
 
Figure 1. Mitochondria in a COS-7 
cell. Arrows point to examples of 
blurred regions. Scale bar: 10 µm. 
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ABSTRACT 

 Synthetic images are widely used in image 
segmentation for algorithm training and performance 
assessment. Recently, advances in image synthesis 
techniques, especially generative adversarial networks 
(GANs), have made it possible to generate fluorescence 
microscopy images with remarkably realistic appearance. 
However, intuitive and specific metrics to assess the quality 
of these images remain lacking. Here, we propose three 
quality metrics that quantify the fidelity of the foreground 
signal, the background noise, and blurring, respectively, of 
synthesized fluorescence microscopy images. Using these 
metrics, we examine images of mitochondria synthesized by 
two representative GANs: pix2pix, which requires paired 
training data, and CycleGAN, which does not require 
paired training data. We find that both networks generate 
realistic images and achieve similar fidelity in reproducing 
background noise and blurring of real images. However, 
CycleGAN achieves significantly higher fidelity than pix2pix 
in reproducing intensity patterns of real mitochondria. 
When used to train the U-Net for segmentation, images 
synthesized by both networks achieve performance on par 
with real images. Overall, we have developed a method to 
assess quality of synthetic fluorescence microscopy images 
and to evaluate their training performance in image 
segmentation. The quality metrics proposed are general and 
can be used to assess fluorescence microscopy images 
synthesized by different methods.  

Index Terms— Quality assessment, synthetic image, 
fluorescence microscopy, generative adversarial network, 
image segmentation 
 

1. INTRODUCTION 
 Synthetic images are used extensively in computational 
analysis of biological images in applications such as image 
segmentation [1] and feature tracking [2]. In image 
segmentation, synthetic images are often used for training 
and evaluating algorithms because their ground truth is 
known and, therefore, requires no manual labelling. Another 
advantage of synthetic images is that their conditions such 
as signal-to-noise ratios (SNRs) often can be controlled [3, 

4]. Despite these advantages, performance of synthetic 
images is fundamentally defined by the level of fidelity they 
achieve in mimicking real images.  

In synthesizing fluorescence microscopy images, 
traditional methods often rely on explicit extraction of 
conditions such as SNRs and blurring of real images and 
matching such conditions in synthesized images [3, 4]. 
However, physical and chemical properties of fluorescence 
image formation pose unique challenges to this strategy of 
image synthesis. In particular, the high numerical aperture 
required for high-
resolution fluorescence 
microscopy also leads to 
small depth-of-field [5]. 
Consequently, objects or 
regions within images 
may become partially or 
completely blurred, 
resulting in weakened 
boundaries of varying 
levels of diffusiveness 
(see e.g. Fig. 1). 
Furthermore, minimizing photobleaching and/or 
phototoxicity often results in low and varying signal-to-
noise ratios (SNRs) [6], which also complicate image 
conditions. Variations in image formation conditions, 
especially in live cell imaging, may further complicate 
image conditions. Overall, complex conditions of real 
fluorescence microscopy images make it very difficult, if 
not impossible, to fully emulate real images through the 
strategy of explicit extraction and matching of image 
conditions.  
 Recently, deep learning networks based image 
synthesis techniques, especially generative adversarial 
networks (GANs) [7], have succeeded in generating 
synthetic fluorescence microscopy images with remarkably 
realistic appearance [8, 9]. GANs consist of two competing 
subnetworks: a generator and a discriminator [7]. The 
generator aims to synthesize images as similar to real 
images as possible, while the discriminator aims to 
differentiate between synthesized images and real images as 
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Figure 2. Overview of workflow 

 
Figure 3. Comparison of real and different synthesized
images. Mask: binary mask images. Random: pixel intensity in 
binary masks assigned randomly from the ensemble 
mitochondrial intensity distribution of real images.  

much as possible. Because these networks learn and match 
image conditions implicitly in image synthesis, they avoid 
the limitations of explicit image condition extraction and 
matching. However, although images synthesized by these 
network bear strong visual resemblance to real fluorescence 
images, our understanding of their properties and 
performance remains limited. In particular, current 
evaluation measures for GANs [10] are developed primarily 
for images of natural and social scenes and do not take into 
account the distinct properties of fluorescence microscopy 
images. Furthermore, as we will show later in the paper, 
traditional image quality metrics such as SSIM (structural 
similarity index measure) and PSNR (peak-signal-to-noise-
ratio) [11, 12]  lack the sensitivity in differentiating between 
synthesized images. So 
far, intuitive and specific 
metrics to assess quality 
of synthetic fluorescence 
microscopy images 
remain lacking. 
 In this study, we 
address this deficiency 
by proposing a group of 
three quality metrics, 
which take into account 
the distinct properties of 
fluorescence image 
formation and quantify 
the fidelity of the 
foreground signal, the background noise, and blurring, 
respectively, of synthetic images. Using these metrics, we 
examine images of mitochondria synthesized using two 
representative GANs: pix2pix [13], which requires paired 
training data, and CycleGAN [14], which does not require 
paired training data. To further assess the fidelity of the 
synthetic images, we test their performance in training 
convolutional neural networks (CNNs) for segmentation of 
real fluorescence microscopy images. Because performance 
of CNNs in image segmentation depends critically on the 
quality of their training images [4], testing synthesized 
images in training CNNs for image segmentation provides 
an integrative and stringent approach to assess their fidelity.    
 Figure 2 summarizes the overall workflow of our study. 
We manually extracted geometry of mitochondria of real 
images into binary masks and then filled in these masks 
with realistic spatial intensity patterns using GANs. We then 
calculated the quality metrics using different pairs of real 
(i.e. reference) and synthetic images. Furthermore, we 
trained the U-Net [15] using real and synthetic images, 
respectively, and compared their accuracy in segmentation 
of real images. Overall, our study makes two main research 
contributions. First, it develops intuitive, specific, and 
general-purpose metrics for assessing quality of synthetic 
fluorescence microscopy images. Such metrics make it 
possible not only to differentiate between visually realistic 

images synthesized by different GANs but also to evaluate 
quality of images synthesized by different methods. Second, 
our study reveals distinct properties of images synthesized 
by different GANs, especially their training performance for 
segmentation of real fluorescence microscopy images.  

 
2. METHODS 

2.1 Image collection and mask generation 
 Mitochondria are essential organelles of eukaryotic 
cells, serving a wide variety of important cellular functions 
[16]. Within the intracellular space, they exhibit complex 
and dynamic morphology. Quantitative characterization of 
morphology of mitochondria based on image segmentation 
is important to elucidating their physiology and 
pathophysiology [17]. Raw images of mitochondria (Fig. 1) 
were collected from cultured COS-7 cells transfected with 
pDsRed2-mito plasmids (Clontech) to express a 
mitochondrial targeting sequence fused with fluorescent 
protein DsRed.  Image collection was performed on a Nikon 
Eclipse Ti-E inverted microscope with a CoolSNAP HQ2 
camera (Photometric) and a 100×/1.40NA oil objective lens. 
The effective pixel size was 0.0645 μm. Manual 
labeling of individual mitochondria (see e.g. Figure 3, 
second column) was performed using ITK-SNAP 
(http://www.itksnap.org/pmwiki/pmwiki.php).  
 
2.2 Assessing image quality using traditional metrics 
 Figure 3 shows representative results of the image 
synthesis workflow in Figure 2. Specifically, the second 
column shows the binary masks from manual labeling, 
while the third column shows images synthesized by filling 
each pixel within the binary masks by an intensity drawn 
randomly from the ensemble image intensity distribution of 
real mitochondria, as described in further details in [4]. For 
simplicity, we label images synthesized by this strategy as 
“random”. Images synthesized by pix2pix and CycleGAN 
are shown in the fourth and fifth columns, respectively. We 
refer to the similarity of a synthesized image to its 
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corresponding real image as the fidelity of the synthesized 
image. To characterize and compare fidelity of the images 
synthesized by different methods, we first used traditional 
metrics, specifically SSIM, PSNR, and NCC (normalized 
cross correlation) [11, 12]. The result is shown in Table 1. 
Because differences between images synthesized by random 
intensity assignment (column 3) and by GANs (columns 4 
& 5) are visually clear, the result indicates that traditional 
metrics lack the specificity and sensitivity in differentiating 
between the two groups of synthetic images.   
Table 1. Selected quality metrics of synthetic images 

 SSIM PSNR NCC 

 MEA* STD* MEA STD MEA STD 
Random 0.991 0.009 57.82 3.806 0.980 0.009 
pix2pix 0.996 0.006 60.91 3.705 0.989 0.007 

CycleGAN 0.993 0.008 58.65 3.571 0.983 0.009 
*MEA: mean; STD: standard deviation. Each case was calculated from the 
same 78 pairs of real and synthetic images.  
 
2.3 A quality metric for foreground signal 
 We reason that images synthesized by random intensity 
assignment and GANs may be better differentiated if we 
only compare the intensity distributions within 
mitochondria, i.e. within binary masks. To this end, we 
propose the signal fidelity measure (SFM), for which the 
normalized correlation coefficient is computed only within 
actual mitochondria defined by the binary masks, denoted as 
Ω. If we denote the real images as ,I x y  and its 

corresponding synthetic images as ˆ ,I x y , SFM is defined 
as.  
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Î
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2.4 A quality metric for background noise 
 We define the noise fidelity measure (NFM) as the 
Sorensen distance [18] between the probability density 
function (pdf) of the background noise in the real image 
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where L denotes the maximum level of the background 
noise, 

NIpdf and 
NI

pdf denote the pdf of background 

noise in the real image I, and the synthetic image I , 
respectively. The measure equals 0 when the two pdfs have 
complete overlap, i.e. are identical, and equals 1 when the 
two pdfs have no overlap.  
 
2.5 A quality metric for blurring 
 We define the blurring fidelity measure (BFM) as the 
ratio between the total level of blurring in the synthetic 
image and the total level of blurring in the real image.  
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where S is an image sharpness operator. In this study, we 
used the Laplacian operator so that the BFM took the 
following specific form  
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where the operator was implemented as 
1 4 1
4 20 4
1 4 1

 [19]. 

3. RESULTS 
 All the computation was performed on a workstation 
with two Intel Xeon E5503 CPU, 32GB memory, and one 
Nvidia GTX 1080 GPU card. Custom code can be 
downloaded from https://github.com/XiaoqiChai/mitoGAN. 
Implementation of pix2pix and CycleGAN at 
https://github.com/tjwei/GANotebooks was used.  
 
3.1 Training of pix2pix, CycleGAN and U-Net 

For both pix2pix and CycleGAN, a total of 500 images 
were used for training, 50 for validation, and 78 for testing, 
and the numbers of training epochs were 800 and 200, 
respectively. Adam optimizer [20] was used for training 
pix2pix, with a learning rate of 2×10-4, 1 0.5 , and the 
weight µ for the regularizer equals 100. Adam optimizer 
with the same parameters was also used for training 
CycleGAN, with the weight of cycle consistency loss  
equals 10. For the U-Net, a total of 600 images were used 
for training, 50 for validation, and 78 for testing. The 
number of training epoch was 50. Stochastic gradient 
descent was used, with a learning rate of 0.01. 
3.2 Comparison of foreground signal fidelity   
 Figure 4 compares the foreground signal quality in 
SFM of the images synthesized by random intensity 
assignment, pix2pix, and CycleGAN. Both GANs achieved 
significantly better foreground fidelity than random 
intensity assignment, with CycleGAN significantly 
outperformed pix2pix. This may be explained by the fact 
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Figure 5. Comparison of background and blurring fidelity of
synthesized images. (A) Background fidelity. Error bars indicate
standard error of the mean (SEM). (B) Blurring fidelity. Error bars
indicate standard deviation. (A-B) Comparison was made using
two-sample student’s t-test. Same p-value notations as in Fig. 4.
n.s.: not significant. Sample size: (A) 33, (B) 78. 

Figure 6. Segmentation results after training with synthesized 
images.  

 
Figure 7. Comparison of training 
performance of synthetic vs real images. 
Error bars: standard deviation. Comparison 
was made using two-sample student’s t-test. 
Sample size = 78 for each group.  

 
Figure 4. Comparison of foreground
fidelity of synthesized images. Error
bars indicate   standard deviation.
Comparison was made using
Kolmogorov-Smirnov tests. **: p-value <
0.01, *** p-value < 0.001. Sample size for
each group is 78.  

that CycleGAN is 
trained with all 
mitochondrial 
intensity distributions 
while pix2pix is 
trained only with 
paired data. 
However, none of the 
three methods 
achieved a mean 
SFM greater than 0.5, 
a limitation to be 
overcome by further 
improvement in 
GANs.  
3.3 Comparison of background noise fidelity  
 Figure 5A compares the background noise fidelity in 
NFM of the images synthesized by the three methods. There 
was no significant difference between the background noise 
fidelity of pix2pix and CycleGAN. However, both 
significantly outperformed the “random” images, whose 
background was generated as Gaussian white noise [4]. 
Further analysis revealed that background synthesized by 
GANs exhibits weak patterned noise (results not shown due 
to space limitation). 
3.4 Comparison of blurring fidelity 

Figure 5B compares the blurring fidelity in BFM of the 
synthetic images. There was no significant difference 
between CycleGAN and pix2pix. However, both 
significantly outperformed random intensity assignment.  

3.5 Performance of synthesized images in training U-
Nets for segmentation of real mitochondria images 
 To further compare the quality of the synthetic images, 
we used them to train U-Nets and then used the trained U-
Nets to segmentation real images of mitochondria (Fig. 6). 
The segmentation performance is evaluated by intersection 
over union (IoU). For reference, we also trained U-Nets 
with manual segmentation images (the “real” group in Fig. 
7). We used manual segmentation results as our ground 
truth. The results (Fig. 7) show that images synthesized by 
pix2pix and CycleGAN significantly outperformed images 

with random intensity patterns and were on par with 
manually segmented real images in training performance.  

4. DISCUSSION 
 Fluorescence microscopy images have at least two 
properties that distinguish them from natural and social 
images. First, because of specificity of fluorescence signal 
generation, fluorescence images often include substantial 
fractions of areas filled with noise and/or defocused 
background because of absence of fluorophores. To 
synthesize high fidelity images, especially those with low 
SNRs, high fidelity in synthesized image background is 
essential. Second, blurring due to defocusing is inherent to 
fluorescence image formation. To achieve high fidelity in 
mimicking blurring in synthetic images is also essential. 
Motivated by these distinct properties of fluorescence 
microscopy images, we propose quality metrics that 
specifically assess the fidelity of their background noise and 
blurring. These 
metrics can better 
differentiate 
between 
synthesized 
images than 
traditional metrics 
such as SSIM and 
PSNR (compare 
Fig. 4&5 vs Table 
1). However, our 
study has its 
limitations, which 
we are addressing 
in ongoing research. First, our analysis of blurring fidelity 
only quantifies the total level of blurring, not its spatial 
distribution. Second, our metrics may leave out certain 
aspects of the synthetic images. For example, the PSNR in 
Table 1 shows that pix2pix outperforms CycleGAN. Third, 
our metrics require binary masks, i.e. segmentation of 
reference images.  
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