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Abstract

Many real-world problems exhibit the coexistence of multi-

ple types of heterogeneity, such as view heterogeneity (i.e.,

multi-view property) and task heterogeneity (i.e., multi-task

property). For example, in an image classification problem

containing multiple poses of the same object, each pose can

be considered as one view, and the detection of each type

of object can be treated as one task. Furthermore, in some

problems, the data type of multiple views might be differ-

ent. In a web classification problem, for instance, we might

be provided an image and text mixed data set, where the web

pages are characterized by both images and texts. A common

strategy to solve this kind of problem is to leverage the con-

sistency of views and the relatedness of tasks to build the pre-

diction model. In the context of deep neural network, multi-

task relatedness is usually realized by grouping tasks at each

layer, while multi-view consistency is usually enforced by

finding the maximal correlation coefficient between views.

However, there is no existing deep learning algorithm that

jointly models task and view dual heterogeneity, particularly

for a data set with multiple modalities (text and image mixed

data set or text and video mixed data set, etc.). In this paper,

we bridge this gap by proposing a deep multi-task multi-view

learning framework that learns a deep representation for such

dual-heterogeneity problems. Empirical studies on multiple

real-world data sets demonstrate the effectiveness of our pro-

posed Deep-MTMV algorithm.
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1 Introduction

In contrast to the single view or single task in a traditional

classification setting, it is usually the case that many real-

world problems have multiple views or multiple tasks or

both of them. For example, in web classification problems,

each web page can be characterized by multiple sources,

including web title, web links, content in the web, etc.

Each source can be considered as one view and usually

contains the complementary information to each other. In

image classification problems, the classifiers could learn to

distinguish the domestic animals from the wild animals and

also to classify the object in the image to be a cat or a dog,
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while the different views could be the distinct poses of the

same animal.

Up until now, some researchers have proposed a vari-

ety of techniques to model a single type of heterogeneity.

For example, in multi-view learning, [25] proposed an undi-

rected graphical model to minimize the disagreement be-

tween multi-view classifiers; [29] follows the principles of

view consistency by regularizing the prediction tensor. in

multi-task learning, the intuition is that tasks usually share

the same structure, such as the tree structure in [11], the

clustered structure in [9] , etc. However, for the real-world

problems that exhibit view and task dual heterogeneity, only

making use of the techniques from multi-view learning or

from multi-task learning is not able to achieve the optimal

performance. To address this problem, [7] proposed a graph-

based framework for multi-task multi-view learning (M2TV)

that models both types of heterogeneity to help classify the

unlabeled data. [17] proposed multilinear factorization ma-

chines, which can capture the relationships between multi-

ple tasks with multiple views by constructing the task-view

shared multilinear structures and learn the task-specific fea-

ture map. Despite the fact that these algorithms can deal with

textual data very well, they fail to capture the spatial infor-

mation of image data by just vectorizing the images.

Recently, deep learning techniques have been success-

fully applied to model various types of data, such as image

data [15, 18] and text data [12, 20] with significantly im-

proved performance and important features extracted in an

automatic way. For example, in deep multi-view learning,

the authors of [4] showed that a common feature representa-

tion of different views can be created by minimizing the loss

in this unified feature space; in deep multi-task learning, a

cross-stitch network proposed in [20] aimed to find the relat-

edness of two tasks in almost each hidden layer. However, to

the best of our knowledge, there does not exist a deep learn-

ing algorithm for modeling view and task dual heterogeneity.

In other words, existing deep neural network structures only

take into consideration task or view heterogeneity, and can-

not be naturally extended to model both types.

To bridge this gap, we propose a deep multi-task multi-

view learning framework that can model multi-modality

data. The key idea is that for different views, we construct a

different neural network with one unit per layer at the begin-

ning based on the data type (see Figure 1 for the architecture

of the proposed model), and the complementary and consen-
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sus principles between these views are enforced by adding a

regularization layer to constrain the output of multiple neu-

ral networks to be consistent. To integrate the output of these

neural networks for multi-modality data, the weight of each

view is automatically learned in the regularization layer and

these weights are used to measure the contribution of each

view to the final output. For different tasks, we group related

tasks or attribute classifiers starting from the output layer to

the input layer based on the similarity among tasks. Com-

bining these two aspects, we propose an iterative algorithm

to obtain the optimal estimates of the model parameters. Our

main contributions are summarized below:

• A novel deep heterogeneous learning framework ad-

dressing task and view dual heterogeneity;

• A generalized deep learning framework for modeling

multi-modality data;

• A regularization layer designed to maximize the consis-

tency of multiple views;

• Experimental results on several data sets demonstrating

the effectiveness of the proposed framework.

The rest of this paper is organized as follows. A brief

review of the related work is discussed in Section 2. Then

we introduce our proposed framework for deep multi-view

multi-task learning in Section 3. In Section 4, we evaluate

our framework on multiple data sets. Finally, we conclude

the paper in Section 5.

2 Related Work

In this section, we briefly review the related work on multi-

view learning, multi-task learning, multi-view multi-task

learning, as well as convolutional neural network (CNN).

2.1 Multi-view Learning Multi-view learning has been

studied for decades. [22] proposed Co-regularization method

to jointly regularize two Reproducing Kernel Hilbert Space

H1 and H2. [1] proposed Deep Canonical Correlation Anal-

ysis, which aims to find two deep networks such that the

output layers of two networks are maximally correlated. In

addition, multi-view Clustering (MVC) is another popular

method used in unsupervised and semi-supervised learn-

ing and it aims to find several clusters such that similar

data points are assigned to the same cluster and dissimilar

data points are assigned to the different cluster by combin-

ing information from multiple views. [13] proposed a co-

regularized multi-view clustering method by minimizing the

disagreement between any pair of views. In this paper, we

consider different tasks or attributes classifiers as data points

and group these tasks by implementing multi-view clustering

approach based on the similarities between tasks.

2.2 Multi-task Learning In parameter-based multi-task

learning, task clustering approach and task relation learning

approach are the most common strategies used to group tasks

[24, 26]. The authors of [28] proposed a multi-task learn-

ing algorithm called CMTL, which assumes that each task

can learn equally well from any other task. In feature-based

multi-task learning, it assumes that different tasks share the

same feature representation derived from the original feature

under the regularization framework [2]. In deep multi-task

learning, [18] used top-down layer-wise widening method

to split one unit layer into several branches and group tasks

in this layer based on the affinity of tasks. [23] proposed the

tasks-constrained deep convolutional network method to for-

mulate a task-constrained loss function, back-propagate the

errors of related tasks jointly, and thus, improve the general-

ization of landmark detection. In our paper, we combine the

relatedness of tasks from multiple views to determine how

tasks are clustered in a more precise way.

2.3 Multi-view Multi-task Learning To cope with some

real-world problems involving multiple views and multi-

ple tasks, some researchers proposed to jointly model the

two types of data heterogeneity. For example, [14] proposed

spatio-temporal multi-task multi-view learning framework to

predict the urban water quality, which fuses the heteroge-

neous data by penalizing the disagreement among different

views and capture the spatial correlation among tasks by a

graph Laplacian regularizer; [30] seeks to find a weight ten-

sor to represent the worker’s behaviors across multiple tasks

by exploiting the structured information. [10] proposed a

method to learn the feature transformation for different views

by classical linear discriminant analysis [6] and explore the

shared task-specific structure for different tasks. However,

most of these methods are only good at dealing with one

type of data and they might deteriorate with another type of

data. For example, the approach proposed in [7] has good

performance for text data but it ignores the spatial informa-

tion of image data by just vectorizing the images. In contrast,

in this paper, we construct different types of neural networks

for distinct data types, utilize the complementary informa-

tion among different views, and exploit the relatedness of

tasks to improve the performance of our proposed method.

2.4 Convolutional Neural Network Two types of CNN

are widely used for two types of data, including two-

dimensional CNN for image data and one-dimensional CNN

for text data. VGG-16 [21] is one of the most famous two-

dimensional CNN (2d CNN) architectures that are widely

used to solve image classification problems. Different from

two-dimensional CNN, [12] proposed a model based on

one-dimensional convolutional neural network (1d CNN) for

sentence classification. At first, word2vec [19] is applied to

find word embedding and each word has its own word vector
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in the feature space with dimensionality R1×d. Then, each

documentation can form a matrix M ∈ Rk×d by concate-

nating words in the documentation together, where k is the

maximal number of words in all documentations. N-grams

are realized by training the different sizes of kernels. For ex-

ample, a kernel K ∈ R2×d can extract a bi-gram. In this

paper, we use 1d CNN to extract N-grams from text data and

2d CNN for image data.

3 The Proposed Deep Multi-view Multi-task Learning

In this section, we introduce our proposed deep framework

for multi-view multi-task learning , which is able to simulta-

neously address multi-modality data.

3.1 Preliminaries In this subsection, we briefly review

the existing work of [18], which paves the way to our pro-

posed framework. More specifically, the authors of [18] pro-

posed an adaptive layer-wise widening model to automati-

cally learn a multi-task architecture based on a thin version

of the VGG-16 network [21]. The core procedure is to incre-

mentally widen the layers with d branches by grouping the

tasks based on the affinities of tasks, where d is the number

of clusters. The authors defined A to be the affinity matrix,

i, j the task index, E the expectation, and k, l the branch in-

dex. The error margin is defined as mn
i = |tni − sni |, where

tni is the binary label for task i at example n and sni is the

prediction. The affinity of each pair of tasks i, j is defined

as A(i, j) = P (eni = 1, enj = 1) + P (eni = 0, enj = 0) =
E{eni e

n
j + (1− eni )(1− enj )}, where eni is an indicator vari-

able for task i at example n. The indicator variable is set to

be 1 if mn
i is greater than the average error margin E{mi}.

To compute the affinity of two branches k, l connecting to

the current layer, the authors denoted ik and jl as the ith and

jth tasks in k and l branches respectively. The affinity of two

branches is defined by A(k, l) = meanik(minjl A(ik, jl))
and A(l, k) = meanjl(minik A(ik, jl)). The final branch

affinity score Af is the average of two affinities k and l:

(3.1) Af (k, l) = (A(k, l) +A(l, k))/2.

After getting the affinity matrix Af , the authors performed

spectral clustering to obtain a grouping function gd : [c] →
[d], which means c old branches can be assigned to d clusters.

In order to determine the optimal number of branches, the

authors minimized the following loss function:

Ll(gd) = (d− 1)L02
pt + αLs(gd)(3.2)

where the first part is a penalty term for creating branches at

layer l, the second part is the penalty for separation defined

as: Li
s(gd) = 1 −meank∈g−1(i)(minl∈g−1(i) Af (k, l)) and

α is a positive parameter. In our proposed method, we use

the same method to approximate the similarities of tasks, but

we target the more complex scenario with multiple views

instead of a single view. In addition, different from the the

fully adaptive layer-wise widening model whose input data

is limited to a single modality (i.e., image data), our model

is able to handle multi-modality data, such as text, image,

video, etc.

3.2 Deep MTMV Now we are ready to introduce our

proposed framework. The main idea of the proposed model

is to utilize the label information from the training data

as well as the consistency among different views to help

classify the test data. Suppose that the data set has m
views and T tasks. We denote DL = {Xj

i , Y
j} as the

training data set, where Xj
i ∈ Rnj×di corresponds to the

feature matrix of the ith view and the jth task, Y j ∈
Rnj×1 consists of the class label of the jth task, nj is

sample size of the jth task and di is the dimensionality

of the feature space in the ith view. We denote H to be

a feature mapping of a neural network and Hi(Wi, X
j
i , bi)

to be the output of the ith view shared by T tasks at the

beginning with weights Wi and biases bi. To combine the

feature mappings of multiple views, we denote F to be the

view fusion of multiple neural networks, which consists of

several fully connected layers, and F (∀i,Hi(Wi, X
j
i , bi)

1

outputs the label in the last fully connected layer (Details

will be discussed in the Section 3.3). Figure 1 provides the

architecture of the framework, where we assume that the

input consists of both image data and text data, although the

proposed framework can be naturally generalized to handle

additional data types. In this case, we construct two neural

networks for two types of data, and H1(W1, X
j
1 , b1) and

H2(W2, X
j
2 , b2) are the feature mappings of 2d CNN and

1d CNN (or Long Short-Term Memory, namely LSTM),

respectively. F (∀i,Hi(Wi, X
j
i , bi)) combines the output of

H1(W1, X
j
1 , b1) and H2(W2, X

j
2 , b2), and outputs the label.

Generally speaking, suppose that the data set has m views

and T tasks.

The cost function of our algorithm can be written as:

J =
1

2

T
∑

j

∥

∥

∥
Fj(∀i,Hi(Wi, X

j
i , bi))− Yj

∥

∥

∥

2

2
+

m
∑

i=1

λi ‖Wi‖2

(3.3)

where λi is a positive parameter. The objective of the pro-

posed model is to fuse multiple views together, and to learn

the weights of different views automatically. The relatedness

of tasks is exploited to improve the performance by applying

the multi-view clustering method.

3.3 Regularization Layer In multi-view learning, co-

training [3] is a commonly used method by utilizing the con-

1we slightly abuse the notation and it will be explained in later section.
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Figure 1: Suppose we are provided an image and text mixed data set with five tasks. We construct a 2d convolutional neural

network (2d CNN) for image data and 1d CNN (or LSTM) for text data. In round 1, we aim to find the relatedness of tasks

and multi-view clustering method is applied to decide how many branches we need to create and how to group tasks. After

we train two neural networks with two types of data, we compute the similarities of tasks and update the structure in the next

round. At the beginning of round 2, we decompose the split layer 2d-CNN FC into 2d-CNN FC 1 and 2d-CNN FC 2, and

the split layer 1d-CNN FC into 1d-CNN FC 1, 1d-CNN FC 2, respectively. The size of 2d-CNN FC 1, 2d-CNN FC 2 are

still the same as the size of 2d-CNN FC. Then, we assign tasks T1, T2, T4 to 2d-CNN FC 1 and 1d-CNN FC 1, and tasks

T3, T5 to 2d-CNN FC 2 and 1d-CNN FC 2 based on the clustering results. The filters or the kernels at the newly created

branches (2d-CNN FC 2 and 1d-CNN FC 2) are initialized by directly copying from 2d-CNN FC or 1d-CNN FC. Next,

we aim to find the similarities of the branches (the first branch: 2d-CNN FC 1 and 1d-CNN FC 1, the second branch: 2d-

CNN FC 2 and 1d-CNN FC 2) and split 2d-CNN 3 and 1d-CNN 3 to create more branches by repeating these procedures.

sistency principle to maximize the mutual agreement of label

predicted by distinct views. In co-training, one uses multiple

classifiers to predict the labels of the unlabeled data, adds the

top k confident unlabeled data into the training data set and

repeats this procedure until all the unlabeled data has been

added into the training set. However, in some situations, we

cannot assume that each view has equivalent contribution to

the prediction. Take web classification problem as an exam-

ple, multiple views in this classification problem are the con-

tent of the web page, the title of the web page and the link

within the web page. Obviously, the content of the web page

contributes most to the prediction, while the title of the web

page and the link within the web page have less contribu-

tion to the prediction. If the prediction made by the classifier

trained on either the title of the web page or the link within

the web page is used to label the unlabeled data, the predic-

tion may not be as accurate as the prediction made by the

classifier trained on the content of the web page. Therefore,

assuming the equivalent contribution may result in a worse

performance in some scenarios like this.

To overcome this issue, we proposed multi-view fusion

to automatically learn the weight of each view that con-

tributes to the prediction. Given m views, we have

(3.4) F (H) = σ(WF , H, bF )

where H = H1(W1, X
j
1 , b1) ⊕ H2(W2, X

j
2 , b2)... ⊕

Hm(Wm, Xj
m, bm), the symbol⊕means concatenation, σ(·)

is an activation function, and WF and bF are the weight and

bias, respectively. In this equation, Hi(Wi, X
j
i , bi) can be

considered as a feature mapping of the ith view and the ex-

pectation of the weights determines how many percentages

each view contributes to the prediction of the training data.
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These weights are also used to determine which view is the

centroid view when we apply the centroid multi-view clus-

tering method to group similar tasks in the next subsection.

3.4 Layer Widening and Task Clustering Similar to the

structure proposed in [18], our training algorithm consists of

a procedure to widen the layers of neural networks in order

to explore the relatedness of multiple tasks and to group

similar tasks into the same clusters based on the similarity

among tasks. Most deep models assume that the tasks share

the same parameters at the first several layers and have their

own parameters at the following layers [26]. In our case, we

have multiple neural networks to start with, each of which

is associated with a single view. Furthermore, it is usually

the case that each neural network ends up with its own

distinct structure when we update its structure separately

by grouping tasks based on their similarities within a single

view. For example, suppose that both task A and task B are

assigned to the same cluster in the first neural network (i.e.,

the first view), but in the second neural network (i.e., the

second view), task A and task B may be assigned to two

different clusters. This phenomenon contradicts our intuition

that these neural networks created by multiple views should

have the identical layer structure.

To address this problem, motivated by [20], we propose

to insert a cross-stitch network into our architecture, in order

to learn task relatedness inside the hidden layers of the

multiple neural networks for multiple views. In this way,

we obtain a unified task grouping informed by multiple

views instead of potentially inconsistent groupings from

different views. More specifically, in our proposed model, we

consider each task as a data point. After the training stage,

we compute the task-similarity matrices and estimate the

affinity of the tasks in m views according to equation 3.1. To

update the structure of neural networks, we create d branches

for a unit layer based on equation 3.2, initialize the weight

of these newly created branches by directly copying from

the split layer, and link the old branches from the previous

layer to these newly created branches based on the result of

the following clustering method. Because the weight of one

view might be higher than other views, centroid-based co-

regularized multi-view spectral clustering approach [13] is

used to assign similar tasks to the same group and dissimilar

tasks to different groups in each round. The intuition is that

the underlying clustering would assign the corresponding

task in each view to the same cluster [13]. Given m views, T
tasks, and k clusters, we have

max
Ui

m
∑

i=1

(U ′
iLiUi) +

m
∑

i=1

λitr(UiU
′
iUcU

′
c)

s.t U ′
iUi = I, 1 ≤ i ≤ m,U ′

cUc = I

(3.5)

where Li ∈ RT×T is the graph Laplacian of the ith view

Algorithm 1 Deep-MTMV

Input: The initialized model M , the total number of round

R, the training data set DL = {Xj
i , Y

j} and the number of

branches b.
Output: The well-trained model M .

Initialization: Load pre-trained model or randomly initialize

the weights and biases of the model, and set t to be 0.

while t ≤ R and b > 1 do
Step 1: Train the model M with training data DL.

Step 2: Compute the affinity matrices about the tasks

similarities for m views based on equation 3.1.

Step 3: Determine the number of clusters by multi-view

clustering method based on equation 3.2 and 3.5.

Step 4: Create branches and widen layers for M based

on the results of multi-view clustering.

Step 5: b← the number of branches in the current layer.

Step 6: t← t+ 1.

end

Train the model M until convergence.

, Ui ∈ RT×k consists of the eigenvectors of the ith view,

Uc ∈ RT×k consists of the eigenvectors from the most

important view and λi is the weight of the ith view. The

normalized graph Laplacian Li of the ith view is defined as

Li = D− 1

2Af
i D

− 1

2 , where Af
i is the affinity matrix for the

ith view based on equation 3.1 and D ∈ RT×T is diagonal

matrix with Dα,α to be the sum of the αth row of Af
i . The

detailed approach to solve this optimal problem can be found

in [13], and is omitted here for brevity. The optimal solution

determines how tasks are clustered and how a layer is split.

In addition, we can naturally extend this multi-view

clustering method to accommodate the scenario where some

views may be missing for some tasks as in [27]. Although

for the missing views, the corresponding entries of some

tasks in the affinity matrices would be unavailable, these

missing similarities can be estimated by the corresponding

similarities in other views. In Section 3.3, our model auto-

matically learns the weights of different views, with which

the missing entries of the affinity matrices can be approxi-

mated by averaging the similarities from the available views.

Besides, the learned weights of different views can also be

used to set the parameters λi during the multi-view cluster-

ing process.

3.5 Multimodality Model for text and image mixed data

set As mentioned before, our proposed framework is able to

take as input multimodality data. Next, we use text and image

mixed data set to illustrate the key idea. Given two sources

of data: image data and text data, we build a convolutional

neural network for image data, and a 1d convolutional neural

network [12] (or Long Short-Term Memory) for text data.

Notice that the specific choice of the neural network for
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each data modality is orthogonal to the proposed framework.

Furthermore, the text data is pre-processed by word2vec

algorithm [19] to extract word embeddings as the input of

1d CNN. The vital features, such as unigram, bi-gram, and

tri-gram, are extracted by the filters of CNN with different

size, such as K1 ∈ R1×d, K2 ∈ R2×d, and K3 ∈ R3×d,

where d is the dimensionality of word2vec embeddings. At

first, two neural networks are trained separately, and then the

feature mappings extracted by the two neural networks are

appended in the fully connected layers to predict the labels

of test data. In addition to the data sets containing the same

data type, such as CelebA [16], WebKB, we will present

experimental results on a real-world data set, FamousFood,

which contains two types of data, image and text, to evaluate

the performance of our proposed framework.

3.6 The Proposed Algorithm Our proposed algorithm is

presented in Algorithm 1. It takes a initialized model (which

is obtained based on the initialization algorithm in [18] ,

training data, the number of branches, and the total number

of rounds as inputs, and outputs the well-trained model.

The algorithm works as follows. We first construct a neural

network structure for each view at the beginning, train m
neural networks with the training data after initialization and

fuse these neural networks in the regularization layer to get a

final model. Then, we compute the affinity matrices about the

tasks similarities. After the number of clusters is determined

by minimizing the loss of the multi-view clustering method,

we create new branches and assign the similar tasks into the

same branch and dissimilar tasks into the different branches.

When the number of round reaches its maximal or the

branches cannot be split, then stop updating the structure and

train the model until convergence.

4 Experimental Results

In this section, we demonstrate the performance of our

proposed Deep-MTMV algorithm in terms of effectiveness

by comparing with state-of-the-art methods.

4.1 Data sets In this paper, we evaluate our proposed

algorithm on the following data sets:

• CelebA [16]: It is composed of 202,599 images of

celebrities, and 40 labeled facial attributes. Each at-

tribute, such as black eye, brown eye, bald, is consid-

ered as one task in this classification problem. We ex-

tract two views or four views from each image in a way

mentioned below. In our setting, we have 40 different

tasks for 40 attributes and 2 (or 4) views.

• Deepfashion [15]: It consists of 50 categories and more

than 289,222 images of clothes. Each category, such as

hoodie and ramper, is considered as one task in this

classification problem. We extract two views or four

Pre-module Post-module P value

Branch-32
Deep-

MTMV 4 views

1.01E-

17

Baseline view 1
Deep-

MTMV 4 views

4.33E-

56

Baseline view 2
Deep-

MTMV 4 views

9.24E-

61

Deep-

MTMV 2 views

Deep-

MTMV 4 views

8.66E-

10

Table 1: Student T Test with 95% Confidence Level

views from each image in a way mentioned below. In

this setting, we have 50 different tasks for 50 different

categories and 2 (or 4) views.

• WebKB: This is a textual data set, which consists of

over 4000 web pages from 4 universities and includes 3

views, including the content of the web page, the title of

the web page and the links within the web page. In our

setting, each university is treated as a task and our goal

is to classify each web page as course or non-course.

• FamousFood: In this data set, the images of famous

food and the text of food description are crawled from

the online photo sharing website Flickr. This data set

contains 4 types of foods, which fall into 2 categories

(sweet food or fast food), and each is considered as a

task in our setting. Two different data source are image

and the related text. For each food, it contains more than

450 images on average. In our setting, we have 6 (4

types of foods and 2 food categories) tasks and 2 views.

4.2 View extraction for two image data sets (CelebA

and Deepfashion) In our experiments, we extract two views

from a single image by splitting the width of each single

image into two sets of indices: the even indices and the odd

indices. Keeping the height of each image unchanged and

combining all odd (even) indices together, we form the first

(second) view. The way to get the four views is similar to the

way to get the two views. Instead of only splitting the width

of a single image into four views, we divide the single image

into two parts both vertically and horizontally. By selecting

the odd indices of the width and the odd indices of the height,

we get the first view (and we can get the other three views in

a similar way). The reason why we split the image this way

is that we want to keep the views from overlapping.

4.3 Comparison methods In our experiments, we com-

pare the performance of the following methods: (1). Our

baseline model trained with view 1; (2). Our baseline model

trained with view 2; (3). Branch-32 [18] (CelebA, DeepFash-

ion and FamousFood data set); (4). FashionNet [15] (Deep-

Fashion data set); (5). DARN [8] (DeepFashion data set);
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(a) Top 10 recall for CelebA (b) Top 5 accuracy for DeepFashion

Figure 2: Effectiveness Analysis (Best viewed in color)

(6). M2TV [7] (WebKB data set and FamousFood data set);

(7). CNN-Static [12] (WebKB data set).

Notice that some of these methods are best suited for

certain data modalities. For example, Branch-32, FashionNet

are designed to deal with image data; and M2TV, CNN-

Static are only good at coping with text data. Therefore, we

omit the results of these methods on the non-applicable data

sets.

4.4 Two images data sets: CelebA and Deepfashion The

labels of two images data set are attributes of object or person

in the image. The comparison results conducted on the two

data sets in terms of the top 10 recall rate and top 5 accuracy

rate metrics are shown in Figure 2 (a) and 2 (b) respectively.

In both figures, the x-axis is the number of training images.

The y-axis in Figure 2 (a) is the top 10 recall rate for

CelebA data set and the y-axis in Figure 2 (b) is the top 5

accuracy rate for DeepFashion data set. These two figures

show that our algorithm outperforms the others with respect

to these two evaluation metrics. From the two figures, we

can observe that the results of Deep-MTMV with four views

outperforms Deep-MTMV with two views. Our intuition of

this observation is that four views of Deep-MTMV model

can preserve more spatial information than Deep-MTMV

model with two views. Moreover, to further prove that our

proposed algorithm leads to significant improvement, we

conduct the paired student t test, which is shown in Table 1.

We compared our methods with Branch-32 method and we

found that the p value is 1.01E-17, which indicates that

our model does lead to significant improvements over other

methods on average. In addition, the p value of the paired

student t test on Deep-MTMV with two views and Deep-

MTMV with four views indicates that the more views we

have, the more spatial information of image we can preserve,

and thus a better performance.

4.5 Text data set: Webkb Next, we test the performance

of our proposed model on WebKB data set, and the goal is to

classify each web page as course or non-course. The baseline

method is a simple version of our proposed method, which

is trained on a single view, i.e., the content of web page. To

test the performance of CNN-Static, we concatenate three

views together to be the input of this model. The comparison

results in terms of the accuracy and the F1 score are shown

in Figure 3 (a) and Figure 3 (b), respectively. The x-axis in

these two figures is the percentage of training data and the

y-axis is accuracy in Figure 3 (a) and F1 score in Figure 3

(b), respectively. These two figures show that our proposed

model is better than the others with respect to both evaluation

metrics. From these figures, we observed that the accuracy

and F1 score of our proposed model can be as high as 92%,

even if only 10% of training data is provided. When more

than 80% of training data is given, the accuracy rate and F1

score reach 99%. In this experiment, we also evaluate the

weight of each view that contributes to the final prediction.

After the model is well-trained, the weight of the content

of web page is around 0.0561, compared with 0.0501 and

0.0498 for the rest two views, which is consistent with our

expectation that the web content is a little bit important than

the link and the title.
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(a) Accuracy for WebKB (b) F1 score for WebKB

Figure 3: Results of WebKB (Best viewed in color)

Model

Accuracy of

food predic-

tion

Accuracy

of category

prediction

F1

score

Branch-32 59.71% 90.64% 55.18%

M2TV 48.75% 69.44% 49.18%

Deep-MTMV 71.22% 94.60% 71.96%

Table 2: Results for FamousFood data set

4.6 Text and image mixed data set: FamousFood Fi-

nally, we evaluate our model on text and image mixed data

set. Due to the limitation of the compared models, Branch-

32 only trains on the single view (image); to reduce the fea-

ture dimension for M2TV, the size of each image is re-sized

from 224x224 to 50x50 and then each image is converted

to a vector. The comparison results in terms of the accuracy

and the F1 score are shown in Table 2. We measure the accu-

racy of type of food prediction, the accuracy of food category

prediction, and the macro F1 score. This table shows that

our proposed model outperforms the others with respect to

these evaluation metrics. From this table, we observed that

the accuracy of food prediction reaches 71.22% compared

with 59.71% achieved by Branch-32 and 48.75% achieved

by M2TV. The worse performance of M2TV for this data set

might be due to the fact that M2TV fails to capture the spa-

tial information of images, while Branch-32 cannot utilize

the complementary information from another view to further

improve the performance.

5 Conclusion

In this paper, we propose a deep multi-task multi-view learn-

ing framework, i.e., Deep-MTMV. It trains multiple neural

networks, automatically learns the weight of the different

views that contribute to the prediction in the regularization

layer, groups similar tasks together based on the relatedness

of tasks, and classifies the test data with a high accuracy. To

the best of our knowledge, the proposed framework is the

first deep model for jointly addressing task and view dual

heterogeneity, particularly for a data set with multiple modal-

ities. Furthermore, we generalize the proposed Deep-MTMV

algorithm to solve multiple real image and text classification

problems by (1) utilizing the complementary principle and

the consensus principle of multiple views, and (2) learning

the relatedness of tasks in each layer of the deep networks.

Finally, we compare our algorithm with state-of-the-art tech-

niques, and conduct experiments on multiple real-world data

sets to demonstrate that our algorithm leads to statistically

significant improvements in the performance. Applying our

approach to other applications [5] is one of the future work.
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