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ABSTRACT

Several network science applications involve nodal processes
with dynamics dependent on the underlying graph topology
that can possibly jump over discrete states. The connectiv-
ity in dynamic brain networks for instance, switches among
candidate topologies, each corresponding to a different emo-
tional state. In this context, the present work relies on limited
nodal observations to perform semi-supervised tracking of
dynamic processes over switching graphs. To this end, lever-
aging what is termed interacting multi-graph model (IMGM),
a scalable online Bayesian approach is developed to track the
active graph topology and dynamic nodal process. Numerical
tests with synthetic and real datasets demonstrate the merits
of the novel approach.

Index Terms— Dynamic graphs, Bayesian tracking

1. INTRODUCTION

Given limited data at a subset of nodes, various applications
deal with inference of processes across all network nodes.
Such a semi-supervised learning (SSL) task over networks
can be addressed thanks to the underlying graph topology that
captures nodal inter-dependencies [5, 7, 14]. The scarcity of
nodal observations can be due to e.g., cost, and computational
or privacy constraints. To name a couple, individuals in so-
cial networks may be reluctant to share personal information,
while acquiring nodal samples in brain networks may require
invasive procedures such as electrocorticography.

This inference task becomes more challenging when
nodal processes are nonstationary, and the graph topology
is also time-varying. In a brain network for example, where
nodes correspond to brain regions and edges capture depen-
dencies among them, one may be interested in predicting
the dynamic processes as well as the varying interconnec-
tions. An interesting time-varying topology model switches
over a set of connectivity patterns, also known as “network
modes” [1]. The connectivity among human brain regions
varies as the humans’ emotional, mental or physical activities
change [18]. Coupled with the topology, the dynamics of
nodal processes can also switch among different modes. A
similar switching model has been employed to capture the
kinematics of maneuvering targets such as drones [2].

Methods for inference (or reconstruction) of nodal pro-
cesses typically assume that the network topology is known

and undirected, while the processes are smooth, in the sense
that neighboring vertices have similar values [15]. Inference
of slow-varying functions over graphs has been pursued us-
ing the so-termed graph bandlimited model in [4, 17]. On the
other hand, [6, 13] employ graph kernel-based estimators for
reconstructing general dynamic processes. All these contem-
porary approaches rely on a known graph topology. However,
the dynamic graph can change or switch in an unknown fash-
ion among a set of possibly known topologies, which may
reflect sudden changes in the partially observed signals.

The present paper relies on a known set of candidate
topologies to put forth an approach for semi-supervised
tracking and extrapolation of dynamic nodal processes over
switching graphs. Rather than the kinematics in [2], the
nodal processes here evolve in accordance with a switching
dynamical model that depends on the active graph topology.
Given partially observed nodal samples and the candidate
graph topologies, a scalable Bayesian algorithm is developed
to jointly track the dynamic graph processes and classify the
active graph topology (or network mode) on-the-fly.

If observations were available at all nodes, it would have
been possible to identify the active topology per slot without
explicitly modeling the nodal process dynamics [1]. Relative
to [1], this work accounts for dynamics to reconstruct unavail-
able nodal data, while at the same time identifying the active
mode and tracking the nodal processes. Not necessarily graph
related yet similar to that of [1] is the goal of subspace clus-
tering [16], but different from the work here mode dynamics
are not leveraged to reconstruct unavailable nodal processes.

2. PROBLEM FORMULATION

Consider a graph with N nodes and the vertex set V :=
{v1,...,vn}, whose connectivity switches among S dis-
crete modes. Each mode corresponds to a unique connec-
tivity pattern captured by the N x N adjacency matrix Aj,
whose (n,n)th entry is the nonnegative weight of the edge
connecting v, with v,,. The graph is considered undi-
rected with no self-loops, that is, {Af}le are symmetric
and Af(n,n) = 0. The Laplacian matrix of mode s is
L? := diag{Af1ny} — A?. Per time slot ¢ only one network
mode oy = s is active. Switching topologies emerge in sev-
eral interconnected systems. Besides brain networks [18],
the email network switches from work-based connections on



weekdays to friends-and-family ones over weekends.

A dynamic graph process is a mapping z : V X T — R,
where 7 := {1,2,...} is the set of slot indices. Specifi-
cally, ¢(vy,,) denotes the node v,, sample at time slot ¢. For
example, x;(v,,) may denote the price of a stock at year t.
The values of all nodes at time ¢ will be collected in x; :=
[z¢(v1) ... 2(vn)] ", where T stands for transposition.

In many applications, only a subset of the nodal samples
are observed, yielding the observation model

z; = Hyx; + e

ey

where H; € {0,1}M*N is the M x N (M < N) sampling
matrix, whose rows sum to 1, and e; is zero-mean, temporally
independent, Gaussian noise with covariance matrix R.

To capture the spatio-temporal dynamics of the nodal
processes that are connected through the mode-conditioned
topology, we model the evolution from x;_; to x; as the
first-order Markovian process

x; =F{'x;1 +nf

)
where the state transition matrix F7* := f (A7) is a func-
tion f of the active adjacency matrix Af* at network mode
ot € {1,...,.S}; and the mode-conditioned noise n7* is Gaus-
sian with zero mean and covariance K7*, which is taken from
the so-termed family of Laplacian kernels described by [8]
KJ* = rT(LJ*), where r(-) is a scalar decreasing function
that promotes properties such as diffusion, smoothness, or
graph bandlimitedness; and * denotes pseudo-inverse.

The dynamic model in (2) describes what is also known
as a switching linear dynamical system (SLDS) [12], and it
is widely employed in the tracking community to capture the
kinematic state evolution of maneuvering targets [2].
Problem statement. Given T observations Zr := [z ... z7|
as in (1), and candidate models {{F;, Kf}le}thl as in (2),
the goal is to jointly track the dynamic graph processes
X = [x1...x7], and the discrete modes {at}le.

3. GRAPH-ADAPTIVE BAYESIAN TRACKER

Here we develop a Bayesian approach, starting from the joint
probability density function (pdf) of the nodal processes in
X that can be expressed as p(X7) = p(xp|xr—1)p(Xr—1) =
cee = H?:l p(x¢|x¢—1), due to the Markovian model in (2).
Because e; is temporally white, the conditional data pdf also
factorizes as p(Z:|Xr) = Hthl p(z¢|x:). Hence, Bayes’
rule yields the posterior pdf proportional to

p(Xr|Zr) o< p(Zr|Xr)p(Xr) = [ [ plzelxi)p(xi|xi-1)
t=1

T s
= [ [ p(zelx2) (Z wip(Xe[Xi—15 00 = 8)) &)
t=1 s=1

where Zle wi =1, and wi € {0, 1}, with wj = 1 indicat-
ing that topology s is active at time slot ¢. To stress the active

topology present, we abused notation by explicitly incorporat-
ing oy = sin p(x¢|x;—1). The conditional likelihood p(z:|x;)
and the transition pdf p(x;|x;_1;0; = s) are Gaussian; that
is, p(z¢[x¢) = N(z¢; Hixy, R) and p(x¢|x¢—1;0¢ = 5) =
N(x¢; Fixe—1,K3). Thus, the maximum a posteriori esti-
mate of the state is given in batch form by (cf. (3))
1 I s

arg min o D llze = Hixel + Y wllxe — Fyxafi;]

{xt}ima t=1 s=1
{{w:}sszl }?:1

s
sto w; €{0,1}, > wi=1 4)
s=1
Unfortunately, (4) is a mixed integer program and thus com-
putationally prohibitive to solve, especially in an online setup,
where estimates of x; and o; are sought on-the-fly.

Aiming at a computationally efficient online scheme,
we will innovate the interacting multi-model (IMM) algo-
rithm [3] that has been applied to target tracking [11] and
air traffic control [10], but without graph-related information.
Our graph-aware algorithm is naturally termed interacting
multi-graph model (IMGM), and takes into account dynam-
ically switching topologies. Given partially observed nodal
samples z;, IMGM offers a scalable Bayesian scheme for
tracking not only all nodal processes in x;, but also the dis-
crete network mode o, per slot ¢ online.

Our IMGM replaces the hard constraint wj € {0, 1} with
the soft one w; € [0,1]. This allows one to think of w; as
the posterior probability of mode s being active at slot ¢ given
Z:, namely wi = Pr(o; = s|Z;). We further model the
evolving mode o, as a first-order Markov chain parameterized
by the S x S mode transition matrix IT, whose (4, j)th entry
mi; = Pr(o, = i|loy—1 = j) denotes the transition probability
from mode j at slot £ — 1 to mode ¢ at slot t.

IMGM leverages the current observation z; to propagate
the posterior p(x;—_1|Z;—1) to p(x¢|Z;). Based on Bayes’ rule
and the total probability theorem (TPT), the posterior pdf is

S
p(x|Zy) =Y Pr(oy=s|Zy) p(xi|or=5,2)
s=1

s
oY wi N x5, Py, )
s=1

where we approximated the mode-conditional posterior of x;
with a Gaussian pdf having mean fcfl , and covariance matrix
P}, We will henceforth suppose that p(x¢|Z;) adheres to
an exact Gaussian mixture (GM) pdf parameterized by the set
Py = {wf, %}, P, s = 1,..., 5} This GM model facili-
tates the propagation from p(x;_1|Z;_1) to p(x¢|Z;) through
closed-form updates of the elements in P;_; to those in P.
These updates are implemented using the prediction and cor-
rection steps described next.

Prediction. Given P;_;, the mode-conditioned predicted



state pdf at slot ¢ can be expressed using the TPT as
(6)

p(xiloy =5",2Z1) =
s
ZPI‘(Utfl :8|0t = 3/7 Zt—l)P(Xt|0t = 5’7 Ot—1 =S, thl)
s=1
s|s’
t—1|t
can be viewed as a backward mode transition probability,
while the second factor is the predicted state pdf conditioned
on mode s’ at slot ¢ and mode s at slot ¢ — 1. Upon appealing
to Bayes’ rule and the TPT, the first factor boils down to

where the first factor Pr(oy_1 = sloy = ', Zy—1) := w,

5|5’ o PI‘(O'tfl = 8|Zt,1) PI'(O't = SI‘O't,1 =S, thl)

W _q)e =

S
> Pr(ot—1 = 8|Zi—1) Pr(oy = §'|ot—1 = 8, Z¢_1)
s=1
. Wi 1 Tss
=
D Wi Tl
s=1
As for the second factor in (6), state equation (2) implies that

= N (x4 %] t\t 17P§|tS 1)

where the mean and the covariance for the predicted state are
respectively obtained as

@)

P(Xt\Ut = S/,Utfl = S,Zt71)

SRS (kT (8a)
s',s s'ps s’ T s’
Pt\t 1 =F P (Ft ) +K; . (8b)

Although (7) and (8) yield the predicted GM pdf p(x;|o; =
s',Z;_1), evolving it to its posterior in (6) is challenging, sim-
ply because a GM pdf is a non-Gaussian pdf. To arrive at a
computationally tractable mode-conditioned Gaussian poste-
rior, we will approximate (6) by the following Gaussian pdf

QN(Xt;Xat—l’Pf\t—l) C))

where x? t‘ 1 and Pts‘/ ;1 are chosen to minimize the Kullback-
Leibler dlvergence between the pdfs in (9) and (6) that gives

ws\s As s
E: 1)t Xt [t —1
PS’ . s|s’ Ps \S
tlt—1 = § :wt71|t tlt—1
s=1

AS,;S 58’ As',s ~s’ T
+ (Xt\tﬂ - Xt|t71)(xt|t,1 = X}4-1) ) . (10b)

(Xt|0t = 5/7Zt—1)

(10a)

Xt\t 1=

Correction. Given the new observation z., the predicted state

pdf specified by (10) is propagated via Bayes rule as
p(xt|0t = S/, Zt) = P(Xt|0t = 3/7Zt7zt71)
p(Xt|Ut = 3,7Zt—1)p(zt|xt70t =572 1)
P(Zt|0t = 3’7Zt71)

an

where p(z|x:,00 = §',Zi—1) = p(z¢|x;) by indepen-
dence. Since p(x¢|o: = ', Z;_1) and p(z¢|x;) are Gaussian,
p(x¢|loy = §',Zy) will also be Gaussian with the first two

moments in (12d) and (12e) given by Kalman updates [2]

25, = Hx,_, (12a)

®; =H,P,_, (H) +R (12b)

G = Pm , (Hy) T (@) (12¢)

)A(i\t = Xt|t71 + Gf (2t — i§|t71) (12d)
! ! ! !/ ’ T

P, =P, — G @ (G) (12¢)

The mode probabilities are then updated as
wi =Pr(oy = 5|2y, Zy_1)

_ Sp(Zt|Ut = S/, Zt_l)PI‘(O't = s’|Zt_1) (13)

> p(zilor = 8", Zy_1)Pr(or = 8'|Zy—1)
s'=1

where p(z¢|oy = §',Zi—1) = N(zy; i?[tfﬁ <I’§/) from (12a)
and (12b), and the predicted mode probability is given by

s
= ZPr(ot =5 01 =5|Zi_1)

s=1

Pr(o; = §'|Z¢—1)
S

= ZPI‘(O’t = S/lUtfl =S, Zt,1)PI(Ut,1 = S|Zt,1)
s=1

(14)

S

— E s
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Finally, the wanted posterior pdf is

S
’
= E wi N
s'=1

where the single Gaussian approximant of GM has moments

S
S S/ ’\S/
Xtlt = Z Wy Xyt
s'=1
s

Py = Z wy (Pf\t + (X3 — X)) (X5 — fit|t)T)-

s'=1

p(x¢t|Zy) %N(Xt;f(ﬂtvptﬁ)

~ ’ ’
(x5 Xf\ta Pf\t)

4. NUMERICAL TESTS

In this section, we test the performance of IMGM using
synthetic and real dynamic graph processes. IMGM is com-
pared with existing algorithms including kernel Kalman filter
(KKF) [13], the adaptive least mean-square algorithm [4], and
distributed least-squares reconstruction (DLSR) [17], where
the last two are adaptive algorithms to track slow-varying B-
bandlimited graph signals. The competing algorithms know
the active network mode per slot ¢, whereas IMGM estimates
oy on-the-fly. The performance metric is the normalized
mean-square error (NMSE) over unobserved nodes, which is
given by NMSE(t) := |[HY (X;; — x¢) [|3/||Hgx; |3, where
HY is the sampling matrix for the unobserved nodes.

A dynamic process is generated over a graph having N =
100 nodes, and S = 2 modes corresponding to topologies
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Fig. 1. Mode posterior probabilities for synthetic data.
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Fig. 2. NMSE for synthetic data (urms = 2, Boms = 2,
#pLsr = 2, Bprsr = 50, BpLsr = 0.2).

obtained by two symmetric Erdos-Rényi random graphs with
edge existence probabilities 0.3 and 0.7, respectively. Process
x; is generated according to (2) with F{* = 0.4(A%t + Iy),
and K{* a bandlimited kernel with B = 50 and 8 = 100 (see
in [6, Table I]). The network switches from mode 1 to mode 2
at slot 11, and switches back to mode 1 at slot 21 over a total
T = 30 slots. The observations adhere to (1) with M = 50,
H; = [In,0n0 n—n) and R = 3%Iy,. To assess the average
performance, 100 Monte-Carlo runs are conducted. Fig. 1
depicts {w{ }2_, found by IMGM, and demonstrates how ef-
ficiently IMGM tracks the active modes. Fig. 2 shows that
IMGM’s NMSE is comparable to that of KKF, which relies
on extra information, while it outperforms LMS and DLSR.

ECoG brain data. Here we test the IMGM performance
using ECoG data obtained from an epilepsy study [9]. The
ECoG time series were obtained from N = 76 electrodes im-
planted in a patient’s brain before and after a seizure, where
the onset of the seizure was identified by a neurophysiologist.
Therefore, there are S = 2 modes, the pre-ictal and ictal mode
that correspond to before and after the seizure. We extract 250
samples from the dataset for each of the two modes, which are
preprocessed by subtracting the sample mean and normaliz-
ing by the sample standard deviation. The preprocessed sam-
ples are then concatenated, i.e., o, = 1 fort = 1, ..., 250 and
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Fig. 3. Mode posterior probabilities for ECoG brain data.
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Fig. 4. NMSE for ECoG brain data (urms = 0.6, Brvs = 2,
ppLsr = 1.2, Bprsr = 6, BpLsr = 0.5).

o = 2 fort = 251, ...,500. A time-invariant symmetric cor-
relation graph is generated for each of the two modes. The
ECoG signals are modeled to evolve based on (2), where the
transition function F{* = 0.15(A%* + 1), and process noise
covariance K7* is a diffusion kernel with parameter o = 2
(see Table I in [6]). The observations are generated as in (1)
with M = 53 and R = 10~2I,,. Matrix H; is invariant over
T = 500 slots. The performance is averaged over 100 random
sample realizations. Fig. 3 shows the IMGM probabilities
{w$}2_,. Here, IMGM acts as a “neurophysiologist” that de-
tects the onset of an epileptic seizure. In addition, the NMSE
of IMGM is comparable to that of the mode-clairvoyant KKF,
while markedly outperforming the other two alternatives.

5. CONCLUSIONS

This paper dealt with tracking dynamic graph processes that
evolve over switching graph topologies. Given observations
at a subset of nodes and candidate mode-conditioned topolo-
gies, a scalable Bayesian algorithm, termed IMGM, was in-
troduced to learn the dynamic graph processes and discrete
network modes online. Numerical tests on synthetic and real
data corroborated the performance of the IMGM algorithm.
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