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Abstract

We consider the problem of online learning in the linear contextual bandits setting,
but in which there are also strong individual fairness constraints governed by an
unknown similarity metric. These constraints demand that we select similar actions
or individuals with approximately equal probability [?], which may be at odds with
optimizing reward, thus modeling settings where profit and social policy are in
tension. We assume we learn about an unknown Mahalanobis similarity metric from
only weak feedback that identifies fairness violations, but does not quantify their
extent. This is intended to represent the interventions of a regulator who “knows
unfairness when he sees it” but nevertheless cannot enunciate a quantitative fairness
metric over individuals. Our main result is an algorithm in the adversarial context
setting that has a number of fairness violations that depends only logarithmically

on T , while obtaining an optimal O(
√
T ) regret bound to the best fair policy.

1 Introduction

The last several years have seen an explosion of work studying the problem of fairness in machine
learning. Yet there remains little agreement about what “fairness” should mean in different contexts.
In broad strokes, the literature can be divided into two families of fairness definitions: those aiming
at group fairness, and those aiming at individual fairness.

Group fairness definitions are aggegrate in nature: they partition individuals into some collection of
protected groups (say by race or gender), specify some statistic of interest (say, positive classification
rate or false positive rate), and then require that a learning algorithm equalize this quantity across the
protected groups. On the other hand, individual fairness definitions ask for some constraint that binds
on the individual level, rather than only over averages of people. Often, these constraints have the
semantics that “similar people should be treated similarly” ?.

Individual fairness definitions have substantially stronger semantics and demands than group defini-
tions of fairness. For example, ? lay out a compendium of ways in which group fairness definitions are
unsatisfying. Yet despite these weaknesses, group fairness definitions are by far the most prevalent in
the literature (see e.g. ??????? and ? for a survey). This is in large part because notions of individual
fairness require making stronger assumptions on the setting under consideration. In particular, the
definition from ? requires that the algorithm designer know a “task-specific fairness metric.”

Learning problems over individuals are also often implicitly accompanied by some notion of merit,
embedded in the objective function of the learning problem. For example, in a lending setting
we might posit that each loan applicant is either “creditworthy” and will repay a loan, or is not
creditworthy and will default — which is what we are trying to predict. ? take the approach that
this measure of merit — already present in the model, although initially unknown to the learner —
can be taken to be the similarity metric in the definition of ?, requiring informally that creditworthy
individuals have at least the same probability of being accepted for loans as defaulting individuals.
(The implicit and coarse fairness metric here assigns distance zero between pairs of creditworthy
individuals and pairs of defaulting individuals, and some non-zero distance between a creditworthy
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and a defaulting individual.) This resolves the problem of how one should discover the “fairness
metric”, but results in a notion of fairness that is necessarily aligned with the notion of “merit”
(creditworthiness) that we are trying to predict.

However, there are many settings in which the notion of merit we wish to predict may be different or
even at odds with the notion of fairness we would like to enforce. For example, notions of fairness
aimed at rectifying societal inequities that result from historical discrimination can aim to favor
the disadvantaged population (say, in college admissions), even if the performance of the admitted
members of that population can be expected to be lower than that of the advantaged population.
Similarly, we might desire a fairness metric incorporating only those attributes that individuals can
change in principle (and thus excluding ones like race, age and gender), and that further expresses
what are and are not meaningful differences between individuals, outside the context of any particular
prediction problem. These kinds of fairness desiderata can still be expressed as an instantiation of the
definition from ?, but with a task-specific fairness metric separate from the notion of merit we are
trying to predict.

In this paper, we revisit the individual fairness definition from ?. This definition requires that pairs
of individuals who are close in the fairness metric must be treated “similarly” (e.g. in an allocation
problem such as lending, served with similar probability). We investigate the extent to which it is
possible to satisfy this fairness constraint while simultaneously solving an online learning problem,
when the underlying fairness metric is Mahalanobis but not known to the learning algorithm, and may
also be in tension with the learning problem. One conceptual problem with metric-based definitions,
that we seek to address, is that it may be difficult for anyone to actually precisely express a quantitative
metric over individuals — but they nevertheless might “know unfairness when they see it.” We
therefore assume that the algorithm has access to an oracle that knows intuitively what it means
to be fair, but cannot explicitly enunciate the fairness metric. Instead, given observed actions, the
oracle can specify whether they were fair or not, and the goal is to obtain low regret in the online
learning problem — measured with respect to the best fair policy — while also limiting violations of
individual fairness during the learning process.

1.1 Our Results and Techniques

We study the standard linear contextual bandit setting. In rounds t = 1, . . . , T , a learner observes
arbitrary and possibly adversarially selected d-dimensional contexts, each corresponding to one of k
actions. The reward for each action is (in expectation) an unknown linear function of the contexts.
The learner seeks to minimize its regret.

The learner also wishes to satisfy fairness constraints, defined with respect to an unknown distance
function defined over contexts. The constraint requires that the difference between the probabilities
that any two actions are taken is bounded by the distance between their contexts. The learner has no
initial knowledge of the distance function. Instead, after the learner makes its decisions according to
some probability distribution πt at round t, it receives feedback specifying for which pairs of contexts
the fairness constraint was violated. Our goal in designing a learner is to simultaneously guarantee
near-optimal regret in the contextual bandit problem (with respect to the best fair policy), while
violating the fairness constraints as infrequently as possible. Our main result is a computationally
efficient algorithm that guarantees this for a large class of distance functions known as Mahalanobis
distances (these can be expressed as d(x1, x2) = ||Ax1 −Ax2||2 for some matrix A).

Theorem (Informal): There is a computationally efficient learning algorithm L in our setting that
guarantees that for any Mahalanobis distance, any time horizon T , and any error tolerance ε:

1. (Learning) With high probability, L obtains regret Õ
(

k2d2 log (T ) + d
√
T
)

to the best fair

policy (See Theorem 3 for a precise statement.)

2. (Fairness) With probability 1, L violates the unknown fairness constraints by more than ε
on at most O

(

k2d2 log(d/ε)
)

many rounds. (Theorem 4.)

We note that the quoted regret bound requires setting ε = O(1/T ), and so this implies a number of
fairness violations of magnitude more than 1/T that is bounded by a function growing logarithmically
in T . Other tradeoffs between regret and fairness violations are possible.
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These two goals: of obtaining low regret, and violating the unknown constraint a small number of
times — are seemingly in tension. A standard technique for obtaining a mistake bound with respect to
fairness violations would be to play a “halving algorithm”, which would always act as if the unknown
metric is at the center of the current version space (the set of metrics consistent with the feedback
observed thus far) — so that mistakes necessarily remove a non-trivial fraction of the version space,
making progress. On the other hand, a standard technique for obtaining a diminishing regret bound is
to play “optimistically” – i.e. to act as if the unknown metric is the point in the version space that
would allow for the largest possible reward. But “optimistic” points are necessarily at the boundary of
the version space, and when they are falsified, the corresponding mistakes do not necessarily reduce
the version space by a constant fraction.

We prove our theorem in two steps. First, in Section 3, we consider the simpler problem in which the
linear objective of the contextual bandit problem is known, and the distance function is all that is
unknown. In this simpler case, we show how to obtain a bound on the number of fairness violations
using a linear-programming based reduction to a recent algorithm which has a mistake bound for
learning a linear function with a particularly weak form of feedback ?. A complication is that our
algorithm does not receive all of the feedback that the algorithm of ? expects. We need to use the
structure of our linear program to argue that this is ok. Then, in Section 4, we give our algorithm for
the complete problem, using large portions of the machinery we develop in Section 3.

We note that in a non-adversarial setting, in which contexts are drawn from a distribution, the
algorithm of ? could be more simply applied along with standard techniques for contextual bandit
learning to give an explore-then-exploit style algorithm. This algorithm would obtain bounded (but
suboptimal) regret, and a number of fairness violations that grows as a root of T . The principal
advantages of our approach are that we are able to give a number of fairness violations that has
only logarithmic dependence on T , while tolerating contexts that are chosen adversarially, all while

obtaining an optimal O(
√
T ) regret bound to the best fair policy.

1.2 Additional Related Work

There are two papers, written concurrently to ours, that tackle orthogonal issues in metric-fair
learning. ? consider the problem of generalization when performing learning subject to a known
metric constraint. They show that it is possible to prove relaxed PAC-style generalization bounds
without any assumptions on the metric, and that for worst-case metrics, learning subject to a metric
constraint can be computationally hard, even when the unconstrained learning problem is easy. In
contrast, our work focuses on online learning with an unknown metric constraint. Our results imply
similar generalization properties via standard online-to-offline reductions, but only for the class
of metrics we study. ? considers a group-fairness like relaxation of metric-fairness, asking that
on average, individuals in pre-specified groups are classified with probabilities proportional to the
average distance between individuals in those groups. They show how to learn such classifiers in the
offline setting, given access to an oracle which can evaluate the distance between two individuals
according to the metric (allowing for unbiased noise). The similarity to our work is that we also
consider access to the fairness metric via an oracle, but our oracle is substantially weaker, and does
not provide numeric valued output.

There are also several papers in the algorithmic fairness literature that are thematically related to ours,
in that they both aim to bridge the gap between group notions of fairness (which can be semantically
unsatisfying) and individual notions of fairness (which require very strong assumptions). ? attempt
to automatically learn a representation for the data in a batch learning problem (and hence, implicitly,
a similarity metric) that causes a classifier to label an equal proportion of two protected groups as
positive. They provide a heuristic approach and an experimental evaluation. Two recent papers (? and
?) take the approach of asking for a group notion of fairness, but over exponentially many implicitly
defined protected groups, thus mitigating what ? call the “fairness gerrymandering” problem, which
is one of the principal weaknesses of group fairness definitions. Both papers give polynomial time
reductions which yield efficient algorithms whenever a corresponding agnostic learning problem is
solvable. In contrast, in this paper, we take a different approach: we attempt to directly satisfy the
original definition of individual fairness from ?, but with substantially less information about the
underlying similarity metric.

Starting with ?, several papers have studied notions of fairness in classic and contextual bandit
problems. ? study a notion of “meritocratic” fairness in the contextual bandit setting, and prove upper
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and lower bounds on the regret achievable by algorithms that must be “fair” at every round. This can
be viewed as a variant of the ? notion of fairness, in which the expected reward of each action is used
to define the “fairness metric”. The algorithm does not originally know this metric, but must discover
it through experimentation. ? extend the work of ? to the setting in which the algorithm is faced
with a continuum of options at each time step, and give improved bounds for the linear contextual
bandit case. ? extend this line of work to the reinforcement learning setting in which the actions
of the algorithm can impact its environment. ? consider a notion of fairness based on calibration
in the simple stochastic bandit setting. Finally, ? consider a notion of online group fairness in the
stochastic contextual bandit setting by constraining how much probability mass can be placed on
each pre-specified group of arms.

There is a large literature that focuses on learning Mahalanobis distances — see ? for a survey. In
this literature, the closest paper to our work focuses on online learning of Mahalanobis distances
(?). However, this result is in a very different setting from the one we consider here. In ?, the
algorithm is repeatedly given pairs of points, and needs to predict their distance. It then learns their
true distance, and aims to minimize its squared loss. In contrast, in our paper, the main objective of
the learning algorithm is orthogonal to the metric learning problem — i.e. to minimize regret in the
linear contextual bandit problem, but while simultaneously learning and obeying a fairness constraint,
and only from weak feedback noting violations of fairness.

2 Model and Preliminaries

2.1 Linear Contextual Bandits

We study algorithms that operate in the linear contextual bandits setting. A linear contextual bandit
problem is parameterized by an unknown vector of linear coefficients θ ∈ R

d, with ||θ||2 ≤ 1.
Algorithms in this setting operate in rounds t = 1, . . . , T . In each round t, an algorithm L observes
k contexts xt

1, . . . , x
t
k ∈ R

d, scaled such that ||xt
i||2 ≤ 1. We write xt = (xt

1, . . . , x
t
k) to denote the

entire set of contexts observed at round t. After observing the contexts, the algorithm chooses an
action it. After choosing an action, the algorithm obtains some stochastic reward rtit such that rtit is

subgaussian1 and E[rtit ] = 〈xt
it , θ〉. The algorithm does not observe the reward for the actions not

chosen. When the action it is clear from context, and write rt instead of rtit .

Remark 1. For simplicity, we consider algorithms that select only a single action at every round.
However, this assumption is not necessary. In the appendix of the full version (?), we show how our
results extend to the case in which the algorithm can choose any number of actions at each round.
This assumption is sometimes more natural: for example, in a lending scenario, a bank may wish to
make loans to as many individuals as will be profitable, without a budget constraint.

In this section, we will be discussing algorithms L that are necessarily randomized. To formalize this,
we denote a history including everything observed by the algorithm up through but not including
round t as ht = ((x1, i1, r1), . . . , (xt−1, it−1, rt−1)) The space of such histories is denoted by Ht =
(Rd×k× [k]×R)t−1. An algorithm L is defined by a sequence of functions f1, . . . , fT each mapping

histories and observed contexts to probability distributions over actions: f t : Ht×R
d×k → ∆[k]. We

write πt to denote the probability distribution over actions that L plays at round t: πt = f t(ht, xt).
We view πt as a vector over [0, 1]k, and so πt

i denotes the probability that L plays action i at round
t. We denote the expected reward of the algorithm at day t as E[rt] = Ei∼πt [rti ]. It will sometimes
also be useful to refer to the vector of expected rewards across all actions on day t. We denote it as
r̄t = (〈xt

1, θ〉, . . . , 〈xt
k, θ〉).

2.2 Fairness Constraints and Feedback

We study algorithms that are constrained to behave fairly in some manner. We adapt the definition of
fairness from ? that asserts, informally, that “similar individuals should be treated similarly”. We
imagine that the decisions that our contextual bandit algorithm L makes correspond to individuals,
and that the contexts xt

i correspond to features pertaining to individuals. We adopt the following
(specialization of) the fairness definition from Dwork et al, which is parameterized by a distance
function d : Rd × R

d → R.

1A random variable X with µ = E[X] is sub-gaussian, if for all t ∈ R, E[et(X−µ)] ≤ e
t
2

2 .
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Definition 1 (?). Algorithm L is Lipschitz-fair on round t with respect to distance function d if for all
pairs of individuals i, j: |πt

i − πt
j | ≤ d(xt

i, x
t
j). For brevity, we will often just say that the algorithm

is fair at round t, with the understanding that we are always talking about this one particular kind of
fairness.

Remark 2. Note that this definition requires a fairness constraint that binds between individuals
at a single round t, but not between rounds t. This is for several reasons. First, at a philosophical
level, we want our algorithms to be able to improve with time, without being bound by choices they
made long ago before they had any information about the fairness metric. At a (related) technical
level, it is easy to construct lower bound instances that certify that it is impossible to simultaneously
guarantee that an algorithm has diminishing regret to the best fair policy, while violating fairness
constraints (now defined as binding across rounds) a sublinear number of times.

One of the main difficulties in working with Lipschitz fairness (as discussed in ?) is that the distance
function d plays a central role, but it is not clear how it should be specified. In this paper, we concern
ourselves with learning d from feedback. In particular, algorithms L will have access to a fairness
oracle, which models a regulator who “knows unfairness when he sees it”.

Informally, the fairness oracle will take as input: 1) the set of choices available to L at each round t,
and 2) the probability distribution πt that L uses to make its choices at round t, and returns the set of
all pairs of individuals for which L violates the fairness constraint.

Definition 2 (Fairness Oracle). Given a distance function d, a fairness oracle Od is a function
Od : Rd×k ×∆[k] → 2[k]×[k] defined such that: Od(x

t, πt) = {(i, j) : |πt
i − πt

j | > d(xt
i, x

t
j)}

Formally, algorithms L in our setting will operate in the following environment:

1. An adversary fixes a linear reward function θ ∈ R
d with ||θ|| ≤ 1 and a distance function d.

L is given access to the fairness oracle Od.

2. In rounds t = 1 to T :

(a) The adversary chooses contexts xt ∈ R
d×k with ||xt

i|| ≤ 1 and gives them to L.

(b) L chooses a probability distribution πt over actions, and chooses action it ∼ πt.

(c) L receives reward rtit and observes feedback Od(π
t) from the fairness oracle.

Because of the power of the adversary in this setting, it is not possible to avoid arbitrarily small
violations of the fairness constraint. Instead, we will aim to limit significant violations.

Definition 3. Algorithm L is ε-unfair on pair (i, j) at round t with respect to distance function d if
|πt

i − πt
j | > d(xt

i, x
t
j) + ε. Given a sequence of contexts and a history ht (which fixes the distribution

on actions at day t) We write Unfair(L, ε, ht) =
∑k−1

i=1

∑k
j=i+1 1(|πt

i − πt
j | > d(xt

i, x
t
j) + ε) to

denote the number of pairs on which L is ε-unfair at round t.

Given a distance function d and a history hT+1, the ε-fairness loss of an algorithm L is the total

number of pairs on which it is ε-unfair: FairnessLoss(L, hT+1, ε) =
∑T

t=1 Unfair(L, ε, ht) For
a shorthand, we write FairnessLoss(L, T, ε).

We will aim to design algorithms L that guarantee that their fairness loss is bounded with probability
1 in the worst case over the instance: i.e. in the worst case over both θ and x1, . . . , xT , and in the
worst case over the distance function d (within some allowable class of distance functions – see
Section 2.4).

2.3 Regret to the Best Fair Policy

In addition to minimizing fairness loss, we wish to design algorithms that exhibit diminishing regret
to the best fair policy. We first define a linear program that we will make use of throughout the paper.

Given a vector a ∈ R
d and a vector c ∈ R

k2

, we denote by LP (a, c) the following linear program:
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maximize
π={p1,...,pk}

k
∑

i=1

piai

subject to |pi − pj | ≤ ci,j , ∀(i, j)
k

∑

i=1

pi ≤ 1

We write π(a, c) ∈ ∆[k] to denote an optimal solution to LP (a, c). Given a set of contexts xt, recall
that r̄t is the vector representing the expected reward corresponding to each context (according to the
true, unknown linear reward function θ). Similarly, we write d̄t to denote the vector representing the
set of distances between each pair of contexts i, j (according to the true, unknown distance function
d): d̄ti,j = d(xt

i, x
t
j).

Observe that π(r̄t, d̄t) corresponds to the distribution over actions that maximizes expected reward at
round t, subject to satisfying the fairness constraints — i.e. the distribution that an optimal player,
with advance knowledge of θ would play, if he were not allowed to violate the fairness constraints at
all. This is the benchmark with respect to which we define regret:

Definition 4. Given an algorithm L (f1, . . . , fT ), a distance function d, a linear parameter vector θ,
and a history hT+1 (which includes a set of contexts x1, . . . , xT ), its regret is defined to be:

Regret(L, θ, d, hT+1) =

T
∑

t=1

E
i∼π(r̄t,d̄t)

[r̄ti ]−
T
∑

t=1

E
i∼ft(ht,xt)

[r̄ti ]

Our goal will be to design algorithms for which we can bound regret with high probability over the
randomness of hT+1 in the worst case over θ, d, and (x1, . . . , xT ).

2.4 Mahalanobis Distance

In this paper, we will restrict our attention to a special family of distance functions which are
parameterized by a matrix A:

Definition 5 (Mahalanobis distances). A function d : Rd × R
d → R is a Mahalanobis distance

function if there exists a matrix A such that for all x1, x2 ∈ R
d: d(x1, x2) = ||Ax1 −Ax2||2 where

|| · ||2 denotes Euclidean distance. Note that if A is not full rank, then this does not define a metric —
but we will allow this case (and be able to handle it in our algorithmic results).

Mahalanobis distances will be convenient for us to work with, because squared Mahalanobis distances
can be expressed as follows:

d(x1, x2)
2 = ||Ax1 −Ax2||22 = 〈A(x1 − x2), A(x1 − x2)〉

= (x1 − x2)
>A>A(x1 − x2) =

d
∑

i,j=1

Gi,j(x1 − x2)i(x1 − x2)j

where G = A>A. Observe that when x1 and x2 are fixed, this is a linear function in the entries of
the matrix G. We will use this property to reason about learning G, and thereby learning d.

3 Warmup: The Known Objective Case

In this section, we consider an easier case of the problem in which the linear objective function θ is
known to the algorithm, and the distance function d is all that is unknown. In this case, we show via
a reduction to an online learning algorithm of ?, how to simultaneously obtain a logarithmic regret
bound and a logarithmic (in T ) number of fairness violations. The analysis we do here will be useful
when we solve the full version of our problem (in which θ is unknown) in Section 4. Here, we sketch
our solution. Details are in the full version of the paper (?).
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3.1 Outline of the Solution

Recall that since we know θ, at every round t after seeing the contexts, we know the vector of
expected rewards r̄t that we would obtain for selecting each action. Our algorithm will play at each

round t the distribution π(r̄t, d̂t) that results from solving the linear program LP (r̄t, d̂t), where d̂t is
a “guess” for the pairwise distances between each context d̄t. (Recall that the optimal distribution to
play at each round is π(r̄t, d̄t).)

The main engine of our reduction is an efficient online learning algorithm for linear functions recently
given by ?. Their algorithm, which we refer to as DistanceEstimator, works in the following
setting. There is an unknown vector of linear parameters α ∈ R

m. In rounds t, the algorithm observes
a vector of features ut ∈ R

m, and produces a prediction gt ∈ R for the value 〈α, ut〉. After it makes
its prediction, the algorithm learns whether its guess was too large or not, but does not learn anything
else about the value of 〈α, ut〉. The guarantee of the algorithm is that the number of rounds in which
its prediction is off by more than ε is bounded by O(m log(m/ε))2.

Our strategy will be to instantiate
(

k
2

)

copies of this distance estimator — one for each pair of actions

— to produce guesses (d̂ti,j)
2 intended to approximate the squared pairwise distances d(xt

i, x
t
j)

2.

From this we derive estimates d̂ti,j of the pairwise distances d(xt
i, x

t
j). Note that this is a linear

estimation problem for any Mahalanobis distance, because by our observation in Section 2.4, a
squared Mahalanobis distance can be written as a linear function of the m = d2 unknown entries of
the matrix G = A>A which defines the Mahalanobis distance.

The complication is that the DistanceEstimator algorithms expect feedback at every round,
which we cannot always provide. This is because the fairness oracle Od provides feedback about

the distribution π(r̄t, d̂t) used by the algorithm, not directly about the guesses d̂t. These are not the

same, because not all of the constraints in the linear program LP (r̄t, d̂t) are necessarily tight — it

may be that |π(r̄t, d̂t)i − π(r̄t, d̂t)j | < d̂ti,j . For any copy of DistanceEstimator that does not
receive feedback, we can simply “roll back” its state and continue to the next round. But we need
to argue that we make progress — that whenever we are ε-unfair, or whenever we experience large
per-round regret, then there is at least one copy of DistanceEstimator that we can give feedback
to such that the corresponding copy of DistanceEstimator has made a large prediction error,
and we can thus charge either our fairness loss or our regret to the mistake bound of that copy of
DistanceEstimator.

As we show, there are three relevant cases.

1. In any round in which we are ε-unfair for some pair of contexts xt
i and xt

j , then it must be that

d̂ti,j ≥ d(xt
i, x

t
j)+ε, and so we can always update the (i, j)th copy of DistanceEstimator

and charge our fairness loss to its mistake bound.

2. For any pair of arms (i, j) such that we have not violated the fairness constraint, and the
(i, j)th constraint in the linear program is tight, we can provide feedback to the (i, j)th copy
of DistanceEstimator (its guess was not too large). There are two cases. Although the
algorithm never knows which case it is in, we handle each case separately in the analysis.

(a) For every constraint (i, j) in LP (r̄t, d̂t) that is tight in the optimal solution, |d̂ti,j −
d(xt

i, x
t
j)| ≤ ε. In this case, we show that our algorithm does not incur very much per

round regret.

(b) Otherwise, there is a tight constraint (i, j) such that |d̂ti,j − d(xt
i, x

t
j)| > ε. In this case,

we may incur high per-round regret — but we can charge such rounds to the mistake
bound of the (i, j)th copy of DistanceEstimator.

Theorem 1. FairnessLoss(Lknown−θ, T, ε) ≤ O
(

k2d2 log
(

d·||ATA||F
ε

))

Theorem 2. For any time horizon T : Regret(Lknown−θ, T ) ≤ O
(

k2d2 log
(

d·||A>A||F
ε

)

+ k3εT
)

Setting ε = O(1/(k3T )) yields a regret bound of O(d2 log(||A>A||F · dkT )).
2If the algorithm also learned whether or not its guess was in error by more than ε at each round, variants of

the classical halving algorithm could obtain this guarantee. But the algorithm does not receive this feedback,
which is why the more sophisticated algorithm of ? is needed.
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4 The Full Algorithm

4.1 Outline of the Solution

At a high level, our plan will be to combine the techniques used for the case where the linear objective
θ is known with a standard “optimism in the face of uncertainty” strategy for learning the parameter

vector θ. Our algorithm will maintain a ridge-regression estimate θ̃ together with confidence regions
derived in ?. After it observes the contexts xt

i at round t, it uses these to derive upper confidence
bounds on the expected rewards, corresponding to each context — represented as a vector r̂t. The

algorithm continues to maintain distance estimates, d̂t, the same way as the case where the linear
objective θ is known, using ? as a subroutine. At ever round, the algorithm then chooses its action

according to the distribution πt = π(r̂t, d̂t).

The regret analysis of the algorithm follows by decomposing the per-round regret into two pieces.
The first can be bounded by the sum of the expected widths of the confidence intervals corresponding
to each context xt

i that might be chosen at each round t, where the expectation is over the randomness
of the algorithm’s distribution πt. A theorem of ? bounds the sum of the widths of the confidence
intervals corresponding to arms actually chosen by the algorithm. Using a martingale concentration
inequality, we are able to relate these two quantities. We show that the second piece of the regret
bound can be manipulated into a form that can be bounded using machinery built in section 3, which
is described in further details in the full version (?).

Theorem 3. For any time horizon T , with probability 1− δ:

Regret(Lfull, T ) ≤ O

(

k2d2 log

(

d · ||A>A||F
ε

)

+ k3εT + d
√
T log(

T

δ
)

)

If ε = 1/k3T , this is a regret bound of O
(

k2d2 log
(

kdT · ||A>A||F
)

+ d
√
T log(T

δ
)
)

Finally, the bound on the fairness loss is identical to the bound we proved in Theorem 1 (because our

algorithm for constructing distance estimates d̂ is unchanged). We have:

Theorem 4. For any sequence of contexts and any Mahalanobis distance d(x1, x2) = ||Ax1 −
Ax2||2:

FairnessLoss(Lfull, T, ε) ≤ O

(

k2d2 log

(

d · ||A>A||F
ε

))

5 Conclusion and Future Directions

We have initiated the study of fair sequential decision making in settings where the notions of payoff
and fairness are separate and may be in tension with each other, and have shown that in a stylized
setting, optimal fair decisions can be efficiently learned even without direct knowledge of the fairness
metric. A number of extensions of our framework and results would be interesting to examine.
At a high level, the interesting question is: how much can we further relax the information about
the fairness metric available to the algorithm? For instance, what if the fairness feedback is only
partial, identifying some but not all fairness violations? What if it only indicates whether or not
there were any violations, but does not identify them? What if the feedback is not guaranteed to be
exactly consistent with any metric? Or what if the feedback is consistent with some distance function,
but not one in a known class: for example, what if the distance is not exactly Mahalanobis, but is
approximately so? In general, it is very interesting to continue to push to close the wide gap between
the study of individual fairness notions and the study of group fairness notions. When can we obtain
the strong semantics of individual fairness without making correspondingly strong assumptions?
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