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Abstract

Algorithms often carry out equally many
computations for “easy” and “hard” prob-
lem instances. In particular, algorithms for
finding nearest neighbors typically have the
same running time regardless of the partic-
ular problem instance. In this paper, we
consider the approximate k-nearest-neighbor
problem, which is the problem of finding
a subset of O(k) points in a given set of
points that contains the set of k nearest
neighbors of a given query point. We pro-
pose an algorithm based on adaptively es-
timating the distances, and show that it is
essentially optimal out of algorithms that
are only allowed to adaptively estimate dis-
tances. We then demonstrate both theoreti-
cally and experimentally that the algorithm
can achieve significant speedups relative to
the naive method.

1 INTRODUCTION

A large number of algorithms in machine learning
and signal processing are based on distance computa-
tions. The algorithms for solving the associated com-
putational problems are typically designed to perform
well on a set of problem instances, in a worst-case or
average-case sense, but do not necessarily have opti-
mal or close-to-optimal computational complexity on
any given problem instance. As a consequence, these
algorithms often have running times and guarantees
that are the same for “easy” and “hard” problems.

Ideally, we would like an algorithm that adapts to any
given problem instance and only carries out the com-
putations necessary for that problem instance. In this
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paper, we consider an approach for speeding up algo-
rithms and evaluating their complexity that is based
on adapting to a given problem instance with random
adaptive sampling techniques (Bagaria et al., 2018a,b).
This approach is applicable to a variety of algorithms
that are based on distance computations. Adding such
adaptivity to algorithms can significantly speed up the
algorithms’ running times, since computationally easy
problems have accordingly smaller running times.

For concreteness, we focus on the problem of approzi-
mate k-nearest-neighbor (k-NN) computation. Specif-
ically, given a query point x and a set of n points, X,
our goal is to find a subset containing the k nearest
neighbors of the query point. Our intuition is that an
“easy” k-NN problem instance is one where there is
a set of at least k points that are close to the query
point, and the other points are rather far, such that
the evaluation of only a few coordinate-wise distances
of the far points is sufficient to know that they are far-
ther away than the close points. Contrarily, a “hard”
problem instance is one where the distance from x to
all other points is very similar, and thus it is difficult
to find a subset of k nearest neighbors.

We note that other formulations of the approximate k-
NN problem are common as well. For example, Andoni
and Indyk (2006) consider a formulation where points
can be returned whose distance from the query point
is within a multiplicative factor to its nearest points.

We propose an algorithm, which we call the adaptive k-
NN algorithm, that adaptively estimates the distances
and exploits the fact that for finding a set containing
the k nearest neighbors, it is not necessary to compute
all distances exactly. In particular, for easy problem
instances, coarse estimates are sufficient to identify a
subset containing the k nearest neighbors. Contrary
to previous approaches, in particular that of Bagaria
et al. (2018b), we focus on identifying a set containing
the k nearest neighbors, since this is computationally
considerably cheaper than identifying the exact set of
k nearest neighbors.

We prove that the adaptive k-NN algorithm is near
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instance-optimal for a restricted class of problems in
the class of randomized algorithms that are based on
adaptively estimating the distances. In a nutshell, the
proof strategy is as follows: guaranteeing a solution
to a given computational problem based on estimated
distances (say, k-NNs) requires sufficiently good esti-
mates of the distances. With standard change of mea-
sure techniques (Kaufmann et al., 2016) we can derive
instance-dependent lower bounds on the sample com-
plexity required to obtain sufficiently good estimates.
This sample complexity is also a lower bound on the
computational complexity of the respective algorithm,
since at the very least the distances have to be com-
puted sufficiently well to be sure a subset of the k near-
est neighbors can be identified with high probability.
Further, we show that this computational complexity
can also be achieved by designing an approximate k-
NN algorithm that estimates the distances adaptively
in time almost linear in the sample complexity.

2 RELATED WORK ON k-NN

There are many highly efficient algorithms that solve
versions of the (approximate) k-NN problem. If the
dimension of the data points is low, then the k-d tree
algorithm (Bentley, 1975) performs very well. This al-
gorithm builds a balanced k-d tree and traverses the
tree to find the nearest neighbors. Contrary to our ap-
proach, the algorithm is based on pre-processing the
data and thus becomes efficient only when perform-
ing many queries, so that the cost of building the tree
becomes negligible. In addition, k-d trees become in-
efficient in high dimensions.

In order to overcome complexity in high dimensions, a
number of works have proposed to find solutions that
are approximate in that the algorithm is only asked
to return points that are close in distance to the true
nearest neighbors, for example, by using random pro-
jections (Ailon and Chazelle, 2006). Perhaps the most
popular class of algorithms for performing approxi-
mate nearest-neighbor search is based on locality sen-
sitive hashing (Andoni and Indyk, 2006). This class of
algorithms works very well in theory and practice, but
again uses a pre-processing step that is not negligible
if only one query is executed.

If many k-NN queries are carried out on the same
dataset, then the k-d algorithm for small dimensions
and locality sensitive hashing algorithms for higher
dimensions are significantly more efficient than algo-
rithms based on adaptively estimating scores, such as
the algorithm proposed here, since then the amortized
pre-processing costs become negligible. In contrast,
our approach is efficient in high dimensions and when
we only carry out one or very few queries.

A setting particularly relevant to our approach is
that in which the dataset is rapidly changing, where
the assumption of other k-NN algorithms that pre-
processing costs become negligible over time no longer
holds. Ome such example is in the Impicit Maxi-
mum Likelihood Estimation procedure by Li and Ma-
lik (2018), where at each iteration nearest-neighbor
queries must be performed against a set of samples
from the new estimate of the distribution.

There are a few recent success stories where adaptive
randomized algorithms significantly speed up com-
putational problems: the Monte-Carlo tree search
method for decision processes (Kocsis and Szepesvéri,
2006), hyperparameter optimization in machine learn-
ing (Li et al., 2018), finding the medoid in a large
collection of high-dimensional points (Bagaria et al.,
2018a), and solving discrete optimization problems
involving distance computations adaptively (Bagaria
et al., 2018b). All four works apply standard bandit
algorithms in a creative way. Most related to our work
is that of Bagaria et al. (2018b), which proposes an ef-
ficient algorithms for solving the k-NN problem using
an adaptive sampling strategy, similar to the one pro-
posed here. The main difference is that we consider
the approximate k-NN problem, which is a more gen-
eral problem that contains the problem of finding the
exact k-NN as a special case. In order to solve the
approximate k-NN problem, we have to solve a non-
standard approximate bandit problem. In addition,
we provide an algorithm that is near instance-optimal
in the class of algorithms that estimate the distances
for a restricted class of possible data points.

3 PROBLEM STATEMENT

Suppose we are given a set of high-dimensional points

X ={x1,...,x,} CR™,

and our goal is to find, for another given point x € R™,
a set of size O(k) that includes the k nearest neighbors
of x to X in fa-distance (our results and discussion
generalize to other distances, such as the ¢;-distance).
This is a generalization of the exact k-nearest-neighbor
problem and has applications in a vast number of clas-
sification tasks (Hastie et al., 2009).

For convenience, we assume that all points are normal-
ized such that ||x|- < 1/2, where [|x|| denotes the
largest absolute value of the vector x. We can brute-
force solve the problem by computing all distances and
then sorting, which yields a worst case complexity of
O(mn—+nlogn). Our intuition is that it is unnecessary
to compute the distances exactly, and that by approx-

imating the distances we can save computations.
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4 THE ADAPTIVE k-NN
ALGORITHM

The idea behind our adaptive k-NN algorithm is to
adaptively estimate the distances. Then, the problem
of finding a superset containing the k nearest neighbors
reduces to a multi-armed bandit problem with the goal
of identifying a set of size k+ h containing the k£ small-
est arms. Using that—up to a logarithmic factor—the
sample complexity of the corresponding algorithm is
equal to the computational complexity, we can provide
an upper bound on the computational complexity of
the algorithm by proving an upper bound on the sam-
ple complexity. Likewise, we can prove a lower bound
for all algorithms that use adaptive estimates of the
distances.

Our algorithm is inspired by the Hamming-LUCB al-
gorithm in (Heckel et al., 2018) which in turn builds on
the Lower-Upper Confidence Bound (LUCB) strategy,
a popular algorithm for identifying the top-k items in
a bandit problem (Kalyanakrishnan et al., 2012) and
for ranking from pairwise comparisons (Heckel et al.,
2019). The algorithm is based on actively identifying
sets §Close and §far consisting of k and n—k — h points,
respectively, such that with high confidence the points
in the first set have a smaller distance to x than the
points in the second set. Once we have found such
sets, the set

S={1,....,n}\ Star

contains the closest k points. Note that the cardinality
of §is k + h, so to obtain a set of cardinality O(k)
conaining the k nearest neighbors, we choose h on the
order of k. We adaptively estimate the normalized
squared distances

1 2
di = —lx — x|
by sampling indices ji, ..., jr, uniformly at random®

from all indices {1,...,m} and then estimating the
squared distance as

W= 3

J€{its i }

il — X517,

where [x]; denotes the j-th coordinate of x. The key
idea is to estimate the distances only sufficiently well
as to be able to obtain the two sets Sgjose and Sty from
them.

Let T; be the counter of the number of samples used
for estimating the respective distance. We define a

! Alternatively, one could select j1, ..., Jm_uniformly at
random without replacement, in which case d;(m) = d; ex-
actly. This could be implemented efficiently using ciphers,
such as those described by Black and Rogaway (2002).

confidence bound based on a non-asymptotic version
of the law of the iterated logarithm (Kaufmann et al.,
2016; Jamieson et al., 2014); it is of the form?

() o /1E00BCI/S)

u
where u is an integer corresponding to the number
of samples, and § is a parameter such that the algo-
rithm succeeds with probability at least 1 —§. Within
each round, we also let () denote a permutation of [n]
such that 67(1) < C/l\(g) <... < c/l\(n). We then define the
indices

~

g1 = argmax d; + qj, (1)
i€{(1),....(k)}
b=  agmin d-o 2)

i€ {(k+1+h),....(n)}

where a; = «(T;). These indices are the analogues
of the standard indices of the Lower-Upper Confi-
dence Bound (LUCB) strategy from the bandit liter-
ature (Kalyanakrishnan et al., 2012) for the bottom
k and top n — h — k arms. The LUCB strategy for
exact bottom-k recovery would update the scores ¢
and ¢y (for h = 0) at each round. Our strategy will
go after what it “thinks” are the bottom Fk items,
Sciose = {(1),...,(k)}, and what it “thinks” are the
top n — k — h items, Sgar = {(k+1+h),...,(n)}.
Moreover, the algorithm keeps all the other items,
Smiddle = {(k+1),...,(k+ h)}, in consideration for
inclusion in these sets by keeping their confidence in-
tervals below the confidence intervals of the items in
Star (see (3) in the algorithm below). This is crucial to
ensure that the algorithm does not get stuck trying to
distinguish the middle items, which in general requires
many samples.

4.1 Logarithmic Computational Complexity
for Each Iteration

We next describe several implementation details that
are critical for ensuring that each iteration of the adap-
tive k-NN algorithm has computational complexity
O(log(n)) and not O(nlog(n)), which a naive imple-
mentation of computing the permutations via sorting
and max and min computations would have. The key
to achieving a logarithmic computational complexity
is realizing that since only two distance estimates are
updated in each iteration, the orderings of the distance
estimates and confidence bounds will not change much
between iterations, and at each iteration we only up-
date the distance estimate for some indices that mini-

2The constants involved can explicitly be chosen

as a(u) = q/w with B(u,d’) = log(1/8") +

3loglog(1/4") + 1.51og(1 + log(u)).



Adaptive Estimation for Approximate k-Nearest-Neighbor Computations

Algorithm 1: Adaptive k-NN

1 Input: Confidence parameter d, approximation
parameter h
2 Initialization: For every i € [n], sample an index j
uniformly at random from [m] and set
di(1) = [[xi]; — [x;[%, T = L.
3 Do until termination:
4 Let () denote a permutation of [n] such that
d(l) < d(g) <.. .d(n).
5 For ¢; and ¢y defined by equation (2), define the
index

by = arg max ;. (3)

i€{q2,(k+1),...,(k+h)}

6 For ¢ € {q1,b2}, increment Ty «+ Ty 4+ 1, sample
an index j uniformly at random from [m], and

PR T
update dy < “& Ldy + T% [Xti]j — [x];[*. If

Ty = m, then compute the distance dy exactly
and set dy = dy and ap = 0.

7 End Loop once the termination condition holds:

dQ1 + Qqy < dqz — Qgy- (4)

s Return S = {(1),...,(k+ h)} as an estimate of the
set containing the k£ nearest neighbors.

mize or maximize some quantities relating to the con-
fidence bound. This makes the algorithm amenable to
the use of a heap data structure (Cormen et al., 2009)
to reduce computational complexity.

Figure 1 illustrates how a total of seven heaps can be
used to implement the adaptive k-NN algorithm effi-
ciently. For each of Sgiose, Smiddle,; and Sgar, a set of
two or three coupled heaps is maintained, providing
ordering information on both the distance estimates
(so that we can maintain our permutation at each it-
eration) and the confidence bounds (so that we can se-
lect which distance estimates to update). For example,
to determine g2, we can simply extract the minimum
from the min-heap on Sga, defined on the lower confi-
dence bounds d; — «;, which has a computational cost
of O(1). Later in the iteration, if we update the dis-
tance estimate at g2, we update both the distance esti-
mate min-heap and lower confidence bound min-heap
on St accordingly, which has a computational cost of
O(log(n)). At the end of the iteration, after making
such updates across all three sets of heaps, the dis-
tance estimate ordering may not be maintained; e.g.,
the largest distance estimate in SmiddleA may be larger
than the smallest distance estimate in Sg,.. Items from
each set must be swapped with items from other sets
accordingly to restore the distance estimate ordering.

S:middle Q@f @ :

I
=N I
I

Sclose I
I

I

Figure 1: Illustration of how seven heaps can be
used in the adaptive k-NN algorithm. Upward-
branching trees indicate min-heaps and downward-
branching trees indicate max-heaps.

Only two distance estimates are updated at each itera-
tion, so at most a constant number of swaps that does
not depend on n are required, and each swap involves
updating the appropriate heaps, yielding that the com-
putational cost of restoring the distance estimate or-
dering is also O(log(n)). Thus, the overall complexity
per iteration is O(log(n)). We ask the reader to refer
to our implementation? for further details.

4.2 Guarantees and Optimality of the
Adaptive k-NN Algorithm

We next establish guarantees on the adaptive k-NN al-
gorithm’s success as well as on its computational com-
plexity. The computational complexity depends on the
gaps between the distances, defined as A; ; = d; — d;
through the function

k
N(x,X,h) = O(Zmin(AZf+1+h,m) (5)
=1

+ Z min(Al;f, m) + hmin(A;’i+1+h7 m))
i=k+1+h

The notation O absorbs factors logarithmic in n and
doubly logarithmic in the gaps.

Theorem 1. For any points x, X, the adaptive k-NN
algorithm run with parameters § and h yields a set of
size k + h that contains the k nearest neighbors and
has computational complexity at most

N(x,X,h)

with probability at least 1 — §.

3See https://github.com/dlej/adaptive-knn.
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Note that the computational complexity of the adap-
tive k-NN algorithm is upper-bounded by the complex-
ity of the naive brute force method, O(mn + nlogn),
but is potentially significantly smaller. In particular,
the computational complexity is small if there is a large
gap between the k-th closest point and the (k + h)-th
closest point. Taking h = k, for example, the al-
gorithms returns a set of size O(k) containing the k
nearest neighbors. We next present two examples, one
where the sample complexity of the adaptive k-NN al-
gorithm is small, and one where it does not realize
savings over the brute force method.

Both of these examples assume the data lies in a low-
dimensional linear subspace, a regime where one might
consider using projection-based k-NN methods. How-
ever, such methods require knowledge of the dimen-
sion of the subspace and often have projection cost at
least O(mn). Even if the dimension is known and the
projection is as efficient as possible (such as subsam-
pling), our method will still have the advantage in that
it adapts to the distances.

First, consider a p-dimensional subspace spanned by
a matrix U € R™*P that has orthogonal columns.
In addition, suppose that the columns of U are in-
coherent with respect to the standard basis vectors e;.
Specifically, suppose that the maximum inner product
between a column of U and a standard basis vector

obeys
()= 7
lwill,”™ /| = v/m

for some constant B > 1. We say U is incoherent
if this bound holds for small values of B. Suppose
then that the columns of U are normalized to #o-norm
v/m/p/B and that the dataset X and query point x
lie in that subspace, i.e.,

max
1,7

x=Uy, X ={Uy;:y;€)},

where y € RP and ) C RP are the associated coeffi-
cient vectors. Assume that the associated coefficient
vectors are normalized to have fo-norm equal to 1/2.
Denote the gaps in the coefficient space by AY i ;- From
these assumptions, we are guaranteed that x and the
points in X are bounded in ¢, norm by 1/2. In addi-
tion, we have that

1 2
L2 -

1 2
B2 Iy = yillo-
Then (A;;)~? = (AY;)” 2B*, so the computational
complexity of the adaptlve k-NN algorithm behaves

2B
like O( (A k,k+1+h)
putational complexity does not scale linearly with m.

Hence, we can expect the adaptive k-NN algorithm
to achieve significant computational savings when the

) for large m; i.e., the com-

data lies in a low-dimensional subspace of R™. Fur-
thermore, the algorithm is able to realize these savings
without having this subspace or its dimension specified.
We illustrate this ability in our experiments below.

Next, suppose that the subspace is coherent with re-
spect to the identitiy matrix. For example, con-
sider the extreme case where all points lie in the one-
dimensional subspace spanned by a single standard ba-
sis vector e;. Then, estimation of the distances to an
accuracy of O(1) requires at least O(m) samples, and
thus the adaptive k-NN algorithm will always have the
same sample complexity as the naive brute force algo-
rithm.

We next show that the algorithm is optimal among
active algorithms that estimate the distances by sam-
pling indices when the data points satisfy [x]; €
{—1/2,1/2}. We note that it is only the coordinates
of the data that are so constrained; the normalized
distances themselves can be essentially any values be-
tween 0 and 1 for large enough m.

Theorem 2. For any § € (0,0.14], let A denote an
algorithm that can only interact with the data by sam-
pling coordinates uniformly at random and yields, for
any x and X, the k nearest neighbors with probability
at least 1 — 6. Then, when A is run on any set of data
points x, X such that each coordinate of each point is

either f% or 5, it has expected sample complexity at
least
k—h
Nigw(x, X, h) = ¢ <ZAzk+1+h+ Z A hz) )
=1 i=k+1+h
where ¢ = log (2%5) minge{k_h,k+1+h}{dg(l — d/)}

Note that the above lower bound does not depend on
the gaps involving the items k—h+1,...,k+h. How-
ever, in the case when di_j, = di, we can relate the
lower bound and the upper bound by

N(x,X,2h) < O(Niow(x, X, h)),

so that we see that, up to rescaling of the approxima-
tion parameter h and logarithmic factors, the upper
and lower bounds match. We emphasize that the lower
bound only applies to algorithms that interact with
the data by uniformly sampling the distances and only
when we constrain the data points. Thus, Theorem 2
only tells us that the adaptive k-NN algorithm is opti-
mal among algorithms based on adaptively estimating
the distances, but it does not state that algorithms
based on other strategies cannot perform better.

5 EXPERIMENTS

We run the adaptive k-NN algorithm both on artifi-
cial data restricted to low-dimensional subspaces and
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Figure 2: Effect of varying C,, for the adaptive k-NN
algorithm on the random data lying in 10-dimensional
(upper left), 100-dimensional (upper right), and 1000-
dimensional (lower left) subspaces and on images from
Tiny ImageNet (lower right). In each plot both the
recall (blue, solid) and fraction of iterations used (red,
dashed) are shown.

on real data to demonstrate the effectiveness in reduc-
ing computation over the naive algorithm. The artifi-
cial data is generated via x = cQy, where Q € R™*P
is an i.i.d. Gaussian matrix, normalized to have unit-
norm columns, y are drawn uniformly at random
from the unit sphere, and c is the largest scalar such
that ||x||,, < 1/2 for all x in the generated dataset.
The real data comes from the Tiny ImageNet dataset
(2015), taking pixel values in [0,1]. For each trial,
we select X' by sampling n points at random (without
replacement for Tiny ImageNet) and then select the
query point x by drawing another sample. For these
experiments we used n = 1000 and m = 12288, where
the choice for m comes from the dimensionality of the
Tiny ImageNet images, which are 64 x 64 x 3. Futher,

we use au) = \/C” 10g(1+(1:1°g(“))"/5) and vary C,.

Figure 2 depicts the fraction of S¢joge contained in S
(recall) along with ratio of the number of iterations
taken by the adaptive k-NN algorithm versus the naive
algorithm as we vary C,. Here k = 10, h = 10, and
0 = 0.001. We perform 20 random trials at each C,
and plot the median value (lines) and interquartile
range (shaded area) over the trials. As we expect from
our previous discussion, for low-dimensional subspaces
(e.g., p = 10) we see significant computational savings
(multiple orders of magnitude) by using the adaptive
k-NN algorithm over the naive method while still be-
ing able to return a set containing all of the k nearest
neighbors. For larger p, such as p = 1000, this ad-
vantage is nearly non-existent. On Tiny ImageNet, we

see similar performance gains to the small p setting,
which can be explained by the fact that, like most real
datasets, the data can be well-approximated as lying
in a low-dimensional subspace.

6 PROOF OF THEOREM 1

The proof of Theorem 1 relies on relating the sam-
ple complexity to the computational complexity. We
use that the computational complexity of the adaptive
k-NN algorithm is no more than log(n) times the sam-
ple complexity of the adaptive k-NN algorithm. To see
this, note that, as discussed in Section 4.1, each iter-
ation has computational cost at most O(log(n)). The
initialization of the heaps at the start of the algorithm
can be done in O(n) computations using Floyd’s algo-
rithm, which is smaller or equal to the sample com-
plexity. As a consequence, the computational com-
plexity of the adaptive k-NN algorithm is no larger
than O(log(n)) times the sample complexity.

For notational convenience, we assume throughout
that the distances are ordered so that

dy <ds <...< dp.

We begin by showing that the estimate c/i\l(Tl) is guar-
anteed to be ay-close to d;, for all 4, with high proba-
bility.
Lemma 3 (Kaufmann et al., 2016, Lemma 7). For
any § € (0,0.05), with probability at least 1 — 0, the
event

-]

The statement continues to hold for any
. 120

§ € (0,1) with a; = a(Ty) = \/22T20 B(t,5") =

2log(1251og(1.12t)/4).

di(t) — d;

< oy, Vi € [n], VtZl} (6)

OCCUurs.

Lemma 3 is a non-asymptotic version of the law of the
iterated logarithm from (Kaufmann et al., 2016) and
(Jamieson et al., 2014). Note that the lemma uses that
c@(t) is a sum of ¢ independent random variables, each

bounded between 0 and 1, and E {c/l;(t)] =d;.

We first show that, on the event &, defined in equa-
tion (6), the set S contains the &k nearest neighbors. On
the event &, we have by the termination condition (4)
(which is satisfied since the algorithm has terminated)
that the items in the set §Close = {(1),...(k)} have
smaller distances than the items in the set té\‘far =
{(k+14h),...,(n)}. Because there are k distances
that are smaller than the distances in gfar, the set
Star cannot contain any of the k-nearest neighbors, i.e.,
Star C {1,...,n} \ Sciose- Thus Selose C S.
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We next show that on the event &, the adaptive k-
NN algorithm terminates after the desired number of
samples. Let v := %, and define the event that
item ¢ is bad as

d; >~ — 3a;, ied{l,...,k}
Epad (i) = § d; < v+ 3a, ie{k+1+h,...,n}
o > w, otherwise.

Lemma 4. If £, occurs and the termination condi-
tion (4) is false, then either Epaa(q1) or Epaa(be) oc-
curs.

Lemma 4 is proved in Section A.1 in the supplementary
material. Given Lemma 4, we can complete the proof
in the following way. For an item 4, define

dpy1en —diy i €{1,... Kk}
Ai = d; — dy, ie{k+14h,....n}
di+14+n — di, otherwise,

and let ﬁ be the smallest integer w satisfying the
bound a(u) < A;/8. A simple calculation (see Sec-
tion A.2 in the supplementary material) yields the fol-
lowing fact.

Fact 5. On the event &, if T; > JN“Z holds, then Epaa(?)
does not occur.

Let t > 1 be the t-th iteration of the steps in the algo-
rithm, and let ¢; and by be the two items selected in
the algorithm. Note that in each iteration only those
distances are estimated. By Lemma 4, we can there-
fore bound the total number distance estimate updates
by

2 Z 1(Evad(q1) U Epaa(b2))

t=1

Zl (1 =q1Ui=0bz) N Epaali))

7

Mg
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—~
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1((i=qUi=b)NTyt) < T)
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(ii)
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NE
@z

(7)

1
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For inequality (i), we used Fact 5, and inequality (ii)
follows because T;(t) < T; can only be true for T; iter-
ations t.

We conclude the proof by noting that the definition of
a(+) yields the following upper bound (see Section A.3
in the supplementary material).

Fact 6. For c sufficiently large,

7, < clog () e2182/0)) 5

~—

Applying this inequality to the right-hand side of equa-
tion (7) above concludes the proof.

7 PROOF OF THEOREM 2

Consider an algorithm A that can only interact with
the data by sampling a index j uniformly at random
and then obtaining |[x;]; — [x];| in response. Because
the points satisfy [x]; € {—1/2,1/2}, this is equivalent
to drawing from a distribution v; corresponding to a
binary {0,1} random variable that has mean d;. The
problem of finding a subset containing the k£ nearest
neighbors then corresponds to the problem of identi-
fying a subset of all n distribution consisting of k + h
distributions containing the k smallest means. Here we
will consider only the case where h < k. This is an ap-
prozimate version of the bottom-% identification prob-
lem in the bandit literature (Kalyanakrishnan et al.,
2012). Thus, to prove Theorem 2, we provide a lower
bound on the sample complexity required to find a
subset of k£ + h distributions containing the & smallest
means, and this lower bound is also a lower bound on
the computational complexity.

Towards this goal, we first introduce some notation
required to state a useful lemma (Kaufmann et al.,
2016, Lemma 1) from the bandit literature. Let
v = {v;}7, be a collection of n probability distri-
butions, each supported on {0,1}. Consider an algo-
rithm A, that, at times t = 1,2,.. ., selects the index
it € [n] and receives an independent draw X; from
the distribution v;, in response. Algorithm A may se-
lect i; only based on past observations; that is, 4; is
Fi_1-measurable, where F; is the o-algebra generated
by i1, X1,...,1, Xy. Algorithm A has a stopping rule
¢ that determines the termination of A. We assume
that £ is a stopping time measurable with respect to
F: and obeying P [£ < o] = 1.

Let N;(£) denote the total number of times index ¢ has
been selected by the algorithm A (until termination).
For any pair of distributions v and v/, we let KL(v, ')
denote their Kullback-Leibler divergence, and for any
p,q € [0,1], let Kl(p, ) == plog & + (1 — p) log 1=2 de-
note the Kullback-Leiber divergence between tvvo bi-
nary random variables with success probabilities p, q.

With this notation, the following lemma relates the
cumulative number of comparisons to the uncertainty
between the actual distribution v and an alternative
distribution v’.

Lemma 7 (Kaufmann et al., 2016, Lemma 1). Let
v,V be two collections of n probability distributions on
R. Then for any event £ € F¢ with P, [€] € (0,1), we
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have

n

S B, [N(€)] KL(, ) > KI(P

=1

vELPLED.  (9)

In our setting, since v; and v} are binary distributions,
KL(v;,v}) = Kkl(d;,d}). Let us now use Lemma 7 to
prove Theorem 2.

Let Si(v) be the set of k distributions out of the n
distributions v = (v4, ..., v, ) with the smallest means.
Define the event

= {Sl(u) C g},

corresponding to success of the algorithm A. Recall-
ing that & is the stopping rule of algorithm A, we are
guaranteed that £ € F. Let M == {¢1,..., {11} bea
set of distinct items from the set of n — k distributions
with the largest means denoted by Sa(v). We next
construct an alternative distribution ' such that un-
der that distribution, ¢1,...,¢h 1 & S2(v), or equiva-
lently, that M C S1(v'). Since we assume algorithm A
succeeds for any distribution with probability at least
1—4, we have both P, [£] > 1—§ and P,/ [€] < 4. To
see this, note that if A succeeds under v/, then M C S.
As such, there can be at most k — 1 elements of S;(v)
inS , which means that £ does not occur.

It follows that
kI(P, [€],P. [€]) = kl(0,1 — §)

1—
= (1-—26)log 5
where the last inequality holds for ¢ < 0.15. It re-
mains to specify the alternative distribution v’. The
alternative distribution is defined as

- Vk—p, 1EM
! v, otherwise.

To be most precise on avoiding ties, for £ € M, one
should take v, = vg_j, — ¢ for some ¢ > 0 and let
€ — 0, but we omit carrying out the associated tech-
nical details in this proof. It follows that, under the
distribution v/, the items in the set M are not among
the items with the n — k largest means which ensures

that M N Sy(v/) = 0.

Let N, be the total number of draws from the distri-
bution v,. We have that

> Kl(ve, By [N

LeM

(10)

2SR, (N k(v 1)
=1

> log —. (11)

Here step (i) follows from the fact that kl(v;, ) = 0
for all i ¢ [n] \ M by definition of the v/, and step (ii)
follows from Lemma 7. Finally, inequality (11) follows
from inequality (10).

We next upper bound the KL divergence on the left
hand side of inequality (11). Using the inequality
logz < x —1, valid for z > 0, we have that for £ € M,

(de — di—p)?

kl ) < kl klp = ————.
(Vea VE) = £ l dkfh(l — dkfh,)

(12)

Applying inequality (1
equality (11) yields

2) to the left hand side of in-

1
> KUE, [Ng] > log %5 (13)
Ltem

which is valid for each subset M C S3(v) of cardinality
h+ 1.

We can therefore obtain a lower bound on
>_ies,(v) Bv [Ni] by solving the minimization problem:

C . 1
mlglg(l)lze Z ey subject to Z klyep > log %
LeSs (v) leM
for all M C S3(v) of cardinality h + 1. (14)

Since the kl; are increasing in ¢ (recall that we as-
sume the distances to be ordered such that d; <
dy < ...<d,) the solution to this optimization prob-
lem is egi1,...,ex+n = 0 and e, = log(1/29)/kl, for
£>k+1+h.

Using an analogous line of arguments for items in the
set S1(v) (see Section B in the supplemental material),
we arrive at the lower bound

dk+1+h (1 —diq14n)
1
® 2 Z (di — digg14n)?

dyp—n(1—di_p)
(de—n — d;)?

1 n
—|—1og% Z

i=k+1+h

on the number of comparisons. This concludes the

proof.
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A PROOFS OF LEMMAS AND
FACTS

A.1 Proof of Lemma 4

The proof is very similar to the proof of Lemma 2 of
Heckel et al. (2018). There are several cases of ¢; and
ba to consider. We will show each by contradiction,
starting with the assumption that the termination con-
dition is false and both Epaq(q1) and Epaq(b2) do not
occur, all under the event &,. Let Ez0da(i) denote the
complement of &,,4(%). It also will be useful to define
the quantity

(15)

me = arg max oy

i€{(k+1),...,(k+h)}

such that by = argmax;c (., 4,3 -

i. When ¢; < k and by > k+h, we have by Ego0a(q1)
that

C/l\ql +ag < qu +3ay, <7 (16)

and SirAnilarly that 322 —p, > by Egood(b2).

Since dg, — g, > dm, — Qm,, we have that
c?qz — g, > 7y in both the case that by = my
and by = go. Together, this implies that the ter-
mination condition (4) is true, which violates our

assumption.

ii. When ¢1 <k and k < by < k + h, we have first
by Egood(q1) that dg, + 3aq, <. Starting from
here, and using the definition of g1, we have for
all 7 € Sclosea

i (17)

Now we let A denote dgi14+n — di. By def-
inition of by, using Egood(b2), we have that
a; <A/dforall je §middle U{g2}. Then we can
start from v > Jql + o, to conclude that for all

§ € Smiddie U {g2},

’Y>&\(Il+a¢h
(1) ~
> g2 Qgy
~ A
> ¢I2_Z
~ A
> i
A
>dj—0[]—f

iii.

iv.

(18)

where () comes from our assumption that the ter-
minating condition (4) is false. Combining (17)
and (18) along with v+ A/2 =djy14n, we ob-
tain that dgyr14p > d; for all ¢ € Su {q2}, which
is a contradiction, since there can be at most k+h
values of d; that are smaller than di14p-

When k < g1 < k+ h and by > k + h, the case is
similar to the previous case, except that we need
to bound «; for i € Smidale in a different way.

By Ego0d(b2), dg, > dp,, and ap, > ag,, we have
analogously to (17), for all i € Stay,

v < dy, — 3,
< C/l\tlz — g, — 2,
S dl - 2ab2. (19)
Equivalently, d; > v + 2a3,. Since there are
n —k — h values of ¢ for which this inequality
holds, it must hold for dg414x, SO we obtain
dit14n =7 _ A

Qp < -4 =

WIS @)

By definition of by, a; < A/4 for all i € Smiddle U
{g2}, and a contradiction can be reached similarly
as in case ii.

For the case when both q1,bs € {k+1,...,k+h},

we first show that at least one of v < dg, + oy, or

v > c?qz — 0y, is true. To see this, first suppose the
former is false. Then using that the terminating
condition (4) is false, we have

Y > d!h + Qg > dQ2 — Qgy- (21)

Now that we know that at least one of these
inequalities holds, and we proceed similarly for
each. First suppose that the former inequality,
v < dg, + ag,, holds. Using that by Ez0d(g1) and
Egood(b2) we have o; < A/4 for all ¢ € {g1,¢2} U

Smiddle, we have that, for all i € {q1, ¢2} USmiddle,

7<dQ1+aQ1
S&\i—'—am
<d;i+o; +ag,

A
<d;+ —.
= ,+2

We also have for all j € né\far that

Y <dg + g

< dQ2 — Qgy + Qg + CQqy
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<dj—aj+ag, +ag,
<dj+ag, +ag
A
<dj+ 5 (23)

Combining (22) and (23), we have that d; > dj

foralli e {q:1}U Smlddlc U Sfar, which is a contra-
diction, since at most n — k values of ¢ can satisfy
this inequality.

The case that v > chz — ayg, is entirely analogous.

v. When ¢1 > k + h or by < k, we can make sim-
ilar arguments to the previous cases to reach a
contradiction.

A.2 Proof of Fact 5
First, when ¢ < k, we have

di + 3a; < d; + 4y
A,

<d; —
S +2

< Apy14n + d; <

< 5 <, (24)

where the last inequality uses d; < dj, 80 Epaa(i) does
not occur. This is similarly shown for ¢ > k + h. For
k < i< k+h, that E,.q(¢) does not occur follows im-
mediately from a; <A /8 <A /4

A.3 Proof of Fact 6

Recalling that o;(u) = 4/ M, at a;(u) = A;/8

we have that u = 2(A;/8)728(u, '), so we need to
bound the greatest fixed point u* of

Fu) = 2(A:/8)7*B(u, ).
Let Ug = 2(A1/8)72

28,/8)°2(2)
ulog(1.12u)
28:/9)2(2)
= 202, /3) 2 log((1.12)2(A /3)2)
2
= Tog((1.12)32)
<1. (25)

, and note that for all u > ug,

f'(u) =

The second inequality holds because A; < 2. Suppose

that u* > ug. Using Taylor’s theorem, we have that
for some z > uy,
fluo) = f(u") + f'(2)(uo — u*)

=u" (1= f'(2)) + uof'(2). (26)

Then

o= ) —uof'(2)
1— f'(z)
f(uo)
= 1- f’(uo)'

So, we can bound the greatest fixed point of f as

f(“o)}
1 — f"(uo)

_ -2 B(2(A;/8)72,4")

= 2(Ai/8)" " max {1’ 1—2/log((1.12)32) }

(27)

u* < max {uo,

= a1 A7?B(2(A:/8)7%,8), (28)
where ¢; = 128/(1 — 2/log((1.12)32)). Since T; <
u* + 1, letting co = ¢; + 1,

. n (1.12)128
Then for ¢ sufficiently large,
. ny log(2log(2/A,)
< —) =
T; < clog (5) AZ (30)

B ADDITIONAL THEOREM 2
PROOF DETAILS

In this section we provide details on bounding
> ies, (v) By [Ni] that we omitted in the proof of The-
orem 2. We consider the set M = {{1,...,4p41} C
S1(v) and construct an alternative distribution v’ such
that under that distribution M C S2(v’). Then under
V', if A succeeds, then at most h elements of Sy (v') can
be in S , meaning that at least one element of M is not
in S and that £ does not occur. So, if A succeeds with
probability at least 1 —§, then both P, [£] > 1—¢ and
P, [€] < 0.

Our alternative distribution v/ is defined as

Vg+1+h
VZ{ _ +1+h;
Vi,

Again, to avoid ties, for £ € M, one should take v, =
Vi+1+h+¢€ and let € — 0, but we omit this detail. The
remainder of the arguments are entirely analogous to
the case shown previously, giving us the bound

> EN,

1€S1(v)

ieM

otherwise.

| > log Z dk+1+h (1- dk+1+h).
2 (di — dpr1en)?
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