

DATA-DRIVEN SPATIAL BRANCH-AND-BOUND
ALGORITHMS BLACK-BOX OPTIMIZATION

Jianyuan Zhai, Fani Boukouvala*
Georgia Institute of Technology

Atlanta, GA 30332

Abstract

The use of high fidelity simulations is becoming more common in computer-aided design and
optimization. Due to the complexity of the simulation models and the lack of closed-form mathematical
formulations, the direct use of traditional deterministic optimization tools is prohibitive for such problems.
Therefore, data-driven decision-making has become increasingly important, with surrogate-based
optimization being one of the most popular approaches. Two of the most important challenges in
surrogate-based optimization are the lack of consistent convergence metrics and the variability in the
quality of the incumbent solution when a different sampling set or a different surrogate model is used to
guide the search. In this work, we propose a strategy to mitigate this uncertainty in the performance of
such algorithms. A novel data-driven spatial branch-and-bound framework is proposed that uses stochastic
bounds on different surrogate models and partitioning of the search space. The convergence properties of
this algorithm are studied through a large set of benchmark problems.

Keywords

Data-driven optimization, Surrogate modeling, Branch-and-bound

Introduction

 The rapid development in computer-aided design and
optimization have led to the generation and storage of
complex models that can capture high-fidelity details of a
system, such as models based on large partial differential
equation systems of equations (Tsay, Pattison, & Baldea,
2017), and computational fluid dynamics (CFD) (Dowling,
Eason, Ma, Miller, & Biegler, 2014; Onel, Niziolek,
Butcher, Wilhite, & Floudas, 2017). When it comes to
optimization using the above, the use of existing
deterministic gradient-based optimization algorithms is
prohibitive. Because of the inability to directly use algebraic
model-based mathematical programming and deterministic
gradient-based optimization algorithms, solving such
optimization problems often relies on the information from
input-and-output data, and that is why it is referred to as
data-driven optimization. Data-driven optimization, also

* To whom all correspondence should be addressed

known as derivative-free optimization or black-box
optimization, does not assume the availability of the
algebraic description of the formulation. There are three
main classes of data-driven optimization methods, namely
sampling-based methods, model-based methods, and
stochastic search methods. Some global sampling-based
model-based methods have employed the concept of
partitioning the subspace in order to find better solutions.
For example, two of the most widely used sampling-based
partitioning methods are the DIRECT algorithm (Donald R.
Jones, 2009; D. R. Jones, Perttunen, & Stuckman, 1993) and
Multilevel Coordinate Search (MCS) (Huyer & Neumaier,
1999). Similarly in the area of model-based methods,
Sequential design for optimization (SDO) (Cox & John,
1992), efficient global optimization (EGO) (Donald R.
Jones, Schonlau, & Welch, 1998), and stable noisy

optimization by branch-and-fit (SNOBFIT) (Huyer &
Neumaier, 2008), are three methods that have combined the
concept of fitting a specific type of surrogate model with
consequent sampling in subspaces.
 Computational studies and reviews of the current
existing data-driven optimization software have shown that
the performance is problem-dependent and no one solver
can solve all types of problems (Amaran, Sahinidis, Sharda,
& Bury, 2014; Rios & Sahinidis, 2013). Especially in the
model-based optimization field, researchers have devoted
great effort on finding the best surrogate modeling strategy
and sampling technique (Boukouvala & Floudas, 2017;
Cozad, Sahinidis, & Miller, 2014; Eason & Cremaschi,
2014). However, the question on which sampling strategy
coupled with a surrogate type is the best for optimization is
still an open challenge. In this work, we systematically
study the sources of this variability and develop techniques
that are less sensitive to this selection. Our overall aim is to
develop a general framework that can converge to good
solutions for multiple types of surrogate models that do not
need to perfectly approximate the black-box problem.
Naturally, the selection of the surrogate model will affect
the speed of convergence, however, when coupled with
space partitioning and bounding, our hypothesis is that
consistent convergence can be observed.

First, we identify the reasons that cause this
observed variability in the performance of different data-
driven approaches. As shown in Figure 1, when fitting a
surrogate model to a black-box function, one can easily
obtain different realizations of the trained models. This
phenomenon can happen for two reasons: a) if slightly
different samples are collected, even the same type of
surrogate model might have different optimal parameters
and as a result, a different functional form, and b) if the
same samples are collected but different types of surrogate
models are fitted (i.e., one Neural Network, one Gaussian
process model, and a polynomial model), the fitted
functions will also have differences. Secondly, because of
the lack of the algebraic description of the true problem,
convergence to a global optimum is less reliable with
limited amount of samples. Unlike deterministic global
optimization algorithms which can provide finite
convergence with 𝜀 tolerance, currently global convergence
of data-driven optimization algorithms is guaranteed when
approaching the limit of infinite sampling. However, this is
usually prohibitive because sampling is often very
expensive.
 To address the two challenges mentioned above, one
promising approach is to adopt the structure of the branch-
and-bound and combine it with surrogate-based
optimization. As mentioned earlier, many solvers in
deterministic global optimization algorithms provide finite
𝜀 convergence to global solution using a branch-and-bound
framework, for instance, BARON (Tawarmalani &
Sahinidis, 2005), ANTIGONE (Misener & Floudas, 2014),
and 𝛼 -BB (Androulakis, Maranas, & Floudas, 1995).
Specifically, the finite 𝜀 convergence is referred to the
difference between the lower bound (LB) and upper bound

(UB) of the objective function. Usually the LB is obtained
by solving the convex relaxations of the original nonconvex
problem and the UB can be any feasible solution of the
original nonconvex problem (Misener & Floudas, 2014;
Tawarmalani & Sahinidis, 2004, 2005). By progressively
dividing the search space, these algorithms aim to find
tighter lower and upper bounds of the global optimum.
Although some sampling-based and model-based search
methods have the search space partitioning feature, no other
method has explored the bounding approach. Methods like
SDO, optimize the statistical lower bound of the function
but do not branch the search space. EGO (Donald R. Jones
et al., 1998) optimizes the expected improvement function
in a branch-and-bound framework, while the mathematical
form of the expected improvement function is rather too
complicated. The DIRECT method, follows a space
partitioning approach (Donald R. Jones, 2009); however, it
does not use any surrogate approximations or bounding
strategies. As a result, although this algorithm has been
shown to perform well on a diverse set of applications,
algorithm convergence happens when the maximum
number of samples has been reached, with no other
indication that convergence has truly been achieved. The
DIRECT algorithm is the one that has the most similar
structure with our proposed framework, thus we will
compare the performance of our algorithm with an existing
implementation of DIRECT (Johnson, 2018; Donald R.
Jones, 2009).

 In this work, we propose a data-driven (DD) equivalent
spatial branch-and-bound (sBB) algorithm, which uses
imperfect surrogate models to solve a wide range of data-
driven optimization problems. To handle uncertainty in
surrogate modeling, we will use error metrics, statistical
bounds and margins to approximately bound the surrogate
model realizations (Figure 1). By subdividing the search
space, the variance in the data and the approximation of the
surrogate model is expected to decrease. As a result, as we
branch we expect to obtain tighter bounds and better
surrogate approximations, and hypothesize that this will
lead to a convergent data-driven branch-and-bound
algorithm. Additionally, by pruning some subspaces,
sampling can be focused within regions that are more
promising and not wasted in regions that cannot improve
the solution even in the best case. Our main hypothesis is
that by developing such a data-driven branch-and-bound
framework, the performance of the algorithm will be less

Figure 1 (a) bounding multiple realizations of surrogate
functions, (b) partitioning and bounding multiple realizations of

surrogate approximations

dependent on the choice of the surrogate model selection.

We also believe that this approach is a first step towards
developing a convergent data-driven optimization
algorithm. The DD-sBB algorithm demonstrated in this
work is developed for multi-variable box-constrained
problems. We test the performance of the DD-sBB
algorithm with different surrogate models and bounding
strategies on a large set of benchmark problems with and
without addition of random noise.

Methods

 The algorithm is implemented in Python v3.6.0. using
Numpy numerical library (v1.13.3) and Scipy library
(v1.1.0). Optimization of the surrogate models is performed
in pyomo (W. Hart, Watson, Woodruff, & Watson, 2011;
W. E. Hart, Laird, Watson, & Woodruff, 2012) (v5.5.0).
The IPOPT (Wächter & Biegler, 2006) (v3.12.10) solver is
used to optimize the surrogate models and/or their bounds.
Since this is a local solver and our surrogates can be
nonconvex, a random multistart local optimization
approach is followed, by employing our samples as initial
points for the local optimization.

Sampling
Latin Hypercube Sampling (LHS) (McKay, Beckman,

& Conover, 1979) is used to generate initial sample points
(10D+1, where D is the dimension). As the algorithm
progresses, augmented LHS is used to add more points
(5D+1) (Stein, 1987). In addition to the sample points
collected by Latin Hypercube Sampling, the optimal
solutions found by IPOPT in each subspace are added to the
sampling set. LHS is performed with the pyDOE (v0.3.8)
package in python and R(R Core Team, 2016) package

‘lhs’(Carnell, 2016) via Python-R interface ‘RPy2’ (v2.8.5)

in python.

Surrogate Modeling & Bounding
The two surrogate models currently implemented in the

DD-sBB algorithm are: (a) Support Vector Regression
(SVR) with a radial basis function (RBF) kernel, and (b)
Gaussian Process Modeling (GP) or Kriging. For each of
the models, we design a customized bounding strategy. The
upper bound is any feasible solution of the surrogate-based
optimization, and the lower bound is the perturbation of the
upper bound. The summary of the SVR and GP models and
the bounding strategies are shown in Table 1. In this work,
SVR-RBF models are trained using ‘scikit-
learn’(Pedregosa et al., 2011) in Python. GP is trained using
‘DiceKriging’ (Roustant, Ginsbourger, & Deville, 2012)
package via ‘RPy2’ interface.

To train the surrogate models, 5-fold cross-validation
is used by randomly splitting the samples into testing sets
(20%) and training sets (80%). The model with the lowest
test error is picked.
 Support vector regression (SVR) is the regression
variation of support vector machines (SVM) (Vapnik,
1999). SVR with radial basis functions (RBF) has been
shown to efficiently model nonlinear systems. The most
distinguishable feature of SVR is that the model only
depends on the support vectors, which is a subset of the
training data obtained by setting a tolerance on the training
error. This feature controls the smoothness and
interpolating versus regression nature of SVR models.

One of the main parameters of the SVR model is the
margin 𝜖, which controls the number of support vectors and
smoothness of the final function. In this work, we suggest
to scale the standard deviation 𝑠(𝑓(𝒙∗)) of the sampling
points by a scalar 𝜅, and use this quantity as the margin to
train the SVR model. Intuitively, the margin can be used to
bound the realization of the SVR model, because most
points will lie inside or on the margin. In order to create
conservative and more encompassing bounds, a final
perturbation of the bound is performed to include all
sampled points within the margin. This is done by
perturbing (reducing) the lower bound by the maximum
absolute prediction error from the SVR model.

The second model currently implemented is based on
GP models, which share a similar mathematical form of
SVR-RBF. While SVR-RBF only uses a subset of the
training points to build the model, GP interpolates all
training points by assuming the points are distributed with
mean 𝜇 and variance 𝜎2 , which are estimated from the
maximum log-likelihood function (Donald R. Jones, 2001).
The standard error associated with the GP interpolation is
𝑠2(𝒙∗):

𝑠2(𝒙∗) = 𝜎̂2[1 − 𝒓′𝑹−1𝒓 +
(1−𝒓′𝑹−1𝒓)

2

𝟏′𝑹−1𝟏
] (1)

where 𝒙∗ denotes a new point, and 𝜎̂2 the stationary
variance, 𝑹 is the correlation matrix between training
points, and 𝒓 is the correlation matrix between the
predicting point with the training point, which are related to
the covariance matrix 𝐶𝑜𝑣(𝑌):

Model SVR-RBF

Mathematical
Form 𝑓(𝒙∗) = 𝑏 + ∑ 𝑤𝑙exp (−𝛾||𝒙∗ − 𝒙𝒍||

2
)

𝐿

𝑙=1

LB 𝑓(𝑥) − max (𝑒)

Details
𝑙 : index for support vectors
𝑤: basis function weights

𝑒 : absolute prediction error
Model GP

Mathematical
Form

𝑓(𝒙∗) = 𝜇 + ∑ 𝑐𝑛exp [− ∑ 𝜃𝑖 (𝑥𝑖
∗ − 𝑥𝑖

(𝑛)

)
2𝐶

𝑖=1

]

𝑁

𝑛=1

LB 𝑓(𝑥) − 𝜎

Details
𝑛: index for samples,

 𝑖: index for dimensions
𝜎: stationary variance

Table 1 Summary of SVR and GP models and the
strategies for obtaining the lower bound.

𝐶𝑜𝑣(𝑌) = 𝜎̂2𝑹 (2)

While the statistical lower bound (3) can be directly used to
bound the GP model, the complicated form of 𝑠(𝒙∗) as
shown in (1) leads to a very nonlinear and nonconvex
optimization problem.

𝑓(𝒙∗) − 𝜅𝑠(𝒙∗), where 𝜅 is a constant (3)

Therefore, we propose a new bounding strategy for GP,
which is simply based on the stationary variance 𝜎2 . As

presented in (1), [1 − 𝒓′𝑹−1𝒓 +
(1−𝒓′𝑹−1𝒓)

2

𝟏′𝑹−1𝟏
] ≤ 1 is always

valid. Then, we can obtain the following inequality:

 𝑠2(𝒙∗) ≤ 𝜎̂2 (4)

Consequently, we can obtain a bounding strategy that is
very similar to the SVR-RBF bounding (5).

𝑓(𝒙∗) − 𝜎 (5)

 Both of the bounding strategies discussed measure the
uncertainty in modeling, and aim to enclose or bound most
of the possible realizations of the surrogate models, given
the limited amount of samples that have been collected. As
the subspaces become smaller, the data variance and
modeling uncertainty will decrease, which is a key concept
that will drive convergence in our algorithm.

Branch-and-bound Scheme
Equal bisection and golden bisection rules based on the

ratio of −1+√5

2
 are implemented in this algorithm. The

branching is initialized on the most important variable,
ranked by an in-house feature selection algorithm. After the
first branch, a different heuristic is employed and the
variable with larger range is branched. The overall upper
bound 𝑓𝑈𝐵 is the best solution found, and the lower bound
𝑓𝐿𝐵 is the minimum lower bound of all active nodes. The
subspace is pruned if its lower bound is higher than the
overall upper bound.

Stopping Criteria
Our first aim is to show the global convergence of our

algorithm. Thus, we allow it to run for a long CPU time limit
(3000 sec) and the algorithm converges when |𝑓𝑈𝐵 − 𝑓𝐿𝐵| ≤
𝜀.

Result and Discussion

Benchmark Problems
A total of 220 benchmark problems are tested with DD-

sBB algorithm with SVR and GP. 148 problems in the
problem set are 2-3D problems. 72 problems are 3-10D
problems. These problems are continuous box-constrained
problems selected from the Sahinidis test problem set
(Puranik & Sahinidis, 2017).

The results are also compared to the performance of the
DIRECT algorithm. The comparative profiles are shown in
Figure 2. For DIRECT, the stopping criterion is a heuristic
that there is no significant improvement over consecutive
iterations. As for DD-sBB, the algorithm is set to stop when
|𝑓𝑈𝐵 − 𝑓𝐿𝐵| ≤ 0.05.

As shown in Figure 2, all three methods can solve over
97% of 2-3D problems and over 90% of 4-10D problems.
DIRECT consistently takes less time to solve the problems.
One reason is that DIRECT is purely sampling-based,
whereas DD-sBB requires training and optimizing
surrogate models. However, as the dimensionality increases,
DIRECT samples more points than the DD-sBB methods.
Moreover, among the DD-sBB methods, GP consistently
requires less samples to solve the same amount of problems.

As the dimension of the problem increases, the
advantage of using GP with DD-sBB is more predominant.
This difference in sampling requirements of SVR- and GP-
based DD-sBB methods may be tuned by adjusting the
width of the SVR bounds and the GP bounds, which results
in different efficiency of pruning the subspaces and
sampling.

Despite its increased CPU cost, one of the major
advantages of our proposed approach is that upper and
lower bounds on the best solution are provided. In fact, even
in the small subset of the problems that were not solved by
the algorithm, the optimal solution is within the final upper
and lower bounds. This shows that even if the lower and
upper bound tolerance might not have been reached, the
current best solution is still a high quality solution.
 Finally, we want to study the performance of our
algorithm in the case that sampling limitations exist. Thus,
we recorded the cpu and sampling requirements for the 2-
3D problems, for the point when the algorithm finds the
optimal solution with high accuracy (within 0.05 absolute
difference from the nominal optimum solution). As shown
in Figure 3, GP requires significantly smaller amount of
samples to find a good solution compared to SVR.
However, the cpu requirements for GP is not significantly

Figure 2 Performance plots of DD-sBB with SVR and
GP, and DIRECT for 2-3D problems (a and b), and
4-10 D problems (c and d)

different from that of the SVR method. The potential
explanation of this observation is that due to the
regularization component of SVR, the model complexity is
reduced, and the surrogate models are easier to optimize.
Alternatively, when using Gaussian Process models, the
model complexity is always dependent on the number of
training points but the approximation error is always lower.
Therefore, it is observed that better model approximation
accuracy increases the CPU requirements; however, it leads
to better solutions with fewer samples.

 Finally, we also test our algorithms in the presence of
up to 10% random noise in the output data. This test aims
to show the robustness of the techniques in the case where
the simulation output is subject to some uncertainty. It has
been previously shown that the use of surrogate models is
effective for noisy data, due to the approximation model’s

ability to filter out some of the noise in the data. In addition,
since our algorithm is based on the concept of bounding
uncertain surrogates, we expect this framework to perform
well even in the presence of noise. As shown in Figure 4,
both SVR and GP methods are able to solve over 93%
problems in the benchmark set. The addition of random
noise increases the required number of samples to solve the
problems, especially for the GP method. As expected, noise
is less influential on the SVR method since the margin in
SVR prevents overfitting of noisy data.

Conclusions

In this work, we present a novel data-driven spatial
branch-and-bound algorithm (DD-sBB) for box-
constrained black-box problems. The main idea of this
algorithm is that by adapting the spatial branch-and-bound
scheme from deterministic branch-and-bound algorithms,
we can reduce the dependency on sampling and surrogate
modeling selection, and convergence of data-driven
algorithms can be achieved with imperfect surrogates. We
use absolute prediction error for SVR-RBF and stationary
variance for GP as the bounding strategies, and compare the
lower and upper bounds to prune subspaces. On the large
box-constrained benchmark problem set, both DD-sBB
with SVR and GP can solve over 90% problems, which is
comparable to the DIRECT algorithm. The algorithm is also
capable of solving similar amount of problem subject to
10% random noise in the output data. Result shows that the
algorithm can find good solutions at an earlier stage before
convergence, which indicates that further investigation on
the convergence criteria is needed. In the future, we aim to
improve the CPU efficiency of the algorithm and
investigate less conservative bounding strategies to improve
the convergence efficiency. Moreover, we plan to add more
surrogate models and bounding strategies to our framework,
and extend the algorithm to handle constraints.

Acknowledgments

The authors acknowledge support by NSF (1805724)
and Georgia Tech Startup Funding.

References

Amaran, S., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2014).

Simulation optimization: a review of algorithms and

applications. 4OR, 12(4), 301-333. doi:10.1007/s10288-

014-0275-2

Androulakis, I. P., Maranas, C. D., & Floudas, C. A. (1995). αBB:

A global optimization method for general constrained

nonconvex problems. Journal of Global Optimization,

7(4), 337-363. doi:10.1007/bf01099647

Boukouvala, F., & Floudas, C. A. (2017). ARGONAUT:

AlgoRithms for Global Optimization of coNstrAined

grey-box compUTational problems. Optimization

Letters, 11(5), 895-913. doi:10.1007/s11590-016-1028-

2

Carnell, R. (2016). lhs: Latin Hypercube Samples.

Cox, D. D., & John, S. (1992, 18-21 Oct. 1992). A statistical

method for global optimization. Paper presented at the

[Proceedings] 1992 IEEE International Conference on

Systems, Man, and Cybernetics.

Cozad, A., Sahinidis, N. V., & Miller, D. C. (2014). Learning

surrogate models for simulation-based optimization.

AIChE Journal, 60(6), 2211-2227.

doi:10.1002/aic.14418

Dowling, A. W., Eason, J. P., Ma, J., Miller, D. C., & Biegler, L.

T. (2014). Coal Oxycombustion Power Plant

Optimization Using First Principles and Surrogate

Figure 3 Performance plot of DD-sBB with SVR and GP
based on the the first high quality solution found, and
DIRECT for 2-3D problem

Figure 4 Performance plot of DD-sBB with SVR and GP
subjected to 10% random noise

Boiler Models. Energy Procedia, 63, 352-361.

doi:https://doi.org/10.1016/j.egypro.2014.11.038

Eason, J., & Cremaschi, S. (2014). Adaptive sequential sampling

for surrogate model generation with artificial neural

networks. Computers & Chemical Engineering, 68, 220-

232.

doi:https://doi.org/10.1016/j.compchemeng.2014.05.02

1

Hart, W., Watson, J.-P., Woodruff, D., & Watson, J. P. (2011).

Pyomo: Modeling and solving mathematical programs

in Python (Vol. 3).

Hart, W. E., Laird, C., Watson, J.-P., & Woodruff, D. L. (2012).

Pyomo - Optimization Modeling in Python: Springer

Publishing Company, Incorporated.

Huyer, W., & Neumaier, A. (1999). Global Optimization by

Multilevel Coordinate Search. Journal of Global

Optimization, 14(4), 331-355.

doi:10.1023/a:1008382309369

Huyer, W., & Neumaier, A. (2008). SNOBFIT -- Stable Noisy

Optimization by Branch and Fit. ACM Trans. Math.

Softw., 35(2), 1-25. doi:10.1145/1377612.1377613

Johnson, S. G. (2018). The NLopt nonlinear-optimization package

(Version 2.5.0). Retrieved from

https://nlopt.readthedocs.io/en/latest/

Jones, D. R. (2001). A Taxonomy of Global Optimization

Methods Based on Response Surfaces. Journal of

Global Optimization, 21(4), 345-383.

doi:10.1023/a:1012771025575

Jones, D. R. (2009). Direct global optimization algorithmDirect

Global Optimization Algorithm. In C. A. Floudas & P.

M. Pardalos (Eds.), Encyclopedia of Optimization (pp.

725-735). Boston, MA: Springer US.

Jones, D. R., Perttunen, C. D., & Stuckman, B. E. (1993).

Lipschitzian optimization without the Lipschitz

constant. Journal of Optimization Theory and

Applications, 79(1), 157-181. doi:10.1007/bf00941892

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient

Global Optimization of Expensive Black-Box

Functions. Journal of Global Optimization, 13(4), 455-

492. doi:10.1023/a:1008306431147

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979).

Comparison of Three Methods for Selecting Values of

Input Variables in the Analysis of Output from a

Computer Code. Technometrics, 21(2), 239-245.

doi:10.1080/00401706.1979.10489755

Misener, R., & Floudas, C. A. (2014). ANTIGONE: Algorithms

for coNTinuous / Integer Global Optimization of

Nonlinear Equations. Journal of Global Optimization,

59(2), 503-526. doi:10.1007/s10898-014-0166-2

Onel, O., Niziolek, A. M., Butcher, H., Wilhite, B. A., & Floudas,

C. A. (2017). Multi-scale approaches for gas-to-liquids

process intensification: CFD modeling, process

synthesis, and global optimization. Computers &

Chemical Engineering, 105, 276-296.

doi:https://doi.org/10.1016/j.compchemeng.2017.01.01

6

Pedregosa, F., Ga, #235, Varoquaux, l., Gramfort, A., Michel, V.,

. . . Duchesnay, d. (2011). Scikit-learn: Machine

Learning in Python. J. Mach. Learn. Res., 12, 2825-

2830.

Puranik, Y., & Sahinidis, N. V. (2017). Bounds tightening based

on optimality conditions for nonconvex box-constrained

optimization. J. of Global Optimization, 67(1-2), 59-77.

doi:10.1007/s10898-016-0491-8

R Core Team, R. F. f. S. C. (2016). R: A Language and

Environment for Statistical Computing.

Rios, L. M., & Sahinidis, N. V. (2013). Derivative-free

optimization: a review of algorithms and comparison of

software implementations. Journal of Global

Optimization, 56(3), 1247-1293. doi:10.1007/s10898-

012-9951-y

Roustant, O., Ginsbourger, D., & Deville, Y. (2012). DiceKriging,

DiceOptim: Two R Packages for the Analysis of

Computer Experiments by Kriging-Based

Metamodeling and Optimization. 2012, 51(1), 55.

doi:10.18637/jss.v051.i01

Stein, M. (1987). Large Sample Properties of Simulations Using

Latin Hypercube Sampling. Technometrics, 29(2), 143-

151. doi:10.1080/00401706.1987.10488205

Tawarmalani, M., & Sahinidis, N. V. (2004). Global optimization

of mixed-integer nonlinear programs: A theoretical and

computational study. Mathematical Programming,

99(3), 563-591. doi:10.1007/s10107-003-0467-6

Tawarmalani, M., & Sahinidis, N. V. (2005). A polyhedral branch-

and-cut approach to global optimization. Mathematical

Programming, 103(2), 225-249. doi:10.1007/s10107-

005-0581-8

Tsay, C., Pattison, R. C., & Baldea, M. (2017). Equation-oriented

simulation and optimization of process flowsheets

incorporating detailed spiral-wound multistream heat

exchanger models. AIChE Journal, 63(9), 3778-3789.

doi:doi:10.1002/aic.15705

Vapnik, V. (1999). The Nature of Statistical Learning Theory:

Springer New York.

Wächter, A., & Biegler, L. T. (2006). On the implementation of an

interior-point filter line-search algorithm for large-scale

nonlinear programming. Mathematical Programming,

106(1), 25-57. doi:10.1007/s10107-004-0559-y

https://doi.org/10.1016/j.egypro.2014.11.038
https://doi.org/10.1016/j.compchemeng.2014.05.021
https://doi.org/10.1016/j.compchemeng.2014.05.021
https://nlopt.readthedocs.io/en/latest/
https://doi.org/10.1016/j.compchemeng.2017.01.016
https://doi.org/10.1016/j.compchemeng.2017.01.016

	Keywords
	Methods
	Result and Discussion
	Conclusions
	Acknowledgments

