifically m acts as an inverse temperature
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coupled to the internal free energy of the states: increas-
ing m selects families of states with lower complexity (i.e.,
states that are less numerous) and lower free energy.

The fixed points of the State Evolution of GASP are in one-
to-one correspondence to the stationary points of the IRSB
free energy, and while the role of m in the dynamics of SE
is difficult to analyze, some insights can be gained from the
static description given by the free energy.

For phase retrieval in the MAP setting without regulariza-
tion, a stable fixed-point of GAMP can be found in the
space orthogonal to the signal (i.e. at overlap p = 0) for
values of the sampling ratio below a®MP ~ 2.48 (Ma et al.,
2018), which is the algorithmic threshold for GAMP. For
GASP instead, it is possible to see that the uninformative
fixed-point is stable only below aASP ~ 1.5, a noticeable
improvement of the threshold with respect to GAMP. This
is obtained by choosing the m corresponding to lowest com-
plexity states according to the 1RSB free energy (see Sec. 3
of the SM for further details). As we will see in the follow-
ing, both these thresholds can be lowered by employing a
continuation strategy for the regularizer.

A thorough description of the results of the replica analysis
and of the landscape properties for GLE models will be
presented in a more technical future work.

7. MAP estimation with an L, regularizer

The objective function introduced in Eq. (2) contains a Lo
regularization term weighted by an intensity parameter A.

Regularization plays and important role in reducing the
variance of the inferred estimator, and can be crucial when
the observations are noise-affected, since it lowers the sen-
sitivity of the learned model to deviations in the training
set. However, as observed in (Ma et al., 2018; 2019; Balan,
2016), regularization is also useful for its smoothing effect,
and can be exploited in non-convex optimization problems
even in the noiseless setting. When the regularization term
is turned up, the optimization landscape gradually simplifies
and it becomes easier to reach a global optimizer. However,
the problem of getting stuck in bad local minima is avoided
at the cost of introducing a bias. The continuation strategy is
based on the fact that such biased estimator might be closer
than the random initial configuration to the global optimizer
of the unregularized objective : in a multi-stage approach,
regularization is decreased (down to zero) after each warm
restart.

Among the many possible continuation schedules for A (a
little decrease after each minimization, or, as in AMP.A, at
the end of each iteration) in this paper we choose a simple
two-stage approach: first we run GASP till convergence
with a given value of A > 0, then we set A = 0 in the

successive iterations.
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Figure 2. Phase diagrams corresponding to the SE asymptotic
analysis of GAMP (top) and GASP (bottom). The color maps
indicate the overlap p reached at convergence in the presence of
an Lo regularizer of intensity .

In Fig.2, we compare the asymptotic performance (tracked
by SE) of GAMP and GASP for the phase retrieval prob-
lem with an Lo regularization. The color map indicates
the overlap with the signal reached at the end of the first
stage of our continuation strategy (with A ## 0), while the
black curves delimit the perfect retrieval regions, where the
overlap reached at the end of stage two (with A = 0) is
p=1

In both cases we set the initial variances A to 1, and consider
an initial condition with a small positive overlap with the
signal, p = 0.1. An assumption of this kind is indeed needed
to ensure that we avoid lingering on the fixed-point at p = 0;
however, the specific value of p can be chosen arbitrarily
(e.g., it could be taken much smaller without affecting the
phase diagrams). Even in real-world applications, it is often
the case that the non-orthogonality requirement is easily
met, for example in many imaging applications the signal is
known to be real non-negative. As explained in the previous
section, we also set ¢ = 1 + ,02 in the initialization of the
self-overlap parameter.
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In the GASP phase diagram, for each o and A, the value of
m was set to the thermodynamic optimum value m* (ob-
tained at p = 0), and was kept fixed throughout the two
stages of our continuation strategy. This m* can be obtained
by optimizing the 1RSB free energy over the symmetry-
breaking parameter; the numerical values of m, correspond-
ing to the points in the plot, can be found in Sec. 3 of the
SM, in Fig. 1. It is not strictly necessary to fix m to this
specific value, as any value in a broad range of around m*
will still be effective (see for example Fig. 2 in the SM). As
expected from the numerical experiments at A = 0, we can
see from Fig. 2 that when the regularizer becomes too small
an uninformative fixed-point (in p = 0) becomes attractive
for the dynamics of GASP and signal recovery becomes
impossible below ;4 ~ 1.5 (we expect also the recovery
region with o € [1.13,1.3] at A = 0.001 to shrink and close
when the regularizer is further decreased).

It is clear that the introduction of an Ls-norm is crucial for
reducing the algorithmic gap of both GAMP and GASP (the
information theoretic threshold is oyt = 1), as previously
observed in (Ma et al., 2018; 2019). In this work we find
that also in GLE problems, when the mismatched setting is
considered (and inference happens off the Nishimori line
(Nishimori, 2001; Antenucci et al., 2019b)), the more fitting
geometrical picture provided by the 1RSB ansatz can be ex-
ploited algorithmically: with a simple continuation strategy
it is possible to lower the algorithmic threshold of GASP
down to the Bayes-optimal value o = 1.13.

8. Discussion

We presented Generalized Approximate Survey Propaga-
tion, a novel algorithm designed to improve over AMP in
the context of GLE inference problems, when faced with a
mismatch between assumed and true generative model. The
algorithm, parametrized by the symmetry-breaking parame-
ter m, allows one to go beyond some symmetry assumptions
at the heart of the previous algorithms, and proves to be more
suited for the MAP estimation task considered in this work.

In the prototypical case of real-valued phase retrieval, we
have shown that with little tuning of m it is possible to
modify the effective landscape explored during the message-
passing dynamics and avoid getting stuck in otherwise at-
tractive uninformative fixed points. Furthermore, we have
seen that, even in the noiseless case, a simple continuation
strategy, based on the introduction of an L, regularizer, can
guide GASP close enough to the signal and allow its re-
covery, extending the region of parameters where GASP is
more effective than GAMP. In some cases we observed that
GASP can achieve perfect retrieval until the Bayes-optimal
threshold, at the sampling ratio o ~ 1.13. We also derived
the 1RSB State Evolution equations, and showed that they
can be used as a simple tool for tracking the asymptotic

behaviour of GASP.

We delay a comprehensive analysis of the landscape associ-
ated to GLE models to a more technical publication, where
we will also deal with the case of noisy observation channels.
A straightforward follow-up of the present work could focus
on the search for an adaptation scheme for the L, regular-
izer, possibly extending the work of Refs. (Ma et al., 2018;
2019), and more importantly, for a criterion to identify the
best setting for the symmetry-breaking parameter. Another
possible future line of work could go in the direction of re-
laxing some of the assumptions made in deriving the GASP
algorithm over the observation matrix. This could motivate
the derivation of a IRSB version of the Vector Approximate
Message Passing equations (Schniter et al., 2016). Also,
the extension of GASP to deep non-linear inference model,
along the lines of Ref. (Manoel et al., 2017; Fletcher et al.,
2018) seems to be promising and technically feasible.

CL thanks Junjie Ma for sharing and explaining the code of
their AMP.A algorithm.
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A. A recap on Generalized Approximate Message Passing
A.1. Derivation of GAMP

For the reader’s convenience and for familiarizing with the notation adopted throughout this work, we sketch the derivation
of the Generalized Approximate Message Passing (GAMP) equations for Generalized Linear Estimation (GLE) models. For
a longer discussion, we refer the reader to Refs. (Rangan, 2011; Ma et al., 2018; Kabashima et al., 2016). We assume the
setting of Eq. (1) of the Main Text, that is a graphical model defined by the Hamiltonian:

Hyr() =3 Ly (F @)+ r(:), (49)

m

with the further assumption that the entries of F' are i.i.d. zero-mean Gaussian variables with variance 1/N, i.e Fi” ~
N(0,1/N) (but the derivation also applies to non-Gaussian variables with the same mean and variance). The configuration
space is assumed to be some subset ' of R. For discrete spaces, integrals should be replace with summations. Also, we
consider the regime of large M and N, with finite « = M /N. The starting point for the derivation of GAMP equations is
the Belief Propagation (BP) algorithm (Mezard & Montanari, 2009), characterized by the exchange of two sets of messages:

u;;H(xi) o I E g 820 50
o / [T vy () Pt tren), (51)
'

For the dense graphical model we are considering, by virtue of central limit arguments, we can relax the resulting identities
among probability densities to relations among their first and second moments. The resulting approximated version of BP
goes under the name of relaxed Belief Propagation (rBP) (Guo & Wang, 2006; Rangan, 2010; Mézard, 2017).

We define the expectations over the measure in Eq.(50) as (e )Z _,,» and its moments as (z >: oy = &}, and (x >:%u =
Al + (27 #)2 In hlgh dimensions we can see that the scalar product (F*, &) in Eq.(51) becomes Gaussian distributed
according to N'(3_; Frat , , + Ff(zi - @fﬁMLZJ#(F“VA;_w)

In order to obtain the relationship between the moments of the two sets of distributions it is useful to introduce two scalar
estimation functions, the input and output channels, that fully characterize the problem. The associated free entropies
(Barbier et al., 2018) (i.e., log-normalization factors) can be expressed as:

¢"(B, A) =log / dy ¢~ 3 A T Be= 1 (@) (52)
X
™ (w, V,y) =log B = =)= Uy (53)
V2V
Then, defining g}, = 9,¢™ (&', V',y) and T}, = —92¢™" (&', V', y), both evaluated in ' = 37 (F})*A%_, , and

=5 j FJ“ :E; > We can express through them the approximate message-passing, obtained at the second order of the
Taylor expansion of the messages:

log D5 () =™ | D FFah,, + Fl'(wi — #,,), > (FI')?AL,, yu | + const. (54)
J JFi
xi
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Next, we close the equations on single site quantities, discarding terms which are sub-leading for large N and assuming
zero mean and 1/N variance i.i.d entries in F' . Thus, we can remove the cavities and approximate the parameters of the
(non-cavity) estimation channels as follows:

Bl =Y Ryl - S )
Iz Iz

A=Y (FlyT, (56)
I

wh =Y Fl'al— gt Y (FI)?A! (57)

Vi=> (FI')?A. (58)

i

Finally, the expectations introduced above can be obtained via the derivatives:

gp, = O™ (59)
t o 2 R

Il = 020" (60)
it = opp™ (61)

Al = 93" (62)

where we used the shorthand notation @™ = "(B!, A) and et = (Wl VT y).

A slight simplification of the message passing (which involves O(NN?) operations per iteration), relies on the observation
that due to the statistical properties of F' the quantities A; and V,, do not depend on their indexes (Rangan, 2011), so we can
define their scalar counterparts:

Al =cpy T, (63)
14
Vi=cp) AT (64)

where cp = Zu7i(Fi“)2/(MN) ~ 1/N. Therefore we obtain:

wh=>Y Flat—glmtvi! (65)
7

g, = 0™ (66)

t o 2 t
Il = —92¢0" (67)
At=cp T, (68)
N

Bl =Y Flg, +al ' Al (69)
w

it = Oppl™ (70)

AL =0pe) (71

Vi=cr Y AL (72)

Egs. (65-72) are known as the GAMP iterations, and are valid for ¢ > 1, given some initial condition 279 and V=0, along
with g/=0 = 0, Y.
A.2. Zero-temperature limit of GAMP

In order to apply the GAMP algorithm to MAP estimation or MAP + regularizer, we have to consider the zero-temperature
limit 5 1 oo . The limiting form of the equations depends on the model and on the regime (e.g. low or high «). Here we
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consider models defined on continuous spaces x and in the high « regime (e.g. o > 1 for phase retrieval). In this case,
while taking the limit, the message have to be rescaled appropriately in order for them to stay finite. Therefore we rescale
the messages through the substitutions:

A — BA (73)
V-=Vv/B (75)
Iu = BYy (76)

With these rescalings, the GAMP equations (65-72) are left unaltered, but the expressions for the free entropies of the scalar
channels become

©"(B, A) = max —r(z) — %Azz + Bz (78)
zEX
out (Z — wli)Q
_ET ) 7
(Vi) =max —=— 2 — ((y,2), (19)

as it is easy to verify.

A.3. GAMP equations for real-valued phase retrieval and AMP.A equations

In the special case of the phase retrieval problem, with a loss /(y,w) = (y — |w|)? and Ly-norm r(z) = Ax?/2 and at zero
temperature, the two scalar estimation channels of Eqgs.(78) and (79) become:

4 B2
“(B,A) =——— 80
2
oul V (y — |w|) . 8]
W Vy) =-S5 (81)
Thus, Egs. (66, 70, 71, 72) simply yield:
2(yu — |wi)
t_ . t
In = "oyt 1 sign(w),) (82)
Bt
pt— 83
=y (83)
1
Al = ——— 84
tOAN A 84)
1
Vi=Nep—o. 85
FA A (83)
Eq. (67) is instead singular, since it involves the derivative of the sign function. Since we have
gi—1
t __ L At—1 1%
wy, = % Fla:— — AT (86)
2(yu — lwul)
t_ H . t
In= "oy + i sign(w), ) (87)
At = —cp E Outt (88)
zt = (A +)) <§ Fl'gl + &%~ 1At> (89)

because of the singularity, the value of A cannot be simply evaluated on a given finite sample. A possible way of dealing
with this issue is to use a smoothing strategy in the first iterations of the message passing, replacing the sign function with a



Generalized Approximate Survey Propagation

continuous version of it. Alternatively, in Ref. (Ma et al., 2018; 2019), the author propose to self-consistently adapt the
regularizer )\ at each time step in order to absorb the divergent contribution. Also, the dynamics A? can be replaced by the
corresponding and non-singular SE estimate. We find that all these solutions are difficult to implement in a robust way and
lead to some numerical instabilities that have to be dealt with great care. As we commented in the Main Text, this problem
does not affect the GASP version of the algorithm, because of the additional Gaussian kernel that smoothens the output
scalar estimation channel.

B. Derivation of Generalized Approximate Survey Propagation

We will derive the GASP equation for a general GLE model specified by (49). As already explained in the Main Text,
we will follow (Antenucci et al., 2019b) and work within the (real) replicas formalism. The derivation is similar to the
one outlined for the GAMP algorithm, which goes from Belief Propagation (BP) to relaxed Belief Propagation (rBP) to
Approximate Message Passing (AMP). In fact, GASP is obtained by applying the very same procedure that leads to GAMP
to an auxiliary graphical model that corresponds to considering multiple copies of the system.

B.1. Relaxed Survey Propagation

As an intermediate step toward the derivation of GASP equations, we derive the relaxed Survey Propagation (rSP) equations
for out GLE problem. This corresponds to a Gaussian closure of the standard BP equations on the replicated factor graph of
the problem, under replica symmetric assumptions. We assume the setting of Eq. (1) of the Main Text, that is a graphical
model defined by the Hamiltonian:

Hyr(@) =D (Y (F", @) +Zr(xi), (90)

with the further assumption that the entries of F' are i.i.d. zero-mean Gaussian variables with variance 1/N, i.e F}* ~
N(0,1/N) (but the derivation also applies to non-Gaussian variables with the same mean and variance). The configuration
space is assumed to be some subset x of R. For discrete spaces, integrals should be replaced with summations. Also, we
consider the regime of large M and N, with finite « = M/N.

Quite peculiarly, the family of message passing algorithm corresponding to the 1RSB framework (i.e. SP, rSP, ASP), are
simply obtained as the BP, rBP and AMP equations for a replicated graphical model,

p({zeym,) = -1

— BT Hy r (%) 1)
e )
Z:Z?F

where m is the number of replicas. The parameter m is not to be confused with the number of replica n that it is usually sent
to zero in the replica trick, but it has to be interpreted as the Parisi symmetry breaking parameter in the 1RSB scheme or as
the number of real clones within Monasson’s method (Monasson, 1995)). While the replicated model is trivially factorized
over the replicas, a highly non-trivial picture emerges when p is considered as the limit distribution obtained by inserting a
coupling term among the replicas and then letting it go to zero. Since the discussion about this technique (pioneered by
Monasson in Ref. (Monasson, 1995)) is quite articulated and has its root in a few decades of development in spin-glass
theory, we refer the interested reader to (Mézard et al., 1987; Mezard & Montanari, 2009; Antenucci et al., 2019a;b) and
reference therein for an overview of the theoretical aspects behind this approach. From here on we present the innovative
aspects of our contribution, which extends the work of Ref. (Antenucci et al., 2019b) to GLE models.

We denote with x; € £ the replicated variable on site 4, and write a first set of BP equations in the form:

Vios(@;) oc e P 2z T TRz, 108 i @), 92)
where we omit time indexes. In the large IV limit, we can exploit the statistical assumptions on F' and the central limit
theorem to perform a Gaussian approximation of the messages. Also, we assume symmetry of the messages v;_,,(Z;)
under permutation of replica indexes, which holds self-consistently if one makes a similar assumption also on the messages

Uy—i(Z;). Messages are then multivariate Gaussian distribution conveniently parametrized by the mean &;_,, and two
parameters Ag ;_, and Ay ;_,, in the form:

___ 1 —Fils 2 _+ 29— 2
Vi*huf(ii) X /dh@ 280,iop (h ") He 2A1,1~>#( i=h) , (93)
a
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also known as caging ansatz in the glass and spin-glass community (Charbonneau et al., 2017). According to this Gaussian
projection, the first and second moments of messages are given by

(@ )iop = Tiosp (94)
<x?x?>lﬂﬂ = AO,i%,u + 1312%# (95)
((xf )2>7—>u = Aty + Doisy + Jﬁf_m. (96)

The values of £;_,,,, Ag i, and Ay ;_,, can be obtained by matching the moments of the r.h.s. of 92. From now on the
derivation is very close to that of Section A.1 for GAMP, therefor we relax the notation and drop some indexes. Let us define
the input channel free entropy:

‘ 1 (o) LA "
¢"(B, Ag, A1, m) = Elog/Dz (/ dx e_ﬁT("”)_2A1"”2+(B+‘/A7°Z)x) . 97)
X

Let us also denote with (t(Z)) the expectation over the corresponding measure, in the m-replicated space, of a test function
v, that is
J Dz fim Ha Ldz® e e FAE H BV ()

<¢)(:B) fDZ d.]?a e —pr(z*)— Al(za)2+(3+mz)1a

(98)

For appropriate values of B,,_,;, A, —; and A1 v—i to be determined by second order expansion of log ©,,_,,;(Z;), and for
replica indexes a and b,a # b, from Eq. (92) we obtain:

Ope" = (z° (99)
050" = (((x*)?) — (x°2")) + m ((z°2%) — (z)?) (100)
204,0™ = ({(x*)?) = (z%2")) + m(z"2") (101)
204,0" = —((z*)?). (102)

Using the above formulas, we can project the measure on R™ corresponding to ¢ onto the space of replica-symmetric
Gaussian distributions, parametrized by &, Ag and A;. Defining for convenience (;ﬁl Ly = = "™ (Ao,imps A1isps Bisp)s
with the quantities Ag ., A1,i—, and B;_,, to be defined later, by moment matching we obtain:

xz%p‘ — aB(b'LA)/JJ (103)
Aoyi—ML - m— (aB i— + 28-'41 ¢1—>/L + xl—}}l.) (104)
A1 A= 8B¢¢4>p, mAO,iﬁu- (105)

Defining the messages
Wusi = Y Fl iy, (106)
i
2
Vousi = (FI') Dojsns (107)
J#i
2
Vipsi = (FI) Arjon, (108)
J#i

we can express the central limit approximation for the BP equations at factor node y as

Ppsi(T:) / B (109)
m 1 ;él

/dZo e 2V0, “_H( 0—Wy) H (/ Dz, e B é(yu,Fi‘”mf'+zo+\/VTz1)> ) (110)
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The expansion of the message ,,_,;(Z;) that we use for our Gaussian closure of the BP messages are conveniently expressed
in terms of the derivatives of the output channel free entropy

1 dZO — 1 (z —w)2 _B¢ VL m
™ (w, Vo, Vi, y,m) = —log | —===¢ 70" Dz e P wmotvViz ) (111)
m \/27TVO

Introducing the second order expansion
~ — a 1 a 1 a
108 Dyusi(®:) = Gusi Y @ — AL > @)+ 5 A0 i > afal (112)
a a a,b

we can write the last set of rSP messages as

Gusi = Dl (113)
1 ul Ul
Lo = g (02005 — (20vi 63 = g51) (114)
1 ou ou
i = —— (0580 — m(20vi 8% — gisi)) (115)
(116)

Incoming messages on the input nodes are then given by

Bisy =) Flg,i (117)
VER

Aoy = Y _(FY)’Touoi (118)
VER

Atisy = Z(Fi”)QFl,u_n (119)
vER

(120)

The closed set of Equations (103-108) and (113-119), along with the free entropy definitions in Egs. (97) and (111), define
the rSP iterative message passing.

B.2. The GASP Equations

Under our statistical assumptions on the sensing matrix F', in order to reduce the computational complexity of
rSP, it is possible to close the equations the rSP message passing in terms of single site or scalar quantities
Wi 9> Lo, Ty Aoy A, Biy, Aoy, Avi, Vo and Vy, therefore obtaining the GASP equation.  In fact, the values
Ao imsp, At imsy and Vo 54, Vi 55 concentrate and can be straightforwardly replaced by their scalar counterparts. In order
to present in this section all of the necessary ingredients of the GASP algorithm, we rewrite here the two scalar channel free
entropies from previous section. Adopting a form that makes clear the nested structure of the 1RSB free-entropy and it’s
relation to the corresponding RS free entropy used in GAMP, we write fro the input channel

(bi"(B,AmAl,m) :%log/Dz eme" (B+v Aoz, A1) (121)
©"(h, A7) zlog/ dz e Pr@-zA1e’ the (122)
X
and for the output channel
¢ (w, Vo, Vi, y,m) :% log/Dz eme™ WV 2 Viy) (123)

™" (u, Vi, y) =log/Dz e=P tyutvViz), (124)
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As usual, [ Dz denotes standard Gaussian integration [ dz exp(—=z%/2)/v/2m. We will use the notation ¢ =

#"(B;, Ag, A1, m) and ot = ¢*(wu, Vo, Vi, yu, m) and drop time indexes for the time being. Given the definition
B; = Z# F!g,_.;, we can write

Fiyy = 0pd™ (Ao, A1, Bi — Fl'g,—i) (125)

~ & — Fl'g, 0501, (126)

which can be then inserted in the definition w, = Y, F/'&;_,, resulting in

=Y Fldi—guy (F/) 0%ep. (127)
i i
The other relevant equation is
Gu—i = 0,0™" (Vo, Vi,wh — FI'&' 1) (128)
~ gy — Fl'a"0l¢0", (129)
which analogously leads to
Bi=Y Flg,—i;y (F)? 02" (130)
I 7
We now introduce back the time indexes, and use the shorthand notations qﬁm b= ¢n(B!, AL, AL m) and oot =

¢ (wh, Vi~ VI, g, m). Using again the definition cr = 175 >, ;(FI*)? (hence E cp = 1/N in our setting), with
some 1n1t1ahzat10n for £1=0,V/=%, V=0 and setting g/=° = 0, we finally obtain

Wl =Y R - gl mvy T v (131)
gl = 00! (132)
1 oul OU
Ty = —— (060" — (20v, 3™ — (9,,))) (133)
1
I = m(ai@lm’t — m(20v, 6% — (g7,)%)) (134)
Ay=cr) T} (135)
Al = CFZFQ (136)
Bt = Z F“gu N (mAL — AY) (137)
&= am‘;"t (138)
¢ 1 o ingt it | g aty2
A= —— (0o + 204,01 + (1)?) (139)
AL, = 0B —mA, (140)
Vi =cr) Ap, (141)
Vi=cry Al (142)

Equations (131-142), along with the free entropy definitions in Eqs. (121, 123) are the GASP iterative equations.

B.3. Zero Temperature Limit

In order to apply the GASP algorithm to MAP estimation, we have to consider the zero-temperature limit 5 1 oo of the
message passing. The limiting form of the equations depends on the model and on the regime (e.g. low or high ). Here we
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consider models defined on continuous spaces x and in the high « regime (e.g. o > 1 for phase retrieval). In this case,
while taking the limit, the messages have to be rescaled appropriately in order to keep them finite. Therefore, we rescale the
messages through the substitutions

Ay — B2 Ao (143)
B — B (145)
W= w (146)
Vo = Vo (147)
Vi—Wi/B (148)
g — By (149)
m— m/f (150)
AO — Ao (151)
Ay — Ay/B, (152)

in Equations (131-142) and Eqgs. (121, 124). Taking the § — oo limit we recover the GASP equations for MAP estimation
presented in the Main Text.

B.4. GASP equations for real-valued phase retrieval problem

Putting together Eqs.(80) and (81), and the definitions in Eqgs.(121) and (123), we can obtain the zero temperature limit of
the two GASP scalar estimation channels, in the special case of the phase retrieval loss £(y, u) = (y — |u|)? and an La-norm
r(x) = Ax?/2. The expressions simply become:

: 32 1 on
(B, Ay, A =— - —1 1-— 153
Cb ( » 4109 17yﬂm) 2(A1+)\—mAQ) om Og( A1+)\> ( )

1 1 2mVj
out =—1log (Z Z_)——1 1 154
¢ (w,‘/o,th) mog( ++ ) om Og( +1+2V])’ (5)
where we defined for compactness:

2 1-2 + y)?

Z. =H | - mVoy T w(l — 2V1) exp (-m(‘”y)> . (155)
VVo(1+2V1)(1 + 2V + 2mVj) 1+ 2V; +2mVj

Moreover, the zero temperature limit of GASP Eqs. (138, 139, 140) after the rescaling discussed in previous paragraph,
gives:

o B
Sy PR w— (150
AO
A? = 157
P A (A5 —mAy) (157)
Al L A, (158)

v :Al—‘r)\—on

C. Setting the symmetry-breaking parameter

The 1RSB formalism, from which the (G)ASP equations are derived, is based on the introduction of a symmetry-breaking
parameter, the so-called Parisi parameter m (Mézard et al., 1987), that allows the description of the fine structure of highly
non-convex (“‘glassy”) landscapes.

In replica analyses, the physical meaning of m is the following: when the studied model develops a 1RSB structure, by
tuning m in its natural range of variability (0, 1], it is possible to focus the Gibbs measure on the different families of
exponentially numerous “states” (i.e., basins of solutions of the inference problem) that populate the loss landscape (Mézard
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et al., 1987). The dominant states, i.e. those where a perfect sampling algorithm would land with high probability, are
described at the thermodinamically optimal value m*, that extremizes the free-energy of the model.

In the real-replica formalism employed to derive the ASP equations (Monasson, 1995; Antenucci et al., 2019b), however,
m is an external parameter that can be analytically continued to take any real value, and is no-longer strictly bound to the
interval (0, 1]. In fact, both the algorithm and its SE characterization are valid even if the model has not developed a proper
IRSB structure, and m can be simply thought as a parametrization the family of algorithms ASP(m) (Antenucci et al.,
2019b). We note that, in the zero-temperature limit, when the proper scaling of m with 8 — oo is chosen (Eqs. 143 to 152),
even the physically meaningful interval of variability of m is of course extended to (0, 00).

10000

1000

100 m

0.001 0.01 0.1 1

Figure 3. Optimal value of the symmetry-breaking parameter m = m”* (as employed in the GASP phase diagram in Fig. 2 in the Main
Text, bottom plot), for different values of the regularizer \.

In Fig. 3, we show the numerical values of the thermodynamic optima m = m* in the zero-temperature phase retrieval
problem (obtained analytically in correspondence of p = 0, at varying values of e and A, from a replica computation that
will be presented in a more technical future work). These are the values that were employed in the corresponding GASP
phase diagram, presented in the Main Text in Fig. 2.

We remark, however, that this particular choice was mostly due to the need of consistency in the criterion for fixing m
throughout the various regions of the phase diagram. In fact, as it was already noted in the Bayesian case (Antenucci et al.,
2019b), the thermodynamical optimum might not be the best choice for m, since other values seem to allow better inference
(e.g., a decreased final MSE). Since we are here interested in the MAP estimation task, our performance evaluation is
based solely on the possibility of achieving retrieval of the signal. This condition is definitely less demanding than that
of obtaining the best MSE, and in fact we find that wide ranges of values for m are effective in correspondence of each
and . Fig. 3 is nevertheless indicative of how m should be incremented when the observation matrix gets smaller or when
weaker regularizers are employed.

In order to show the robustness of GASP(m) with respect to the choice of different values for the symmetry-breaking
parameter, in Fig. 4 we plot the total number of iterations required to converge to the signal (indicated by the color map), for
fixed values of m. The plotted number of iterations include both stages in our simple continuation strategy. As it can be
seen in the plot, this total number tends to increase as « is lowered, since the inference problem becomes harder.

The colored curves mark the lower border of the regions of effectiveness of GASP(m), with m fixed in each region, at which
the number of iterations required by the algorithm diverge. It is clear, indeed, that a careful fine-tuning of m is unnecessary,
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Figure 4. Total number of iterations to convergence for GASP(m). The colored curves delimit (from below) the perfect recovery regions
of GASP with the indicated value for m.

and that it is quite intuitive how to adapt it when a different instance of the problem is given. For example, in the noiseless
case, a basic strategy is to fix A in the range [0.001 : 0.01] and then test O(1) different values for m, until M.SE = 0 is
obtained at convergence of the message-passing.

As a last data point, we report in Fig. 5 the behaviour of the overlap with the true signal of the estimator given by GASP, for
two different system sizes, large times and as a function of a. We observe that for large IV transitions become sharper and
experimental points approach the asymptotic prediction from SE.



Generalized Approximate Survey Propagation

0.8 | \

S 06| o e *
S m=10

n m=20 K

\6_ 04 | m=100 7’ |

1.5 1.6 1.7 1.8 1.9 2

Figure 5. GASP and SE result after t = 10° iterations. Start at ¢ = 0 with p = 10 for SE and & ~ N (0, Ix) for GASP. Circles are for
N =103, squares for N = 10%, . results are averaged over 100 samples. Lines are predictions from SE.



