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Abstract— Recent advances to hardware integration and real-
ization of highly-efficient Compressive Sensing (CS) approaches
have inspired novel circuit and architectural-level approaches.
These embrace the challenge to design more optimal non-
uniform CS solutions that consider device-level constraints
for IoT applications wherein lifetime energy, device area, and
manufacturing costs are highly-constrained, but meanwhile the
sensing environment is rapidly changing. In this manuscript,
we develop a novel adaptive hardware-based approach for
non-uniform compressive sampling of sparse and time-varying
signals. The proposed Adaptive Sampling of Sparse IoT sig-
nals via STochastic-oscillators (ASSIST) approach intelligently
generates the CS measurement matrix by distributing the
sensing energy among coefficients by considering the signal
characteristics such as sparsity rate and noise level obtained
in the previous time step. In our proposed approach, Magnetic
Random Access Memory (MRAM)-based stochastic oscillators
are utilized to generate the random bitstreams used in the CS
measurement matrix. SPICE and MATLAB circuit-algorithm
simulation results indicate that ASSIST efficiently achieves
the desired non-uniform recovery of the original signals with
varying sparsity rates and noise levels.

Index Terms— Adaptive Compressive Sensing, Non-Uniform
Compressive Sensing, MRAM-based Stochastic Oscillator.

I. INTRODUCTION

Researchers have recently expanded their efforts to max-
imize the signal sensing and reconstruction performance
while reducing energy consumption for Internet of Things
(IoT) applications such as sensors and mobile devices [1],
[2]. Recently, Compressive Sensing (CS) has been proposed
as a sampling technique aimed at reducing the number of
samples taken per frame to decrease energy, storage, and data
transmission overheads. CS can be used to sample spectrally-
sparse wide-band signals close to the information rate rather
than the Nyquist rate, which can alleviate the high cost of
hardware performing sampling at high Nyquist rates [3]–[6].

Implementing non-uniform CS in hardware requires a
random number generator (RNG) since CS theory assumes
random sampling of data [4]. RNGs can be divided into two
classes: true RNGs (TRNGs) and pseudo-RNGs (PRNGs).
PRNGs include Linear Feedback Shift Registers (LFSR),
which begin with a seed value and then continuously update
this value by means of a linear function in order to create the
illusion of randomness; such designs can suffer from limited
quality in the randomness of the output as well as high

energy and area [7]. TRNGs, on the other hand, rely on truly
random events such as thermal noise, oscillator jitter, and
metastability; TRNG designs can be challenged by limited
generation speed as well as post-processing requirements
which impose area and power overheads [8].

Previous attempts at TRNG design using spintronics have
included use of bistable superparamagnetic tunnel junctions
[7], application of sub-threshold voltages for stochastic
switching in magnetic tunnel junctions (MTJs) [8] [9], use
of MTJ stack arrangements for precessional switching [10],
and by means of the voltage-controlled magnetic anisotropy
(VCMA) effect [11]. While these designs have been effective
in their quality of randomness, they have also involved
relatively complex hardware resulting in power and area
overhead. Thus, a spin-based TRNG is sought to minimize
the power dissipation and area. Furthermore, previous works
on non-uniform compressive sensing have been implemented
using Complementary Metal Oxide Semiconductor (CMOS)
technology [12], [13].

Herein, we propose a spin-based non-uniform compressive
sensing circuit-algorithm solution that considers the signal-
dependent constraint as well as hardware limitations called
Adaptive Sampling of Sparse IoT signals via STochastic-
oscillators (ASSIST). The proposed ASSIST approach uti-
lizes Magnetic Random Access Memory (MRAM)-based
Stochastic Oscillator (MSO) devices as the main element in
TRNGs, which offer miniaturization and significant energy
savings [2], [14]. Additionally, MRAM-based Non-Volatile
Memory (NVM) is used to store the output of TRNGs, which
are the elements of the CS measurement matrix.

The remainder of this paper is organized as follows.
Background and related work is provided in Section II. In
Section III-A, a detailed description of the MRAM-based
Non-Volatile Memory (NVM) devices is given. Then, in
Section III-B MRAM-based stochastic bitstream generators
used to develop the proposed ASSIST circuit are described.
Finally, the proposed ASSIST circuit and architecture are
elaborated in Section III-C. Section IV provides the simula-
tion results and comparisons. Finally, Section V concludes
this paper while demonstrating the cooperating benefits of
emerging and spintronic devices within signal processing
applications for IoT.



II. BACKGROUND AND RELATED WORK

Compressive sensing (CS) is a technique for reconstructing
a sparse signal of length N using M measurements, with
M � N . The signal is said to be k-sparse if it has at most
k non-zero entries in a given basis; the sparsity rate of the
signal is defined as K

N . The measurement vector y ∈ RM

is related to the signal vector x ∈ RN by the measurement
matrix Φ ∈ RM×N through the relation y = Φx. While this
is an undetermined system with infinitely many solutions, it
has been shown that the signal x can still be recovered from
the M measurements by solving the basis pursuit problem:

x̂ = arg min ‖x‖1 s.t. y = Φx (1)

where ‖x‖1 =
∑

i |x|. It has been shown that x̂ reconstructs
the original signal vector if Φ satisfies a special condition
known as the Restricted Isometry Property (RIP). An M×N
matrix Φ satisfies RIP(p) if for any k-sparse vector x:

‖x‖p (1− δ) ≤ ‖Φx‖p ≤ ‖x‖p (1 + δ), 0 < δ < 1 (2)

In real-world applications, signals may contain special
Regions of Interest (RoI), i.e., subsections of the signal which
are more critical to accurately reconstruct than the rest of
the signal [5], [6]. Moreover, the sparsity of the signal may
be non-uniform. Use of a non-uniform measurement matrix
allows RoI and parts of the signal with higher sparsity rates
to be sampled with higher frequency (i.e., sampled with a
sub-matrix containing a higher density of ones). It has been
verified that non-uniform measurement matrices satisfy the
RIP condition and therefore may be used for sparse signal
sampling [5], [6].

Prior work on sparse measurement matrices includes
Gilbert and Indyk [15] who described several CS recovery
algorithms using sparse measurement matrices and Jafarpour
et al. [16] who introduced an efficient and low-complexity
sparse recovery algorithm. In addition, Kung et al. [17]
introduced the concept of neighbor-weighted decoding as a
means of partitioned compressive sensing, i.e. partitioning
a signal into blocks which can then be decoded in parallel
[18]. Gan [19] proposed to have blocks in the measurement
matrix correspond to independent parts of the signal. While
[17] and [19] do not take signal non-uniformity into account,
Yu et al. [20] proposed saliency-based compressive sensing
for image processing, where pixels are divided into blocks
and the number of measurements applied to a block depends
on the saliency of the pixels in that block. Different schemes
for non-uniform measurement matrix design have also been
reported in [21] and [22].

Recently researchers have achieved significant perfor-
mance improvements using sparse signal recovery tech-
niques. Spectrally sparse signals are utilized in many appli-
cations such as frequency hopping communications, musical
audio signals, cognitive radio networks, and radar/sonar
imaging systems [1], [23]. The cornerstone to achieving
high-accuracy and efficient CS recovery approaches and non-
uniform sampling techniques is the utilization of an adaptive

Fig. 1: 3-terminal SHE-MTJ structure, Right: Anti-parallel
(high resistance), Left: Parallel (low resistance).

measurement matrix that changes according to the signal
characteristics extracted from previous time frames [5], [6].
In most cases, hardware used to implement non-uniform CS
sampling and recovery requires a large number of CMOS
transistors and incurs significant area overhead and power
dissipation [12], [13]. Herein, we propose a low-complexity
hardware design to achieve significant power dissipation and
area reduction compared to other designs proposed in the
literature.

III. ADAPTIVE SAMPLING OF SPARSE IOT SIGNALS VIA
STOCHASTIC-OSCILLATORS (ASSIST)

A. MRAM-based NVM for Storing CS Measurement Matrix

Researchers have focused on exploring the use of Spin-
Hall Effect Magnetic Random Access Memory (SHE-
MRAM) due to its high reliability and reduced delay for
write operation [24]. SHE-MRAM devices consist of Mag-
netic Tunnel Junctions (MTJs) that are constructed of two
ferromagnetic layers, called free layer and fixed layer, and
a thin oxide layer, as well as a Heavy Metal (HM) strip
as shown in Fig. 1 [25]. A bidirectional charge current
through terminals of the HM, B and C, will generate a
spin current that passes through the MTJ device in order to
modify the polarization of the free layer to represent: 1) high
resistance or Anti-Parallel (AP) state, and 2) low resistance
or Parallel (P) state, as depicted in Fig. 1. The states of the
MTJ are determined according to the angle, θ, between the
magnetization orientation of the ferromagnetic layers. The
resistance values of the MTJs in the P and AP states are
obtained using (3) and (4) [25]:

R(θ) =

{
RP = RMTJ , θ = 0

RAP = RMTJ (1 + TMR), θ = π
(3)

TMR(T, Vb) =
2P 2(1− αspT 3/2)2

1− P 2(1− αspT 3/2)2
.

1

1 + ( Vb
V0

)2
(4)

where RMTJ = RA/Area, Vb is the bias voltage, V0 is a
fitting parameter, and αsp is a material-dependent constant.

SHE-MRAM provides separate read and write paths,
which increases the reliability due to a reduction in errors
caused by read disturbance, while consuming significantly
less energy [25]. The critical spin current required for switch-
ing the free layer magnetization orientation is expressed by
(5) [24]:

IS,critical = 2qαMSVMTJ (Hk + 2πMS) /h (5)



TABLE I: Parameters of the 3-terminal SHE-MTJ device.

Parameter Description Value
MTJArea lMTJ × wMTJ × π/4 60nm× 30nm× π/4
HMV olume lHM × wHM × tHM 100nm× 60nm× 3nm

tf Free Layer thickness 1.3 nm
RA MTJ resistance-area product 9 Ω · µm2

T Temperature 358 K
α Gilbert Damping factor 0.007
P Spin Polarization 0.52

θSHE Spin Hall Angle 0.4
ρHM HM Resistivity 200µΩ.cm
λsf Spin Flip Length 1.5nm

Fig. 2: The building block of the proposed MRAM-based
Stochastic Oscillator (MSO) [14].

where VMTJ is the MTJ free layer volume. The relation
between SHE-MTJ switching time and the voltage applied
to the HM terminals is shown in (6), in which the critical
voltage, vc, is given by (7) [24].

τSHE =
τ0ln (π/2θ0)(

v
vc

)
− 1

(6)

vc =
8ρIc

θSHE

[
1− sech

(
HMthick
λsf

)]
πHMlength

(7)

θ0 =

√(
kB

2Eb

)
(8)

where, θ0 is the effect of stochastic variation, Eb is the
thermal barrier of the magnet of volume V , HMlength is the
length of the HM, and IC is the critical charge current for
spin-torque induced switching. In order to model the SHE-
MTJ, the HM resistance is also required, which is expressed
by (9), where ρHM is the electrical resistivity of HM.

RHM =
(
ρHM .HMlength

)
/HMwidth ×HMthick (9)

B. MRAM-based Stochastic Bitstream Generator

Recently, researchers have studied theoretically and ex-
perimentally the utilization of thermally unstable superpara-
magnetic MTJs to realize a variety of functional spintronic
devices [14], [26], [27]. Herein, we intend to demonstrate
that a recently proposed building block with embedded
MRAM technology can enable the hardware realization of a
stochastic bitstream generator. The structure of the MRAM-
based Stochastic Oscillator (MSO) is depicted in Fig. 2.

Due to the low energy-barrier (i.e. EB � 40kT ), the
MTJ’s resistance level fluctuates between the two resistance
states of RAP and RP , which results in the non-uniform
stochastic output at the drain of the NMOS transistor shown

TABLE II: Modeling and Simulation Parameters [14].

Parameters Value
Saturation magnetization (CoFeB) (Ms) 1100emu/cc

Free Layer diameter, thickness 22nm, 2nm
Polarization 0.59

TMR 110%
MTJ RA-product 9Ω − µm2

Damping coefficient 0.01
Temperature 26.85◦C

in Fig. 2. We can amplify the NMOS drain output to provide
full-swing signal, i.e. [0.0 → 0.8]V, using a single inverter
circuit. The probability of the output being ‘1’ can be
controlled using the input signal connected to the gate of the
NMOS transistor. Thus, by increasing the gate voltage of the
NMOS transistor, VIN , its drain-source resistance, rds, will
decrease, which will result in the drain voltage to be closer to
the GND. On the other hand, by decreasing the gate voltage
of the NMOS transistor, VIN , its drain-source resistance, rds,
will increase, which will result in the drain voltage to be
closer to the V DD. Considering the MTJ conductance of
the MSO, we can observe the behavior of the circuit shown
in Fig. 2 [14]:

GMTJ = G0

[
1 +mz

TMR

(2 + TMR)

]
(10)

where mz is the free layer magnetization, G0 is the average
MTJ conductance, (GP +GAP )/2, and TMR is the tunnel-
ing magnetoresistance ratio. The drain voltage of the NMOS
transistor shown in Fig. 2 can be expressed as:

VDRAIN/VDD =
(2 + TMR) + TMR mz

(2 + TMR)(1 + α) + TMR mz
(11)

where α is the ratio of the transistor conductance, GT , to the
average MTJ conductance, G0. When α ≈ 1 maximum fluc-
tuations can be achieved. This means, when VIN = VDD/2,
the MTJ resistance is approximately equal to rds. In this
paper, we use a circular nanomagnet with near-zero energy
barrier without shape anisotropy. Such magnets have been
fabricated and characterized in [28]. We use the embedded
MRAM-based model developed in [14] to perform SPICE
circuit simulations using the parameters listed in Table II and
the nominal voltage of VDD = 0.8. The relation between the
probability of output being ‘1’ and VIN is depicted in Fig.
3(a), where VIN = VDD/2 = 400mV generates an output
probability of 50%, as shown in Fig. 3(b).

C. ASSIST Circuit-Architecture Solution

The proposed MRAM-based stochastic bitstream gener-
ator circuit is depicted in Fig. 4(a), wherein a 2-terminal
low energy-barrier thermally unstable MTJ is utilized. As
shown in Fig. 4(a), the output of the MSO is connected to
a D-Flip-Flip (D-FF) which is controlled by a Power-Gated
Clock (PG-CLK). This will provide control over the number
of stochastic outputs provided by the MSO. In other words,
by setting the duration of PG-CLK to run for M clock cycles,
we would have a stochastic bitstream output, VM , with the
length of M bits, as shown in Fig. 4(a). Additionally, having



Fig. 3: (a) Output probability of MSO building block for
ASSIST versus its input voltage, (b) The output and sampled
output voltages for VIN = 0.5VDD = 400mV.

control over VN enables us to adaptively adjust the number
of ‘1’s that appear in the output bitstream, VM . As shown
in Fig. 4(c), we have utilized a complementary SHE-MRAM
array to store the elements of the measurement matrix and
for each column of the measurement matrix we have used an
MRAM-based stochastic bitstream generator. Thus, in order
to adaptively change the number of rows in the measurement
matrix to account for increased sparsity rate, we can adjust
VM accordingly to increase the number of measurements.
Furthermore, in order to increase accuracy of the signal
recovery, we can increase VN of the MRAM-based stochastic
bitstream generators located in the columns corresponding to
the RoI to maintain more ‘1’s in the measurement matrix.
It is worth noting that in order to use the MRAM-based
stochastic bitstream generator output to write into the SHE-
MRAM bit-cells, the PG-CLK clock cycle should be long
enough for the write current to flow through the HM of the
SHE-MTJs.

As mentioned earlier, we utilize the non-volatile comple-
mentary SHE-MRAM array, which will result in a wide
read margin and increases reliability of the read operation
[25]. Additionally, using a non-volatile complementary SHE-
MRAM array enables a clockless read operation that is rapid,
reliable, and energy-efficient. In order to use the MSO to
write into the SHE-MRAM bit-cells, we utilize the circuit
shown in Fig. 4(b). Every column of the SHE-MRAM array
shown in Fig. 4(c) is populated using a separate MSO shown
in Fig. 4(a).

In order to write into each memory cell, WWL should
be asserted to enable the write Transmission Gates (TGs),
TGW. Then by setting Bit Line, BL, and Source Line, SL,
we can write complementary data values in MTJ and MTJ.
Additionally, in order to use the MSO to write into the SHE-
MTJ devices, the output of the D-FF is connected to the write
NMOS transistor, NW. Thus, if the output of the D-FF is
‘1’, then NW is turned on and will result in a current passing
through the SHE-MTJs. On the other hand, if the output of
the D-FF is ‘0’, then NW won’t turn on and the contents
of the SHE-MTJs will remain untouched. To read the data
stored in the SHE-MTJs, RWL is asserted, which turns on
the read TG, TGR. Additionally, the read transistors, PR
and NR, are enabled. Thus, by applying VDD at BL and
GND at SL, a read path from VDD to GND is formed. This
will lead to a voltage divider circuit and by connecting the
node between the complementary SHE-MTJs, Dout, to two
inverter logic gates, the output voltage will be amplified and
presented at the output node, OUT.

IV. SIMULATION RESULTS

In order to evaluate and validate the behavior and func-
tionality of the proposed ASSIST approach, SPICE and
MATLAB simulations were performed. We have utilized the
with 14nm HP-FinFET Predictive Technology Model (PTM)
library as well as the MSO device model and parameters
represented in [14] along with other circuit parameters and
constants listed in Table I and Table II in our simulations to
implement and evaluate the proposed ASSIST approach.

According to our simulation results, power dissipation
of the stochastic bitstream generator circuit is 23µW on
average over a period of 100ns for generating a 100-bit
bitstream composed of equal likelyhood for ‘0’s and ‘1’s.
Furthermore, the area estimate of each stochastic bitstream
generator circuit in the 14nm technology node according
to the transistor count is 0.4µm2. For a more equitable
comparison in terms of area and energy consumption per bit,
we have derived (12) and (13) considering general scaling
method [29] to normalize the energy consumption per bit
and area of the designs listed in Table III. Based on the
general scaling method, voltage and area scale at different
rates of U and S, respectively. Thus, the energy consumption
is scaled with respect to 1/SU2 and area per device is scaled
according to 1/S2 [29].

Energynorm =
Energyx

EnergyMSO
× (

1

S
)× (

1

U
)2

=
Energyx

EnergyMSO
× (

14nm

Technology
)× (

0.8V

VDD
)2

(12)

Areanorm =
Areax

AreaMSO
× (

1

S
)2

=
Areax

AreaMSO
× (

14nm

Technology
)2

(13)

where, VDD is the nominal voltage of the technology model,
Technology refers to the technology node in nanometers,
and subscript x refers to the design that we want to scale
its power dissipation and area according to the technology



(a)

(b)

(c)

Fig. 4: The proposed ASSIST approach, where (a) depicts
the stochastic bitstream generator circuit, (b) shows a com-
plementary MTJ memory bit-cell connected to the stochastic
bitstream generator, and (c) illustrates the architecture view.

TABLE III: Comparison with recent TRNG designs

Design Technology (VDD) Energynorm Areanorm
[7] 28nm (1.0V) 0.3X 1.25X
[8] 28nm (1.0V) 8.9X 4.8X
[9] 28nm (1.0V) 17.4X 3.7X

This Work 14nm (0.8V) 1X 1X

models. According to (12) and (13), MSO reduces energy
consumption per bit by ∼ 9-fold on average compared to the
state-of-the-art TRNGs as listed in Table III. Additionally,
MSO offers up to ∼ 3-fold area reduction on average
compared to the TRNG designs provided in Table III using
the scaling comparison trends accepted in the literature.

Furthermore, transient output of a single complementary
SHE-MRAM NVM bit-cell shown in Fig. 4(b) is provided
in Fig. 5. According to our simulation results, writing in
a NVM bit-cell requires 155.2fJ on average while reading
the content of a NVM bit-cell requires 21.9fJ on average.
Additionally, based on our simulation results, the standby
energy consumption is 36.4aJ. Moreover, in Fig. 6 we use
the sampling and recovery algorithm discussed in [5], [23]
to evaluate the performance of ASSIST for different values
of undersampling ratios, M

N , for a signal with sparsity level
of k

N = 0.1 considering N = 200 and with RoI that
occupies 10% of the entire signal. This experiment shows
that the proposed ASSIST is able to decrease the Time-
Averaged Normalized Mean Squared Error (TNMSE) of RoI
coefficients up to 2dB for various undersampling ratios. This
benefit comes at the cost of reduced performance on total
recovery error. It is worth noting that for smaller under-
sampling ratios, ASSIST incurs no additional performance
degradation compared to uniform CS for non-RoI entries.

V. CONCLUSIONS

We have devised a spin-based non-uniform compressive
sensing circuit-algorithm solution that considers the signal
dependent constraint as well as hardware limitations called
Adaptive Sampling of Sparse IoT signals via STochastic-
oscillators (ASSIST). High payoff considerations to leverage
for device hardware optimization which are advanced herein
include the signal sparsity and noise levels. According to
our simulation result, the MRAM-based Stochastic Oscillator
(MSO) used as a TRNG provides significant area improve-
ment of ∼ 3-fold while achieving energy consumption per
bit reduction of ∼ 9-fold, on average, compared to similar
TRNGs presented in the literature. Additionally, our circuit-
algorithm simulation results indicate that ASSIST efficiently
achieves the desired non-uniform recovery of the original
signals with varying sparsity rates and noise levels.
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(a) (b)

Fig. 5: Transient output for SHE-MRAM NVM array: writ-
ing and reading a (a) ‘0’ bit, and (b) ‘1’ bit.

Fig. 6: TNMSE vs. Undersampling Ratio, M
N , for a signal

with k
N = 0.1, N = 200, and RoI occupying 10% of N .
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