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Abstract

In Generalized Linear Estimation (GLE) prob-

lems, we seek to estimate a signal that is ob-

served through a linear transform followed by

a component-wise, possibly nonlinear and noisy,

channel. In the Bayesian optimal setting, Gener-

alized Approximate Message Passing (GAMP) is

known to achieve optimal performance for GLE.

However, its performance can significantly de-

grade whenever there is a mismatch between the

assumed and the true generative model, a situa-

tion frequently encountered in practice. In this

paper, we propose a new algorithm, named Gener-

alized Approximate Survey Propagation (GASP),

for solving GLE in the presence of prior or model

mis-specifications. As a prototypical example, we

consider the phase retrieval problem, where we

show that GASP outperforms the corresponding

GAMP, reducing the reconstruction threshold and,

for certain choices of its parameters, approaching

Bayesian optimal performance. Furthermore, we

present a set of State Evolution equations that ex-

actly characterize the dynamics of GASP in the

high-dimensional limit.

1. Introduction

Approximate message passing (AMP) algorithms have be-

come a well established tool in the study of inference prob-

lems (Donoho et al., 2009; Donoho & Montanari, 2016;

Advani & Ganguli, 2016) that can be represented by dense

graphical models. An important feature of AMP is that its

dynamical behavior in the large system limit can be exactly
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predicted through a dynamical system involving only scalar

quantities called State Evolution (SE) (Bayati & Monta-

nari, 2011). This relationship paved the way for a series of

rigorous results (Rangan & Fletcher, 2012; Deshpande &

Montanari, 2014; Deshpande et al., 2016). It also helps clar-

ify the connection to several fascinating predictions obtained

through the replica analysis in statistical physics (Mézard

et al., 1987). In the optimal Bayesian setting, where one

has perfect information on the process underlying data gen-

eration, AMP has been empirically shown to achieve opti-

mal performances among polynomial algorithms for many

different problems. However, in the more realistic case

of mismatch between the assumed and the true generative

model, i.e. when AMP is not derived on the true posterior

distribution, it may become sub-optimal. A possible source

of problems for the AMP class of algorithms is the out-

break of Replica Symmetry Breaking (Mézard et al., 1987),

a scenario where an exponential number of fixed point and

algorithmic barriers dominate the free energy landscape ex-

plored by AMP. This phenomena can be accentuated in case

of model mismatch: a notable example is maximum likeli-

hood estimation (as opposed to estimation by the posterior

mean, which corresponds to the low temperature limit of a

statistical physics model.

These considerations are well known within the physics

community of disordered systems (Krzakala et al., 2016),

where the problem of signal estimation is informally re-

ferred to as “crystal hunting”. Estimation problems in high

dimensions are characterized by a complex energy-entropy

competition where the true signal is hidden in a vast and po-

tentially rough landscape. In a wide class of problems, one

observes the presence of a algorithmically “hard” phase for

some range of values for the parameters defining the prob-

lem (e.g. signal-to-noise ration). In this regime, all known

polynomial complexity algorithms fail to saturate the in-

formation theoretic bound (Ricci-Tersenghi et al., 2019).

While reconstruction is possible in principle, algorithms

are trapped in a region of the configuration space with low

overlap with the signal and many local minima (Antenucci

et al., 2019a; Ros et al., 2019).

In a recent work (Antenucci et al., 2019b), a novel message-

passing algorithm, Approximate Survey Propagation (ASP),
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was introduced in the context of low-rank. The algorithm

is based on the 1-step Replica Symmetry Breaking (1RSB)

ansatz from spin glass theory (Mézard et al., 1987), which

was specifically developed to deal with landscapes popu-

lated by exponentially many local minima. It was shown

that ASP on the mismatched model could reach the perfor-

mance of (but not improve on) matched AMP and do far

better than mismatched AMP (Antenucci et al., 2019a;b). In

the present paper, we build upon these previous works and

derive the ASP algorithm for Generalized Linear Estimation

(GLE) models. Since the extension of AMP to GLE prob-

lems is commonly known as GAMP, we call Generalized

Approximate Survey Propagation (GASP), our extension

of ASP. We will show that also in this case, in presence of

model mismatch, (G)ASP improves over the corresponding

(G)AMP.

2. Model specification

An instance of the general class of models to which GASP

can be applied is defined, for some integer M and N , by

an observed signal y ∈ R
M and an M × N observation

matrix F . Clearly, this scenario encompasses also GLE. We

denote with F µ, µ ∈ [M ], the rows of F and refer to the

ratio α =M/N as the sampling ratio of F . We consider a

probability density distribution p(x) on a (possibly discrete)

space χN , χ ⊆ R, defined as:

p(x) =
1

Z
e−βHy,F (x), (1)

where, following statistical physics jargon, β plays the role

of an inverse temperature, Z is a normalization factor called

partition function (both Z and p implicitly depend on β,y
and F ), andHy,F is the Hamiltonian of the model, that in

our setting takes the form:

Hy,F (x) =
M
∑

µ=1

`
(

yµ, 〈F µ,x〉
)

+
N
∑

i=1

r(xi). (2)

Here 〈•, •〉 denotes the scalar product and we call ` and r the

loss function and the regularizer of the problem respectively.

In this quite general context, the purpose of GASP is to ap-

proximately compute the marginal distribution p(xi), along

with some expected quantities such as e.g. x̂ = Epx. The

approximation entailed in GASP turns out to be exact under

some assumptions in the large N limit, as we shall later

see. A crucial assumption in the derivation of the GASP

algorithm (and of GAMP as well), is that the entries of F

are independently generated according to some zero mean

and finite variance distribution.

Although the general formulation of GASP, presented in

Sec. 2 of the SM, is able to deal with any model of the form

(1), we will here restrict the setting to discuss Generalized

Linear Estimation (Rangan, 2011).

In GLE problems, p(x) is sensibly chosen in order to in-

fer a true signal x0 ∈ R
N , whose components are as-

sumed to be independently extracted from some prior P0,

x0,i ∼ P0 ∀i ∈ [N ]. The observations are indepen-

dently produced by a (probabilistic) scalar channel P out:

yµ ∼ P out(• | 〈F µ,x0〉).
It is then reasonable to choose `

(

y, z) = − logP out(y|z),
r(x) = − logP0(x) and β = 1, so that the probability den-

sity p(x) corresponds to the true posterior P (x|F ,y) ∝
P out(y|x,F )P0(x), where ∝ denotes equality up to a nor-

malization factor. We refer to this setting as to the Bayesian-

optimal or matched setting (Barbier et al., 2018). Notice that

in the β ↑ ∞ limit p(x) concentrates around the maximum-

a-posteriori (MAP) estimate. If β 6= 1 or if the Hamiltonian

doesn’t correspond to the minus log posterior (e.g, when P0

and P out used in the Hamiltonian do not correspond to true

ones) we talk about model mismatch.

As a testing ground for GASP, and the corresponding State

Evolution, we here consider the phase retrieval problem,

which has undergone intense investigation in recent years

(Candes et al., 2015; Dhifallah & Lu, 2017; Chen et al.,

2018; Goldstein & Studer, 2018; Mondelli & Montanari,

2018; Sun et al., 2018; Mukherjee & Seelamantula, 2018).

We examine its noiseless and real-valued formulation, where

observations are generated according to the process

x0 ∼ N (0, IN ), (3)

Fµ
i ∼ N (0, 1/N) ∀µ ∈ [M ], ∀i ∈ [N ], (4)

yµ ∼ |〈F µ,x0〉|. (5)

for some M and N , such that α = M/N > 1. For such

generative model, we will focus on the problem of recover-

ing x0 by minimizing the energy functionHy,F (x) of Eq.

(2), in the case

`(y, z) = (y − |z|)2, (6)

r(x) =
1

2
λx2. (7)

Since the setting assumed for inference corresponds to MAP

estimation in presence of a noisy channel, we are dealing

with a case of model mismatch. The effect of the parameter

λ on the estimation shall be explored in Sec. 7, but we

assume λ = 0 until then. The optimization procedure will

be performed using the zero-temperature (i.e. β ↑ ∞)

version of the GASP algorithm.

3. Previous work on Approximate Message

Passing for Phase Retrieval

Generalized approximate message passing (GAMP) was

developed and rigorously analyzed in Refs. (Rangan, 2011)

and (Javanmard & Montanari, 2013). It was then applied

for the first time to the (complex-valued) phase retrieval
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problem in Ref. (Schniter & Rangan, 2015). In Ref. (Barbier

et al., 2018) the authors report an algorithmic threshold for

the perfect recovery of αalg ≈ 1.13, when using matched

AMP on the real-valued version of the problem. This is to

be compared to the information theoretic bound αIT = 1.

The performance of GAMP in the MAP estimation set-

ting, instead, was investigated in Ref. (Ma et al., 2018;

2019). A “vanilla” implementation of the zero tempera-

ture GAMP equations for the absolute value channel was

reported to achieve perfect recovery for real-valued signals

above αalg ≈ 2.48. The authors were able to show that the

algorithmic threshold of GAMP in the mismatched case can

however be drastically lowered by introducing regulariza-

tion a regularization term ultimately continued to zero. The

AMP.A algorithm proposed in (Ma et al., 2018; 2019) uses

an adaptive L2 regularization that improves the estimation

threshold and also makes the algorithm more numerically

robust compensating a problematic divergence that appears

in the message-passing equations (see Sec. 1.3 in the SM

for further details).

Another important ingredient for AMP.A’s performance is

initialization: in order to achieve perfect recovery one has to

start from a configuration that falls within the basin of attrac-

tion of the true signal, which rapidly shrinks as the sampling

ratio α decreases. A well-studied method for obtaining a

configuration correlated with the signal is spectral initial-

ization, introduced and studied in Refs. (Jain et al., 2013;

Candes et al., 2015; Chen & Candes, 2015): in this case the

starting condition is given by the principal eigenvector of

a matrix obtained from the data matrix F and the labels y

passed through a nonlinear processing function. The asymp-

totic performance of this method was analyzed in (Lu & Li,

2017), while the form of the optimal processing function

was described in (Mondelli & Montanari, 2018; Luo et al.,

2019). However, since the SE description is based on the

assumption of the initial condition being uncorrelated with

the data, in AMP.A the authors revisited the method, propos-

ing a modification that guarantees “enough independency”

while still providing high overlap between the starting point

and the signal.

With the combination of these two heuristics, AMP.A is able

to reconstruct the signal down αalg ≈ 1.5. In the present pa-

per we will show that, with a basic continuation scheme, the

1RSB version of the zero temperature GAMP can reach the

Bayes-optimal threshold αalg ≈ 1.13 also in the mismatched

case, without the need of spectral initialization.

3.1. GAMP equations at zero temperature

Here we provide a brief summary of the AMP equations

for the general graphical model of Eq. (1), in the β ↑ ∞
limit. This is both to allow an easy comparison with our

novel GASP algorithm and to introduce some notation that

will be useful in the following discussion. There is some

degree of model dependence in the scaling of the messages

when taking the zero-temperature limit: here we adopt the

one appropriate for over-constrained models in continuous

space. Details of the derivation can be found in Sec. 1 of

the SM, along with the specialization of the equations for

phase retrieval.

First, we introduce two free entropy functions associated to

the input and output channels (Rangan, 2011):

ϕin(B,A) = max
x
−r(x)− 1

2
Ax2 +Bx (8)

ϕout(ω, V, y) = max
u
− (u− ω)2

2V
− `(y, u). (9)

We define for convenience ϕin,t
i = ϕin(Bt

i , A
t) and ϕout,t

µ =
ϕout(ωt

µ, V
t−1, yµ). In our notation the GAMP message

passing equations read:

ωt
µ =

∑

i

Fµ
i x̂

t−1
i − gt−1

µ V t−1 (10)

gtµ = ∂ωϕ
out,t
µ (11)

Γt
µ = −∂2ωϕout,t

µ (12)

At = cF
∑

µ

Γt
µ (13)

Bt
i =

∑

µ

Fµ
i g

t
µ + x̂t−1

i At (14)

x̂ti = ∂Bϕ
in,t
i (15)

∆t
i = ∂2Bϕ

in,t
i (16)

V t = cF
∑

i

∆t
i (17)

where cF = 1
MN

∑

µ,i(F
µ
i )

2. It is clear from the equations

that the two free entropy functions are supposed to be twice

differentiable. This is not the case for phase retrieval, where

GAMP encounters some non-trivial numerical stability is-

sues: during the message-passing iterations one would have

to approximately evaluate an empirical average of ∂2ωϕ
out,t
µ ,

containing Dirac’s δ-function. This is the problem encoun-

tered in AMP.A of Ref. (Ma et al., 2018). We will see that

this problem is not present in GASP thanks to a Gaussian

smoothing of the denoising function.

4. Generalized Approximate Survey

Propagation

The (G)ASP algorithm builds on decades of progress within

the statistical physics community in understanding and deal-

ing with rough high-dimensional landscapes. The starting

point for the derivation of the algorithm is the partition
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function of m replicas (or clones) of the system {xa}ma=1:

Zm
y,F =

∫ m
∏

a=1

N
∏

i=1

dxai e
−β

∑m
a=1 Hy,F (xa). (18)

Note that, while this probability measure factorizes trivially,

setting m 6= 1 can introduce many important differences

with respect to the standard case, both from the algorith-

mic and from the physics standpoints (Monasson, 1995;

Antenucci et al., 2019b).

We write down the Belief Propagation (BP) equations as-

sociated to the replicated factor graph, where messages are

probability distributions associated to each edge over the

single-site replicated variables x̄i = (x1i , . . . , x
m
i ). We

make the assumption that the messages are symmetric un-

der the group of replica indexes permutations. This allows

for a parametrization of the message passing that can be

continued analytically to any real value of m. The resulting

algorithm goes under the name of 1RSB Cavity Method or,

more loosely speaking, of Survey Propagation (with refer-

ence in particular to a zero temperature version of the 1RSB

cavity method in discrete constraint satisfaction problems),

and led to many algorithmic breakthroughs in combinato-

rial optimization on sparse graphical models (Mézard et al.,

2002; Braunstein et al., 2005; Krzakała et al., 2007). One

possible derivation of the (G)ASP algorithm is as the dense

graph limit of the Survey Propagation equations, in the

same way as AMP is obtained starting from BP. The deriva-

tion requires two steps. First, BP messages are projected

by moment-matching onto (replica-symmetric) multivariate

Gaussian distributions on the replicated variables x̄ ∈ R
m,

which we express in the form

ν(x̄) ∝
∫

dh e−
1

2∆0
(h−x̂)2

m
∏

a=1

e−
1

2∆1
(xa−h)2 ; (19)

Then, messages on the edges are conveniently expressed in

term of single site quantities. We note that, some statistical

independence assumptions on the entries of the measure-

ment matrix are crucial for the derivation, as goes for AMP

as well. While the starting point of the derivation assumed

integer m, the resulting message passing can be analytically

continued to any real m. Applying this procedure to the

GLE graphical model of Eq. (1) we obtain the GASP equa-

tions. Here we consider the β ↑ ∞ limit to deal with the

MAP estimation problem. Details of the GASP derivation

and the finite β GASP equations are given in Sec. 2 of the

SM. Particular care has to be taken in the limit procedure,

as a proper rescaling with β is needed for each parameter.

For instance, as the range of sensible choices for m shrinks

towards zero for increasing β, we rescale m through the

substitution m← m/β.

Relying on the definitions given Eqs. (8) and (9), we intro-

Algorithm 1 GASP(m) for MAP

initialize gµ = 0 ∀µ
initialize V0, V1, x̂i ∀i to some values

for t = 1 to tmax do

compute ωµ, gµ,Γ
0
µ,Γ

1
µ ∀µ using ( 22,23, 24, 25)

compute A0, A1 using (26,27)

compute Bi, x̂i,∆0,i,∆1,i ∀i using ( 28, 29, 30, 31)

compute V 0, V 1 using (32, 33)

end for

duce the two 1RSB free entropies:

φin(B,A0, A1,m) =
1

m
log

∫

Dz emϕin(B+
√
A0z, A1)

(20)

φout(ω, V0, V1, y,m) =
1

m
log

∫

Dz emϕout(ω+
√
V0 z, V1,y).

(21)

Here
∫

Dz denotes the standard Gaussian integra-

tion
∫

dz exp(−z2/2)/
√
2π. Using the shorthand no-

tations φin,t
i = φin(Bt

i , A
t
0, A

t
1,m) and φout,t

µ =

φout(ωt
µ, V

t−1
0 , V t−1

1 , yµ,m) (notice the shift in the

time indexes), and using again the definition cF =
1

MN

∑

µ,i(F
µ
i )

2 (hence EcF = 1/N in our setting), the

GASP equations read:

ωt
µ =

∑

i

Fµ
i x̂

t−1
i − gt−1

µ (mV t−1
0 + V t−1

1 ) (22)

gtµ = ∂ωφ
out,t
µ (23)

Γt
0,µ = 2∂V1φ

out,t
µ − (gtµ)

2 (24)

Γt
1,µ = −∂2ωφout,t

µ +mΓt
0,µ (25)

At
0 = cF

∑

µ

Γt
0,µ (26)

At
1 = cF

∑

µ

Γt
1,µ (27)

Bt
i =

∑

µ

Fµ
i g

t
µ − x̂t−1

i (mAt
0 −At

1) (28)

x̂ti = ∂Bφ
in,t
i (29)

∆t
0,i = −2∂A1φ

in,t
i − (x̂ti)

2 (30)

∆t
1,i = ∂2Bφ

in,t
i −m∆t

0,i. (31)

V t
0 = cF

∑

i

∆t
0,i (32)

V t
1 = cF

∑

i

∆t
1,i (33)

The computational time and memory complexity per itera-

tion of the algorithm is the same of GAMP and is determined
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by the linear operations in Eqs. (22) and (28). With respect

to GAMP, we have the additional (but sub-leading) com-

plexity due to the integrals in the input and output channels.

In some special cases, the integrals in Eqs. (20) and (21)

can be carried out analytically (e.g. in the phase retrieval

problem).

Notice that GASP iteration reduces to standard GAMP it-

erations if V0 and A0 are initialized (or shrink) to zero,

but can produce non-trivial fixed points depending on the

initialization condition and on the value of m.

We remark the importance of setting the time-indices cor-

rectly in order to allow convergence (Caltagirone et al.,

2014). The full algorithm is detailed in Alg. 1.

The expressions for the special case of the absolute value

channel (6) and L2 regularization (7) can be found in Sec.

2.4 of the SM. An important comment is that the divergence

issue arising in AMP.A, in the same setting, does not affect

GASP: the discontinuity in the expression for the minimizer

of Eq. (9) is smoothed out in the 1RSB version by the

Gaussian integral in Eq. (20). We also note that, in phase

retrieval, a problematic initialization can be obtained by

choosing configurations that are exactly orthogonal to the

signal, since the message-passing will always be trapped in

the uninformative fixed-point (due to the Z2 symmetry of

the problem). However, for finite size instances, a random

Gaussian initial condition will have an overlap ρ ≡ 〈x̂,x0〉
of orderO

(

1/
√
N
)

with the signal, which allows to escape

the uninformative fixed point whenever it is unstable (i.e.

for high α).

In Fig. 1 (Top and Middle), we show the probability of a per-

fect recovery and convergence times of GASP for the real-

valued phase retrieval problem, for different sampling ratios

α and values of the symmetry-breaking parameter m, with

λ = 0. The initial condition is given by V t=0
0 = V t=0

1 = 1
and x̂

t=0 ∼ N (0, IN ). Notice that standard Gaussian ini-

tialization is able to break the symmetry of the channel and,

at large t, GASP matches the fixed points predicted by SE

(see next Section) with a small initial overlap with the true

signal (ρt=0 = 10−3). In order to achieve signal recovery

at low α, the symmetry-breaking parameter has to be in-

creased. In correspondence of values m ≈ 100, we report

an algorithmic threshold around αλ=0
alg ≈ 1.5. This thresh-

old is comparable to the one of AMP.A, without exploiting

adaptive regularization and spectral initialization as AMP.A

(and which could be employed also for GASP).

We report that, at fixed m, when α is increased above a

certain value the message-passing will stop converging. The

oscillating/diverging behavior of the messages can however

be exploited for hand-tuning m, in the absence of a replica

analysis to support the selection of its most appropriate

value. More details can be found in Sec. 3 of the SM.
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Figure 1. (Top) Probability of perfect recovery of the true signal

using GASP (Alg. 1), as a function of the sampling ratio α =
M/N . (Middle) GASP and SE result after t = 103 iterations. Start

at t = 0 with ρ = 10−3 for SE and x̂ ∼ N (0, IN ) for GASP

(N = 103, averaged over 100 samples). (Bottom) Overlap ρt

with the true signal predicted by SE dynamics at α = 2 and initial

overlap ρ = 0.1 (black lines) compared to 10 GASP trajectories

for each value of m. Here N = 104.
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We presented here the zero-temperature limit of the GASP

message-passing to solve the MAP problem. Refer to Sec.

2 of the SM for a more general formulation dealing with the

class of graphical models in the form of Eq. 1.

5. State Evolution for GASP

State Evolution (SE) is a set of iterative equations involving

a few scalar quantities, that were rigorously proved to track

the (G)AMP dynamics, in the sense of almost sure conver-

gence of empirical averages (Javanmard & Montanari, 2013)

in the largeN limit and with fixed sampling ratioα =M/N .

Following the analysis of Ref. (Rangan, 2011) for GAMP,

in order to present the SE equations for GASP we assume

that the observation model yµ ∼ P out(• | 〈F µ,x0〉) is such

that can be expressed in the form yµ ∼ h(〈F µ,x0〉, ξµ) for

some function h(z, ξ), with ξµ a scalar- or vector-valued

random variable modeling the noise and sampled according

to some distribution Pξ . We also set Fµ
i ∼ N (0, 1/N) i.i.d..

The recursion is a closed set of equations over the variables

ρ̂t, q̂t0, A
t
0, A

t
1, ρ

t, qt0, V
t
0 and V t

1 Initializing at time t = 0
the variables ρ, q0, V0 and V1, the SE equations for t ≥ 1:

ρ̂t = αE
[

∂z∂ωφ
out(ωt, V t−1

0 , V t−1
1 , h(z, ξ),m)

]

(34)

q̂t0 = αE
[ (

∂ωφ
out(ωt, V t−1

0 , V t−1
1 , y,m)

)2 ]
(35)

At
0 = αE

[

2∂V1
φout(ωt, V t−1

0 , V t−1
1 , y,m)

]

− q̂t0 (36)

At
1 = αE

[

− ∂2ωφout(ωt, V t−1
0 , V t−1

1 , y,m)
]

+mAt
0,
(37)

where the expectation is over the process ωt ∼ N (0, qt−1
0 ),

z ∼ N (ρt−1/qt−1
0 ωt, E[x20]− (ρt−1)2/qt−1

0 ), ξ ∼ Pξ and

y ∼ h(z, ξ). Also, we have a second set of equations that

read:

ρt = E
[

x0 ∂Bφ
in(Bt, At

0, A
t
1)
]

(38)

qt0 = E
[(

∂Bφ
in(Bt, At

0, A
t
1,m)

)2]
(39)

V t
0 = E

[

− 2∂A1φ
in(Bt, At

0, A
t
1,m)

]

− qt0 (40)

V t
1 = E

[

∂2Bφ
in(Bt, At

0, A
t
1)
]

−mV t
0 (41)

where the expectation is over the Markov chain x0 ∼ P0,

Bt ∼ N (ρ̂tx0, q̂
t
0).

The trajectories of V t
0 , V

t
1 , A

t
0 and At

1 in GASP concentrate

for large N on their expected value given by the SE dy-

namics. In order to frame the GASP State Evolution in

the rigorous setting of Ref.(Javanmard & Montanari, 2013),

we define a slightly different message-passing by replacing

their GASP values for a given realization of the problem

with the correspondent sample-independent SE values. Also,

we replace cF with the expected value 1/N . Let us define

the denoising functions:

ηout(ω, y, t) = ∂ωφ
out(ω, V t−1

0 , V t−1
1 , y,m) (42)

ηin(B, t) = ∂Bφ
in(B,At

0, A
t
1,m) (43)

and their vectorized extensions ηout(ω,y, t) =
(ηout(ω1, y1, t), . . . , η

out(ωM , yM , t)) and ηin(ω,y, t) =
(ηin(B1, t), . . . , η

in(BN , t)). The modified GASP message-

passing then reads

ωt = F ηin(Bt−1, t− 1)− din
t−1η

out(ωt−1,y, t− 1)
(44)

Bt = F T ηout(ωt,y, t)− dout
t ηin(Bt−1, t− 1) (45)

where the divergence terms are given by

din
t =

1

N

N
∑

i=1

∂Bη
in(Bt

i , t)

dout
t =

1

N

M
∑

µ=1

∂ωη
out(ωt

µ, yµ, t)

(46)

Message-passing (44, 45) falls within the class of AMP

algorithms analyzed in Ref. (Javanmard & Montanari, 2013)

(under some further technical assumptions, see Proposition

5 there). Therefore, it can be rigorously tracked by the SE

Eqs. (34,41) in the sense specified in that work. In particular,

denoting here x̂
t = ηin(Bt, t), we have have almost sure

converge in the large system limit of the overlap with the

true signal and of the norm of x̂
t

to their SE estimates:

lim
N→∞

1

N
〈x̂t,x0〉 = ρt (47)

lim
N→∞

1

N
〈x̂t, x̂t〉 = qt0 (48)

In Fig. 1(Bottom), we compare the SE dynamics to the

original GASP one (Alg. 1). We compare SE prediction for

the evolution of the overlap ρ to that observed in 10 sample

trajectories of GASP at N = 1000, for a sampling ratio of

α = 2 and different values of m. The initial estimate x̂
t=0

in GASP was set to be a mixture x̂
t=0 ∼ N (0, IN )+0.1x0.

Therefore we initialize SE with ρt=0 = 0.1, and qt=0 =
1 + (ρt=0)2. Moreover, we set V t=0

0 = V t=0
1 = 1 for both.

As expected, we observe a good agreement between the two

dynamics.

6. Effective Landscape and Message-Passing

Algorithms

The posterior distribution of statistical models in the hard

phase is known to be riddled with glassy states (Antenucci

et al., 2019a) preventing the retrieval of the true signal, a

situation which is exacerbated in the low temperature limit

corresponding to MAP estimation.

Within the replica formalism, the 1RSB free energy provides

a description of this complex landscape. The Parisi parame-

ter m allows to select the contributions of different families

of states. More specificallym acts as an inverse temperature
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coupled to the internal free energy of the states: increas-

ing m selects families of states with lower complexity (i.e.,

states that are less numerous) and lower free energy.

The fixed points of the State Evolution of GASP are in one-

to-one correspondence to the stationary points of the 1RSB

free energy, and while the role of m in the dynamics of SE

is difficult to analyze, some insights can be gained from the

static description given by the free energy.

For phase retrieval in the MAP setting without regulariza-

tion, a stable fixed-point of GAMP can be found in the

space orthogonal to the signal (i.e. at overlap ρ = 0) for

values of the sampling ratio below αGAMP ≈ 2.48 (Ma et al.,

2018), which is the algorithmic threshold for GAMP. For

GASP instead, it is possible to see that the uninformative

fixed-point is stable only below αGASP ≈ 1.5, a noticeable

improvement of the threshold with respect to GAMP. This

is obtained by choosing the m corresponding to lowest com-

plexity states according to the 1RSB free energy (see Sec. 3

of the SM for further details). As we will see in the follow-

ing, both these thresholds can be lowered by employing a

continuation strategy for the regularizer.

A thorough description of the results of the replica analysis

and of the landscape properties for GLE models will be

presented in a more technical future work.

7. MAP estimation with an L2 regularizer

The objective function introduced in Eq. (2) contains a L2

regularization term weighted by an intensity parameter λ.

Regularization plays and important role in reducing the

variance of the inferred estimator, and can be crucial when

the observations are noise-affected, since it lowers the sen-

sitivity of the learned model to deviations in the training

set. However, as observed in (Ma et al., 2018; 2019; Balan,

2016), regularization is also useful for its smoothing effect,

and can be exploited in non-convex optimization problems

even in the noiseless setting. When the regularization term

is turned up, the optimization landscape gradually simplifies

and it becomes easier to reach a global optimizer. However,

the problem of getting stuck in bad local minima is avoided

at the cost of introducing a bias. The continuation strategy is

based on the fact that such biased estimator might be closer

than the random initial configuration to the global optimizer

of the unregularized objective : in a multi-stage approach,

regularization is decreased (down to zero) after each warm

restart.

Among the many possible continuation schedules for λ (a

little decrease after each minimization, or, as in AMP.A, at

the end of each iteration) in this paper we choose a simple

two-stage approach: first we run GASP till convergence

with a given value of λ > 0, then we set λ = 0 in the

successive iterations.
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Figure 2. Phase diagrams corresponding to the SE asymptotic

analysis of GAMP (top) and GASP (bottom). The color maps

indicate the overlap ρ reached at convergence in the presence of

an L2 regularizer of intensity λ.

In Fig.2, we compare the asymptotic performance (tracked

by SE) of GAMP and GASP for the phase retrieval prob-

lem with an L2 regularization. The color map indicates

the overlap with the signal reached at the end of the first

stage of our continuation strategy (with λ 6= 0), while the

black curves delimit the perfect retrieval regions, where the

overlap reached at the end of stage two (with λ = 0) is

ρ = 1.

In both cases we set the initial variances ∆ to 1, and consider

an initial condition with a small positive overlap with the

signal, ρ = 0.1. An assumption of this kind is indeed needed

to ensure that we avoid lingering on the fixed-point at ρ = 0;

however, the specific value of ρ can be chosen arbitrarily

(e.g., it could be taken much smaller without affecting the

phase diagrams). Even in real-world applications, it is often

the case that the non-orthogonality requirement is easily

met, for example in many imaging applications the signal is

known to be real non-negative. As explained in the previous

section, we also set q0 = 1 + ρ2 in the initialization of the

self-overlap parameter.
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In the GASP phase diagram, for each α and λ, the value of

m was set to the thermodynamic optimum value m? (ob-

tained at ρ = 0), and was kept fixed throughout the two

stages of our continuation strategy. Thism? can be obtained

by optimizing the 1RSB free energy over the symmetry-

breaking parameter; the numerical values of m, correspond-

ing to the points in the plot, can be found in Sec. 3 of the

SM, in Fig. 1. It is not strictly necessary to fix m to this

specific value, as any value in a broad range of around m?

will still be effective (see for example Fig. 2 in the SM). As

expected from the numerical experiments at λ = 0, we can

see from Fig. 2 that when the regularizer becomes too small

an uninformative fixed-point (in ρ = 0) becomes attractive

for the dynamics of GASP and signal recovery becomes

impossible below αalg ∼ 1.5 (we expect also the recovery

region with α ∈ [1.13, 1.3] at λ = 0.001 to shrink and close

when the regularizer is further decreased).

It is clear that the introduction of an L2-norm is crucial for

reducing the algorithmic gap of both GAMP and GASP (the

information theoretic threshold is αIT = 1), as previously

observed in (Ma et al., 2018; 2019). In this work we find

that also in GLE problems, when the mismatched setting is

considered (and inference happens off the Nishimori line

(Nishimori, 2001; Antenucci et al., 2019b)), the more fitting

geometrical picture provided by the 1RSB ansatz can be ex-

ploited algorithmically: with a simple continuation strategy

it is possible to lower the algorithmic threshold of GASP

down to the Bayes-optimal value α = 1.13.

8. Discussion

We presented Generalized Approximate Survey Propaga-

tion, a novel algorithm designed to improve over AMP in

the context of GLE inference problems, when faced with a

mismatch between assumed and true generative model. The

algorithm, parametrized by the symmetry-breaking parame-

term, allows one to go beyond some symmetry assumptions

at the heart of the previous algorithms, and proves to be more

suited for the MAP estimation task considered in this work.

In the prototypical case of real-valued phase retrieval, we

have shown that with little tuning of m it is possible to

modify the effective landscape explored during the message-

passing dynamics and avoid getting stuck in otherwise at-

tractive uninformative fixed points. Furthermore, we have

seen that, even in the noiseless case, a simple continuation

strategy, based on the introduction of an L2 regularizer, can

guide GASP close enough to the signal and allow its re-

covery, extending the region of parameters where GASP is

more effective than GAMP. In some cases we observed that

GASP can achieve perfect retrieval until the Bayes-optimal

threshold, at the sampling ratio α ∼ 1.13. We also derived

the 1RSB State Evolution equations, and showed that they

can be used as a simple tool for tracking the asymptotic

behaviour of GASP.

We delay a comprehensive analysis of the landscape associ-

ated to GLE models to a more technical publication, where

we will also deal with the case of noisy observation channels.

A straightforward follow-up of the present work could focus

on the search for an adaptation scheme for the L2 regular-

izer, possibly extending the work of Refs. (Ma et al., 2018;

2019), and more importantly, for a criterion to identify the

best setting for the symmetry-breaking parameter. Another

possible future line of work could go in the direction of re-

laxing some of the assumptions made in deriving the GASP

algorithm over the observation matrix. This could motivate

the derivation of a 1RSB version of the Vector Approximate

Message Passing equations (Schniter et al., 2016). Also,

the extension of GASP to deep non-linear inference model,

along the lines of Ref. (Manoel et al., 2017; Fletcher et al.,

2018) seems to be promising and technically feasible.

CL thanks Junjie Ma for sharing and explaining the code of

their AMP.A algorithm.
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May 15, 2019

A. A recap on Generalized Approximate Message Passing

A.1. Derivation of GAMP

For the reader’s convenience and for familiarizing with the notation adopted throughout this work, we sketch the derivation

of the Generalized Approximate Message Passing (GAMP) equations for Generalized Linear Estimation (GLE) models. For

a longer discussion, we refer the reader to Refs. (Rangan, 2011; Ma et al., 2018; Kabashima et al., 2016). We assume the

setting of Eq. (1) of the Main Text, that is a graphical model defined by the Hamiltonian:

Hy,F (x) =
∑

µ

`
(

yµ, 〈F µ,x〉
)

+
∑

i

r(xi), (49)

with the further assumption that the entries of F are i.i.d. zero-mean Gaussian variables with variance 1/N , i.e Fµ
i ∼

N (0, 1/N) (but the derivation also applies to non-Gaussian variables with the same mean and variance). The configuration

space is assumed to be some subset χN of R. For discrete spaces, integrals should be replace with summations. Also, we

consider the regime of large M and N , with finite α =M/N . The starting point for the derivation of GAMP equations is

the Belief Propagation (BP) algorithm (Mezard & Montanari, 2009), characterized by the exchange of two sets of messages:

νti→µ(xi) ∝ e−βr(xi)+
∑

ν 6=µ
log ν̂t

ν→i(xi) (50)

ν̂t+1
µ→i(xi) ∝

∫

χN−1

∏

j 6=i

dνtj→µ(xj) e
−β`(yµ,〈Fµ,x〉). (51)

For the dense graphical model we are considering, by virtue of central limit arguments, we can relax the resulting identities

among probability densities to relations among their first and second moments. The resulting approximated version of BP

goes under the name of relaxed Belief Propagation (rBP) (Guo & Wang, 2006; Rangan, 2010; Mézard, 2017).

We define the expectations over the measure in Eq.(50) as 〈•〉ti→µ, and its moments as 〈x〉ti→µ = x̂ti→µ and
〈

x2
〉t

i→µ
=

∆t
i→µ + (x̂ti→µ)

2. In high dimensions we can see that the scalar product 〈F µ,x〉 in Eq.(51) becomes Gaussian distributed

according to N (
∑

j F
µ
j x̂

t
j→µ + Fµ

i (xi − x̂ti→µ),
∑

j 6=i(F
µ
j )

2∆t
j→µ).

In order to obtain the relationship between the moments of the two sets of distributions it is useful to introduce two scalar

estimation functions, the input and output channels, that fully characterize the problem. The associated free entropies

(Barbier et al., 2018) (i.e., log-normalization factors) can be expressed as:

ϕin(B,A) = log

∫

χ

dx e−
1
2Ax2+Bx−β r(x) (52)

ϕout(ω, V, y) = log

∫

dz√
2πV

e−
1

2V (z−ω)2−β `(y,z). (53)

Then, defining gtµ = ∂ωϕ
out(ω′, V ′, y) and Γt

µ = −∂2ωϕout(ω′, V ′, y), both evaluated in ω′ =
∑

j(F
µ
j )

2∆t
j→µ and

V ′ =
∑

j F
µ
j x̂

t
j→µ, we can express through them the approximate message-passing, obtained at the second order of the

Taylor expansion of the messages:

log ν̂t+1
µ→i(xi) =ϕ

out





∑

j

Fµ
j x̂

t
j→µ + Fµ

i (xi − x̂ti→µ),
∑

j 6=i

(Fµ
j )

2∆t
j→µ, yµ



+ const. (54)

xi
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Next, we close the equations on single site quantities, discarding terms which are sub-leading for large N and assuming

zero mean and 1/N variance i.i.d entries in F . Thus, we can remove the cavities and approximate the parameters of the

(non-cavity) estimation channels as follows:

Bt
i =

∑

µ

Fµ
i g

t
µ − x̂t−1

i

∑

µ

(Fµ
i )

2Γt
µ (55)

At
i =
∑

µ

(Fµ
i )

2Γt
µ (56)

ωt
µ =

∑

i

Fµ
i x̂

t
i − gtµ

∑

i

(Fµ
i )

2∆t
i (57)

V t
µ =

∑

i

(Fµ
i )

2∆i. (58)

Finally, the expectations introduced above can be obtained via the derivatives:

gtµ = ∂ωϕ
out,t
µ (59)

Γt
µ = −∂2ωϕout,t

µ (60)

x̂ti = ∂Bϕ
in,t
i (61)

∆t
i = ∂2Bϕ

in,t
i , (62)

where we used the shorthand notation ϕin,t
i = ϕin(Bt

i , A
t) and ϕout,t

µ = ϕout(ωt
µ, V

t−1, y).

A slight simplification of the message passing (which involves O(N2) operations per iteration), relies on the observation

that due to the statistical properties of F the quantities Ai and Vµ do not depend on their indexes (Rangan, 2011), so we can

define their scalar counterparts:

At = cF
∑

µ

Γt
µ, (63)

V t = cF
∑

i

∆t−1
i , (64)

where cF =
∑

µ,i(F
µ
i )

2/(MN) ≈ 1/N . Therefore we obtain:

ωt
µ =

∑

i

Fµ
i x̂

t−1
i − gt−1

µ V t−1 (65)

gtµ = ∂ωϕ
out,t
µ (66)

Γt
µ = −∂2ωϕout,t

µ (67)

At = cF
∑

µ

Γt
µ (68)

Bt
i =

∑

µ

Fµ
i g

t
µ + x̂t−1

i At (69)

x̂ti = ∂Bϕ
in,t
i (70)

∆t
i = ∂2Bϕ

in,t
i (71)

V t = cF
∑

i

∆t
i. (72)

Eqs. (65-72) are known as the GAMP iterations, and are valid for t ≥ 1, given some initial condition x̂
t=0

and V t=0, along

with gt=0
µ = 0, ∀µ.

A.2. Zero-temperature limit of GAMP

In order to apply the GAMP algorithm to MAP estimation or MAP + regularizer, we have to consider the zero-temperature

limit β ↑ ∞ . The limiting form of the equations depends on the model and on the regime (e.g. low or high α). Here we
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consider models defined on continuous spaces χN and in the high α regime (e.g. α > 1 for phase retrieval). In this case,

while taking the limit, the message have to be rescaled appropriately in order for them to stay finite. Therefore we rescale

the messages through the substitutions:

A→ βA (73)

Bi → βBi (74)

V → V/β (75)

gµ → βgµ (76)

∆i → ∆i/β. (77)

With these rescalings, the GAMP equations (65-72) are left unaltered, but the expressions for the free entropies of the scalar

channels become

ϕin(B,A) =max
x∈χ

−r(x)− 1

2
Ax2 +Bx (78)

ϕout(ω, V, y) =max
z
− (z − ωµ)

2

2V
− `(y, z), (79)

as it is easy to verify.

A.3. GAMP equations for real-valued phase retrieval and AMP.A equations

In the special case of the phase retrieval problem, with a loss `(y, ω) = (y − |ω|)2 and L2-norm r(x) = λx2/2 and at zero

temperature, the two scalar estimation channels of Eqs.(78) and (79) become:

ϕin(B,A) =
B2

2(A+ λ)
(80)

ϕout(ω, V, y) =− (y − |ω|)2
2V + 1

. (81)

Thus, Eqs. (66, 70, 71, 72) simply yield:

gtµ =
2(yµ − |ωt

µ|)
2V t + 1

sign(ωt
µ) (82)

x̂ti =
Bt

i

At + λ
(83)

∆t
i =

1

At + λ
(84)

V t = NcF
1

At + λ
. (85)

Eq. (67) is instead singular, since it involves the derivative of the sign function. Since we have

ωt
µ =

∑

i

Fµ
i x̂

t−1
i − gt−1

µ

At−1 + λ
(86)

gtµ =
2(yµ − |ωt

µ|)
2V t + 1

sign(ωt
µ) (87)

At = −cF
∑

µ

∂2ωϕ
out,t
µ (88)

xti = (At + λ)

(

∑

µ

Fµ
i g

t
µ + x̂t−1

i At

)

, (89)

because of the singularity, the value of At cannot be simply evaluated on a given finite sample. A possible way of dealing

with this issue is to use a smoothing strategy in the first iterations of the message passing, replacing the sign function with a
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continuous version of it. Alternatively, in Ref. (Ma et al., 2018; 2019), the author propose to self-consistently adapt the

regularizer λ at each time step in order to absorb the divergent contribution. Also, the dynamics At can be replaced by the

corresponding and non-singular SE estimate. We find that all these solutions are difficult to implement in a robust way and

lead to some numerical instabilities that have to be dealt with great care. As we commented in the Main Text, this problem

does not affect the GASP version of the algorithm, because of the additional Gaussian kernel that smoothens the output

scalar estimation channel.

B. Derivation of Generalized Approximate Survey Propagation

We will derive the GASP equation for a general GLE model specified by (49). As already explained in the Main Text,

we will follow (Antenucci et al., 2019b) and work within the (real) replicas formalism. The derivation is similar to the

one outlined for the GAMP algorithm, which goes from Belief Propagation (BP) to relaxed Belief Propagation (rBP) to

Approximate Message Passing (AMP). In fact, GASP is obtained by applying the very same procedure that leads to GAMP

to an auxiliary graphical model that corresponds to considering multiple copies of the system.

B.1. Relaxed Survey Propagation

As an intermediate step toward the derivation of GASP equations, we derive the relaxed Survey Propagation (rSP) equations

for out GLE problem. This corresponds to a Gaussian closure of the standard BP equations on the replicated factor graph of

the problem, under replica symmetric assumptions. We assume the setting of Eq. (1) of the Main Text, that is a graphical

model defined by the Hamiltonian:

Hy,F (x) =
∑

µ

`
(

yµ, 〈F µ,x〉
)

+
∑

i

r(xi), (90)

with the further assumption that the entries of F are i.i.d. zero-mean Gaussian variables with variance 1/N , i.e Fµ
i ∼

N (0, 1/N) (but the derivation also applies to non-Gaussian variables with the same mean and variance). The configuration

space is assumed to be some subset χN of R. For discrete spaces, integrals should be replaced with summations. Also, we

consider the regime of large M and N , with finite α =M/N .

Quite peculiarly, the family of message passing algorithm corresponding to the 1RSB framework (i.e. SP, rSP, ASP), are

simply obtained as the BP, rBP and AMP equations for a replicated graphical model,

p({xa}ma=1) =
1

Zm
y,F

e−β
∑m

a=1 Hy,F (xa), (91)

where m is the number of replicas. The parameter m is not to be confused with the number of replica n that it is usually sent

to zero in the replica trick, but it has to be interpreted as the Parisi symmetry breaking parameter in the 1RSB scheme or as

the number of real clones within Monasson’s method (Monasson, 1995)). While the replicated model is trivially factorized

over the replicas, a highly non-trivial picture emerges when p is considered as the limit distribution obtained by inserting a

coupling term among the replicas and then letting it go to zero. Since the discussion about this technique (pioneered by

Monasson in Ref. (Monasson, 1995)) is quite articulated and has its root in a few decades of development in spin-glass

theory, we refer the interested reader to (Mézard et al., 1987; Mezard & Montanari, 2009; Antenucci et al., 2019a;b) and

reference therein for an overview of the theoretical aspects behind this approach. From here on we present the innovative

aspects of our contribution, which extends the work of Ref. (Antenucci et al., 2019b) to GLE models.

We denote with xi ∈ ξm the replicated variable on site i, and write a first set of BP equations in the form:

νi→µ(x̄i) ∝ e−β
∑m

a=1 r(xa
i )+

∑
ν 6=µ

log ν̂ν→i(x̄i), (92)

where we omit time indexes. In the large N limit, we can exploit the statistical assumptions on F and the central limit

theorem to perform a Gaussian approximation of the messages. Also, we assume symmetry of the messages νi→µ(x̄i)
under permutation of replica indexes, which holds self-consistently if one makes a similar assumption also on the messages

ν̂ν→i(x̄i). Messages are then multivariate Gaussian distribution conveniently parametrized by the mean x̂i→µ and two

parameters ∆0,i→µ and ∆1,i→µ in the form:

νi→µ(x̄i) ∝
∫

dh e
− 1

2∆0,i→µ
(h−x̂i→µ)

2 ∏

a

e
− 1

2∆1,i→µ
(xa

i −h)2

, (93)
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also known as caging ansatz in the glass and spin-glass community (Charbonneau et al., 2017). According to this Gaussian

projection, the first and second moments of messages are given by

〈xai 〉i→µ = x̂i→µ (94)

〈xai xbi 〉i→µ = ∆0,i→µ + x̂2i→µ (95)

〈(xai )2〉i→µ = ∆1,i→µ +∆0,i→µ + x̂2i→µ. (96)

The values of x̂i→µ, ∆0,i→µ and ∆1,i→µ can be obtained by matching the moments of the r.h.s. of 92. From now on the

derivation is very close to that of Section A.1 for GAMP, therefor we relax the notation and drop some indexes. Let us define

the input channel free entropy:

φin(B,A0, A1,m) =
1

m
log

∫

Dz

(∫

χ

dx e−βr(x)− 1
2A1x

2+(B+
√
A0z)x

)m

. (97)

Let us also denote with 〈ψ(x̄)〉 the expectation over the corresponding measure, in the m-replicated space, of a test function

ψ, that is

〈ψ(x̄)〉 =
∫

Dz
∫

χm

∏m
a=1 dx

a e−βr(xa)− 1
2A1(x

a)2+(B+
√
A0z)x

a

ψ(x̄)
∫

Dz
∏m

a=1 dx
a e−βr(xa)− 1

2A1(xa)2+(B+
√
A0z)xa

. (98)

For appropriate values of Bν→i, A0,ν→i and A1,ν→i to be determined by second order expansion of log ν̂ν→i(x̄i), and for

replica indexes a and b,a 6= b, from Eq. (92) we obtain:

∂Bφ
in = 〈xa〉 (99)

∂2Bφ
in = (〈(xa)2〉 − 〈xaxb〉) +m

(

〈xaxb〉 − 〈xa〉2
)

(100)

2∂A0
φin = (〈(xa)2〉 − 〈xaxb〉) +m〈xaxb〉 (101)

2∂A1
φin = −〈(xa)2〉. (102)

Using the above formulas, we can project the measure on R
m corresponding to φin onto the space of replica-symmetric

Gaussian distributions, parametrized by x̂, ∆0 and ∆1. Defining for convenience φin
i→µ = φin(A0,i→µ, A1,i→µ, Bi→µ),

with the quantities A0,i→µ, A1,i→µ and Bi→µ to be defined later, by moment matching we obtain:

x̂i→µ = ∂Bφ
in
i→µ, (103)

∆0,i→µ =
1

m− 1

(

∂2Bφ
in
i→µ + 2∂A1φ

in
i→µ + x̂2i→µ

)

, (104)

∆1,i→µ = ∂2Bφ
in
i→µ −m∆0,i→µ. (105)

Defining the messages

ωµ→i =
∑

j 6=i

Fµ
j x̂j→µ, (106)

V0,µ→i =
∑

j 6=i

(

Fµ
j

)2
∆0,j→µ, (107)

V1,µ→i =
∑

j 6=i

(

Fµ
j

)2
∆1,j→µ, (108)

we can express the central limit approximation for the BP equations at factor node µ as

ν̂µ→i(x̄i) ∝
∫

χm(N−1)

∏

j 6=i

d νj→µ(x̄j) e
−β

∑
a
`(yµ,〈Fµ,xa〉) (109)

∝
∫

d z0 e
− 1

2V0,µ→i
(z0−ωµ)

2
m
∏

a=1

(∫

Dz1 e
−β `(yµ,F

µ

i
xa
i +z0+

√
V1z1)

)

. (110)
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The expansion of the message ν̂µ→i(x̄i) that we use for our Gaussian closure of the BP messages are conveniently expressed

in terms of the derivatives of the output channel free entropy

φout(ω, V0, V1, y,m) =
1

m
log

∫

d z0√
2πV0

e−
1

2V0
(z0−ω)2

(∫

Dz1 e
−β `(y,z0+

√
V1z1)

)m

. (111)

Introducing the second order expansion

log ν̂µ→i(x̄i) = gµ→i

∑

a

xai −
1

2
A1,µ→i

∑

a

(xai )
2 +

1

2
A0,µ→i

∑

a,b

xai x
b
i (112)

we can write the last set of rSP messages as

gµ→i = ∂ωφ
out
µ→i (113)

Γ0,µ→i =
1

m− 1

(

∂2ωφ
out
µ→i − (2∂V1

φout
µ→i − g2µ→i)

)

(114)

Γ1,µ→i =
1

m− 1
(∂2ωφ

out
µ→i −m(2∂V1

φout
µ→i − g2µ→i)) (115)

(116)

Incoming messages on the input nodes are then given by

Bi→µ =
∑

ν 6=µ

F ν
i gν→i (117)

A0,i→µ =
∑

ν 6=µ

(F ν
i )

2Γ0,ν→i (118)

A1,i→µ =
∑

ν 6=µ

(F ν
i )

2Γ1,ν→i (119)

(120)

The closed set of Equations (103-108) and (113-119), along with the free entropy definitions in Eqs. (97) and (111), define

the rSP iterative message passing.

B.2. The GASP Equations

Under our statistical assumptions on the sensing matrix F , in order to reduce the computational complexity of

rSP, it is possible to close the equations the rSP message passing in terms of single site or scalar quantities

ωµ, gµ,Γ0,µ,Γ1,µ, A0, A1, Bi,∆0,i,∆1,i, V0 and V1, therefore obtaining the GASP equation. In fact, the values

A0,i→µ, A1,i→µ and V0,µ→i, V1,µ→i concentrate and can be straightforwardly replaced by their scalar counterparts. In order

to present in this section all of the necessary ingredients of the GASP algorithm, we rewrite here the two scalar channel free

entropies from previous section. Adopting a form that makes clear the nested structure of the 1RSB free-entropy and it’s

relation to the corresponding RS free entropy used in GAMP, we write fro the input channel

φin(B,A0, A1,m) =
1

m
log

∫

Dz emϕin(B+
√
A0z, A1) (121)

ϕin(h,A1) = log

∫

χ

dx e−βr(x)− 1
2A1x

2+hx (122)

and for the output channel

φout(ω, V0, V1, y,m) =
1

m
log

∫

Dz emϕout(ω+
√
V0 z, V1,y), (123)

ϕout(u, V1, y) = log

∫

Dz e−β `(y,u+
√
V1z). (124)
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As usual,
∫

Dz denotes standard Gaussian integration
∫

dz exp(−z2/2)/
√
2π. We will use the notation φin

i =
φin(Bi, A0, A1,m) and φout

µ = φout(ωµ, V0, V1, yµ,m) and drop time indexes for the time being. Given the definition

Bi =
∑

µ F
µ
i gµ→i, we can write

x̂i→µ = ∂Bφ
in(A0, A1, Bi − Fµ

i gµ→i) (125)

≈ x̂i − Fµ
i gµ∂

2
Bφ

in
i , (126)

which can be then inserted in the definition ωµ =
∑

i F
µ
i x̂i→µ resulting in

ωµ =
∑

i

Fµ
i x̂i − gµ

∑

i

(Fµ
i )

2
∂2Bφ

in
i . (127)

The other relevant equation is

gµ→i = ∂ωφ
out(V0, V1, ω

µ − Fµ
i x̂

i→µ) (128)

≈ gµ − Fµ
i x̂

µ∂2ωφ
out
µ , (129)

which analogously leads to

Bi =
∑

µ

Fµ
i gµ − x̂i

∑

µ

(Fµ
i )

2
∂2ωφ

out
µ . (130)

We now introduce back the time indexes, and use the shorthand notations φin,t
i = φin(Bt

i , A
t
0, A

t
1,m) and φout,t

µ =

φout(ωt
µ, V

t−1
0 , V t−1

1 , yµ,m). Using again the definition cF = 1
MN

∑

µ,i(F
µ
i )

2 (hence E cF = 1/N in our setting), with

some initialization for x̂t=0
i ,V t=0

0 , V t=0
1 and setting gt=0

µ = 0, we finally obtain

ωt
µ =

∑

i

Fµ
i x̂

t−1
i − gt−1

µ (mV t−1
0 + V t−1

1 ) (131)

gtµ = ∂ωφ
out,t
µ (132)

Γt
0 =

1

m− 1

(

∂2ωφ
out,t
µ − (2∂V1φ

out,t
µ − (gtµ)

2)
)

(133)

Γt
1 =

1

m− 1
(∂2ωφ

out,t
µ −m(2∂V1

φout,t
µ − (gtµ)

2)) (134)

At
0 = cF

∑

µ

Γt
0 (135)

At
1 = cF

∑

µ

Γt
1 (136)

Bt
i =

∑

µ

Fµ
i g

t
µ − x̂t−1

i (mAt
0 −At

1) (137)

x̂ti = ∂Bφ
in,t
i (138)

∆t
0,i =

1

m− 1

(

∂2Bφ
in,t
i + 2∂A1φ

in,t
i + (x̂ti)

2
)

(139)

∆t
1,i = ∂2Bφ

in,t
i −m∆t

0,i (140)

V t
0 = cF

∑

i

∆t
0,i (141)

V t
1 = cF

∑

i

∆t
1,i. (142)

Equations (131-142), along with the free entropy definitions in Eqs. (121, 123) are the GASP iterative equations.

B.3. Zero Temperature Limit

In order to apply the GASP algorithm to MAP estimation, we have to consider the zero-temperature limit β ↑ ∞ of the

message passing. The limiting form of the equations depends on the model and on the regime (e.g. low or high α). Here we
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consider models defined on continuous spaces χN and in the high α regime (e.g. α > 1 for phase retrieval). In this case,

while taking the limit, the messages have to be rescaled appropriately in order to keep them finite. Therefore, we rescale the

messages through the substitutions

A0 → β2A0 (143)

A1 → βA1 (144)

B → βB (145)

ω → ω (146)

V0 → V0 (147)

V1 → V1/β (148)

g → βg (149)

m→ m/β (150)

∆0 → ∆0 (151)

∆1 → ∆1/β, (152)

in Equations (131-142) and Eqs. (121, 124). Taking the β →∞ limit we recover the GASP equations for MAP estimation

presented in the Main Text.

B.4. GASP equations for real-valued phase retrieval problem

Putting together Eqs.(80) and (81), and the definitions in Eqs.(121) and (123), we can obtain the zero temperature limit of

the two GASP scalar estimation channels, in the special case of the phase retrieval loss `(y, u) = (y− |u|)2 and an L2-norm

r(x) = λx2/2. The expressions simply become:

φin(B,A0, A1, y,m) =− B2

2(A1 + λ−mA0)
− 1

2m
log

(

1− mA0

A1 + λ

)

(153)

φout(ω, V0, V1,m) =
1

m
log (Z+ + Z−)−

1

2m
log

(

1 +
2mV0
1 + 2V1

)

, (154)

where we defined for compactness:

Z± =H

(

− 2mV0y ∓ ω(1− 2V1)
√

V0(1 + 2V1)(1 + 2V1 + 2mV0)

)

exp

(

− m(ω ± y)2
1 + 2V1 + 2mV0

)

. (155)

Moreover, the zero temperature limit of GASP Eqs. (138, 139, 140) after the rescaling discussed in previous paragraph,

gives:

x̂i =
Bi

A1 + λ−mA0
(156)

∆0
i =

A0

(A1 + λ)(A1 + λ−mA0)
(157)

∆1
i =

1

A1 + λ−mA0
−m∆0

i . (158)

C. Setting the symmetry-breaking parameter

The 1RSB formalism, from which the (G)ASP equations are derived, is based on the introduction of a symmetry-breaking

parameter, the so-called Parisi parameter m (Mézard et al., 1987), that allows the description of the fine structure of highly

non-convex (“glassy”) landscapes.

In replica analyses, the physical meaning of m is the following: when the studied model develops a 1RSB structure, by

tuning m in its natural range of variability (0, 1], it is possible to focus the Gibbs measure on the different families of

exponentially numerous “states” (i.e., basins of solutions of the inference problem) that populate the loss landscape (Mézard
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et al., 1987). The dominant states, i.e. those where a perfect sampling algorithm would land with high probability, are

described at the thermodinamically optimal value m?, that extremizes the free-energy of the model.

In the real-replica formalism employed to derive the ASP equations (Monasson, 1995; Antenucci et al., 2019b), however,

m is an external parameter that can be analytically continued to take any real value, and is no-longer strictly bound to the

interval (0, 1]. In fact, both the algorithm and its SE characterization are valid even if the model has not developed a proper

1RSB structure, and m can be simply thought as a parametrization the family of algorithms ASP(m) (Antenucci et al.,

2019b). We note that, in the zero-temperature limit, when the proper scaling of m with β →∞ is chosen (Eqs. 143 to 152),

even the physically meaningful interval of variability of m is of course extended to (0,∞).
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Figure 3. Optimal value of the symmetry-breaking parameter m = m? (as employed in the GASP phase diagram in Fig. 2 in the Main

Text, bottom plot), for different values of the regularizer λ.

In Fig. 3, we show the numerical values of the thermodynamic optima m = m? in the zero-temperature phase retrieval

problem (obtained analytically in correspondence of ρ = 0, at varying values of α and λ, from a replica computation that

will be presented in a more technical future work). These are the values that were employed in the corresponding GASP

phase diagram, presented in the Main Text in Fig. 2.

We remark, however, that this particular choice was mostly due to the need of consistency in the criterion for fixing m
throughout the various regions of the phase diagram. In fact, as it was already noted in the Bayesian case (Antenucci et al.,

2019b), the thermodynamical optimum might not be the best choice for m, since other values seem to allow better inference

(e.g., a decreased final MSE). Since we are here interested in the MAP estimation task, our performance evaluation is

based solely on the possibility of achieving retrieval of the signal. This condition is definitely less demanding than that

of obtaining the best MSE, and in fact we find that wide ranges of values for m are effective in correspondence of each α
and λ. Fig. 3 is nevertheless indicative of how m should be incremented when the observation matrix gets smaller or when

weaker regularizers are employed.

In order to show the robustness of GASP(m) with respect to the choice of different values for the symmetry-breaking

parameter, in Fig. 4 we plot the total number of iterations required to converge to the signal (indicated by the color map), for

fixed values of m. The plotted number of iterations include both stages in our simple continuation strategy. As it can be

seen in the plot, this total number tends to increase as α is lowered, since the inference problem becomes harder.

The colored curves mark the lower border of the regions of effectiveness of GASP(m), with m fixed in each region, at which

the number of iterations required by the algorithm diverge. It is clear, indeed, that a careful fine-tuning of m is unnecessary,
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Figure 4. Total number of iterations to convergence for GASP(m). The colored curves delimit (from below) the perfect recovery regions

of GASP with the indicated value for m.

and that it is quite intuitive how to adapt it when a different instance of the problem is given. For example, in the noiseless

case, a basic strategy is to fix λ in the range [0.001 : 0.01] and then test O(1) different values for m, until MSE = 0 is

obtained at convergence of the message-passing.

As a last data point, we report in Fig. 5 the behaviour of the overlap with the true signal of the estimator given by GASP, for

two different system sizes, large times and as a function of α. We observe that for large N transitions become sharper and

experimental points approach the asymptotic prediction from SE.
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Figure 5. GASP and SE result after t = 103 iterations. Start at t = 0 with ρ = 10−3 for SE and x̂ ∼ N (0, IN ) for GASP. Circles are for

N = 103, squares for N = 104, . results are averaged over 100 samples. Lines are predictions from SE.


