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Abstract 

The use of high fidelity simulations is becoming more common in computer-aided design and 
optimization.  Due to the complexity of the simulation models and the lack of closed-form mathematical 
formulations, the direct use of traditional deterministic optimization tools is prohibitive for such problems. 
Therefore, data-driven decision-making has become increasingly important, with surrogate-based 
optimization being one of the most popular approaches. Two of the most important challenges in 
surrogate-based optimization are the lack of consistent convergence metrics and the variability in the 
quality of the incumbent solution when a different sampling set or a different surrogate model is used to 
guide the search. In this work, we propose a strategy to mitigate this uncertainty in the performance of 
such algorithms. A novel data-driven spatial branch-and-bound framework is proposed that uses stochastic 
bounds on different surrogate models and partitioning of the search space. The convergence properties of 
this algorithm are studied through a large set of benchmark problems.  
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Introduction

        The rapid development in computer-aided design and 
optimization have led to the generation and storage of 
complex models that can capture high-fidelity details of a 
system, such as models based on large partial differential 
equation systems of equations (Tsay, Pattison, & Baldea, 
2017), and computational fluid dynamics (CFD) (Dowling, 
Eason, Ma, Miller, & Biegler, 2014; Onel, Niziolek, 
Butcher, Wilhite, & Floudas, 2017). When it comes to 
optimization using the above, the use of existing 
deterministic gradient-based optimization algorithms is 
prohibitive. Because of the inability to directly use algebraic 
model-based mathematical programming and deterministic 
gradient-based optimization algorithms, solving such 
optimization problems often relies on the information from 
input-and-output data, and that is why it is referred to as 
data-driven optimization. Data-driven optimization, also 
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known as derivative-free optimization or black-box 
optimization, does not assume the availability of the 
algebraic description of the formulation. There are three 
main classes of data-driven optimization methods, namely 
sampling-based methods, model-based methods, and 
stochastic search methods. Some global sampling-based 
model-based methods have employed the concept of 
partitioning the subspace in order to find better solutions. 
For example, two of the most widely used sampling-based 
partitioning methods are the DIRECT algorithm (Donald R. 
Jones, 2009; D. R. Jones, Perttunen, & Stuckman, 1993) and 
Multilevel Coordinate Search (MCS) (Huyer & Neumaier, 
1999). Similarly in the area of model-based methods, 
Sequential design for optimization (SDO) (Cox & John, 
1992), efficient global optimization (EGO) (Donald R. 
Jones, Schonlau, & Welch, 1998), and stable noisy 



  

 

optimization by branch-and-fit (SNOBFIT) (Huyer & 
Neumaier, 2008), are three methods that have combined the 
concept of fitting a specific type of surrogate model with 
consequent sampling in subspaces. 
          Computational studies and reviews of the current 
existing data-driven optimization software have shown that 
the performance is problem-dependent and no one solver 
can solve all types of problems (Amaran, Sahinidis, Sharda, 
& Bury, 2014; Rios & Sahinidis, 2013). Especially in the 
model-based optimization field, researchers have devoted 
great effort on finding the best surrogate modeling strategy 
and sampling technique (Boukouvala & Floudas, 2017; 
Cozad, Sahinidis, & Miller, 2014; Eason & Cremaschi, 
2014).  However, the question on which sampling strategy 
coupled with a surrogate type is the best for optimization is 
still an open challenge. In this work, we systematically 
study the sources of this variability and develop techniques 
that are less sensitive to this selection. Our overall aim is to 
develop a general framework that can converge to good 
solutions for multiple types of surrogate models that do not 
need to perfectly approximate the black-box problem. 
Naturally, the selection of the surrogate model will affect 
the speed of convergence, however, when coupled with 
space partitioning and bounding, our hypothesis is that 
consistent convergence can be observed. 

First, we identify the reasons that cause this 
observed variability in the performance of different data-
driven approaches. As shown in Figure 1, when fitting a 
surrogate model to a black-box function, one can easily 
obtain different realizations of the trained models. This 
phenomenon can happen for two reasons: a) if slightly 
different samples are collected, even the same type of 
surrogate model  might have different optimal parameters 
and as a result, a different functional form, and b) if the 
same samples are collected but different types of surrogate 
models are fitted (i.e., one Neural Network, one Gaussian 
process model, and a polynomial model), the fitted 
functions will also have differences. Secondly, because of 
the lack of the algebraic description of the true problem, 
convergence to a global optimum is less reliable with 
limited amount of samples. Unlike deterministic global 
optimization algorithms which can provide finite 
convergence with 𝜀 tolerance, currently global convergence 
of data-driven optimization algorithms is guaranteed when 
approaching the limit of infinite sampling. However, this is 
usually prohibitive because sampling is often very 
expensive. 
      To address the two challenges mentioned above, one 
promising approach is to adopt the structure of the branch-
and-bound and combine it with surrogate-based 
optimization. As mentioned earlier, many solvers in 
deterministic global optimization algorithms provide finite 
𝜀 convergence to global solution using a branch-and-bound 
framework, for instance, BARON (Tawarmalani & 
Sahinidis, 2005), ANTIGONE (Misener & Floudas, 2014), 
and 𝛼 -BB (Androulakis, Maranas, & Floudas, 1995). 
Specifically, the finite 𝜀  convergence is referred to the 
difference between the lower bound (LB) and upper bound 

(UB) of the objective function. Usually the LB is obtained 
by solving the convex relaxations of the original nonconvex 
problem and the UB can be any feasible solution of the 
original nonconvex problem (Misener & Floudas, 2014; 
Tawarmalani & Sahinidis, 2004, 2005). By progressively 
dividing the search space, these algorithms aim to find 
tighter lower and upper bounds of the global optimum. 
Although some sampling-based and model-based search 
methods have the search space partitioning feature, no other 
method has explored the bounding approach. Methods like 
SDO, optimize the statistical lower bound of the function 
but do not branch the search space. EGO (Donald R. Jones 
et al., 1998) optimizes the expected improvement function 
in a branch-and-bound framework, while the mathematical 
form of the expected improvement function is rather too 
complicated. The DIRECT method, follows a space 
partitioning approach (Donald R. Jones, 2009); however, it 
does not use any surrogate approximations or bounding 
strategies. As a result, although this algorithm has been 
shown to perform well on a diverse set of applications, 
algorithm convergence happens when the maximum 
number of samples has been reached, with no other 
indication that convergence has truly been achieved. The 
DIRECT algorithm is the one that has the most similar 
structure with our proposed framework, thus we will 
compare the performance of our algorithm with an existing 
implementation of DIRECT (Johnson, 2018; Donald R. 
Jones, 2009).  

        In this work, we propose a data-driven (DD) equivalent 
spatial branch-and-bound (sBB) algorithm, which uses 
imperfect surrogate models to solve a wide range of data-
driven optimization problems. To handle uncertainty in 
surrogate modeling, we will use error metrics, statistical 
bounds and margins to approximately bound the surrogate 
model realizations (Figure 1). By subdividing the search 
space, the variance in the data and the approximation of the 
surrogate model is expected to decrease. As a result, as we 
branch we expect to obtain tighter bounds and better 
surrogate approximations, and hypothesize that this will 
lead to a convergent data-driven branch-and-bound 
algorithm. Additionally, by pruning some subspaces, 
sampling can be focused within regions that are more 
promising and not wasted in regions that cannot improve 
the solution even in the best case. Our main hypothesis is  
that by developing such a data-driven branch-and-bound 
framework, the performance of the algorithm will be less 

Figure 1 (a) bounding multiple realizations of surrogate 
functions, (b) partitioning and bounding multiple realizations of 

surrogate approximations 



  

dependent on the choice of the surrogate model selection. 

We also believe that this approach is a first step towards 
developing a convergent data-driven optimization 
algorithm. The DD-sBB algorithm demonstrated in this 
work is developed for multi-variable box-constrained 
problems. We test the performance of the DD-sBB 
algorithm with different surrogate models and bounding 
strategies on a large set of benchmark problems with and 
without addition of random noise.  

Methods 

        The algorithm is implemented in Python v3.6.0. using 
Numpy numerical library (v1.13.3) and Scipy library 
(v1.1.0). Optimization of the surrogate models is performed 
in pyomo (W. Hart, Watson, Woodruff, & Watson, 2011; 
W. E. Hart, Laird, Watson, & Woodruff, 2012) (v5.5.0). 
The IPOPT (Wächter & Biegler, 2006) (v3.12.10) solver is 
used to optimize the surrogate models and/or their bounds. 
Since this is a local solver and our surrogates can be 
nonconvex, a random multistart local optimization 
approach is followed, by employing our samples as initial 
points for the local optimization. 
 

Sampling 
Latin Hypercube Sampling (LHS) (McKay, Beckman, 

& Conover, 1979) is used to generate initial sample points 
(10D+1, where D is the dimension). As the algorithm 
progresses, augmented LHS is used to add more points 
(5D+1) (Stein, 1987). In addition to the sample points 
collected by Latin Hypercube Sampling, the optimal 
solutions found by IPOPT in each subspace are added to the 
sampling set. LHS is performed with the pyDOE (v0.3.8) 
package in python and R(R Core Team, 2016) package 

‘lhs’(Carnell, 2016) via Python-R interface ‘RPy2’ (v2.8.5) 

in python.  
 
Surrogate Modeling & Bounding 
The two surrogate models currently implemented in the 

DD-sBB algorithm are: (a) Support Vector Regression 
(SVR) with a radial basis function (RBF) kernel, and (b) 
Gaussian Process Modeling (GP) or Kriging. For each of 
the models, we design a customized bounding strategy. The 
upper bound is any feasible solution of the surrogate-based 
optimization, and the lower bound is the perturbation of the 
upper bound. The summary of the SVR and GP models and 
the bounding strategies are shown in Table 1. In this work, 
SVR-RBF models are trained using ‘scikit-
learn’(Pedregosa et al., 2011) in Python. GP is trained using 
‘DiceKriging’ (Roustant, Ginsbourger, & Deville, 2012) 
package via ‘RPy2’ interface.  

To train the surrogate models, 5-fold cross-validation 
is used by randomly splitting the samples into testing sets 
(20%) and training sets (80%). The model with the lowest 
test error is picked.  
       Support vector regression (SVR) is the regression 
variation of support vector machines (SVM) (Vapnik, 
1999). SVR with radial basis functions (RBF) has been 
shown to efficiently model nonlinear systems. The most 
distinguishable feature of SVR is that the model only 
depends on the support vectors, which is a subset of the 
training data obtained by setting a tolerance on the training 
error. This feature controls the smoothness and 
interpolating versus regression nature of SVR models. 

One of the main parameters of the SVR model is the 
margin 𝜖, which controls the number of support vectors and 
smoothness of the final function. In this work, we suggest 
to scale the standard deviation 𝑠(𝑓(𝒙∗)) of the sampling 
points by a scalar 𝜅, and use this quantity as the margin to 
train the SVR model. Intuitively, the margin can be used to 
bound the realization of the SVR model, because most 
points will lie inside or on the margin. In order to create 
conservative and more encompassing bounds, a final 
perturbation of the bound is performed to include all 
sampled points within the margin. This is done by 
perturbing (reducing) the lower bound by the maximum 
absolute prediction error from the SVR model.  

The second model currently implemented is based on 
GP models, which share a similar mathematical form of 
SVR-RBF. While SVR-RBF only uses a subset of the 
training points to build the model, GP interpolates all 
training points by assuming the points are distributed with 
mean 𝜇  and variance  𝜎2 , which are estimated from the 
maximum log-likelihood function (Donald R. Jones, 2001). 
The standard error associated with the GP interpolation is 
𝑠2(𝒙∗): 

𝑠2(𝒙∗) = 𝜎̂2[1 − 𝒓′𝑹−1𝒓 +
(1−𝒓′𝑹−1𝒓)

2

𝟏′𝑹−1𝟏
]                         (1)                   

where 𝒙∗ denotes a new point, and  𝜎̂2  the stationary 
variance, 𝑹  is the correlation matrix between training 
points, and 𝒓  is the correlation matrix between the 
predicting point with the training point, which are related to 
the covariance matrix 𝐶𝑜𝑣(𝑌): 

Model SVR-RBF 

Mathematical 
Form 𝑓(𝒙∗) =  𝑏 + ∑ 𝑤𝑙exp (−𝛾||𝒙∗ − 𝒙𝒍||

2
)

𝐿

𝑙=1

 

LB 𝑓(𝑥) − max (𝑒) 

Details 
𝑙 : index for support vectors 
𝑤: basis function weights 

𝑒 : absolute prediction error 
Model GP 

Mathematical 
Form 

𝑓(𝒙∗) = 𝜇 + ∑ 𝑐𝑛exp [− ∑ 𝜃𝑖 (𝑥𝑖
∗ − 𝑥𝑖

 
(𝑛)

)
2𝐶

𝑖=1

]

𝑁

𝑛=1

 

LB 𝑓(𝑥) − 𝜎 

Details 
𝑛:  index for samples, 

 𝑖: index for dimensions  
𝜎:  stationary variance 

Table 1 Summary of SVR and GP models and the 
strategies for obtaining the lower bound. 



  

 

 
𝐶𝑜𝑣(𝑌) = 𝜎̂2𝑹                                                              (2) 
             
While the statistical lower bound (3) can be directly used to 
bound the GP model, the complicated form of 𝑠(𝒙∗)  as 
shown in (1) leads to a very nonlinear and nonconvex 
optimization problem.  
 
𝑓(𝒙∗) − 𝜅𝑠(𝒙∗), where 𝜅 is a constant                            (3)   
                              

Therefore, we propose a new bounding strategy for GP, 
which is simply based on the stationary variance 𝜎2 . As 

presented in (1), [1 − 𝒓′𝑹−1𝒓 +
(1−𝒓′𝑹−1𝒓)

2

𝟏′𝑹−1𝟏
] ≤ 1 is always 

valid. Then, we can obtain the following inequality: 
 

 𝑠2(𝒙∗) ≤ 𝜎̂2                                                                    (4)  
         
Consequently, we can obtain a bounding strategy that is 
very similar to the SVR-RBF bounding (5). 
 
𝑓(𝒙∗) − 𝜎                                                                         (5) 
  
       Both of the bounding strategies discussed measure the 
uncertainty in modeling, and aim to enclose or bound most 
of the possible realizations of the surrogate models, given 
the limited amount of samples that have been collected. As 
the subspaces become smaller, the data variance and 
modeling uncertainty will decrease, which is a key concept 
that will drive convergence in our algorithm.  
 

Branch-and-bound Scheme 
Equal bisection and golden bisection rules based on the 

ratio of −1+√5

2
 are implemented in this algorithm. The 

branching is initialized on the most important variable, 
ranked by an in-house feature selection algorithm. After the 
first branch, a different heuristic is employed and the 
variable with larger range is branched. The overall upper 
bound 𝑓𝑈𝐵  is the best solution found, and the lower bound 
𝑓𝐿𝐵  is the minimum lower bound of all active nodes. The 
subspace is pruned if its lower bound is higher than the 
overall upper bound.  

 
Stopping Criteria 
Our first aim is to show the global convergence of our 

algorithm. Thus, we allow it to run for a long CPU time limit 
(3000 sec) and the algorithm converges when |𝑓𝑈𝐵 − 𝑓𝐿𝐵| ≤
𝜀.  

Result and Discussion 

Benchmark Problems 
A total of 220 benchmark problems are tested with DD-

sBB algorithm with SVR and GP. 148 problems in the 
problem set are 2-3D problems. 72 problems are 3-10D 
problems. These problems are continuous box-constrained 
problems selected from the Sahinidis test problem set 
(Puranik & Sahinidis, 2017).  

The results are also compared to the performance of the 
DIRECT algorithm. The comparative profiles are shown in 
Figure 2. For DIRECT, the stopping criterion is a heuristic 
that there is no significant improvement over consecutive 
iterations. As for DD-sBB, the algorithm is set to stop when 
|𝑓𝑈𝐵 − 𝑓𝐿𝐵| ≤ 0.05. 

As shown in Figure 2, all three methods can solve over 
97% of 2-3D problems and over 90% of 4-10D problems. 
DIRECT consistently takes less time to solve the problems. 
One reason is that DIRECT is purely sampling-based, 
whereas DD-sBB requires training and optimizing 
surrogate models. However, as the dimensionality increases, 
DIRECT samples more points than the DD-sBB methods. 
Moreover, among the DD-sBB methods, GP consistently 
requires less samples to solve the same amount of problems.  

As the dimension of the problem increases, the 
advantage of using GP with DD-sBB is more predominant. 
This difference in sampling requirements of SVR- and GP- 
based DD-sBB methods may be tuned by adjusting the 
width of the SVR bounds and the GP bounds, which results 
in different efficiency of pruning the subspaces and 
sampling.  

Despite its increased CPU cost, one of the major 
advantages of our proposed approach is that upper and 
lower bounds on the best solution are provided. In fact, even 
in the small subset of the problems that were not solved by 
the algorithm, the optimal solution is within the final upper 
and lower bounds. This shows that even if the lower and 
upper bound tolerance might not have been reached, the 
current best solution is still a high quality solution.  
        Finally, we want to study the performance of our 
algorithm in the case that sampling limitations exist. Thus, 
we recorded the cpu and sampling requirements for the 2-
3D problems, for the point when the algorithm finds the 
optimal solution with high accuracy (within 0.05 absolute 
difference from the nominal optimum solution). As shown 
in Figure 3, GP requires significantly smaller amount of 
samples to find a good solution compared to SVR. 
However, the cpu requirements for GP is not significantly 

Figure 2 Performance plots of DD-sBB with SVR and 
GP, and DIRECT for 2-3D problems (a and b), and 
4-10 D problems (c and d) 



  

different from that of the SVR method. The potential 
explanation of this observation is that due to the 
regularization component of SVR, the model complexity is 
reduced, and the surrogate models are easier to optimize. 
Alternatively, when using Gaussian Process models, the 
model complexity is always dependent on the number of 
training points but the approximation error is always lower. 
Therefore, it is observed that better model approximation 
accuracy increases the CPU requirements; however, it leads 
to better solutions with fewer samples.   

         Finally, we also test our algorithms in the presence of 
up to 10% random noise in the output data. This test aims 
to show the robustness of the techniques in the case where 
the simulation output is subject to some uncertainty. It has 
been previously shown that the use of surrogate models is 
effective for noisy data, due to the approximation model’s 

ability to filter out some of the noise in the data. In addition, 
since our algorithm is based on the concept of bounding 
uncertain surrogates, we expect this framework to perform 
well even in the presence of noise. As shown in Figure 4, 
both SVR and GP methods are able to solve over 93% 
problems in the benchmark set. The addition of random 
noise increases the required number of samples to solve the 
problems, especially for the GP method. As expected, noise 
is less influential on the SVR method since the margin in 
SVR prevents overfitting of noisy data.   
 

Conclusions 

In this work, we present a novel data-driven spatial 
branch-and-bound algorithm (DD-sBB) for box-
constrained black-box problems. The main idea of this 
algorithm is that by adapting the spatial branch-and-bound 
scheme from deterministic branch-and-bound algorithms, 
we can reduce the dependency on sampling and surrogate 
modeling selection, and convergence of data-driven 
algorithms can be achieved with imperfect surrogates. We 
use absolute prediction error for SVR-RBF and stationary 
variance for GP as the bounding strategies, and compare the 
lower and upper bounds to prune subspaces. On the large 
box-constrained benchmark problem set, both DD-sBB 
with SVR and GP can solve over 90% problems, which is 
comparable to the DIRECT algorithm. The algorithm is also 
capable of solving similar amount of problem subject to 
10% random noise in the output data. Result shows that the 
algorithm can find good solutions at an earlier stage before 
convergence, which indicates that further investigation on 
the convergence criteria is needed. In the future, we aim to 
improve the CPU efficiency of the algorithm and 
investigate less conservative bounding strategies to improve 
the convergence efficiency. Moreover, we plan to add more 
surrogate models and bounding strategies to our framework, 
and extend the algorithm to handle constraints.  

Acknowledgments 

The authors acknowledge support by NSF (1805724) 
and Georgia Tech Startup Funding.  

 
References 

Amaran, S., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2014). 

Simulation optimization: a review of algorithms and 

applications. 4OR, 12(4), 301-333. doi:10.1007/s10288-

014-0275-2 

Androulakis, I. P., Maranas, C. D., & Floudas, C. A. (1995). αBB: 

A global optimization method for general constrained 

nonconvex problems. Journal of Global Optimization, 

7(4), 337-363. doi:10.1007/bf01099647 

Boukouvala, F., & Floudas, C. A. (2017). ARGONAUT: 

AlgoRithms for Global Optimization of coNstrAined 

grey-box compUTational problems. Optimization 

Letters, 11(5), 895-913. doi:10.1007/s11590-016-1028-

2 

Carnell, R. (2016). lhs: Latin Hypercube Samples.  

Cox, D. D., & John, S. (1992, 18-21 Oct. 1992). A statistical 

method for global optimization. Paper presented at the 

[Proceedings] 1992 IEEE International Conference on 

Systems, Man, and Cybernetics. 

Cozad, A., Sahinidis, N. V., & Miller, D. C. (2014). Learning 

surrogate models for simulation-based optimization. 

AIChE Journal, 60(6), 2211-2227. 

doi:10.1002/aic.14418 

Dowling, A. W., Eason, J. P., Ma, J., Miller, D. C., & Biegler, L. 

T. (2014). Coal Oxycombustion Power Plant 

Optimization Using First Principles and Surrogate 

Figure 3 Performance plot of DD-sBB with SVR and GP 
based on the the first high quality solution found, and 
DIRECT for 2-3D problem 

Figure 4 Performance plot of DD-sBB with SVR and GP 
subjected to 10% random noise 



  

 

Boiler Models. Energy Procedia, 63, 352-361. 

doi:https://doi.org/10.1016/j.egypro.2014.11.038 

Eason, J., & Cremaschi, S. (2014). Adaptive sequential sampling 

for surrogate model generation with artificial neural 

networks. Computers & Chemical Engineering, 68, 220-

232. 

doi:https://doi.org/10.1016/j.compchemeng.2014.05.02

1 

Hart, W., Watson, J.-P., Woodruff, D., & Watson, J. P. (2011). 

Pyomo: Modeling and solving mathematical programs 

in Python (Vol. 3). 

Hart, W. E., Laird, C., Watson, J.-P., & Woodruff, D. L. (2012). 

Pyomo - Optimization Modeling in Python: Springer 

Publishing Company, Incorporated. 

Huyer, W., & Neumaier, A. (1999). Global Optimization by 

Multilevel Coordinate Search. Journal of Global 

Optimization, 14(4), 331-355. 

doi:10.1023/a:1008382309369 

Huyer, W., & Neumaier, A. (2008). SNOBFIT -- Stable Noisy 

Optimization by Branch and Fit. ACM Trans. Math. 

Softw., 35(2), 1-25. doi:10.1145/1377612.1377613 

Johnson, S. G. (2018). The NLopt nonlinear-optimization package 

(Version 2.5.0). Retrieved from 

https://nlopt.readthedocs.io/en/latest/ 

Jones, D. R. (2001). A Taxonomy of Global Optimization 

Methods Based on Response Surfaces. Journal of 

Global Optimization, 21(4), 345-383. 

doi:10.1023/a:1012771025575 

Jones, D. R. (2009). Direct global optimization algorithmDirect 

Global Optimization Algorithm. In C. A. Floudas & P. 

M. Pardalos (Eds.), Encyclopedia of Optimization (pp. 

725-735). Boston, MA: Springer US. 

Jones, D. R., Perttunen, C. D., & Stuckman, B. E. (1993). 

Lipschitzian optimization without the Lipschitz 

constant. Journal of Optimization Theory and 

Applications, 79(1), 157-181. doi:10.1007/bf00941892 

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient 

Global Optimization of Expensive Black-Box 

Functions. Journal of Global Optimization, 13(4), 455-

492. doi:10.1023/a:1008306431147 

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). 

Comparison of Three Methods for Selecting Values of 

Input Variables in the Analysis of Output from a 

Computer Code. Technometrics, 21(2), 239-245. 

doi:10.1080/00401706.1979.10489755 

Misener, R., & Floudas, C. A. (2014). ANTIGONE: Algorithms 

for coNTinuous / Integer Global Optimization of 

Nonlinear Equations. Journal of Global Optimization, 

59(2), 503-526. doi:10.1007/s10898-014-0166-2 

Onel, O., Niziolek, A. M., Butcher, H., Wilhite, B. A., & Floudas, 

C. A. (2017). Multi-scale approaches for gas-to-liquids 

process intensification: CFD modeling, process 

synthesis, and global optimization. Computers & 

Chemical Engineering, 105, 276-296. 

doi:https://doi.org/10.1016/j.compchemeng.2017.01.01

6 

Pedregosa, F., Ga, #235, Varoquaux, l., Gramfort, A., Michel, V., 

. . . Duchesnay, d. (2011). Scikit-learn: Machine 

Learning in Python. J. Mach. Learn. Res., 12, 2825-

2830.  

Puranik, Y., & Sahinidis, N. V. (2017). Bounds tightening based 

on optimality conditions for nonconvex box-constrained 

optimization. J. of Global Optimization, 67(1-2), 59-77. 

doi:10.1007/s10898-016-0491-8 

R Core Team, R. F. f. S. C. (2016). R: A Language and 

Environment for Statistical Computing.  

Rios, L. M., & Sahinidis, N. V. (2013). Derivative-free 

optimization: a review of algorithms and comparison of 

software implementations. Journal of Global 

Optimization, 56(3), 1247-1293. doi:10.1007/s10898-

012-9951-y 

Roustant, O., Ginsbourger, D., & Deville, Y. (2012). DiceKriging, 

DiceOptim: Two R Packages for the Analysis of 

Computer Experiments by Kriging-Based 

Metamodeling and Optimization. 2012, 51(1), 55. 

doi:10.18637/jss.v051.i01 

Stein, M. (1987). Large Sample Properties of Simulations Using 

Latin Hypercube Sampling. Technometrics, 29(2), 143-

151. doi:10.1080/00401706.1987.10488205 

Tawarmalani, M., & Sahinidis, N. V. (2004). Global optimization 

of mixed-integer nonlinear programs: A theoretical and 

computational study. Mathematical Programming, 

99(3), 563-591. doi:10.1007/s10107-003-0467-6 

Tawarmalani, M., & Sahinidis, N. V. (2005). A polyhedral branch-

and-cut approach to global optimization. Mathematical 

Programming, 103(2), 225-249. doi:10.1007/s10107-

005-0581-8 

Tsay, C., Pattison, R. C., & Baldea, M. (2017). Equation-oriented 

simulation and optimization of process flowsheets 

incorporating detailed spiral-wound multistream heat 

exchanger models. AIChE Journal, 63(9), 3778-3789. 

doi:doi:10.1002/aic.15705 

Vapnik, V. (1999). The Nature of Statistical Learning Theory: 

Springer New York. 

Wächter, A., & Biegler, L. T. (2006). On the implementation of an 

interior-point filter line-search algorithm for large-scale 

nonlinear programming. Mathematical Programming, 

106(1), 25-57. doi:10.1007/s10107-004-0559-y 
 

https://doi.org/10.1016/j.egypro.2014.11.038
https://doi.org/10.1016/j.compchemeng.2014.05.021
https://doi.org/10.1016/j.compchemeng.2014.05.021
https://nlopt.readthedocs.io/en/latest/
https://doi.org/10.1016/j.compchemeng.2017.01.016
https://doi.org/10.1016/j.compchemeng.2017.01.016

	Keywords
	Methods
	Result and Discussion
	Conclusions
	Acknowledgments

