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Abstract

In this paper, we propose a class of robust stochastic sub-
gradient methods for distributed learning from heterogeneous
datasets at presence of an unknown number of Byzantine
workers. The Byzantine workers, during the learning pro-
cess, may send arbitrary incorrect messages to the master
due to data corruptions, communication failures or malicious
attacks, and consequently bias the learned model. The key
to the proposed methods is a regularization term incorpo-
rated with the objective function so as to robustify the learn-
ing task and mitigate the negative effects of Byzantine at-
tacks. The resultant subgradient-based algorithms are termed
Byzantine-Robust Stochastic Aggregation methods, justifying
our acronym RSA used henceforth. In contrast to most of
the existing algorithms, RSA does not rely on the assump-
tion that the data are independent and identically distributed
(i.i.d.) on the workers, and hence fits for a wider class of ap-
plications. Theoretically, we show that: i) RSA converges to
a near-optimal solution with the learning error dependent on
the number of Byzantine workers; ii) the convergence rate
of RSA under Byzantine attacks is the same as that of the
stochastic gradient descent method, which is free of Byzan-
tine attacks. Numerically, experiments on real dataset corrob-
orate the competitive performance of RSA and a complexity
reduction compared to the state-of-the-art alternatives.

Introduction

The past decade has witnessed the proliferation of smart
phones and Internet-of-Things (IoT) devices. They gener-
ate a huge amount of data every day, from which one can
learn models of cyber-physical systems and make decisions
to improve the welfare of human being. Nevertheless, stan-
dard machine learning approaches that require centraliz-
ing the training data on one machine or in a datacenter
may not be suitable for such applications, as data collected
from distributed devices and stored at clouds lead to sig-
nificant privacy risks (Sicari et al. 2015). To alleviate user
privacy concerns, a new distributed machine learning frame-
work called federated learning has been proposed by Google
and become popular recently (McMahan and Ramage 2017;
Smith et al. 2017). Federated learning allows the training
data to be kept locally on the owners’ devices. Data samples
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and computation tasks are distributed across multiple work-
ers such as Internet-of-Things (IoT) devices in a smart home,
which are programmed to collaboratively learn a model.
Parallel implementations of popular machine learning algo-
rithms, such as stochastic gradient descent (SGD), are ap-
plied to learning from the distributed data (Bottou 2010;
Dean et al. 2012).

However, federated learning still faces two significant
challenges: high communication overhead and serious secu-
rity risk. While several recent approaches have been devel-
oped to tackle the communication bottleneck of distributed
learning (Li et al. 2014; Liu et al. 2017; Smith et al. 2017;
Chen et al. 2018b), the security issue has not been ade-
quately addressed. In federated learning applications, a num-
ber of devices may be highly unreliable or even easily com-
promised by hackers. We call these devices as Byzantine
workers. In this scenario, the learner lacks secure training
ability, which makes it vulnerable to failures, not mention-
ing adversarial attacks (Lynch 1996). For example, SGD, the
workhorse of large-scale machine learning, is vulnerable to
even one Byzantine worker (Chen, Su, and Xu 2017).

In this context, the present paper studies distributed ma-
chine learning under a general Byzantine failure model,
where the Byzantine workers can arbitrarily modify the mes-
sages transmitted from themselves to the master. With such
a model, it simply does not have any constraints on the com-
munication failures or attacks. We aim to develop efficient
distributed machine learning methods tailored for this set-
ting with provable performance guarantee.

Related work

Byzantine-robust distributed learning has received increas-
ing attention in recent years. Most of the existing algo-
rithms extend SGD to incorporate the Byzantine-robust set-
ting and assume that the data are independent and identi-
cally distributed (i.i.d.) on the workers. Under this assump-
tion, stochastic gradients computed by regular workers are
presumably distributed around the true gradient, while those
sent from the Byzantine workers to the master could be ar-
bitrary. Thus, the master is able to apply robust estimation
techniques to aggregate the stochastic gradients. Typical gra-
dient aggregation rules include geometric median (Chen, Su,
and Xu 2017), marginal trimmed mean (Yin et al. 2018a;
Xie, Koyejo, and Gupta 2018b), dimensional median (Xie,



Koyejo, and Gupta 2018a; Alistarh, Allen-Zhu, and Li
2018), etc. A more sophisticated algorithm termed as Krum
selects a gradient which has minimal summation of Eu-
clidean distances from a given number of nearest gradients
(Blanchard et al. 2017). Targeting high-dimensional learn-
ing, an iterative filtering algorithm is developed in (Su and
Xu 2018), which achieves the optimal error rate in the high-
dimensional regime. The main disadvantage of these exist-
ing algorithms comes from the i.i.d. assumption, which is ar-
guably not the case in federated learning over heterogeneous
computing units. Actually, generalizing these algorithms to
the non-i.i.d. setting is not straightforward. In addition, some
of these algorithms rely on sophisticated gradient selection
subroutines, such as those in Krum and geometric median,
which incur high computational complexity.

Other related work in this context includes (Yin et al.
2018b) that targets escaping saddle points of nonconvex op-
timization problems under Byzantine attacks, and (Chen et
al. 2018a) that leverages a gradient-coding based algorithm
for robust learning. However, the approach in (Chen et al.
2018a) needs to relocate the data points, which is not easy
to implement in the federated learning paradigm. Leverag-
ing additional data, (Xie, Koyejo, and Gupta 2018¢) stud-
ies the trustworthy score-based schemes that guarantee ef-
ficient learning even when there is only one non-Byzantine
worker, but additional data may not always be available in
practice. Our algorithms are also related to robust decentral-
ized optimization studied in, e.g., (Ben-Ameur, Bianchi, and
Jakubowicz 2016; Xu, Li, and Ling 2018), which consider
optimizing a static or dynamic cost function over a decen-
tralized network with unreliable nodes. In contrast, the focus
of this work is Byzantine-robust stochastic optimization.

Our contributions

The contributions of this paper are summarized as follows.

cl) We develop a class of robust stochastic methods ab-
breviated as RSA for distributed learning over heteroge-
neous datasets and under Byzantine attacks. RSA has several
variants, each tailored for an £,,-norm regularized robustify-
ing objective function.

c2) Performance is rigorously established for the resultant
RSA approaches, in terms of the convergence rate as well as
the error caused by the Byzantine attacks.

c3) Extensive numerical tests using the MNIST dataset
are conducted to corroborate the effectiveness of RSA in
term of both classification accuracy under Byzantine attacks
and runtime.

Distributed SGD

We consider a general distributed system, consisting of a
master and m workers, among which ¢ workers are Byzan-
tine (behaving arbitrarily). The goal is to find the optimizer
of the following problem:
min S E[F(#,&)] + fo(@). (1)
Z€eR4 =
Here # € RY is the optimization variable, fo(Z) is a regu-
larization term, and F'(Z,&;) is the loss function of worker

Algorithm 1 Distributed SGD

Master:
Input: °, o®. At time k + 1:
Broadcast its current iterate Z* to all workers;
Receive all gradients VF (¥, £¥) sent by workers;
Update the iterate via (2).

bl

Worker :
Attime k + 1:
Receive the master’s current iterate Z:
Compute a local stochastic gradient VF (7%, £F);
Send the local stochastic gradient to the server.

bl

1 with respect to a random variable ¢;. Unlike the previous
work which assumes the distributed data across the workers
are i.i.d., we consider a more practical situation: §; ~ D;,
where D; is the data distribution on worker 7 and could be
different to the distributions on other workers.

In the master-worker architecture, at time k -+ 1 of the dis-
tributed SGD algorithm, every worker ¢ receives the current
model #* from the master, samples a data point from the dis-
tribution D; with respect to a random variable ff, and com-
putes the gradient of the local empirical loss VF(z*, ¢F).
Note that this sampling process can be easily generalized to
the mini-batch setting, in which every worker samples mul-
tiple i.i.d. data points and computes the averaged gradient
of the local empirical losses. The master collects and ag-
gregates the gradients sent by the workers, and updates the
model. Its update at time k + 1 is:

FH = Gk gk <v fol@) + > VF(E", fl—‘“‘)) 2)
i=1

where a**1 is a diminishing learning rate at time & + 1. The
distributed SGD is outlined in Algorithm 1.

SGD is vulnerable to Byzantine attacks. While SGD has
well-documented performance in conventional large-scale
machine learning settings, its performance will significantly
degrade at the presence of Byzantine workers (Chen, Su,
and Xu 2017). Suppose that some of the workers are Byzan-
tine, they can report arbitrary messages or strategically send
well-designed messages according to the information sent
by other workers so as to bias the learning process. Specifi-
cally, if worker m is Byzantine, at time k + 1, it can choose
one of two following attacks:

al) sending VF (7%, &8 = oo;

a2) sending VF (&%, &5 ) = — S P VF(E, €F).

In any case, the aggregated gradient Y~ | VF (2", ¢F) used
in the SGD update (2) will be either infinite or null, and thus
the learned model Z* will either not converge or converge to
an incorrect value. The operation of SGD under Byzantine
attacks is illustrated in Figure 1.

Instead of using the simple averaging in (2), robust gra-
dient aggregation rules have been incorporated with SGD in
(Blanchard et al. 2017; Chen, Su, and Xu 2017; Xie, Koyejo,
and Gupta 2018a; Yin et al. 2018b; 2018a; Xie, Koyejo, and
Gupta 2018c). However, in the federated learning setting,
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Figure 1: The operation of SGD. There are m workers, r
being regular and the rest of ¢ = m — r being Byzantine.
The master sends the current iterate to the workers, and the
regular workers send back the stochastic gradients. The red
devil marks denote the wrong messages that the Byzantine
workers send to the master.

these aggregation rules become less effective due to the diffi-
culty of distinguishing the statistical heterogeneity from the
Byzantine attacks. In what follows, we develop a counter-
part of SGD to address the issue of robust learning from dis-
tributed heterogeneous data.

RSA for Robust Distributed Learning

Observe that due to the presence of the Byzantine workers, it
is meaningless to solve (1), which minimizes the summation
of all workers’ local expected losses without distinguishing
regular and Byzantine workers, because the Byzantine work-
ers can always prevent the learner from accessing their local
data and finding the optimal solution. Instead, a less ambi-
tious goal is to find a solution that minimizes the summation
of the regular workers’ local expected cost functions plus the
regularization term:

= arg min ZE Z,&)] + fo(2) 3)

ZERC

Here we denote B as the set of Byzantine workers and R as
the set of regular workers, with |B| = ¢ and |[R| = m — q.
Letting each regular worker ¢ have its local iterate x; and the
master have its local iterate x(, we obtain an equivalent form
to (3):

mm Z]E (@i, &)] + fo(zo) (4a)

Ti= L,lo
sto xg=x;, VieER (4b)
where = := [z;; 9] € RURIFDE ig a vector that stacks the

regular workers’ local variables x; and the master’s variable
xo. The formulation (4) is aligned with the concept of con-
sensus optimization in, e.g., (Shi et al. 2014).

/1-norm RSA

Directly solving (3) or (4) by iteratively updating Z or x is
impossible since the identities of Byzantine workers are not
available to the master. Therefore, we introduce an ¢;-norm

$k+1 —

k
1
k+1 _ _k k+1
ok = gk —a (Vfo

regularized form of (4):

xr*.= arg[ mln} Z (E[F(‘/E’Lagl)] + )\Hxl N onl) * fO(:EO)
T:=|Ti3%0) jeR
®)

where A is a positive constant. The second term in the cost
function (5) is the ¢;-norm penalty, whose minimization
forces every z; to be close to the master’s variable zy. We
will show next that how this relaxed form brings the advan-
tage of robust learning under Byzantine attacks.

In the ideal case that the identities of Byzantine workers
are revealed, we can apply a stochastic subgradient method
to solve (5). The optimization only involves the regular
workers and the master. At time k + 1, the updates of ka

at regular worker ¢ and ackH at the master are given by:

zk — ot (VF(% ) §f)+)\sjgn(:ck—$§)) (6a)

+A( Z sign(zk — ¥ )) (6b)

where sign(-) is the element-wise sign function. Given a €
R, sign(a) equals to 1 when a > 0, —1 when a < 0, and an
arbitrary value within [—1, 1] when a = 0. At time &k + 1,
each worker 7 sends the local iterate z¥ to the master, in-
stead of sending its local stochastic gradient in distributed
SGD. The master aggregates the models sent by the work-
ers to update its own model :COH In this sense, the updates
in (6) are based on model aggregation, different to gradient
aggregation in SGD.

Now let us consider how the updates in (6) behave at pres-
ence of Byzantine workers. The update of a regular worker
1 is the same as (6a), which is:

F(zF,&8)+Xsign(af —zf)) . ()

If worker 4 is Byzantine, instead of sending the value z*

computed from (6a) to the master, it sends an arbitrary vari-
able 2F € RY. The master is unable to distinguish ¥ sent by
a regular worker or z¥ sent by a Byzantrne Worker There-
fore, the update of the master at time k£ + 1 is no longer (6b),
but:

ol = ab -t (Vo(ah) + A( Y sien(al — ab)

i€R
+ Z sign(xg — zf))) (8)
JEB

We term this algorithm as ¢;-norm RSA (Byzantine-robust
stochastic aggregation).

{1-norm RSA is robust to Byzantine attacks. /;-norm
RSA is robust to Byzantine attacks due to the introduction
of the ¢1-norm regularized term to (5). The regularization
term allows every x; to be different from z(, and the bias
is controlled by the parameter A. This modification robus-
tifies the objective function when any worker is Byzantine
and behaves arbitrarily. From the algorithmic perspective,
we can observe from the update (8) that the impacts of a
regular worker and a Byzantine worker on x’g“ are similar,
no matter the how different the values sent by them to the

i

xf“ = xf—a’“‘l (V
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Figure 2: The operation of RSA. There are m workers, r
being regular and the rest of ¢ = m—r being Byzantine. The
master sends its local variable to the workers, and the regular
workers send back their local variables. The red devil marks
denote the wrong messages that the Byzantine workers send
to the master.

master are. Therefore, only the number of Byzantine work-
ers will influence the RSA update (8), rather than the magni-
tudes of malicious messages sent by the Byzantine workers.
In this sense, ¢1-norm RSA is robust to arbitrary attacks from
Byzantine workers. This is in sharp comparison with SGD,
which is vulnerable to even a single Byzantine worker.

Generalization to /,-norm RSA

In addition to solving ¢1-norm regularized problem (5), we
can also solve the following ¢,,-norm regularized problem:

w*i= argmin > (E[F(zi, )]+ Alli — zolly ) + fo(w0)
©

where p > 1. Similar to the case of ¢;-regularized objec-
tive in (5), the £, norm penalty helps mitigate the negative
influence of the Byzantine workers.

Akin to the ¢;-norm RSA, the £,-norm RSA still operates
using subgradient recursions. For each regular worker 1, its
local update at time &k + 1 is:
af T = ok — o (VE(2f, €F) + 2o,

? K3

z; = gl,)  (10)

where 0, ||z¥ — k||, is a subgradient of ||z; — 2§, at 7; =
xf Likewise, for the master, its update at time k + 1 is:

ehHl = gk g+l (Vfo(a;’g) 4 )\( 3" Ouo ks — 2,
i€R
+ Oullel —251,))  an
Jje€B

where 9, ||z& — z¥||, and 0, ||z§ — zf ||, are subgradients
of ||zg — x’;Hp and ||zg — zf”p at o = ok, respectively.

To compute the subgradient involved in £,-norm RSA, we
will rely on the following proposition.
Proposition 1. Ler p > 1 and b satisfy 3 + 5 = 1. For
x € RY, we have the subdifferential 9, ||z, = {z € R? :
(z,2) = llzllp, [lz]lo <1}

Here and thereafter, we slightly abuse the notation by us-

ing O to denote both subgradient and subdifferential. The
proof of Proposition 1 is in the supplementary document.

Algorithm 2 RSA for Robust Distributed Learning
Master:
1: Input: 2, A > 0, ok, At time k + 1:
2: Broadcast its current iterates xlg to all workers;
3: Receive all local iterates x¥ sent by regular workers or
faulty values z¥ sent by Byzantine workers;
4: Update the iterate via (8) or (11).

Regular Worker i:
Input: x?, A >0, of. Attime k + 1:
Send the current local iterate xf to the master;
Receive the master’s local iterate ;1:’0";

Update the local iterate via (7) or (10).

A

Together with £1-norm RSA, £,-norm RSA for robust dis-
tributed stochastic optimization under Byzantine attacks is
summarized in Algorithm 2 and illustrated in Figure 2.

Remark 1 (Model vs. gradient aggregation). Most exist-
ing Byzantine-robust methods are based on gradient ag-
gregation. Since each worker computes its gradient using
the same iterate, these methods do not have the consen-
sus issue (Blanchard et al. 2017; Chen, Su, and Xu 2017;
Xie, Koyejo, and Gupta 2018a; Yin et al. 2018b; 2018a;
Xie, Koyejo, and Gupta 2018c). However, to enable effi-
cient gradient aggregation, these methods require the data
stored in the workers are i.i.d., which is impractical in the
federated learning setting. Under the assumption that data
are i.i.d. on all the workers, the stochastic gradients com-
puted by regular workers are also i.i.d. and their expecta-
tions are equal. Using this prior knowledge, the master is
able to apply robust estimation techniques to aggregate the
stochastic gradients collected from both regular and Byzan-
tine workers. When the i.i.d. assumption does not hold, even
the stochastic gradients computed by regular workers are
different in expectation, such that the gradient aggregation-
based methods no longer work. In comparison, the proposed
RSA methods utilize model aggregation aiming at finding a
consensual model, and do not rely on the i.i.d. assumption.
On the other hand, the existing gradient aggregation meth-
ods generally require to design nontrivial subroutines to ag-
gregate gradients, and hence incur relatively high complex-
ities (Xie, Koyejo, and Gupta 2018a; Blanchard et al. 2017;
Su and Xu 2018). In contrast, the proposed RSA methods en-
Jjoy much lower complexities, which are the same as that of
the standard distributed SGD working in the Byzantine-free
setting. We shall demonstrate the advantage of RSA in com-
putational time in the numerical tests, in comparison with
several state-of-the-art alternatives.

Convergence Analysis

This section analyzes the performance of the proposed RSA
methods, with proofs given in the supplementary document.
We make the following assumptions.

Assumption 1. (Strong convexity) The local cost functions
E[F(Z,¢&;)] and the regularization term fo(Z) are strongly
convex with constants ; and po, respectively.



Assumption 2. (Lipschitz continuous gradients) The lo-
cal cost functions E[F(Z,&;)] and the regularization term
fo(Z) have Lipschitz continuous gradients with constants L;
and Ly, respectively.

Assumption 3. (Bounded variance) For every worker i,
the data sampling is i.i.d. across time such that ¥ ~ D;.
The variance of VF(Z,&;) is upper bounded by 47, namely,
E[|IVE[F(z,&)] — VF(2,&)]1°] < 6.

Note that Assumptions 1-3 are standard for performance
analysis of stochastic gradient-based methods (Nemirovski
etal. 2009), and they are satisfied in a wide range of machine
learning problems such as ¢5-regularized least squares and
logistic regression.

We start with investigating the £,,-norm regularized prob-
lem (9), showing the condition under which the optimal so-
lution of (9) is consensual and identical to that of (3).

Theorem 1. Suppose that Assumptions 1 and 2 hold. If
A > Ao = maxier |[VE[F(Z*,&)]|ls withp > 1 and b
satisfying %—I— % = 1, then we have x* = [Z*], where * and
x* are the optimal solutions of (3) and (9), respectively.

Theorem 1 asserts that if the penalty constant A is selected
to be large enough, the optimal solution of the regularized
problem (9) is the same as that of (3). Next, we shall check
the convergence properties of the RSA iterates with respect
to the optimal solution of (9) under Byzantine attacks.

Theorem 2. Suppose that Assumptions 1, 2 and 3 hold.
Set the step size of {,-norm RSA (p > 1) as aktl =

min{a, %H} where o and @ depend on {uo, pi, Lo, L; }.
Then, for kg satisfying min{k : « > klﬂ} we have:

al\g + Ay

Efla* !~ |? < (1—na) | —a* |2+ k< kg

(12)
and A
Ellz* ! — ¥ < lel +aly, k>ky  (13)
where m, Ay and Ay = O(N\q?) are certain positive con-
stants.

Theorem 2 shows that the sequence of local iterates con-
verge sublinearly to the near-optimal solution of the regu-
larized problem (9). The asymptotic sub-optimality gap is
quadratically dependent on the number of Byzantine work-
ers ¢. Building upon Theorems 1 and 2, we can arrive at the
following theorem.

Theorem 3. Under the same assumptions as those in The-
orem 2, if we choose A > Xy according to Theorem 1, then
for a sufficiently large k > ko, we have:

- Ay
Blle" — (]| < 757 + @A (14)

If we choose 0 < X\ < Ao, and suppose that the difference
between the optimizer of (9) and that of (3) is bounded by
[|[z* — [2*]]|> < As, then for k > ko we have:

2A,
k+1

E||z* — [#7]])? < +2al, +2A3  (15)

Theorem 3 implies that the sequence of local iterates also
converge sublinearly to the near-optimal solution of the orig-
inal (3). Under a properly selected A, the sub-optimality
gap in the limit is proportional to the number of Byzantine
workers. Note that since the O(1/k) step size is quite sensi-
tive to its initial value (Nemirovski et al. 2009), we use the
O(1/Vk) step size in our numerical tests. Its corresponding
theoretical claim and convergence analysis are given in the
supplementary document.

Regarding the optimal selection of the penalty constant A
and the £, norm, a remark follows next.

Remark 2 (Optimal selection of A and p). Selecting dif-
ferent penalty constant X and {, norms in RSA generally
leads to distinct performance. For a fixed ), if a norm £,
with a small p is used, the dual norm ¢ has a large b and
thus results in a small \g in Theorem 1. Therefore, the lo-
cal solutions are likely to be consensual. From the numer-
ical tests, RSA with {~, norm does not provide competitive
performance, while those with {1 and {2 norms work well.
On the other hand, for a fixed p, a small A\ cannot guar-
antee consensus among local solutions, but it gives a small
sub-optimality gap Ao. We recommend to use a A that is
relatively smaller than )\, slightly sacrificing consensus but
reducing the sub-optimality gap.

Numerical Tests

In this section, we evaluate the robustness of the proposed
RSA methods to Byzantine attacks and compare them with
several benchmark algorithms. We conduct experiments on
the MNIST dataset, which has 60k training samples and 10k
testing samples, and use softmax regression with an £5-norm
regularization term fo(Z) = %21 Z||*. We launch 20 worker
processes and 1 master process on a computer with Intel i7-
6700 CPU @ 3.40GHz. In the i.i.d. case, the training sam-
ples are randomly evenly assigned to the workers. In the het-
erogeneous case, every two workers evenly share the train-
ing samples of one digit. At every iteration, every regular
worker estimates its local gradient on a mini-batch of 32
samples. The top-1 accuracy (evaluated with zy in RSA and
Z in the benchmark algorithms) on the test dataset is used as
the performance metric.

Benchmark algorithms

We use the SGD iteration (2) without attacks as the oracle,
which is referred as Ideal SGD. Note that this method is not
affected by ¢, the number of Byzantine workers. The other
benchmark algorithms implement the following stochastic
gradient aggregation recursion:

jk‘kl — .fk _ Oék+1@(53k) (16)

where V (#*) is an algorithm-dependent aggregated stochas-
tic gradient that approximates the gradient direction, at the
point Z* sent by the master to the workers. Let the message
sent by worker ¢ to the master be v,’»“, which is a stochas-
tic gradient VF (2%, £F) if 4 is regular, while arbitrary if 7 is
Byzantine. The benchmark algorithms use different rules to
calculate the aggregated stochastic gradient.
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Figure 3: Top-1 accuracy without Byzantine attacks.

GeoMed (Chen, Su, and Xu 2017). The geometric median
of {vF : i € [m]} is denoted by:

CGeoMed({vF}) = arg minz v —vF||2. (17)
vER

i=1

We use a fast Weiszfeld’s algorithm (Weiszfeld and Plastria
2009) to compute the geometric median in the experiments.

Krum (Blanchard et al. 2017). Krum calculates @(QE’“) by:

Krum({vf}) = vk, i* = argminz |[oF — U;»CH2 (18)
i€[m] ;3 J

where i — j(i # j) selects the indexes j of the m — g — 2
nearest neighbors of v} in {v} : j € [m]}, measured by
Euclidean distances. Note that g, the number of Byzantine
workers, must be known in advance in Krum.
Median (Xie, Koyejo, and Gupta 2018a). The marginal me-
dian aggregation rule returns the element-wise median of the
vectors {vF : i € [m]}.
SGD (Bottou 2010). The classical SGD aggregates {v¥ :
i € [m]} by returning the mean, and is hence not robust to
Byzantine attacks.

In the following experiments, step sizes of the benchmark
algorithms are all hand-tuned to the best.

Without Byzantine attacks

In this test, we consider learning without Byzantine workers,
and show the performance of all algorithms in Figure 3. ¢;-
norm RSA chooses the parameter A = 0.1 and the step size
ak = 0.003/\/%. RSA and GeoMed are close to Ideal SGD,
and significantly outperform Krum and Median. Therefore,
robustifying the cost in RSA, though introduces bias, does
not sacrifice performance in the regular case.

Same-value attacks

The same-value attacks set the message sent by a Byzantine
worker i as vf = cl. Here 1 € R? is an all-one vector
and c is a constant, which we set as 100. We consider two
different numbers of Byzantine workers, ¢ = 4 and ¢ = 8,
and demonstrate the performance in Figure 4. ¢;-norm RSA
chooses the regularization parameter A\ = 0.07 and the step
size of = 0.001/\/@. When g = 4, SGD fails, while RSA
and GeoMed are still close to Ideal SGD and outperform
Krum and Median. When ¢ is increased to ¢ = 8, Krum
and Median perform worse than in ¢ = 4, while RSA and
GeoMed are almost the same as in ¢ = 4.
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Figure 4: Top-1 accuracy under same-value attacks: (a) ¢ =
4 and ¢ = 100; (b) ¢ = 8 and ¢ = 100.
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Figure 5: Top-1 accuracy under sign-flipping attacks: (a) ¢ =
4and o = —4;(b) ¢ =8 and 0 = —4.

Sign-flipping attacks

The sign-flipping attacks flip the signs of messages (gra-
dients or local iterates) and enlarge the magnitudes. To be
specific, a Byzantine worker ¢ first calculates the true value
0¥, and then sends vf = o9 to the master, where o is a
negative constant. We test o = —4 while set ¢ = 4 and
q = 8, as shown in Figure 5. The parameters are A = 0.07
and o« = 0.001/\/% for ¢ = 4, while A = 0.01 and
a = 0.0003/\/E for ¢ = 8. Not surprisingly, SGD fails in
both cases. GeoMed, Median and ¢;-norm RSA show simi-
lar performance, and Median is slightly worse than the other
Byzantine-robust algorithms.

Runtime comparison

We show in Figure 6 the runtime of the algorithms under
the same-value attacks with parameter ¢ = 100 and ¢ = 8
Byzantine workers. The total number of iterations for ev-
ery algorithm is 5000. Though the algorithms are not im-
plemented in a federated learning platform, the comparison
clearly demonstrates the additional per-iteration computa-
tional costs incurred in handling Byzantine attacks. GeoMed
has the largest per-iteration computational cost due to the
difficulty of calculating the geometric median. £;-norm RSA
and Median are both slightly slower than Ideal SGD, but
faster than Krum. The only computational overhead of RSA
than Ideal SDG lies in the computation of sign functions,
which is light-weight. Therefore, RSA is advantageous in
computational complexity comparing to other complicated
gradient aggregation approaches.
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Figure 6: Runtime under same-value attacks with ¢ = 8 and
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Impact of hyper-parameter \

We vary the hyper-parameter )\, and show how it affects the
performance. We use the same value attacks with ¢ = 100,
vary A, run RSA for 5000 iterations, and depict the final top-
1 accuracy in Figure 7. The number of Byzantine workers is
g = 8 and the step sizes are hand-tuned to the best. Observe
that when )\ is small, a regular worker tends to rely on its
own data such that information fusion over the network is
slow, which leads to slow convergence and large error. On
the other hand, a large A also incurs remarkable error, as we
have investigated in the convergence analysis.

RSA with different norms

Now we compare RSA methods regularized with different
norms. The results without Byzantine attacks and under the
same-value attacks with ¢ = 8 and ¢ = 100 are demon-
strated in Figures 8 and 9, respectively. We consider two
performance metrics, top-1 accuracy and variance of the reg-
ular workers’ local iterates. A small variance means that the
regular workers reach similar solutions. Without the Byzan-
tine attacks, ¢, is with A\ = 0.1 and o* = 0.001/Vk, £;
is with A = 1.4 and o* = 0.001/Vk, while o, is with
A = 51 and o = 0.0001/+v/k. Under the same-value at-
tacks, ¢ is with A\ = 0.07 and o* = 0.001/Vk, {5 is with
A=12ando* = 0.00l/\/E, while ¢, is with A = 20 and
aF = 0.000l/\/E. In both cases, ¢1-norm RSA and #/5-norm
RSA are close in terms of top-1 accuracy, and both of them is
better than /..-norm RSA. This observation coincides with
our convergence analysis, namely, {,.-norm RSA needs a
large A to ensure consensus, which in turn causes a large
error. Indeed, we deliberately choose a not-too-large A for
{~-norm RSA so as to reduce the error, but sacrificing the
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Figure 8: RSA with different norms, without Byzantine at-
tacks: (a) top-1 accuracy; (b) variance of regular workers’
local iterates.
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Figure 9: RSA with different norms, under same-value at-
tacks with ¢ = 8 and ¢ = 100: (a) top-1 accuracy; (b) vari-
ance of regular workers’ local iterates.

Number of Iterations

consensus property. Therefore, regarding the variance of the
regular workers’ local iterates, {,,-norm RSA is the largest,
while ¢5-norm RSA is smaller than #;-norm RSA.

Heterogeneous Data

To show the robustness of RSA on heterogeneous dataset,
we re-distribute the MNIST data in this way: each two work-
ers associate with the data about the same handwriting digit.
In experiment, each Byzantine worker ¢ transmits vf = vf,
where worker r is one of the regular workers. We set = 1
in the experiment. The results are shown in Figure 10. When
q = 4, two handwriting numbers’ data are not available
in the experiment, such that the best possible accuracy is
around 0.8. When ¢ = 8§, the best possible accuracy is
around 0.6. The parameters of ¢;-norm RSA are A\ = 0.5
and o = 0.0005/v/k. Observe that when ¢ = 4, Krum
fails, while RSA outperforms GeoMed and Median. When ¢
increases to 8, GeoMed, Krum and Median all fail, but RSA
still performs well and reaches the near-optimal accuracy.

Conclusions

This paper dealt with distributed learning under Byzantine
attacks. While the existing work mostly focuses on the case
of i.i.d. data and relies on costly gradient aggregation rules,
we developed an efficient variant of SGD for distributed
learning from heterogeneous datasets under the Byzantine
attacks. The resultant SGD-based methods that we term
RSA converges to a near-optimal solution at an O(1/k) con-
vergence rate, where the optimality gap depends on the num-
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Figure 10: Top-1 accuracy under attacks on heterogeneous
data: (a) g = 4; (b) ¢ = 8.

ber of Byzantine workers. In the Byzantine-free settings,
both SGD and RSA converge to the optimal solution at sub-
linear convergence rate. Numerically, experiments on real
data corroborate the competitive performance of RSA com-
pared to the state-of-the-art alternatives.
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Supplementary Document for ‘“RSA: Byzantine-Robust Stochastic Aggregation Methods for

Distributed Learning from Heterogeneous Datasets”

In this supplementary document, we present omitted proofs in the main manuscript.

Proof of Proposition 1
Proof. The proof has two parts.
e Proof of {z € RY: (z,2) = ||z, ||2|ls < 1} C Ou|lz]lp :

Considering any z € {z € R?: (z,z) = ||z, ||z]lp < 1}, we have:

[zllp + (2,5 = z) = (z,9) < lz[lbllyllo < llyllp

where (z,y) < ||z||s|ly||, due to Holder’s inequality. According to the definition of subdifferential, it holds that z € 0, ||x||,..

e Proof of O, ||z, € {z € R : (z,2) = ||z|lp, ||2]ls < 1}:

Considering any z € 0, ||z||,, one can always find a vector x. that satisfies ||z.||, = 1 and (2, z.) = ||z|, since ; + % =1

Lety = ||z||pz ., we have:

lyllp = llzllp = 2,y — ) = (2,9) — (z,2) = ||zllpllzlls — (2, 2)

where the first inequality comes from the definition of subdifferential. Since ||y||, — |||, = 0 when y = |||z, and
llz2|l, = 1, the above result yields 0 > ||z||,||z]|» — (z, z). However, due to the Holder’s inequality it also holds ||z||,[|z||s >

(z, ). Thus, we must have ||z|,| 2|, = (z, z).

For z # 0, we use the definition of subdifferential to derive ||2z|, — ||z||, > (z, ) and ||0]|, — ||z||, > (2, —z), from which

we conclude that (z, ) = ||z||,. Since ||z|,| 2|l» = (z, z), we have ||z||;, = 1.

For z = 0, it holds that (z,z) = ||z||,. Due to |||, — [|0||, > (z,z) from the definition of subdifferential, as well as

llz2|l, = 1 and (z,z.) = ||z||s by hypothesis, we have ||z||, < 1.

Proof of Theorem 1

Proof. Since \g = max;cr | VE[F(Z*,&)]|lp and A > g, we have VE[F(2*,£;)] € {A\z : ||z]lp < 1}. Asp > 1 and

i+ ]lj = 1, by Proposition 1, we have VE[F(&*,¢;)] € A||0]|,, for all i € R, and consequently:
0 € VE[F(z*,&)] + A||T* — &*||,, Vie R
Also, by VE[F(i*,&;)] € A9||0], for all i € R, there exists v; € 9||0]|,, such that:
VE[F(E*,&)] + Ay =0, Vi € R

Summing (20) up for ¢ € R, we have:

> (VE[F(Q}*,&)] + )\Vi) =0

i€R
From the optimality condition of (3), 3=, . VE[F(z*,&;)] +V fo(&*) = 0. Substituting this equality to (21), we have:
ViE) =D =0
i€R

Because every v; is a vector satisfying v; € 9||0]|,, it is straightforward to conclude that:

0 € Vfo(@)+ Y A& — &l

i€ER

19)

(20)

2n

(22)

(23)

Combining (19) and (23), we know that 2* := [Z*] (that is, x} = Z* for all i € R and z{; = Z*) satisfies the optimality

condition of (9). This solution is also unique due to Assumption 1.



Proof of Theorem 2
We first give a complete form of Theorem 2 as follows.

A complete form of Theorem 2. Suppose that Assumptions 1, 2 and 3 hold. Set the step size of £,-norm RSA (p > 1) as

aFtl = min{a, kiﬂ}, where @ = min{min;ex 2(%}%1‘), Q(HoirLo) }, and @ > % with n = min{min;eg Zf‘erL:, ,%LiLL?, — €},
and e is any constant within (0, ié‘j‘rLL?) ). Then, there exists a smallest integer kg satisfying o > % such that:
Elle** — 2|2 < (1 — na)*E[2® — *|* + %(QAO L A), Yk < ko (24)
and
E[z* ! — 2|2 < ki + @y, Yk > ko. 25)

Here we define

@A azA
A = max{ao, (ko + 1)E||zFo — z*||2 + 220 }
noa —1

ko+1
as well as
2 2.2 2 2 2 Ng*d
Ao =16X°rd + 16)*rd + 2X°¢°d +2 ) 67 and A, = :
i€R
Proof. The proof contains the following steps.
Step 1. From the RSA update (10) at every regular worker ¢, we have:
Elai* — z’fllz
=E||z¥ — 2} — VF(zk, 8 + 2\, ||zF — = )2
|| (V) fl )1 o6

=E|af — 2} [* + (a k+1)2EHVF( z,ﬁk)+)\3 — 25y
20 E(V F (2, &), af — af) — k+1E</\3xiH% — @ llp i — )
Since z¥ is independent with £F, it follows that:
E[(VF(xf, &), 2] — 2})] = E[(VE[F(a}, )], af — a7)]. @7)
Substituting (27) to (26), we have:
El|lzi+t — a7 *Eka —af|? + (a*F)? EHVF( 2}, &) + Ay, $o||p
208 E(VE[F(2F, &F)], 2k — 27) - ’“+1E<)\8L

I?

I

— @l i — )

(a)

ZEHff 2i|? + (@M)PE|VF (2}, &) + A, $o||p||2 (28)
k+1E<VE[F( ivf')}_ [ ( mg )} x —.13>
kHEO\azz onp — Ay, [|lz %Hp» i — ;)

where in (a), we insert the optimality condition of (9) with respect to x;, namely, [ F(z7, fl)] + A0y,
replace &; by £F due to £F ~ D;.
For the second term at the right-hand side of (28) we have:

E|VF(xf, &) + As, a7 — a1
=E||VE[F (2}, )] +A3L e —xo\\p+VF( 7€) = VE[F(2f, €))7
<2E|VE([F(z7,€)] + Aq, I+ 2E[|VF (2}, &) — VE[F(},€0)]11%]

xzf —a§|l, =0, and

(29)

(®)
<2E|VE[F(a},&)] + A%fo — glpll* + 267

where (b) is due to the bounded variance given by Assumption 3. Plugging the optimality condition E [VF (wF, &F )} + A0y, ||zF—
x§ll, = 0 into the right-hand side of (29) yieldS'

E||VF (¥, &F) + Aoy, ||2F — 2|,
SQEHVE[ (xivffﬂ - [ (x i@k)} + A0z,
<4E|VE[F(z¥,¢f)] — VE[F <z,5’“)}||2+4A2EH8

I?

x; = aglpl® + 267
= aglpll* + 267

370”17 — Ay,

(30)

‘TOHP 11‘,

©
<AE|VE[F(zF,&8)] — VE[F (2}, &0)]|1* + 16A%d + 267



where (c) holds true because the b-norm of 0, — 2k, (or Oy, — x| p) is no larger than 1 according to Proposition 1,
and thus the absolute value of every element of the d dimensional Vector Oz, ||lzk — 2§l (or Oy, ||z — x§]|,) is no larger than 1.

For the third term at the right-hand side of (28), since E [F (24, ff)] is strongly convex and has L1psch1tz continuous gradients
by hypothesis, we have (Nesterov 2013):

piL; *
E(VE[F(zf,€)] - VE[F(s;,€0)] ot — ) 2 FUEBlat — o)+ -BIVE[P(at.£)] - VE[F (s €]
(31)
Substituting (30) and (31) into (28), we have:
205+ . L.
Bl —af P < (1= 255 ) Bt - o]+ (@) 1002+ 20)
i + L
1
— 2aFH1 ( - za’f“) E||VE[F(z¥, ¢8| — VE[F(27,€M)]|1?
e || [ (a¥, )] - VE[F(a}, )| .
k+1E<>\8mq xo”p — A0y, ||z onpa - ;)
< (1 — nak'H) E| ZCZ — ] H2 (a’“‘l) (16)\2(1 + 25?)

20" BN [l — w6 llp — A |2 — 251, 2f — )

K3

where we drop the term of E||VE [F(z¥,&F)| — VE[F(x},£F)] ||? because M--ler —2a%+1 > 0 according to the step size rule.
Step 2. From the RSA update (11) at the master, we have:

Ellg™ — a5l

2
=8 — - @ (o) 4 AL Bl — ol + 3 3 0l — 21, )
ieR jeB
k 2 k12 k kL k K k ? (33)
—Elaf 5]+ (0 71)2B] (o) + 3 3 0l =l + A Y Ol — 2o
iER jEB
22" E(V fo(a6) + A Z Ouo |l — 2 |l 6 — 75) — 201k+1]E<>\Z ol — 25 |lp> 26 — )
ieR jeB
For the second term at the right-hand side of (33), we have:
2
BV o(ek) + 3 3 dnll = bl + 3 Y 0l ~ 21,
i ieB
€ER ) JjE , (34)
<[V o) + 3 3 0nll — 1|+ 22%B| 3 0nla - 21,
ieR jeB
Since every element of the d-dimensional vector &, [|zf — 2F||,, is within [—1, 1], it holds:
2
E|[ Y Ol — 251l < ¢*d. (35)

jeB
For E||V fo(z) + A 2ier Oro lzk — 2%/, ||?, we insert the optimality condition of (9) with respect to zg, namely, V fo () +
A ier Oollzi — 5|, = 0 to obtain:

2
EHVfo<x’a> A Ol — ot
1€ER
2
SEHVfo(z’S) Vo) A Ouolleh — bl — A S Bl — il
iER ieR (36)
2
OBV folek) — V fola) |+ 2NE|| " bl — a¥ll, — 3 Byl — 2l
1ER 1ER

<2E||Vfo(x5) — V folzg)lI* +83*r?d



Substituting (35) and (36) into (34) yields:

EvaO(x’g) +A Z Oz, Hx(lj - fpr + A Z Oz, Hxlg - Z;'CHPHQ
iER JjEB 37
U]V o (k) — ¥ folai) |2 + 163252 + 20%%d
For the third term at the right-hand side of (33), we insert V fo(z5) + A > c g O, ll2] — 25, = 0, the optimality condition
of (9) with respect to xg, and obtain:

E<Vfo(x§) +A Z 6950H33]5 - ;L‘?Hp,xlg — )

i€R
=EA Y Oullaf — @ llp =AY uo g — @l — ) + E(V folat) = V folap), af — )
i€ER =
SEOY Ol — 6l — A3 0l — o — ) + LB~ a2 4 B[ fo(ah) — Vo)
T = = po + Lo po + Lo

(38)

where (d) is due to the fact that fj is strongly convex and has Lipschitz continuous gradients (cf. Assumptions 1 and 2).

For the last term at the right-hand side of (33), it holds for any € > 0 that:
* * AQ 2
2E(AY Ol — 211y 2t — a5 ) <eBllak — a5l + SB[ 3 nolab — 25
JjEB JjEB (39)
A2q2d
<cBljof - aj|* + =
€
Substituting (37), (38) and (39) into (33), we have:
200 L k+1)\2 2d
Eflc+! — 23|12 < (1 _(Hoto e)ak+1> Ellzf~ — 252 + (a"+1)2(1602r2d + 222¢%d) + & 2 L¢
po + Lo
2
k+1 k+1 k 112
-« — — 4« E|Vfo(zs) — Vfo(x
(g - 0" BIVSoleb) ~ Vol

- QO‘k—HEO‘ Z Oz, ”xlg - xf”p —A Z Onollzg — 7 |, mg — ) (40)

i€R i€R
ak+1)\2q2d
<1 =P HE||zk — 25|12 + (T2 (1602 r%d + 202 ¢%d) + ———

— 20F BN Y Oy, 2 — 2llp — A Bug g — 27 2 — w)-
1ER 1ER

We drop the term of E||V fo(2§) — V fo(x3)||? because ,uo-il-Lo — 2ak*1 > 0 according to the step size rule.

Step 3. Denote g,(x) = >, i — 2ol|p. Since g,(x) is convex, we have:

<8xgp(5'3k) — 0zp(z"), a* — z*)

= Ol — ablly — O, 2} — wfllpyat — aF) + D (Oug 2k — &l — Ougllah — afllpak — ) >0, @D
1ER 1ER

Summing up (32) for all ¢ € R, adding (40) and substituting (41), we have:

i i i i ak+1/\2q2d
E(|lzF T — 2*]|? <(1 — na®™E||zF — 2|2 + (oFTH2(16A%rd + 16A%r%d 4+ 2)\%¢%d + 2 Z 82+ ——F—
i€R ¢ (42)
=(1 —na"ME||z* — 2*||2 + (o"T1)2A¢ + T A,
where for simplicity we denote:

X2¢2d
Ao = 16\2rd + 16A%r2d + 20%¢°d +2 67 and Ay = ~1C, (43)
€
1ER




According to the step size rule a**!

ak+1

= min{a, 57}, there exists a smallest integer ko satisfying o > 25 such that
= a when k < ko and o1 = ,%H when k > kq. Then for all k& < kg, (42) becomes:

E|jzF ! — 2%)2 < (1 — na)E|jz® — 2% + (@)?A¢ + ala, VE < k. (44)

By definitions = min{min;cr uHT’ %“_‘;ﬁ — ¢} and @ = min{min;er GIE e 2(u0+Lo)}’ na € (0,1). Applying

telescopic cancellation to (44) through time 0 to k < kg yields:

1
EljzF T — 2% < (1 — na)*Ef|2° — 2% + = (alo + Az), VE < ko (45)
n
For all k > kg, (42) becomes:
o] @A aA
E k+17*2< 1— no E k%2 o 0 2 k> ko. 46
o+ =212 < ( —,Hl) I~ P+ i he . R (46)
Note that 1 — k—H c (i 1) when k > ko because L T +1 a < k;’ T <na< i. We use induction to prove that:
Aq
E|2*tt — 2% < k—+aA2, Yk > ko (47)

where

@A a2A
A :max{ L 20 (ko + DE[|zre — 2*||? + 220 }
na —1

ko+1
When k = kg, (47) holds because by (46) it follows:

a’A alA
Ellgkotl _ %12 < Ellzko — 2|12 a 2o 2
E 17 < (= P — P+ o +
< E||z*o |12 + ﬂ +aA (48)
< Ejlx T (ko + 1) [a7AV,

+ OéAQ

<
< ko
Then, we assume that (47) holds for a certain k > kg and establish an upper bound for E||z**2 — 2*||2 as:

__ ) —
na k1 w12 a“Ag aly
Al 1) _

rro Bl e e s

__ 2
<(1- na)A1 RVAY

]E||mk+2 o ‘T*H2 S(l .

Ay

+al; + (1 —na)

E+2k+1  (k+2)? k+2
(e) no Aq EQAO
<(1- ) + +als
k+2'k+1 " (k+2)2 49)
) na . Ay (pa—-1)A;
<(1-
S0t T T

e T2 Rl e T

kiAl +als

+ @lAs

where (e) uses the fact that @ > %, and (f) follows from A; > ?;f({ . This completes the induction as well as the proof.

Convergence of RSA with O(1/v/k) Step Size

Define the objective function in (9) as:

hp(@) = > (EIF (i, &)] + Alli = wolly ) + folwo). (50)

i€R

We have the following theorem for RSA with O(1/v/k) step size.



Theorem 4. Suppose that Assumptions 1, 2 and 3 hold. Set the step size of £,,-norm RSA (p > 1) as a**l = min{q, \/%}

where o = min{min;cg 4“T"2, %} @ > 0, and € is any constant within (0, 1), then we have:
i 0

Ellz° —z*||? + A THhH2 A log & A
2 = " + A ¥ (o B o(leshy 8 s

E[hp(f’“) —hp(x*)} < 25 arH 2 2

where T is the running average solution
~k Zﬁ:o amta”
€T = 0
Yroea™
r=
while Ay and Ay = O(N\2¢?) are constants defined as
A2q%d
P

Ao =16)\°rd + 16)*r*d + 2\°¢°d + 2 67 and Ay =
I€ER

Proof. For those equalities and inequalities that also appear in the proof of Theorem 2, we shall directly cite them. The proof
contains the following steps.
Step 1. From the RSA update (10) at every regular worker 7, corresponding to (28) we have:

Elzf™ — 27| =E|laf — 7| + (o")? EIIVF( “5’“)+A8 :vollp
20 E(VE[F(2f,€8)], 2f — 27) — ’““E(A@L

I

bl — )
(?EHx’-“—xﬂF (FIVE[VE(E, ) + Ay, 2 (52)
20 E(E[F (e, )] — B[P <zi7sf>]+5ua:ﬁx:fn>

20 E (N, [} — bl 2k - 27)

where (a) is due to the strong convexity of E [F(x;, £F)].
For the second term at the right-hand side of (52) we have:

E|VF(xf, &) + A5, a7 — a1
=E||VE[F(zf, &)] +>\8II$' _%Hp"’VF( 1€ — VE[F(z f,ﬁk)]||2
<2E|VE[F(af,&)] + A0, I+ 2E[|VF (2}, &) — VE[F(a7,€0)] %]

(53)

<o VE[F (e, )] + ol - |12 + 207
where (b) is due to the bounded variance given by Assumption 3. Plugging the optimality condition E [V F(z}, &F)| + A0y, ||z} —
x|l = Ointo E|VE[F(a¥,£8)] + A0y, ||l2¥ — 2§ ||,||? in the right-hand side of (53) yields:
E[VF(z}, &) + M|z} — 5,12
<2E|VE[F(a},&)] — E[F(27,&)] + Mlzf — agllp — M} — a5, |1* + 267

<AE||VE[F(a},€])] — VE[F(a},&)]II* + 4N Ell0]2f — xgll, — Oll2} — 25, ]1* + 267 (54)

©
<4E|VE([F (2}, &)] — VE[F (2], &)] |1 +16)\%d + 267

(d)
<ALZE||zF — 272 + 160%d + 262

where (c) holds true because the b-norm of 9., ||z¥ — z§ ||, (or O, ||z} — || p) is no larger than 1 accordmg to Proposition 1,
and thus the absolute value of every element of the d- dlmensmnal Vector Oy, ||xF — k||, (or Oy,
1, and (d) is due to the Lipschitz continuous gradients of F'(z;, &; k ). Substituting (54) into (52), we have:

Elaf*" — 27| <E||2f — 27| — 2" E(B[F (2}, £)] — E[F(27,£0)])
— akH(ui — 40/““[%2 IE||331 -z ||2 (ak+1)2(16)\2d + 2(5?)
2ak+1E<)‘aﬂci ||‘P‘C']LC - IISHQW l‘f - I;k> (55)
<Ellzj — 27| — 2* (B[ F (2, &)] — E[F(z7,£)])
— 20/““153()«9“ ||xiC — xlng, xf —a7) + (@*1)2(16A%d + 207)




We drop the term of E||z¥ — 27||? because p; — 4a*+1L? > 0 according to the step size rule.
Step 2. From the RSA update (11) at the master, we have:

Elzs™ — 25l
2

=E| x5 — x5 — o™t (Vfo(z'o“) FAY Ougllat —afllp + A Oullat — Zfllza)
i€R jeB
" (56)
=El|zf§ — x5 + (@*)E[V fo(z§) + A Ougllzt — 2l + A D Oug 2t — 2111
1ER JEB
. 2ak+1E<Vf0(x’g> A Ol — 2k, — x;;> —20MENY Oyl — 2, 2 — 25
i€R jeB
which is the same as (33).
For the second term at the right-hand side of (56), corresponding (57), we have:
EI|V fo(at) + A Y Oayllat = afllp + A sl — 25,17
k o k ko2 " 2 k k12 (57)
<E|V fo(x§) + XY Bupllat — 2 lIpl* + 2X°E[| D dug s — 2 Il
i€R jeB

For E||V fo(z§) + A Y ;cr Ouoll@f — 2¥|,]|%, we insert the optimality condition of (9) with respect to xo, namely, V fo () +
A ZieR aﬂco ||J);< - xSHP = 0 to obtain:

E|IV fo(zf) + A Y Ouollz — ]|

1ER
<E||V fo(ah) = Volag) + XY Oullzh — 2y — A Ouglle} — 2,12
1ER 1ER
<PE|V fo(ah) — Vfolah)|? + 202E| S Ougllzh — el — 3 Oyl — 71,17 (58)
1€ER 1ER

SOE(V fo(a) = V folap)||” +8)\*r%d
(e)
<2L2E||xf — xg||* + 8\*r2d

where (e) is due to the Lipschitz continuous gradients of fo(zo). Substituting E|| >, 5 9z, |lzk — zf lplI? < ¢*d in (35) and
(58) into (57) yields:

B[V folah) + A Y ngllah — 2l + A D Ouglleh — 2H |2 SALZE|of — a | + 16N72d + 20%%d (50,
iI€ER jeEB

For the third term at the right-hand side of (56), since fy(xg) is strongly convex with constant iy, we have:

]E<Vfo(m§) +A Z Oz, Hxlg - x?”?a xlg —xp)
iI€ER

(60)
* Ho * *
>E(fo(wg) = folw) + 5 llwg — w5ll*) + EAD Ou s — 2|y, 2§ — )
i€R
For the last term at the right-hand side of (56), it holds for any € > 0 that:
OR( A B k_ _Jk k_*<E k%2 LZE ) k_ _k 2
Z o120 — 25 llps 76 — 25 ) <eEzg — zg]|” + c Z o llzo — 25 [l
JjEB jEB (61)

\q%d
<eBllf — ol + ——.



Substituting (59), (60) and (61) into (56), we have:

ak+1)\2q2d
Ellzg*! — a5)|* <Ellag — apl* + ("*1)?(16X°r°d + 20%¢°d) + ————

— 20FE[fo(26) — fo(x5)] — 25BN Ol — ¥ llp, 26 — )
i€ER
— o (o — ALG T — OE|[|zf — x5
k+1)\2 2d
<E|jzk — 23||? + (@F1)2(1602r2d + 2)2¢%d) + 1L ¢
= 20*E[fo(2f) — fo(5)] — 25BN On, ||z — ¥ llp, 2f — )
1ER

where we drop the term of E||z& — 4| because g — 4L2a*+! — ¢ > 0 according to the step size rule.
Step 3. Using the convexity of ||z; — zg||p, we have:

k k k k k k k k
Z@zi zg — 25 lp, 27 — 27) + Z@xo”% = 5 |lp, w5 — 25) = Z i — x5y — Z 27 — 25llp-

i€ER i€ER iER i€ER

Summing up (55) for all ¢ € R, as well as combining (62) and (63), we have:
208 E(hy (e) — (")) < Ella® — 2| — El|la"' — 2% + (aF+1)2A0 + a1 Ay,

where Ay and Ay are constants defined in (43). Summing up (64) for all times k, we have:

k k 1 k k
T o T * * T T
2) a “E[Z STy ((07) = (e )) | S B =+ B0 3 (07 4 Bg 3D
=0 7=0 7=0 7=0 7=0
Since h,(x) is convex, we have:
k aTJrl

(hp(x7) = hy(2™)) = hp(*) = hp(a).

>

k 1
7=0 ZT:O amt

Substituting (66) to (65) yields:

Ellz0 — 2*112 - A k T+1)\2
]E|:hp(i,k) o hp(l'*):| S ||$ € || _: 0 ZTIO(a ) + &
227—:0 a7+l 2

Proof of Theorem 3
Proof. When A > A\, combining Theorem 1 and Theorem 2 directly yields (14). When 0 < A < Ay, we have:

Eflla* - [#71%] < 2E[lz" — 2*|1*] + 2E[||2* — [*]]]%]

where the inequality follows from (a + b)? < 2a? + 2b%. By Theorem 2 and E[||z* — [£*]||?] < Az, (15) holds true.

(62)

(63)

(64)

(65)

(66)

(67)



