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ABSTRACT

Synthetic  images are widely used in image
segmentation for algorithm training and performance
assessment. Recently, advances in image synthesis
techniques, especially generative adversarial networks
(GANs), have made it possible to generate fluorescence
microscopy images with remarkably realistic appearance.
However, intuitive and specific metrics to assess the quality
of these images remain lacking. Here, we propose three
quality metrics that quantify the fidelity of the foreground
signal, the background noise, and blurring, respectively, of
synthesized fluorescence microscopy images. Using these
metrics, we examine images of mitochondria synthesized by
two representative GANs: pix2pix, which requires paired
training data, and CycleGAN, which does not require
paired training data. We find that both networks generate
realistic images and achieve similar fidelity in reproducing
background noise and blurring of real images. However,
CycleGAN achieves significantly higher fidelity than pix2pix
in reproducing intensity patterns of real mitochondria.
When used to train the U-Net for segmentation, images
synthesized by both networks achieve performance on par
with real images. Overall, we have developed a method to
assess quality of synthetic fluorescence microscopy images
and to evaluate their training performance in image
segmentation. The quality metrics proposed are general and
can be used to assess fluorescence microscopy images
synthesized by different methods.

Index Terms— Quality assessment, synthetic image,
fluorescence microscopy, generative adversarial network,
image segmentation

1. INTRODUCTION

Synthetic images are used extensively in computational
analysis of biological images in applications such as image
i and feature tracking [2]. In image
netic images are often used for training
orithms because their ground truth is
e, requires no manual labelling. Another
etic images is that their conditions such
atios (SNRs) often can be controlled [3,

4]. Despite these advantages, performance of synthetic
images is fundamentally defined by the level of fidelity they
achieve in mimicking real images.

In synthesizing fluorescence microscopy images,
traditional methods often rely on explicit extraction of
conditions such as SNRs and blurring of real images and
matching such conditions in synthesized images [3, 4].
However, physical and chemical properties of fluorescence
image formation pose unique challenges to this strategy of
image synthesis. In particular, the high numerical aperture
required for  high-
resolution  fluorescence
microscopy also leads to
small depth-of-field [5].
Consequently, objects or

regions within images
may become partially or
completely blurred,
resulting in  weakened Figure 1. Mitochondria in a COS-7
boundaries of varying cell. Arrows point to examples of

levels of diffusiveness blurred regions. Scale bar: 10 ym.
(see e.g. Fig. 1)

Furthermore, minimizing photobleaching and/or
phototoxicity often results in low and varying signal-to-
noise ratios (SNRs) [6], which also complicate image
conditions. Variations in image formation conditions,
especially in live cell imaging, may further complicate
image conditions. Overall, complex conditions of real
fluorescence microscopy images make it very difficult, if
not impossible, to fully emulate real images through the
strategy of explicit extraction and matching of image
conditions.

Recently, deep learning networks based image
synthesis techniques, especially generative adversarial
networks (GANs) [7], have succeeded in generating
synthetic fluorescence microscopy images with remarkably
realistic appearance [8, 9]. GANs consist of two competing
subnetworks: a generator and a discriminator [7]. The
generator aims to synthesize images as similar to real
images as possible, while the discriminator aims to
differentiate between synthesized images and real images as



much as possible. Because these networks learn and match
image conditions implicitly in image synthesis, they avoid
the limitations of explicit image condition extraction and
matching. However, although images synthesized by these
network bear strong visual resemblance to real fluorescence
images, our understanding of their properties and
performance remains limited. In particular, current
evaluation measures for GANs [10] are developed primarily
for images of natural and social scenes and do not take into
account the distinct properties of fluorescence microscopy
images. Furthermore, as we will show later in the paper,
traditional image quality metrics such as SSIM (structural
similarity index measure) and PSNR (peak-signal-to-noise-
ratio) [11, 12] lack the sensitivity in differentiating between
synthesized images. So
far, intuitive and specific
metrics to assess quality
of synthetic fluorescence
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formation and quantify .
the fidelity of the Figure 2. Overview of workflow
foreground signal, the background noise, and blurring,
respectively, of synthetic images. Using these metrics, we
examine images of mitochondria synthesized using two
representative GANs: pix2pix [13], which requires paired
training data, and CycleGAN [14], which does not require
paired training data. To further assess the fidelity of the
synthetic images, we test their performance in training
convolutional neural networks (CNNs) for segmentation of
real fluorescence microscopy images. Because performance
of CNNs in image segmentation depends critically on the
quality of their training images [4], testing synthesized
images in training CNNs for image segmentation provides
an integrative and stringent approach to assess their fidelity.
Figure 2 summarizes the overall workflow of our study.
We manually extracted geometry of mitochondria of real
images into binary masks and then filled in these masks
with realistic spatial intensity patterns using GANs. We then
calculated the quality metrics using different pairs of real
(i.e. reference) and synthetic images. Furthermore, we
trained the U-Net [15] using real and synthetic images,
iyve ompared their accuracy in segmentation
rall, our study makes two main research
, it develops intuitive, specific, and
ptrics for assessing quality of synthetic
scopy images. Such metrics make it
p differentiate between visually realistic

a pdfelement

The Trial Version

images synthesized by different GANs but also to evaluate
quality of images synthesized by different methods. Second,
our study reveals distinct properties of images synthesized
by different GANSs, especially their training performance for
segmentation of real fluorescence microscopy images.

Real Mask Random

pix2pix

CycleGAN

4 g/
Figure 3. Comparison of real and different synthesized
images. Mask: binary mask images. Random: pixel intensity in
binary masks assigned randomly from the ensemble
mitochondrial intensity distribution of real images.

2. METHODS

2.1 Image collection and mask generation

Mitochondria are essential organelles of eukaryotic
cells, serving a wide variety of important cellular functions
[16]. Within the intracellular space, they exhibit complex
and dynamic morphology. Quantitative characterization of
morphology of mitochondria based on image segmentation
is important to elucidating their physiology and
pathophysiology [17]. Raw images of mitochondria (Fig. 1)
were collected from cultured COS-7 cells transfected with
pDsRed2-mito  plasmids (Clontech) to express a
mitochondrial targeting sequence fused with fluorescent
protein DsRed. Image collection was performed on a Nikon
Eclipse Ti-E inverted microscope with a CoolSNAP HQ2
camera (Photometric) and a 100%/1.40NA oil objective lens.
The effective pixel size was 0.0645 um. Manual
labeling of individual mitochondria (see e.g. Figure 3,
second column) was performed using ITK-SNAP
(http://www.itksnap.org/pmwiki/pmwiki.php).

2.2 Assessing image quality using traditional metrics
Figure 3 shows representative results of the image
synthesis workflow in Figure 2. Specifically, the second
column shows the binary masks from manual labeling,
while the third column shows images synthesized by filling
each pixel within the binary masks by an intensity drawn
randomly from the ensemble image intensity distribution of
real mitochondria, as described in further details in [4]. For
simplicity, we label images synthesized by this strategy as
“random”. Images synthesized by pix2pix and CycleGAN
are shown in the fourth and fifth columns, respectively. We
refer to the similarity of a synthesized image to its



corresponding real image as the fidelity of the synthesized
image. To characterize and compare fidelity of the images
synthesized by different methods, we first used traditional
metrics, specifically SSIM, PSNR, and NCC (normalized
cross correlation) [11, 12]. The result is shown in Table 1.
Because differences between images synthesized by random
intensity assignment (column 3) and by GANs (columns 4
& 5) are visually clear, the result indicates that traditional
metrics lack the specificity and sensitivity in differentiating
between the two groups of synthetic images.

Table 1. Selected quality metrics of synthetic images

SSIM PSNR NCC
MEA* | STD* MEA STD MEA STD
Random | 0.991 0.009 57.82 3.806 0.980 0.009
pix2pix | 0.996 0.006 60.91 3.705 0.989 0.007
CycleGAN | 0.993 0.008 58.65 3.571 0.983 0.009
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*MEA: mean; STD: standard deviation. Each case was calculated from the
same 78 pairs of real and synthetic images.

2.3 A quality metric for foreground signal

We reason that images synthesized by random intensity
assignment and GANs may be better differentiated if we
only compare the intensity distributions  within
mitochondria, i.e. within binary masks. To this end, we
propose the signal fidelity measure (SFM), for which the
normalized correlation coefficient is computed only within
actual mitochondria defined by the binary masks, denoted as

Q. If we denote the real images as [ x,y and its

corresponding synthetic images asl x, y , SFM is defined

as.
SFM 1,1
I x,y ; 1 xy , dxdy 1)
\/ I x,y ;dxdy I x,y , dxdy
where  and ;are the mean intensities of the real image

and the synthetic image, respectively, within Q.
2.4 A quality metric for background noise

We define the noise fidelity measure (NFM) as the
Sorensen distance [18] between the probability density
function (pdf) of the background noise in the real image
I x,y and the corresponding pdf of the background noise

in the synthetic imagef X,y .
L
. pdf; x pdflw x‘dx
OL pdf,, x dx

NFM 1,1

L
. pdflw x dx , ()

pdf, x pdeN X ‘dx

he maximum level of the background

pdflv denote the pdf of background

noise in the real image I, and the synthetic image [ ,
respectively. The measure equals 0 when the two pdfs have
complete overlap, i.e. are identical, and equals 1 when the
two pdfs have no overlap.

2.5 A quality metric for blurring

We define the blurring fidelity measure (BFM) as the
ratio between the total level of blurring in the synthetic
image and the total level of blurring in the real image.

HS I x,y “dxdy

BFM 1,1 3)

”S I x,y "dxdy’

where S is an image sharpness operator. In this study, we
used the Laplacian operator so that the BFM took the
following specific form

A
E b
BFM 1,1 2y , “
Y fz)zdxdy
X y
1 4 1
where the operator was implementedas 4 20 4 [19].
1 4 1
3. RESULTS

All the computation was performed on a workstation
with two Intel Xeon E5503 CPU, 32GB memory, and one
Nvidia GTX 1080 GPU card. Custom code can be
downloaded from https://github.com/XiaoqiChai/mitoGAN.
Implementation of pix2pix and CycleGAN at
https://github.com/tjwei/GANotebooks was used.

3.1 Training of pix2pix, CycleGAN and U-Net

For both pix2pix and CycleGAN, a total of 500 images
were used for training, 50 for validation, and 78 for testing,
and the numbers of training epochs were 800 and 200,
respectively. Adam optimizer [20] was used for training
pix2pix, with a learning rate of 2x10%, |, 0.5, and the

weight u for the regularizer equals 100. Adam optimizer
with the same parameters was also used for training
CycleGAN, with the weight of cycle consistency loss

equals 10. For the U-Net, a total of 600 images were used
for training, 50 for validation, and 78 for testing. The
number of training epoch was 50. Stochastic gradient
descent was used, with a learning rate of 0.01.
3.2 Comparison of foreground signal fidelity

Figure 4 compares the foreground signal quality in
SFM of the images synthesized by random intensity
assignment, pix2pix, and CycleGAN. Both GANs achieved
significantly better foreground fidelity than random
intensity  assignment, with CycleGAN significantly
outperformed pix2pix. This may be explained by the fact
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that CycleGAN is

trained  with  all

mitochondrial

intensity distributions _

while  pix2pix is &

trained only with

paired data.

However, none of the

three methods Random pix2pix CycleGAN

. Figure 4. Comparison of foreground
achieved a  mean fidelity of synthesized images. Error
SFM greater than 0.5, bars indicate standard deviation.
a limitation to be Comparison was made using

Kolmogorov-Smirnov tests. **: p-value <
gvercome by furth.er 0.01, *** p-value < 0.001. Sample size for
Improvement I each group is 78.

GAN:E.
3.3 Comparison of background noise fidelity

Figure 5SA compares the background noise fidelity in
NFM of the images synthesized by the three methods. There
was no significant difference between the background noise
fidelity of pix2pix and CycleGAN. However, both
significantly outperformed the “random” images, whose
background was generated as Gaussian white noise [4].
Further analysis revealed that background synthesized by
GANSs exhibits weak patterned noise (results not shown due
to space limitation).
3.4 Comparison of blurring fidelity

Figure 5B compares the blurring fidelity in BFM of the
synthetic images. There was no significant difference

between CycleGAN and pix2pix. However, both
significantly outperformed random intensity assignment.
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Figure 5. Comparison of background and blurring fidelity of
synthesized images. (A) Background fidelity. Error bars indicate
standard error of the mean (SEM). (B) Blurring fidelity. Error bars
indicate standard deviation. (A-B) Comparison was made using
two-sample student’s t-test. Same p-value notations as in Fig. 4.
n.s.: not significant. Sample size: (A) 33, (B) 78.

3.5 Performance of synthesized images in training U-
Nets for segmentation of real mitochondria images
To further compare the quality of the synthetic images,
we used them to train U-Nets and then used the trained U-
Nets to segmentatlon real images of mitochondria (Fig. 6).
atiapperformance is evaluated by intersection
For reference, we also trained U-Nets
ntation images (the “real” group in Fig.
al segmentation results as our ground
ig. 7) show that images synthesized by
AN significantly outperformed images

with random intensity patterns and were on par with
manually segmented real images in training performance.

U-Net segmentations

Trained w

Manual
segmentation

Figure 6. Segmentation results after training with synthesize
images.
4. DISCUSSION

Fluorescence microscopy images have at least two
properties that distinguish them from natural and social
images. First, because of specificity of fluorescence signal
generation, fluorescence images often include substantial
fractions of areas filled with noise and/or defocused
background because of absence of fluorophores. To
synthesize high fidelity images, especially those with low
SNRs, high fidelity in synthesized image background is
essential. Second, blurring due to defocusing is inherent to
fluorescence image formation. To achieve high fidelity in
mimicking blurring in synthetic images is also essential.
Motivated by these distinct properties of fluorescence

microscopy images, we propose quality metrics that
specifically assess the fidelity of their background noise and
blurring. These

metrics can better —
differentiate 0.9 —

between

synthesized 7

images than 3os

traditional metrics |

such as SSIM and

PSNR  (compare ©1

Flg 4&5 vs Table real random pix2pix CycleGAN
1). However, our Figure Comparison of training

performance of synthetic vs real images.
study  has  itS Error bars: standard deviation. Comparison
limitations, which was made using two-sample student’s t-test.
we are addressing Sample size = 78 for each group.
in ongoing research. First, our analysis of blurring fidelity
only quantifies the total level of blurring, not its spatial
distribution. Second, our metrics may leave out certain
aspects of the synthetic images. For example, the PSNR in
Table 1 shows that pix2pix outperforms CycleGAN. Third,
our metrics require binary masks, i.e. segmentation of
reference images.
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