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ABSTRACT

Boolean Satisfiability (SAT), the first problem proven to be NP-
complete, is intractable on digital computers based on the von Neu-
mann architecture. An efficient SAT solver can benefit many appli-
cations such as artificial intelligence, circuit design, and functional
verification. Recently, a SAT solver approach based on a determin-
istic, continuous-time dynamical system (CTDS) was introduced
[14]. This approach shows polynomial analog time-complexity on
even the hardest k-SAT (k ≥ 3) problem instances, but at an en-
ergy cost dependent on exponentially growing auxiliary variables.
This paper reports a novel analog hardware SAT solver, AC-SAT,
implementing the CTDS via incorporating novel, analog circuit
design ideas. AC-SAT is intended to be used as a co-processor and
is programmable for handling different problem specifications. Fur-
thermore, with its modular design, AC-SAT can be readily extended
to solve larger size problems. SPICE simulation results show that
AC-SAT can indeed solve the SAT problems, and it has speedup fac-
tors of ∼104 on even the hardest 3-SAT problems, when compared
with a state-of-the-art SAT solver on digital computers.
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1 INTRODUCTION

With Moore’s Law coming to end [37], exploring novel compu-
tational paradigms (e.g., quantum computing and neuromorphic
computing) is more imperative than ever. While quantum comput-
ing is a promising venue, it is far from being brought to practical
reality, with many challenges still to be faced, both in physics and
engineering. Neuromorphic computing systems, e.g., Cellular Neu-
ral Networks (CNNs) [6, 7, 21] and IBM’s TrueNorth [23], have
been shown to be promising alternatives for solving a range of
problems in, say, sensory processing (vision, pattern recognition)
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and robotics. Analog mix-signal information processing systems
such as CNNs can offer extremely power/energy efficient solutions
to some problems that are costly to solve by digital computers [32].
Such systems have received increasing attention in recent years
(e.g., [8, 22, 34]), including parallel analog implementations [26].

In analog computing [20], the algorithm (representing the “soft-
ware”) is a dynamical system often expressed in the form of dif-
ferential equations running in continuous time over real numbers,
and its physical implementation (the “hardware”) is any physical
system, such as an analog circuit, whose behavior is described by
the corresponding dynamical system. The equations of the dynami-
cal system are designed such that the solutions to problems appear
as attractors for the dynamics and the output of the computation
is the set of convergent states to those attractors [3]. Although it
has been shown that systems of ordinary differential equations
can simulate any Turing machine [4, 6, 31], and hence they are
computationally universal, they have not yet gained widespread
popularity due to the fact that designing such systems is problem
specific and usually difficult. However, if an efficient analog engine
can be designed to solve NP-complete problems, then according
to the Cook-Levin theorem [16], it would help solve efficiently all

problems in the NP class, as well as benefit a very large number of
applications, both in science and engineering.

In our previous paper [38] and this paper, we consider designing
analog circuits for solving a representative NP-complete problem,
the Boolean satisfiability (SAT) problem. SAT is quintessential to
many electronic design automation problems, and is also at the
heart of many decision, scheduling, error-correction and security
applications. Here we focus on k-SAT, for which it is well known
that for k ≥ 3, k-SAT is NP-complete [16]. The currently best
known deterministic, sequential discrete algorithm that exploits
some properties of the search space has a worst case complexity of
O(1.473N ) [5]. Other algorithms are based on heuristics and while
they may perform well on some SAT formula classes, there are
always other formulas on which they take exponentially long times
or get stuck indefinitely. Some of the better known SAT solvers
include Zchaff [25], MiniSat [13], RSat [28], WalkSAT [30], Fo-
cused Record-to-Record Travel (FRRT) [12] and Focused Metropolis
Search (FMS) [29]. They typically consist of decision, deduction,
conflict analysis and other functions [11] that employ the capability
of digital computers to assign values to literals, conduct Boolean
constraint propagation (BCP) and backtrack conflicts [33, 39].

A number of hardware based SAT solvers have been proposed in
the past. FPGAs based solutions have been investigated to accelerate
the BCP part found in all “chaff-like” modern SAT solvers [9, 10, 36].
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Speedups of anywhere between 3X and 38X have been reported
when comparing these FPGA based solvers over MiniSat [13], a well
known, high-performance software solver. A custom digital inte-
grated circuit (IC) based SAT solver, which implements a variant of
general responsibility assignment software patterns (GRASP) and
accelerates traversal of the implication graph and conflict clause
generation, has been introduced in [17, 18]. A speed up of ∼103 over
MiniSat was reported based on simulation together with extrapola-
tion. Performance of these hardware based approaches still have a
lot of room for improvement since the algorithms that these hard-
ware accelerators are based on are designed for digital computers
and thus can typically expect to achieve limited speedup.

Recently, an analog SAT solver circuit was introduced in [2]
using the theoretical proposal from [24] based on the CNN archi-
tecture. However, the theory in [24] has exponential analog-time
complexity, thus is much less efficient than the solver from [14],
which forms the basis for this paper. Furthermore, the circuit from
[2] seems to have been implemented only for a 4 × 4 problem size,
and no hardware simulation and comparison results were reported.

[26] proposes a distributed mixed (analog and digital) algorithm
that is implementable on VLSI devices. It is based on a heuristic
method combined with stochastic search, drawing on the natural
incommensurability of analog oscillators. Assuming P�NP, in order
to have efficient, polynomially scaling solution times, one would
require exponentially many computing elements, that is, exponen-
tially scaling hardware resources. However, the method in [14]
trades time-cost for energy-cost, which in practical terms is prefer-
able to massive amounts of hardware resources. It is quite possible
that from an engineering point of view the ideal approach com-
bines both types of tradeoffs: time vs energy and time vs hardware
(distributed). The heuristic stochastic search in [26] is effectively a
simulated annealing method, which implies high exponential run-
times for worst case formulas. In contrast, the analog approach in
[14] is fully deterministic and extracts maximum information about
the solution, embedded implicitly within the system of clauses and
can solve efficiently the hardest benchmark SAT problems - at an
energetic cost [14].

In [38] and this paper we propose a novel analog hardware SAT
solver, referred to as AC-SAT1. AC-SAT is based on the deterministic,
continuous-time dynamical system (CTDS) in the form of coupled
ordinary differential equations presented in [14]. As mentioned
above, this system finds SAT solutions in analog polynomial time,
however, at the expense of auxiliary variables that can grow ex-
ponentially, when needed (see [14], [15] for details). Though this
CTDS is an incomplete solver, it does minimize the number of un-
satisfied clauses when there are no solutions, and thus it is also
a MaxSAT solver. The overall design of AC-SAT is programmable

and modular, thus it can readily solve any SAT problem of size
equal or less than what is imposed by the hardware limitations, and
can also be easily extended to solve larger problems. Moreover, to
avoid resource-costly implementations of the complex differential
equations in CTDS, we introduce a number of novel, analog circuit

1We refer to AC-SAT as an Analog Circuit SAT solver since its main processing engine
is analog. However, the entire system is a mixed-signal one as a digital verification
component is also included in the hardware system.

implementation ideas which lead to much smaller amount of hard-
ware than straightforward implementations, while preserving the
critical deterministic behavioral properties of CTDS equations.

We have validated our design through SPICE simulations. Our
simulations show that AC-SAT can significantly outperform (over
tens of thousands times faster than) MiniSat, with the latter running
on the latest, high-performance digital processors. For hard SAT
problems with 50 variables and over 200 clauses, compared with
the projected performance of a possible custom hardware imple-
mentation based a recent FPGA solver [36], AC-SAT offers more
than ∼600X speedup.

In the rest of the paper, we first review the basic CTDS theory
in Section 2. Sec. 3 introduces the overall AC-SAT design at a high
level. Sec. 4 first shows simulation-based validation results from
functionality perspective, and then compares AC-SATwith software
implementations of the CTDS SAT solver andMiniSat solver. Finally,
Sec. 5 concludes the paper.

2 BACKGROUND

Solving a k-SAT problem is to find an assignment to N Boolean
variables xi ∈ {0, 1}, i = 1, . . . ,N , such that they satisfy a given
propositional formula F . F in conjunctive normal form (CNF) is
expressed as the conjunction of M clauses Cm ,m = 1, . . . ,M , i.e.,
F =

∧M
m=1Cm , where each clause is formed by the disjunction of k

literals (which are variables or their complements). An example of
a clause for 3-SAT would be C5 = (x3 ∨ x19 ∨ x53). Following [14],
an analog variable si , which can take any real value in the range
si ∈ [−1, 1], is associated with the Boolean variable xi such that
si = −1 corresponds to xi being FALSE (xi = 0) and si = 1 to xi
being TRUE (xi = 1). The formula F =

∧M
m=1Cm can be encoded

via the M × N matrix C = {cm,i } with cm,i = 1 when xi appears
in clause Cm , cm,i = −1 when its complement x i (negation of xi )
appears in Cm and cm,i = 0 when neither appears in Cm . To every
clauseCm , we associate an analog function Km (s) ∈ [0, 1] given by

Km (s) = 2−k
N∏

i=1

(1 − cm,isi ) . (1)

It is easy to see that clause Cm is satisfied, iff Km = 0. Defining a
“potential energy” function

V (s, a) =

M∑

m=1

amK2
m , (2)

where am > 0 are auxiliary variables, it is clear that all the clauses
are satisfied iff V = 0. Thus the SAT problem can be reformulated
as search in s for the global minima ofV (since the conditionV ≥ 0
always applies). If the auxiliary variables am are kept as constants,
then for most hard problems any hill-descending deterministic algo-
rithm (which evolves the variables si (t)) would eventually become
stuck in local minima ofV and not find solutions. To avoid this, the
auxiliary variables are endowed with a time-dependence coupled
to the analog clause functions Km . Ref [14] proposed

�si =
dsi
dt
= −

∂

∂si
V (s, a) , i = 1, . . . ,N (3)

�am =
dam
dt
= amKm , m = 1, . . . ,M (4)
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in which (3) describes a gradient descent onV and (4) is an exponen-
tial growth driven by the level of non-satisfiability in Km (which
also guarantees that am (t) > 0, at all times). (3) can be rewritten as

dsi
dt
=

M∑

m=1

amDm,i (5)

where

Dm,i = −
∂

∂si
K2
m = 2Kmcm,i

N∏

j=1
j�i

(1 − cm, jsj ) .

(6)

For the auxiliary variables am , the formal solution to (4) is

am (t) = am (0)e
∫ t
0
dτKm (s(τ )) , (7)

and thus the expression (2) of V is dominated by those Km terms
which have been unsatisfied for the longest time during the dynam-
ics, resulting in an analog version of a focused search-type [29]
dynamics. Also note that system (3) - (4) is not unique, however,
it is simple from a theoretical point of view, and incorporates the
necessary ingredients for solving arbitrary SAT problems, due to
the exponentially accelerated auxiliary variables. For details on the
performance of the algorithm see [14].

It is important to observe that while the scaling of the analog time
t to find solutions is polynomial, in hardware implementations, the
am variables represent voltages or currents and thus the energetic
resources needed to find solutions may become exponential for hard
formulas which is, of course necessary, assuming P�NP. However,
the am variables do not need to grow exponentially all the time
and unlimitedly, as in (4) and for that reason form (4) is not ideal
for physical implementations. The challenge is then finding other
variants that still significantly outperform digital algorithms, yet
are feasible in terms of physical implementations and costs. Such
systems as ours essentially convert time costs into energy costs.

3 SOLVER DESIGN OVERVIEW

In this section, we present an high level overview of AC-SAT, our
proposed analog SAT solver circuit based on the CTDS theory in Sec.
2. Our circuit design aims to make the hardware solver configurable
and modular while keeping the circuit simple and power efficient.

Fig. 1 shows the high-level block diagram of AC-SAT. It consists
of three main components: signal dynamics circuit (SDC) which
implements the dynamics of variable signals si ’s in (5), auxiliary
variable circuit (AVC) which implements the dynamics of auxiliary
variables am ’s in (4), and digital verification circuit (DVC) which
checks whether all the clauses have been satisfied and outputs the
satisfied assignments of variables. The AVC contains M identical
elements, each of which receives the relevant si ’s signals from the
SDC as inputs, and generates am (m ∈ [1,M]) (where M ≤ M )
variables as outputs. The SDC, containing N identical elements,
in turn receives am ’s as feedback from the AVC and evolves the si
(i ∈ [1,N ]) signals (with N ≤ N ), accordingly. The SDC outputs
the analog values of si ’s to the AVC and the digital version of si ’s
to the DVC. Based on the digital values of si ’s, the DVC determines
whether a solution to the SAT problem is found at that time.

Below, we briefly demonstrate the conceptual design of the three
circuit components of AC-SAT using the 3-SAT problem (i.e., three
non-zero cm, j ’s for each clause) as an example. AC-SAT for any
k-SAT problem can be designed following the same principle. Due
to the paper space, parts of implementation details of the three
components are omitted, and can be found in [38].

3.1 Signal Dynamics Circuit

The SDC contains an array of analog elements that realize the dy-
namics specified by (5) and (6). Though it is possible to implement
the multiplications and voltage controlled current source (VCCS)
in (5) and (6) straightforwardly based on operational amplifiers,
such implementations can be rather costly. Several novel circuit
design ideas have been introduced to implement the dynamics in
(5) and (6). We present the basic design of the SDC array element
along with some signal notations. More detailed implementations
can be found in [38].

Given a 3-SAT problem with N variables, the SDC enables an
array of N analog elements, referred to as si element, for evaluating
the si (i = 1, . . . ,N ) signals. Fig. 2 shows the conceptual design of
the si element that realizes (5). The si element contains a capacitor,
C , connected to the M Branch blocks achieving Dm,i in (6) (where
M is the maximum number of clauses in a 3-SAT problem that can
be fitted into the circuit), an analog inverter, an inverted Schmitt
trigger and a digital inverter. The voltage across capacitorC , i.e.,Vi ,
and the output of the analog inverter,Vi , represent the analog value
of signal si and −si , respectively. Signal si ∈ [−1, 1] (resp., −si ∈

[1,−1]) is mapped to Vi ∈ [GND,VDD ] (resp., Vi ∈ [VDD ,GND]).
The inverted Schmitt trigger and the digital inverter output the
digital versions of −si and si , denoted by Qsi and Qsi , (i.e., taking
on values of either GND or VDD ).

3.2 Auxiliary Variable Circuits

As pointed out in Section 2, the auxiliary variables, am ’s as defined
in (4), are used to help avoid the gradient descent search being stuck
in non-solution attractors. The am signal follows an exponential
growth driven by the level of non-satisfiability in clause Cm , and
we developed AVC to realize the exponential growth.

The AVC contains an array of M am elements where M is the
maximum number of clauses in a given problem that the AVC can
handle. These am elements correspond to the clauses of a given

, ∈[1,N] 

, ∈[1, N] 

N  
elements 

M  
elements 

Digital verification  
circuit (DVC) 

Success or Fail 

Signal dynamics  
circuit (SDC)  

 variable  
circuit (AVC) , ∈[1,M] 

Figure 1: High-level block diagram of AC-SAT. The SDC contains
N elements while the AVC containsM elements. It can solvek-SAT
problem instances with up to N variables and M clauses.
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Figure 2: Design of one array element in the SDC.
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Figure 3: Conceptual design of one element in the AVC. Actual
realization of the resistive element can be found in [38].

problem. Fig. 3 illustrates the conceptual design of the am element,
based on a non-inverting integrator. Here, the value of am (for
clause Cm ) is represented by the voltage at the output of the op-
amp, i.e., Vam .

Resistive elements Ri1 , Ri2 and Ri3 are associated with the three
signals in am ’s clause while R′

i1
, R′

i2
and R′

i3
are identical to Ri1 , Ri2

and Ri3 , respectively. The two capacitors, C and C ′, have identical
values as well. Together with the resistive elements, they control
the speed of Vam growth. The switch controlled by EN is realized
by a transmission gate to control the start of the am element. The
first order differential equation of Vam can be written as:

C
dVam
dt

= Vam /(Ri1 + Ri2 + Ri3 ). (8)

This equation implies the exponential growth of Vam . The R’s in
Fig. 3 are tunable resistive elements, and they are implemented by
transmission gates that are controlled by variable signals (i.e., Vi1 ,
Vi2 , andVi3 ). These R’s represent the satisfiability of corresponding
variables in clause Cm . If Cm is satisfied, at least one of the R’s will
cut off the current path from op-amp’s inverting input to ground
and from non-inverting input to Vam . Detailed implementation of
the AVC elements and the impact realization of Vam on the Branch
blocks of SDC in Fig. 2 can be found in [38].

3.3 Digital Verification

The goal of the DVC is to determine if a solution (the set of si ’s)
to the given problem has been found within a user specified time
bound. The DVC is implemented readily through the use of an array
of M XOR gates and an array of M NAND gates as shown in Fig. 4.
The input to the DVC is the digital representation of si ’s and −si ’s,
i.e., Qsi and Qsi , from the SDC. Each NAND gate corresponds to a
clause and its inputs correspond to the literals present in the clause.
Note that in the DVC, we only include those cm,i ’s whose values
are +1 (represented by logic signal “1”) and −1 (represented by

,  ,  

,  

AND tree 

Indicator 
… 

 

,  

     … 
XOR1,1 

XOR1,2 

XOR1,3 

XORm,3 

XORM,3 

 

,  XORm,2 
,  

XORm,1 

… 

 
 

  

M
 

M
 

M , 3 

MCQ

M
M

 

NQs

Figure 4: Schematic of the DVC.

logic “0”). The outputs of the DVC are digital valuesQCm , for clauses
Cm , and Indicator, which is set to 1 if the circuit finds a solution,
otherwise it remains at 0. For unsatisfiable problems, our solver is
a MaxSAT solver, and will output results with minimum number of
unsatisfied clauses.

The DVC is an asynchronous circuit, and the output of the DVC
constantly records whether a solution is found or not. By setting
a time bound T , the DVC regards the problems whose solutions
are found within T as satisfiable problems, the rest are considered
either unsatisfiable or unsatisfiable within the alloted time. Note
that for problem instances where no solutions are found in the
given time bound, our approach does not provide a formal proof
of unsatisfiability (as our algorithm is an incomplete algorithm).
However, our solver is a MaxSAT solver, because it does not use any
assumptions about the solvability of the formula and minimizes
the number of unsatisfied clauses within the allotted resources or
time. Theoretical analysis will be presented elsewhere.

3.4 Alternative AVC Designs

The op-amp based AVC described in Section 3.2 realizes an expo-
nentially growing am variable aiming to address hard SAT prob-
lems (some SAT instances with constraint density α=M/N � 4.25)
within its physical limitation. However, for application type SAT
problems, i.e. which are not specially designed to be very hard, ex-
ponential growth for am is not always necessary. Belowwe describe
an alternative circuit design to implement an am function that has
a (1 − ϵ2e

−qt )-type growth to a saturation value. In the remainder
we will refer to this version of am growth as the "simpler" version.

Fig. 5 depicts the conceptual design of the am element realiz-
ing the simpler am growth, where capacitor C is charged to VDD
through three tunable resistive elements. The first order differential
equation that governs Vam can be written as

C
dVam
dt

= (VDD −Vam )/(Ri1 + Ri2 + Ri3 ). (9)

Ri1 , Ri2 , Ri3 are same as the resistive elements in Fig. 3, realized
by transmission gates controlled by Vi1 ,Vi2 and Vi3 , depicted in
[38]. If any of the three variables si in clause Cm is satisfied, the
corresponding Vi turns off the respective transmission gate and
cut off the current path from VDD to the capacitor. This circuit
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Figure 5: Conceptual design of the AVC element realizing the (1 −
ϵ2e

−qt )-type growth. Implementation of the resistive elements can
be found in [38].

guarantees the continuous growth of am since Vam is charged by
VDD till it reaches its upper boundVDD or any of the three variables
in the clause is satisfied.

It is important to note that as the circuit in Fig. 5 does not realize
the exponential growth specified in (4), it can indeed get captured
into non-solution attractors indefinitely for some very hard for-
mulas. However, we found that even for many hard problems, it
works more efficiently than the op-amp based am element (with the
same threshold value) in finding solutions for smaller size problems
(solvable), and the dynamics would only rarely get stuck.

4 EVALUATION

In this section, we present our validation of AC-SAT. We describe
the basic functional validation and then compare the performance
of AC-SAT with a state-of-the-art digital solver..

4.1 Functional Validation

We have built our proposed analog SAT solver, AC-SAT, at the tran-
sistor level in HSPICE based on the PTM 32nm CMOS model [1].
All the circuit components use VDD = 1V . The transistor sizes can
all be found in [38].

To demonstrate that AC-SAT indeed behaves as specified by the
CTDS dynamics in (3) and (4), we examine the waveforms of sig-
nals si and am . Fig. 6 shows the two sets of si and am waveforms
from a 3-SAT problem instance having 50 variables and 212 clauses:
Fig. 6(a) for the op-amp based am implementation (realizing the
(ϵ1eqt )-type am growth), and Fig. 6(b) for the simpler am imple-
mentation (realizing the (1 − ϵ2e

−qt )-type am growth). For both
designs, AC-SAT successfully finds a solution after a certain time as
indicated by the vertical dashed lines. As can be seen from the si
trajectories, the si signals stabilize (i.e., converge) after a solution
is found, and one can see that the am ’s grow most rapidly in the
op-amp based design due to the exponential growth function.

4.2 Performance Comparisons

To further investigate the effectiveness of AC-SAT, we compare the
simpler am based AC-SAT design with (i) a software program that
solves the system (3)-(4) using an adaptive Runge-Kutta, fifth-order
Cash-Karp method and (ii) the software MiniSat solver [13]. The
software programs are running on the same digital computer. We
randomly generated 5000 hard (α = 4.25) 3-SAT problems that
contain 1000 instances for each problem size of N=10, 20, 30, 40,
50. The same initial conditions are applied whenever appropriate.
Table 1 summarizes the average time needed to find solutions for
each problem size. The AC-SAT column reports the analog/physical

si 

am 

40 ns 80 ns 120 ns 

solution found 

(a) With ϵ1e
qtam growth.

am 

si 

10 ns 20 ns 30 ns 

solution found 

(b) With 1 − ϵ2e
−qtam growth.

Figure 6: Waveforms of signals representing si (t) and am (t) for
a 3-SAT problem with 212 clauses and 50 signal variables. The
problems/formulas have a constraint density α=M/N=4.25, and are
considered to be hard problems.

times taken by AC-SAT. The CTDS and MiniSat columns report the
CPU times of the two software implementations, respectively. (To
be fair, only the times taken by the solved problems for all three
methods are included.) As seen from the data in Table 1, AC-SAT
demonstrates average speedup factors of ∼105 to ∼106 and ∼104

over software CTDS and MiniSat, respectively. Moreover, AC-SAT
is also very competitive compared with existing hardware based
approaches which we have illustrated in details in [38].

5 CONCLUSIONS

We presented a proof-of-principle analog system, AC-SAT, based
on the CTDS in [14] to solve 3-SAT problems. The design can be
readily extended to general k-SAT problems. AC-SAT is modular,
programmable and can be used as a SAT solver co-processor. SPICE
simulation results show that our AC-SAT can indeed solve SAT
problems efficiently, and can tolerate well device variations.
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The CTDS equations (especially the dynamics for the auxiliary
variables) and their analog implementations are not unique. It is
quite possible that better forms and implementations exist. The fact
that our proof-of-principle circuit implementations significantly
outperform state-of-the-art solvers on digital computers (see [38])
is an indication that analog hardware SAT solvers have a great po-
tential as application-specific processors for discrete optimization.
As future work, we will further investigate alternative implemen-
tations of the auxiliary variable dynamics as well as methods to
handle problem instances that do not fit on a given hardware imple-
mentation, e.g., through problem decomposition. Moreover, we will
explore other methods that can, in principle, solve SAT problems
even more efficiently, e.g., by combining clause learning (handled
by a digital processor) with our analog solver.
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sions with S. Datta, A. Raychowdhury, M. Niemier and G. Cauwen-
berghs. This project was supported in part by the National Science
Foundation under grant numbers CCF-1644368 and 1640081, and
the Nanoelectronics Research Corporation (NERC), a wholly-owned
subsidiary of the Semiconductor Research Corporation (SRC), through
Extremely Energy Efficient Collective Electronics (EXCEL), an SRC-
NRI Nanoelectronics Research Initiative under Research Task ID
2698.004 (XSH,ZT). MER was funded by a European Commission
Horizon 2020 Program Grant No. 668863-SyBil-AA and a Romanian
CNCS-UEFISCDI Research Grant No. PN-III-P2-2.1-BG-2016-0252.

REFERENCES
[1] [n. d.]. Predictive Technology Model (PTM). http://ptm.asu.edu/. ([n. d.]).
[2] D.A. Basford, J.M. Smith, R.J. Connor, B.J. MacLennan, and Holleman J. 2016.

The Impact of Analog Computational Error on an Analog Boolean Satisfiability
Solver. In ISCAS.

[3] A Ben-Hur, HT Siegelmann, and S Fishman. 2002. A theory of complexity
for continuous time systems. Journal of Complexity 18 (2002), 51–86. https:
//doi.org/{10.1006/jcom.2001.0581}

[4] M.S. Branicky. 1994. Analog computation with continuous ODEs. Workshop on
Physics and Computation, Dallas TX USA (1994), 265–274.

[5] T. Brueggemann and W. Kern. 2004. An improved local search algorithm for
3-SAT. Theoretical Computer Science 329, 1-3 (2004), 303–313.

[6] L.O. Chua, T Roska, and PL Venetianer. 1993. The CNN is universal as the Turing
machine. TCAS I 40, 4 (APR 1993), 289–291. https://doi.org/{10.1109/81.224308}

[7] LO Chua and L Yang. 1988. Cellular Neural Networks - Theory. TCAS I 35, 10
(OCT 1988), 1257–1272. https://doi.org/{10.1109/31.7600}

[8] Ramiz Daniel, Jacob R Rubens, Rahul Sarpeshkar, and Timothy K Lu. 2013. Syn-
thetic analog computation in living cells. Nature 497, 7451 (2013), 619–623.

[9] John D Davis, Zhangxi Tan, Fang Yu, and Lintao Zhang. 2008. Designing an
efficient hardware implication accelerator for SAT solving. In SAT 2008. Springer,
48–62.

[10] John D Davis, Zhangxi Tan, Fang Yu, and Lintao Zhang. 2008. A practical recon-
figurable hardware accelerator for Boolean satisfiability solvers. In Proceedings
of the 45th annual Design Automation Conference. ACM, 780–785.

[11] Martin Davis, George Logemann, and Donald Loveland. 1962. Amachine program
for theorem-proving. Commun. ACM 5, 7 (1962), 394–397.

Table 1: Performance of AC-SAT, software CTDS and MiniSat

SAT solver AC-SAT CTDS MiniSat

Platform
ASIC

32nm CMOS

Intel Core
i7-4700

@2.4 GHz

Intel Core
i7-4700

@ 2.4GHz

Average
time for
each size
N (s)

N=10 4×10−9 4.40×10−4 2.3×10−4

N=20 7×10−9 3.91×10−3 2.4×10−4

N=30 10−8 1.62×10−2 2.8×10−4

N=40 1.2×10−8 5.22×10−2 3.1×10−4

N=50 1.4×10−8 1.13×10−1 3.7×10−4

[12] Gunter Dueck. 1993. New Optimization Heuristics. J. Comput. Phys. 104, 1 (1993),
86–92.

[13] Niklas Eén and Niklas Sörensson. 2003. An extensible SAT-solver. In Theory and
applications of satisfiability testing. Springer, 502–518.

[14] Maria Ercsey-Ravasz and Zoltan Toroczkai. 2011. Optimization hardness as
transient chaos in an analog approach to constraint satisfaction. Nature Physics
7, 12 (DEC 2011), 966–970. https://doi.org/{10.1038/NPHYS2105}

[15] M. Ercsey-Ravasz and Z. Toroczkai. 2012. The chaos within Sudoku. Scientific
Reports 2 (OCT 11 2012), 725.

[16] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability:
A Guide to the Theory of NP-Completeness (Series of Books in the Mathematical
Sciences) (first edition ed.). W. H. Freeman & Co Ltd.

[17] Kanupriya Gulati and Sunil P Khatri. 2010. Accelerating Boolean Satisfiability
on a Custom IC. In Hardware Acceleration of EDA Algorithms. Springer, 33–61.

[18] Kanupriya Gulati, Mandar Waghmode, SP Khatr, and Weiping Shi. 2008. Effi-
cient, scalable hardware engine for Boolean satisfiability and unsatisfiable core
extraction. Computers & Digital Techniques, IET 2, 3 (2008), 214–229.

[19] Ian Kuon and Jonathan Rose. 2007. Measuring the gap between FPGAs and ASICs.
IEEE Transactions on computer-aided design of integrated circuits and systems 26,
2 (2007), 203–215.

[20] Shih-Chii Liu, Jörg Kramer, Giacomo Indiveri, Tobias Delbrück, and Rodney
Douglas. 2002. Analog VLSI - Circuits and Principles. MIT Press.

[21] Qiuwen Lou, Indranil Palit, Andras Horvath, X Sharon Hu, Michael Niemier, and
Joseph Nahas. 2015. TFET-based Operational Transconductance Amplifier Design
for CNN Systems. In Proceedings of the 25th edition on Great Lakes Symposium on
VLSI. ACM, 277–282.

[22] Junjie Lu, Steven Young, Itamar Arel, and Jeremy Holleman. 2015. A 1 TOPS/W
analog deep machine-learning engine with floating-gate storage in 0.13 μm
CMOS. IEEE Journal of Solid-State Circuits 50, 1 (2015), 270–281.

[23] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun
Sawada, Filipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Naka-
mura, et al. 2014. A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345, 6197 (2014), 668–673.

[24] Botond Molnár and Mária Ercsey-Ravasz. 2013. Asymmetric continuous-time
neural networks without local traps for solving constraint satisfaction problems.
PloS one 8, 9 (2013), e73400.

[25] Matthew WMoskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. 2001. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
annual Design Automation Conference. ACM, 530–535.

[26] Hesham Mostafa, Lorenz K. Müller, and Giacomo Indiveri. 2015. An event-based
architecture for solving constraint satisfaction problems. Nature Communications
6 (December 2015), 8941. https://doi.org/10.1038/ncomms9941

[27] Gholamreza Nikandish, Behnam Sedighi, and Mehrdad Sharif Bakhtiar. 2007.
Performance comparison of switched-capacitor and switched-current pipeline
ADCs. In 2007 IEEE International Symposium on Circuits and Systems. IEEE, 2252–
2255.

[28] Knot Pipatsrisawat and Adnan Darwiche. 2007. Rsat 2.0: Sat solver description.
SAT competition 7 (2007).

[29] A Seitz, M Alava, and P Orponen. 2005. Focused local search for random 3-
satisfiability. J. of Statistical Mechanics: Theory and Experiment (2005), P06006.

[30] Bart Selman, Henry A. Kautz, and Bram Cohen. 1996. Local Search Strategies for
Satisfiability Testing. In DIMACS Series. 521–532.

[31] HT Siegelmann. 1995. Computation beyond the Turing limit. Science 268 (1995),
545–548. https://doi.org/{10.1126/science.268.5210.545}

[32] Hava Siegelmann. 2012. Neural networks and analog computation: beyond the
Turing limit. Springer Science & Business Media.

[33] João P Marques Silva and Karem A Sakallah. 1997. GRASPâĂŤa new search
algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM international
conference on Computer-aided design. IEEE Computer Society, 220–227.

[34] Renée St Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, Hadi
Esmaeilzadeh, Arjang Hassibi, Luis Ceze, and Doug Burger. 2014. General-
purpose code acceleration with limited-precision analog computation. ACM
SIGARCH Computer Architecture News 42, 3 (2014), 505–516.

[35] R Sumi, B Molnár, and M Ercsey-Ravasz. 2014. Robust optimization with tran-
siently chaotic dynamical systems. EPL (Europhysics Letters) 106, 4 (2014), 40002.

[36] Jason Thong and Nicola Nicolici. 2013. FPGA acceleration of enhanced boolean
constraint propagation for SAT solvers. In Proceedings of the International Con-
ference on Computer-Aided Design. IEEE Press, 234–241.

[37] M. M. Waldrop. 2016. More than Moore. Nature 530 (February 2016), 144–147.
[38] Xunzhao Yin, Behnam Sedighi, Melinda Varga, Maria Ercsey-Ravasz, Zoltan

Toroczkai, and Xiaobo Sharon Hu. 2016. Efficient Analog Circuits for Boolean
Satisfiability. arXiv preprint arXiv:1606.07467 (accepted by IEEE Transactions on
VLSI) (2016).

[39] Lintao Zhang, Conor F Madigan, Matthew H Moskewicz, and Sharad Malik. 2001.
Efficient conflict driven learning in a boolean satisfiability solver. In Proceedings
of the 2001 IEEE/ACM international conference on Computer-aided design. IEEE
Press, 279–285.


