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Abstract

The use of high fidelity simulations is becoming more common in computer-aided design and
optimization. Due to the complexity of the simulation models and the lack of closed-form mathematical
formulations, the direct use of traditional deterministic optimization tools is prohibitive for such problems.
Therefore, data-driven decision-making has become increasingly important, with surrogate-based
optimization being one of the most popular approaches. Two of the most important challenges in
surrogate-based optimization are the lack of consistent convergence metrics and the variability in the
quality of the incumbent solution when a different sampling set or a different surrogate model is used to
guide the search. In this work, we propose a strategy to mitigate this uncertainty in the performance of
such algorithms. A novel data-driven spatial branch-and-bound framework is proposed that uses stochastic
bounds on different surrogate models and partitioning of the search space. The convergence properties of
this algorithm are studied through a large set of benchmark problems.
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Introduction

The rapid development in computer-aided design and
optimization have led to the generation and storage of
complex models that can capture high-fidelity details of a
system, such as models based on large partial differential
equation systems of equations (Tsay, Pattison, & Baldea,
2017), and computational fluid dynamics (CFD) (Dowling,
Eason, Ma, Miller, & Biegler, 2014; Onel, Niziolek,
Butcher, Wilhite, & Floudas, 2017). When it comes to
optimization using the above, the use of existing
deterministic gradient-based optimization algorithms is
prohibitive. Because of the inability to directly use algebraic
model-based mathematical programming and deterministic
gradient-based optimization algorithms, solving such
optimization problems often relies on the information from
input-and-output data, and that is why it is referred to as
data-driven optimization. Data-driven optimization, also
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known as derivative-free optimization or black-box
optimization, does not assume the availability of the
algebraic description of the formulation. There are three
main classes of data-driven optimization methods, namely
sampling-based methods, model-based methods, and
stochastic search methods. Some global sampling-based
model-based methods have employed the concept of
partitioning the subspace in order to find better solutions.
For example, two of the most widely used sampling-based
partitioning methods are the DIRECT algorithm (Donald R.
Jones, 2009; D. R. Jones, Perttunen, & Stuckman, 1993) and
Multilevel Coordinate Search (MCS) (Huyer & Neumaier,
1999). Similarly in the area of model-based methods,
Sequential design for optimization (SDO) (Cox & John,
1992), efficient global optimization (EGO) (Donald R.
Jones, Schonlau, & Welch, 1998), and stable noisy



optimization by branch-and-fit (SNOBFIT) (Huyer &
Neumaier, 2008), are three methods that have combined the
concept of fitting a specific type of surrogate model with
consequent sampling in subspaces.

Computational studies and reviews of the current
existing data-driven optimization software have shown that
the performance is problem-dependent and no one solver
can solve all types of problems (Amaran, Sahinidis, Sharda,
& Bury, 2014; Rios & Sahinidis, 2013). Especially in the
model-based optimization field, researchers have devoted
great effort on finding the best surrogate modeling strategy
and sampling technique (Boukouvala & Floudas, 2017,
Cozad, Sahinidis, & Miller, 2014; Eason & Cremaschi,
2014). However, the question on which sampling strategy
coupled with a surrogate type is the best for optimization is
still an open challenge. In this work, we systematically
study the sources of this variability and develop techniques
that are less sensitive to this selection. Our overall aim is to
develop a general framework that can converge to good
solutions for multiple types of surrogate models that do not
need to perfectly approximate the black-box problem.
Naturally, the selection of the surrogate model will affect
the speed of convergence, however, when coupled with
space partitioning and bounding, our hypothesis is that
consistent convergence can be observed.

First, we identify the reasons that cause this
observed variability in the performance of different data-
driven approaches. As shown in Figure 1, when fitting a
surrogate model to a black-box function, one can easily
obtain different realizations of the trained models. This
phenomenon can happen for two reasons: a) if slightly
different samples are collected, even the same type of
surrogate model might have different optimal parameters
and as a result, a different functional form, and b) if the
same samples are collected but different types of surrogate
models are fitted (i.e., one Neural Network, one Gaussian
process model, and a polynomial model), the fitted
functions will also have differences. Secondly, because of
the lack of the algebraic description of the true problem,
convergence to a global optimum is less reliable with
limited amount of samples. Unlike deterministic global
optimization algorithms which can provide finite
convergence with ¢ tolerance, currently global convergence
of data-driven optimization algorithms is guaranteed when
approaching the limit of infinite sampling. However, this is
usually prohibitive because sampling is often very
expensive.

To address the two challenges mentioned above, one
promising approach is to adopt the structure of the branch-
and-bound and combine it with surrogate-based
optimization. As mentioned earlier, many solvers in
deterministic global optimization algorithms provide finite
& convergence to global solution using a branch-and-bound
framework, for instance, BARON (Tawarmalani &
Sahinidis, 2005), ANTIGONE (Misener & Floudas, 2014),
and a -BB (Androulakis, Maranas, & Floudas, 1995).
Specifically, the finite € convergence is referred to the
difference between the lower bound (LB) and upper bound

(UB) of the objective function. Usually the LB is obtained
by solving the convex relaxations of the original nonconvex
problem and the UB can be any feasible solution of the
original nonconvex problem (Misener & Floudas, 2014;
Tawarmalani & Sahinidis, 2004, 2005). By progressively
dividing the search space, these algorithms aim to find
tighter lower and upper bounds of the global optimum.
Although some sampling-based and model-based search
methods have the search space partitioning feature, no other
method has explored the bounding approach. Methods like
SDO, optimize the statistical lower bound of the function
but do not branch the search space. EGO (Donald R. Jones
et al., 1998) optimizes the expected improvement function
in a branch-and-bound framework, while the mathematical
form of the expected improvement function is rather too
complicated. The DIRECT method, follows a space
partitioning approach (Donald R. Jones, 2009); however, it
does not use any surrogate approximations or bounding
strategies. As a result, although this algorithm has been
shown to perform well on a diverse set of applications,
algorithm convergence happens when the maximum
number of samples has been reached, with no other
indication that convergence has truly been achieved. The
DIRECT algorithm is the one that has the most similar
structure with our proposed framework, thus we will
compare the performance of our algorithm with an existing
implementation of DIRECT (Johnson, 2018; Donald R.
Jones, 2009).

Figure 1 (a) bounding multiple realizations of surrogate
functions, (b) partitioning and bounding multiple realizations of
surrogate approximations

In this work, we propose a data-driven (DD) equivalent
spatial branch-and-bound (sBB) algorithm, which uses
imperfect surrogate models to solve a wide range of data-
driven optimization problems. To handle uncertainty in
surrogate modeling, we will use error metrics, statistical
bounds and margins to approximately bound the surrogate
model realizations (Figure 1). By subdividing the search
space, the variance in the data and the approximation of the
surrogate model is expected to decrease. As a result, as we
branch we expect to obtain tighter bounds and better
surrogate approximations, and hypothesize that this will
lead to a convergent data-driven branch-and-bound
algorithm. Additionally, by pruning some subspaces,
sampling can be focused within regions that are more
promising and not wasted in regions that cannot improve
the solution even in the best case. Our main hypothesis is
that by developing such a data-driven branch-and-bound
framework, the performance of the algorithm will be less



Table 1 Summary of SVR and GP models and the
strategies for obtaining the lower bound.

dependent on the choice of the surrogate model selection.
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L
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We also believe that this approach is a first step towards
developing a convergent data-driven optimization
algorithm. The DD-sBB algorithm demonstrated in this
work is developed for multi-variable box-constrained
problems. We test the performance of the DD-sBB
algorithm with different surrogate models and bounding
strategies on a large set of benchmark problems with and
without addition of random noise.

Methods

The algorithm is implemented in Python v3.6.0. using
Numpy numerical library (v1.13.3) and Scipy library
(v1.1.0). Optimization of the surrogate models is performed
in pyomo (W. Hart, Watson, Woodruff, & Watson, 2011;
W. E. Hart, Laird, Watson, & Woodruff, 2012) (v5.5.0).
The IPOPT (Wéchter & Biegler, 2006) (v3.12.10) solver is
used to optimize the surrogate models and/or their bounds.
Since this is a local solver and our surrogates can be
nonconvex, a random multistart local optimization
approach is followed, by employing our samples as initial
points for the local optimization.

Sampling

Latin Hypercube Sampling (LHS) (McKay, Beckman,
& Conover, 1979) is used to generate initial sample points
(10D+1, where D is the dimension). As the algorithm
progresses, augmented LHS is used to add more points
(5D+1) (Stein, 1987). In addition to the sample points
collected by Latin Hypercube Sampling, the optimal
solutions found by IPOPT in each subspace are added to the
sampling set. LHS is performed with the pyDOE (v0.3.8)
package in python and R(R Core Team, 2016) package

‘lhs’(Carnell, 2016) via Python-R interface ‘RPy2’ (v2.8.5)
in python.

Surrogate Modeling & Bounding

The two surrogate models currently implemented in the
DD-sBB algorithm are: (a) Support Vector Regression
(SVR) with a radial basis function (RBF) kernel, and (b)
Gaussian Process Modeling (GP) or Kriging. For each of
the models, we design a customized bounding strategy. The
upper bound is any feasible solution of the surrogate-based
optimization, and the lower bound is the perturbation of the
upper bound. The summary of the SVR and GP models and
the bounding strategies are shown in Table 1. In this work,
SVR-RBF  models are trained using  ‘scikit-
learn’(Pedregosa et al., 2011) in Python. GP is trained using
‘DiceKriging’ (Roustant, Ginsbourger, & Deville, 2012)
package via ‘RPy2’ interface.

To train the surrogate models, 5-fold cross-validation
is used by randomly splitting the samples into testing sets
(20%) and training sets (80%). The model with the lowest
test error is picked.

Support vector regression (SVR) is the regression
variation of support vector machines (SVM) (Vapnik,
1999). SVR with radial basis functions (RBF) has been
shown to efficiently model nonlinear systems. The most
distinguishable feature of SVR is that the model only
depends on the support vectors, which is a subset of the
training data obtained by setting a tolerance on the training
error. This feature controls the smoothness and
interpolating versus regression nature of SVR models.

One of the main parameters of the SVR model is the
margin €, which controls the number of support vectors and
smoothness of the final function. In this work, we suggest
to scale the standard deviation s(f(x")) of the sampling
points by a scalar k, and use this quantity as the margin to
train the SVR model. Intuitively, the margin can be used to
bound the realization of the SVR model, because most
points will lie inside or on the margin. In order to create
conservative and more encompassing bounds, a final
perturbation of the bound is performed to include all
sampled points within the margin. This is done by
perturbing (reducing) the lower bound by the maximum
absolute prediction error from the SVR model.

The second model currently implemented is based on
GP models, which share a similar mathematical form of
SVR-RBF. While SVR-RBF only uses a subset of the
training points to build the model, GP interpolates all
training points by assuming the points are distributed with
mean p and variance ¢, which are estimated from the
maximum log-likelihood function (Donald R. Jones, 2001).
The standard error associated with the GP interpolation is
s2(x"):

I e 2
s2(x) = 621 — R+ T )
where x* denotes a new point, and &2 the stationary
variance, R is the correlation matrix between training
points, and 7 is the correlation matrix between the
predicting point with the training point, which are related to
the covariance matrix Cov(Y):



Cov(Y) = 6%R )

While the statistical lower bound (3) can be directly used to
bound the GP model, the complicated form of s(x*) as
shown in (1) leads to a very nonlinear and nonconvex
optimization problem.

f(x*) — ks(x*), where Kk is a constant 3)

Therefore, we propose a new bounding strategy for GP,
which is simply based on the stationary variance g2. As
(1—1"R_1r)2

1'R711
valid. Then, we can obtain the following inequality:

presented in (1), [1 —'R™1r + ] <1 is always

s?(x*) < 62 @)

Consequently, we can obtain a bounding strategy that is
very similar to the SVR-RBF bounding (5).

fx)—o )

Both of the bounding strategies discussed measure the
uncertainty in modeling, and aim to enclose or bound most
of the possible realizations of the surrogate models, given
the limited amount of samples that have been collected. As
the subspaces become smaller, the data variance and
modeling uncertainty will decrease, which is a key concept
that will drive convergence in our algorithm.

Branch-and-bound Scheme

Equal bisection and golden bisection rules based on the
—14+y/5

ratio of are implemented in this algorithm. The

branching is initialized on the most important variable,
ranked by an in-house feature selection algorithm. After the
first branch, a different heuristic is employed and the
variable with larger range is branched. The overall upper
bound f;5 is the best solution found, and the lower bound
fip 1s the minimum lower bound of all active nodes. The
subspace is pruned if its lower bound is higher than the
overall upper bound.

Stopping Criteria

Our first aim is to show the global convergence of our
algorithm. Thus, we allow it to run for a long CPU time limit
(3000 sec) and the algorithm converges when |f;5 — fi5] <
€.

Result and Discussion

Benchmark Problems

A total of 220 benchmark problems are tested with DD-
sBB algorithm with SVR and GP. 148 problems in the
problem set are 2-3D problems. 72 problems are 3-10D
problems. These problems are continuous box-constrained
problems selected from the Sahinidis test problem set
(Puranik & Sahinidis, 2017).

The results are also compared to the performance of the
DIRECT algorithm. The comparative profiles are shown in
Figure 2. For DIRECT, the stopping criterion is a heuristic
that there is no significant improvement over consecutive
iterations. As for DD-sBB, the algorithm is set to stop when
|fus — fiel < 0.05.

As shown in Figure 2, all three methods can solve over
97% of 2-3D problems and over 90% of 4-10D problems.
DIRECT consistently takes less time to solve the problems.
One reason is that DIRECT is purely sampling-based,
whereas DD-sBB requires training and optimizing
surrogate models. However, as the dimensionality increases,
DIRECT samples more points than the DD-sBB methods.
Moreover, among the DD-sBB methods, GP consistently
requires less samples to solve the same amount of problems.

Number of Samples Collected

Figure 2 Performance plots of DD-sBB with SVR and
GP, and DIRECT for 2-3D problems (a and b), and
4-10 D problems (c and d)

As the dimension of the problem increases, the
advantage of using GP with DD-sBB is more predominant.
This difference in sampling requirements of SVR- and GP-
based DD-sBB methods may be tuned by adjusting the
width of the SVR bounds and the GP bounds, which results
in different efficiency of pruning the subspaces and
sampling.

Despite its increased CPU cost, one of the major
advantages of our proposed approach is that upper and
lower bounds on the best solution are provided. In fact, even
in the small subset of the problems that were not solved by
the algorithm, the optimal solution is within the final upper
and lower bounds. This shows that even if the lower and
upper bound tolerance might not have been reached, the
current best solution is still a high quality solution.

Finally, we want to study the performance of our
algorithm in the case that sampling limitations exist. Thus,
we recorded the cpu and sampling requirements for the 2-
3D problems, for the point when the algorithm finds the
optimal solution with high accuracy (within 0.05 absolute
difference from the nominal optimum solution). As shown
in Figure 3, GP requires significantly smaller amount of
samples to find a good solution compared to SVR.
However, the cpu requirements for GP is not significantly



different from that of the SVR method. The potential
explanation of this observation is that due to the
regularization component of SVR, the model complexity is
reduced, and the surrogate models are easier to optimize.
Alternatively, when using Gaussian Process models, the
model complexity is always dependent on the number of
training points but the approximation error is always lower.
Therefore, it is observed that better model approximation
accuracy increases the CPU requirements; however, it leads
to better solutions with fewer samples.
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Figure 3 Performance plot of DD-sBB with SVR and GP
based on the the first high quality solution found, and
DIRECT for 2-3D problem

Finally, we also test our algorithms in the presence of
up to 10% random noise in the output data. This test aims
to show the robustness of the techniques in the case where
the simulation output is subject to some uncertainty. It has
been previously shown that the use of surrogate models is
effective for noisy data, due to the approximation model’s
ability to filter out some of the noise in the data. In addition,
since our algorithm is based on the concept of bounding
uncertain surrogates, we expect this framework to perform
well even in the presence of noise. As shown in Figure 4,
both SVR and GP methods are able to solve over 93%
problems in the benchmark set. The addition of random
noise increases the required number of samples to solve the
problems, especially for the GP method. As expected, noise
is less influential on the SVR method since the margin in
SVR prevents overfitting of noisy data.
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Figure 4 Performance plot of DD-sBB with SVR and GP
subjected to 10% random noise

Conclusions

In this work, we present a novel data-driven spatial
branch-and-bound algorithm (DD-sBB) for  box-
constrained black-box problems. The main idea of this
algorithm is that by adapting the spatial branch-and-bound
scheme from deterministic branch-and-bound algorithms,
we can reduce the dependency on sampling and surrogate
modeling selection, and convergence of data-driven
algorithms can be achieved with imperfect surrogates. We
use absolute prediction error for SVR-RBF and stationary
variance for GP as the bounding strategies, and compare the
lower and upper bounds to prune subspaces. On the large
box-constrained benchmark problem set, both DD-sBB
with SVR and GP can solve over 90% problems, which is
comparable to the DIRECT algorithm. The algorithm is also
capable of solving similar amount of problem subject to
10% random noise in the output data. Result shows that the
algorithm can find good solutions at an earlier stage before
convergence, which indicates that further investigation on
the convergence criteria is needed. In the future, we aim to
improve the CPU efficiency of the algorithm and
investigate less conservative bounding strategies to improve
the convergence efficiency. Moreover, we plan to add more
surrogate models and bounding strategies to our framework,
and extend the algorithm to handle constraints.
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