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Abstract

Wepresentanoveldeepneuralnetworkarchitecturefor
end-to-endsceneflowestimationthatdirectlyoperateson
large-scale3Dpointclouds.InspiredbyBilateralConvo-
lutionalLayers(BCL),weproposenovelDownBCL,Up-
BCL,andCorrBCLoperationsthatrestorestructuralin-
formationfromunstructuredpointclouds,andfuseinfor-
mationfromtwoconsecutivepointclouds. Operatingon
discreteandsparsepermutohedrallatticepoints,ourarchi-
tecturaldesignisparsimoniousincomputationalcost.Our
modelcanefficientlyprocessapairofpointcloudframes
atoncewithamaximumof86Kpointsperframe. Our
approachachievesstate-of-the-artperformanceontheFly-
ingThings3DandKITTISceneFlow2015datasets.More-
over,trainedonsyntheticdata,ourapproachshowsgreat
generalizationabilityonreal-worlddataandondifferent
pointdensitieswithoutfine-tuning.

1.Introduction

Sceneflowisthedense3Dmotionfieldofpoints.Itis
the3Dcounterpartofopticalflow,andisamorefundamen-
talandunambiguousrepresentation–opticalflowissim-
plytheprojectionofsceneflowontotheimageplaneofa
camera[42].Sceneflowcanbeusefulinvariousfields,in-
cludingrobotics,autonomousdriving,human-computerin-
teraction,andcanalsobeusedtocomplementandimprove
visualodometryandSLAMalgorithms[15,30].

Estimatingsceneflowin3Dspacedirectlywithpoint
cloudinputsisappealing,asapproachesthatusestereoin-
putsrequire3Dmotionreconstructionfromopticalflowand
disparities,andthustheoptimizationisindirect.Inthis
work,wefocusonefficientlarge-scalesceneflowestima-
tiondirectlyon3Dpointclouds.

Theproblemstatementforsceneflowestimationisas
follows:Theinputsaretwopointclouds(PC)attwocon-
secutiveframes:PC1attimetandPC2attimet+
1. Generally,eachpointhasanassociatedfeaturefi=
(xi,yi,zi,...)∈R

df,where(xi,yi,zi)
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Figure1:Ourend-to-endtrainableHPLFlowNettakestwosuccessive
framesofpointcloud(PC)asinput,andoutputsdenseestimationofthe
3DmotionfieldforeverypointinthefirstPCframe.Thecolorforscene
flowencodesmagnitude/velocityfrombluetored(smalltolarge).

dinatesforeachpoint. Otherlow-levelfeatures,suchas
colorandnormalvectors,canalsobeincluded.1Theout-
putisthepredictedsceneflowforeachpointiinPC1:

sfi=(dxi,dyi,dzi). Weusetheworldcoordinatesystem
asthereferencesystem;thegoalistoestimatethescene
flowofbothego-motionandmotionofdynamicobjects;
seeFig.1.
Manyexistingdeeplearningapproachesfor3Dpoint

cloudprocessing[33,35,24,46]focusonaccuracybutput
lessemphasisonminimizingcomputationalcost. Conse-
quently,thesenetworkscanonlydealwithalimitednum-
berofpointsatonceduetolimitedGPUmemory,which
isunfavorableforlarge-scalesceneanalysis. Thereason
istwofold:1)thesemethodsfrequentlyresorttodividing

1Inourexperiments,weonlyusepointcoordinatestodemonstratethe
effectivenessofourapproachwiththebareminimumgeometryinforma-
tion.



thepointcloudintochunks,whichcancauseglobalinfor-
mationlossandinaccuratepredictionofboundarypoints
duetoinformationlossfromthelocalneighborhood;and2)
thesemethodsalsosometimesresorttopointsubsampling,
whichimpactsperformancesignificantlyforregionswith
sparsepointdensity.(1)Howcanweprocesstheentire
pointcloudofthesceneatoncewhileavoidingtheabove
problems?

Moreover,in[33,35],informationacrossmultiplepoints
canonlybeaggregatedthroughmax-poolingeitherglob-
allyorhierarchically,and[35]useslinearsearchtolo-
catetheneighborhoodeachtime.(2)Howcanwebetter
restorestructuralinformationfromunstructuredandun-
orderedpointclouds?Also,inmost3Dsensors,thepoint
densityisuneven,e.g.,nearbyobjectshavelargerdensity
whilefarawayobjectshavemuchlessdensity.(3)Howcan
wemaketheapproachrobustunderdifferentpointdensi-
ties?Finally,sceneflowestimationrequirescombiningin-
formationfrombothpointclouds.(4)Howcanwebestfuse
suchinformation?

Weproposeanoveldeepnetworkarchitectureforscene
flowestimationthattacklestheabovefourproblems.In-
spiredbyBilateralConvolutionalLayers(BCL)[23,21]
andthepermutohedrallattice[2],weproposethreenew
layerdesigns:DownBCL,UpBCL,andCorrBCL,which
processgeneralunstructureddataefficiently(evenbeyond
sceneflowestimation).Ournetworkfirstinterpolatessig-
nalsfromtheinputpointsontoapermutohedrallattice.It
thenperformssparseconvolutionsonthelattice,andinter-
polatesthefilteredsignalstocoarserlatticepoints. This
processisrepeatedacrossseveralDownBCLlayers.Inthis
way,weformahierarchicaldownsamplingnetwork.Simi-
larly,ournetworkinterpolatesthefilteredsignalsfromthe
coarsestlatticepointstofinerlatticepoints,andperforms
sparseconvolutionsonthefinerlatticepoints.Again,this
processisrepeatedacrossseveralUpBCLlayers(ahier-
archicalupsamplingnetwork).Finally,thefilteredsignals
fromthefinestlatticepointsareinterpolatedtoeachpoint
inthefirstinputpointcloud.Throughthedownsampling
process,wealsofusesignalsfrombothpointcloudstothe
samelatticesandperformourcorrelationoperation(Cor-
rBCL).Overall,weformanhourglass-likemodelthatop-
eratesonastructuredlatticespace(exceptthefirstandlast
operation)forunstructuredpoints.

Weconductexperimentsontwodatasets: FlyingTh-
ings3D[29],whichcontainssyntheticdata,andKITTI
SceneFlow2015[32,31],whichcontainsreal-worlddata
fromLiDARscans.Ourmethodoutperformsstate-of-the-
artapproaches.Furthermore,bytrainingonsyntheticdata
only,ourmodelgeneralizestoreal-worlddatathathave
differentpatterns. Withanovelnormalizationschemefor
BCLs,ourapproachalsogeneralizeswellunderdifferent
pointdensities.Finally,weshowthatournetworkiseffi-
cientintermsofcomputationalcost,anditcanprocessa

wholepairofKITTIframesatonetimewithamaximum
of86Kpointsperframe.Codeandmodelareavailableat
https://github.com/laoreja/HPLFlowNet.

2.Relatedwork

3Ddeeplearning. Multi-viewCNNs[39,4,22,9,17]
andvolumetricnetworks[44,13,28,34]leveragestan-
dardCNNswithgrid-structuredinputs,butsufferfromdis-
cretizationerroronviewpointselectionandonvolumetric
representationsrespectively.PointNet[33,35]isthefirst
deeplearningapproachtoworkonpointcloudsdirectly.
Qietal.[33]proposetouseasymmetryfunctionforun-
orderedinputsandusemax-poolingtogloballyaggregate
information.PointNet++[35]isafollow-upwithahierar-
chicalarchitecturethataggregatesinformationwithinlocal
neighborhoods.KlokovandLempitsky[24]usekd-treesto
dividethepointcloudsandbuildarchitecturesbasedonthe
divisions.Anotherbranchofwork[8,14,10,6,46]repre-
sentthe3Dsurfaceasagraph,andperformconvolutionon
itsspectralrepresentation.Suetal.[38]proposeanarchi-
tectureforpointcloudsegmentationbasedonBCL[23,21]
andachievejoint2D-3Dreasoning.

Ourworkisinspiredby[38],butwithadifferentfocus:
[38]focusesonBCL’spropertyofallowingdifferentinputs
andoutputstofuse2Dand3Dinformationinanewway,
whilewefocusonprocessinglarge-scalepointcloudsef-
ficientlywithoutsacrificingaccuracy–whichisdifferent
fromalltheaboveapproaches. Inaddition,sceneflow
estimationrequirescombininginformationfromtwopoint
cloudswhereas[38]operatesonasinglepointcloud.

Sceneflowestimation. Sceneflowestimationwithpoint
cloudinputsisunderexplored.Dewanetal.[11]formulate
anenergyminimizationproblemwithassumptionsonlocal
geometricconstancyandregularizationforsmoothmotion
fields. Ushanietal.[41]presentareal-timefour-stepal-
gorithm,whichconstructsoccupancygrids,filterstheback-
ground,solvesanenergyminimizationproblem,andrefines
withafilteringframework.Unlike[11,41],ourapproachis
end-to-end. Wealsolearndirectlyfromdatausingdeep
networksandhavenoexplicitassumptions,e.g.,wedonot
assumerigidmotions.

Wangetal.[43]proposeaparametriccontinuousconvo-
lutionlayerthatoperatesonnon-gridstructureddataand
applythislayertopointcloudsegmentationandLiDAR
motionestimation.However,itsnoveloperatorisdefined
oneachpointandpoolingistheonlyproposedwayforag-
gregatinginformation. FlowNet3D[25]buildsonPoint-
Net++[35]andusesaflowembeddinglayertomixtwo
pointclouds,soitsharestheaforementioneddrawbacksof
[35]. Workonsceneflowestimationwithotherinputfor-
mats(stereo[19],RGBD[20],lightfield[27])islessre-
lated,andwerefertoYanandXiang[45]forasurvey.

https://github.com/laoreja/HPLFlowNet


(a) DownBCLs (b) UpBCLs

Figure2:HierarchicalDownBCLsandUpBCLsonpermutohedrallattice.DownBCLsarefordownsamplingandusetheSplat-Convpipeline.During
downsampling,thenon-emptylatticepoints(seethebluesquaresforexample)atthepreviouslayerserveastheinputpointsforthenextlayeroncoarser
permutohedrallattice,andaresplattedontocoarserlatticepoints(greentriangles);viceversaforUpBCLswithConv-Slicepipeline.

3.BCLonpermutohedrallattice

BilateralConvolutionalLayer(BCL). BCL[23,21]is
thebasicbuildingblockweuse.Similartohowastandard
CNNendowsthetraditionalconvolutionoperationwith
learningability,BCLextendsthefasthigh-dimensional
Gaussianfilteringalgorithm[2]withlearnableweights.
BCLtakesgeneralinputs.Theconvolutionisoperated

onad-dimensionalspace,andeachinputpointhasapo-
sitionvectorpin,i∈R

dandsignalvaluevi∈R
df.The

positionvectorsareforlocatingthepointsinthedefined
spaceonwhichconvolutionoperates.Inourcase,d=3
andvi=pin,i.
TheconvolutionstepofBCLoperatesonadiscretedo-

mainbuttheinputpointslocateinacontinuousdomain
(fornow,withoutlossofgenerality,thinkoftheconvolu-
tionoperatingonthemostcommonlyusedintegerlattice
Zd,i.e.theregulargrid,whoselatticepointsared-tuples
ofintegers),soBCL:1)Gatherssignalsfromeachinput
pointpin,i∈R

dontoitsenclosinglatticepointsviainter-
polation(splat),andthen2)Performssparseconvolution
onthelattice;sincenoteverylatticepointhasgatheredsig-
nals,ahashtableisusedsothatconvolutionisonlyper-
formedonnon-emptylatticepointsforefficiency.3)Re-
turnsthefilteredsignalsfromeachlatticepointtotheout-
putpointsinsidethelatticepoint’snearestgrids,viainter-
polation(slice);theuseofinterpolationmakesitpossible
thattheoutputpointscanlocateatdifferentpositionsfrom
theinputpoints.Theaboveprocedureformsthethree-step
pipelineofBCL:Splat-Conv-Slice.

Permutohedrallattice. Theintegerlatticeworksfinein
low-dimensionalspaces. However,thenumberoflattice
pointseachinputpointinterpolatesto(i.e.,verticesofthe
Delaunaycellcontainingeachinputpoint)is2d,which
makesthesplattingandslicingstephaveacomplexitythat
isexponentialind. Hence,weusethepermutohedral
lattice2A∗d[2,1,3]instead:thed-dimensionalpermuto-

2AlatticeisadiscreteadditivesubgroupofaEuclideanspace[3].Both
regulargridZdandpermutohedrallatticeA∗darespecificlattices.

hedrallatticeistheprojectionofthescaledregulargrid
(d+1)Zd+1 alongthevector1 =[1,...1]ontothehy-

perplaneHd:x·1=0,whichisthesubspaceofR
d+1

inwhichcoordinatessumtozero.TheDelaunaycellsof
thepermutohedrallatticeared-simplicesandtheuniform
simplicesofthelatticetessellatesHd.Byreplacingregular
gridswithuniformsimplicesandusingbarycentricinter-
polation,theBCLcanperformonthepermutohedrallattice
withthesameschemeasontheintegerlattice.Specialprop-
ertiesofpermutohedrallatticemakeitefficienttocompute
theverticesofthesimplexenclosinganyquerypositionand
thebarycentricweightsinO(d2)time.
Multiplyingthepositionvectorsbyascalingfactors,we

canadjustthelatticeresolution,i.e.,largerscorresponds
tofinerresolutionwhereeachsimplexcontainslesspoints.
Thiseffectisthesameasscalingthelattice.Forbetterex-
planation,weinterchangethetwo,andusethetermfiner
latticepointsandcoarserlatticepoints.

4.Approach:HPLFlowNet

BCLrestoresstructuralinformationfromunstructured
pointclouds,whichmakesitpossibletoperformconvolu-
tionswithkernelsizegreaterthan1.Previouswork[38,21]
usethesamesetofinputpointsonthecontinuousdomain
foralltheBCLsintheirnetwork.However,boththetime
andspacecostofsplattingandslicinginBCLarelinear
inthenumberofinputpoints.Isthereawaytomoreeffi-
cientlystackBCLstoformadeeparchitecture?Howcan
wecombineinformationfrombothpointcloudsforscene
flowestimation?Inthissection,weaddresstheseproblems
andintroduceourHPLFlowNetarchitecture.

4.1.DownBCLandUpBCL

Wefirstintroducethedownsamplingandupsamplingop-
erators,DownBCLandUpBCL.Comparedwiththethree-
stepoperationintheoriginalBCL,DownBCLonlyhas
twosteps:Splat-Conv. Thenon-emptylatticepointsat
thepreviousDownBCLbecometheinputpointstothenext



layer,thussavingtheslicingstep.DownBCLisfordown-
sampling:westackDownBCLswithgraduallydecreasing
scales,sosignalsfromfinerlatticepointsaresplattedto
coarserlatticepointsiteratively,withcoarserandcoarser
resolutionandfewerandfewerinputpoints.Similarly,Up-
BCL,withatwo-steppipelineConv-Slice,isusedforup-
samplingwithgraduallyincreasingscales. Signalsfrom
coarserlatticepointsareslicedtofinerlatticepointsdi-
rectly,thussavingthesplattingstep.SeeFig.2.
ThereareseveraladvantagesofDownBCLandUpBCL

overtheoriginalBCL:
(1) Wereducethethree-steppipelinetoatwo-step

pipelinewithoutintroducinganynewcomputation,which
savescomputationalcost.
(2)Usuallythereare muchfewernon-emptylattice

pointsthanintheinputpointcloud,especiallyonthe
coarserlattice.SowereducetheinputsizeforeachDown-
BCL,exceptthefirstone.Similarly,inUpBCL,slicingto
thenextlayer’slatticepointsinsteadoftotheinputpoint
cloudsavescomputationalcostofslicing.Inthisway,after
thefirstDownBCLandbeforethelastUpBCL,thedatasize
thatDownBCLsandUpBCLshavetodealwithhasnothing
todowiththesizeoftheinputpointcloud,butisinstead
linearinthenumberofnon-emptylatticepointsatdifferent
scales;i.e.,itisonlyrelatedtotheactualvolumethepoint
cloudoccupies.ThisisthekeyadvantageofDownBCLand
UpBCLthatmakescomputationefficient.
(3)Thesavedtimeandmemoryallowdeeperarchitec-

tures.Weusemultipleconvolutionlayerswithnonlinearac-
tivationsinbetweenfortheconvolutionstepineachDown-
BCLandUpBCL,insteadofthesingleconvolutioninthe
originalBCL.
(4)Barycentricinterpolationisaheuristictogatherand

returnsignals.Thesplattingandslicingstepsarenotsym-
metric:forinputpointi,letD(i)denotetheverticesofits
enclosingsimplex;forlatticepointj,letV(j)denotetheset
ofinputpointsthatlieinasimplexwithvertexj,bijdenote
thebarycentricweightusedwhensplattingitoj,whichis
thesameweightforslicingjtoi,andletg(·)denotecon-
volution.ThenintheoriginalBCL,thefilteredsignalsfori
canbeexpressedas:

vi=
j∈D(i)

bij·g(
k∈V(j)

bkj·vk) (1)

Evenwheng(·)isanidentitymap,wecanseethatthein-
putsignalsarechangedafterthe“identity”BCL.Also,be-
causeofbarycentricinterpolation,theoutputsignalsinside
eachsimplexarealwayssmooth–thisisfineinimagefil-
tering[2

(Cin,p)   (Cin, p)⨁

Patch CorrelationDisplacement Filtering

(Ccorr_out,1)

(Cfilter_out,1)

(2Cin,p)

(Ccorr_out,q)

Patch Correlation:
ConvNet

Displacement Filtering:
ConvNet

]whereblurringistheexpectedeffect,whileitis
notidealforper-pointregression,wherepointswithinone
simplexmayhavedrasticallydifferentgroundtruth.Hence,
byremovingtheslicingstepforDownBCLandthesplat-
tingstepforUpBCL,wereducesucherrorscausedbythe
heuristicandasymmetricoperations.

Figure3:ProposedCorrBCLforcombininginformationfromtwopoint
clouds,whichiscrucialforsceneflowestimation.Thecorrelationlayer
consistsoftwosteps:patchcorrelationanddisplacementfiltering.

4.2.CorrBCL

BecauseoftheinterpolationdesignofBCLs,informa-
tionfromtwoconsecutivepointcloudscanbesplattedonto
thesamepermutohedrallattice.Inordertofuseinforma-
tionfrombothpointclouds,weproposeanovelbilateral
convolutionalcorrelationlayer(CorrBCL),inspiredbythe
matchingcostcomputationandcostaggregationforstereo
algorithms[47].OurCorrBCLconsistsoftwosteps,patch
correlationanddisplacementfiltering.

Patchcorrelation. Similartocostmatching,patchcorre-
lationmixesinformationfromapatch(localneighborhood)
atPC1andanotherpatchatPC2,butinamoregeneraland
learnablemanner.
LetF1andF2denotehashtablesstoringsignalsforthe

twopointcloudsindexedbylatticepositions,pthecorre-
lationneighborhoodsize,andOc∈Z

p×dtheoffsetmatrix
suchthatithneighboroflatticepointatcoordinatexislo-
catedatx+Oc[i].Thenthepatchcorrelationforlattice
pointinPC1locatedatxandlatticepointinPC2located
atyis

c(x,y)=gγF1(x+Oc[i]),F2(y+Oc[i])|i=1,...,p

(2)
whereγ(·,·)isabivariatefunctionthatcombinessignals
fromthetwopointclouds,andgisap-variatefunction
thataggregatesthecombinedinformationwithineachpatch
neighborhood.
Intraditionalvisionalgorithms,γisusuallyelement-

wisemultiplication,andgistheaveragefunction. Ourg
isinsteadaconvnet,andγistheconcatenationfunction.In
thisway,wecancombinesignalsofdifferentchannelnum-
bersforthetwopointclouds(element-wisemultiplicationis
unabletodoso):weconcatenateCorrBCL’soutputsignals
andPC1’ssignalsasinputforPC1andusePC2’ssignals
onlyasinputforPC2forthenextCorrBCL,seeFig.4.

Displacementfiltering. Bruteforceaggregationofall
possiblepatchcorrelationresultsiscomputationallypro-
hibitive.Sinceweareconsideringpointcloudsfromtwo



consecutivetimeinstancesandthel2normofthemotion
islimited,givenalatticepointxinPC1,wecanmoveit
withinalocalneighborhood,andmatchitwiththelattice
pointsinPC2atthemovedpositions,andthenaggregateall
suchpairmatchinginformationforxinasliding-window
manner.Thisissimilartowarpingandresidualflowinopti-
calflow[7,36],butwearewarpingateverypositionwithin
theneighborhood.Letqdenotethedisplacementfiltering
neighborhoodsizeandOf∈Z

q×ddenotetheoffsetma-
trix.ForlatticepointsinPC1locatedatx,thedisplacement
filteringisdefinedas:

f(x)=hc(x,x+Of[j])|j=1,...,q (3)

wherec(·,·)isthepatchcorrelationinEq.2,andhisa
q-variateaggregatingconvnet.
NotethatthewholeCorrBCLcanberepresentedasthe

followinggeneralpq-variatefunction:

ψ(x)=φγ(F1(x+Oc[i]),F2(x+Of[j]+Oc[i]))

|i=1,...,p,j=1...,q
(4)

Weusethefactorizationtechniquetosavethenumberof
parametersfromO(pq)toO(p+q),whichissimilarto
[40,16],andeachofourstepshasaphysicalmeaning.
Fig.3showsanexampleofCorrBCL,whered=2andthe
correlationanddisplacementfilteringhavethesameneigh-
borhoodsizep=q=7.

4.3.Densitynormalization

Sincepointcloudsareusuallysampledwithnon-uniform
densitiesandsparse,thelatticepointscangatheruneven
signals.Thus,anormalizationschemeisneededtomake
BCLsmorerobust.AllpreviousworkonBCL[23,21,38]
usethefollowingnormalizationschemefollowingthenon-
learnablefilteringalgorithm[2]:inputsignalsarefiltered
inasecondroundwiththeirvaluesreplacedby1switha
Gaussiankernel,andthefilteredvaluesserveasthenormal-
izationweights.However,thisschemedoesnotworkwell
forourtask(seeablationstudies).Unlikeimagefiltering,
ourfilteringweightsarelearned,andthusit’snotsuitable
tocontinueusingGaussianfilteringfornormalization.
Weinsteadproposetoaddadensitynormalizationterm

tothesplattedsignals:

uj=
k∈V(j)bkj·vk

k∈V(j)bkj
(5)

whereujdenotesthesplattedsignalsforlatticepointj,and
othernotationsarethesameasEq.1.
Theadvantagesofthisdesignare:1)Normalizationis

performedduringsplatting. Comparedwiththeoriginal
schemewherethenormalizationgoesthroughthethree-step
pipeline,thenewschemesavescomputationalcost.Itis
worthnoticingthat[35

DownBCL1,s=3

DownBCL2,s=2

DownBCL3,s=1

DownBCL4,s=0.5

DownBCL5,s=0.25

DownBCL6,s=0.125

DownBCL7,s=0.0625

CorrBCL1,s=1

CorrBCL2,s=0.5

CorrBCL3,s=0.25

CorrBCL4,s=0.125

CorrBCL5,s=0.0625

1x1 ConvNet1

UpBCL7,s=0.0625

UpBCL6,s=0.125

UpBCL5,s=0.25

UpBCL4,s=0.5

UpBCL3,s=1

UpBCL2,s=2

UpBCL1,s=3

DownBCL1,s=3

DownBCL2,s=2

DownBCL3,s=1

1x1 ConvNet1

1x1 ConvNet2

OUTPUT

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

PC1(n1x df) PC2(n2x df)

DownBCL4,s=0.5

DownBCL5,s=0.25

DownBCL6,s=0.125

DownBCL7,s=0.0625

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

… denote input

]proposesschemesfornon-uniform

Figure4:HPLFlowNetarchitecture. Thelayerswiththesamename
shareweights.sisscalingfactor.Rel.pos.isexplainedinSec.4.4.

samplingdensityaswell,buttheirschemeincreasescompu-
tationalcostgreatly.2)ItappliesdirectlytoCorrBCL;and
3)Experimentsshowthatthisschememakesourapproach
generalizewellunderdifferentpointdensitieswithoutfine-
tuning.

4.4.Networkarchitecture

ThenetworkarchitectureforHPLFlowNetisshownin
Fig.4. Weuseanhourglass-likemodelduetoitsgood
performanceinapplicationsof2Dimages[26,37].Ithas
aSiamese-likedownsamplingstagewithinformationfu-
sionandanupsamplingstage.Inthedownsamplingstage,
DownBCLswithgraduallydecreasingscalesarestacked,
sothatlatticepointsinhigherlayershavelargerreceptive
fieldsandinformationwithinalargervolumeisgatheredto
eachlatticepoint.SincePC2isimportantformakingscene
flowpredictions,itgoesthroughallthesamelayersasPC1
withsharedweights. Unlikepreviouswork[25,12]that
fusesignalsfromPC1andPC2onlyonce,weusemulti-
pleCorrBCLsatdifferentscalesforbettersignalfusion.In
theupsamplingstage,wegraduallyrefinethepredictionsby
stackingUpBCLsofgraduallyincreasingscale,andfinally,
slicingbacktothepointsinPC1.ForeachUpBCL,weuse
skiplinksfromtheoutputsoftheircorrespondingDown-
BCLandCorrBCL–informationfromdifferentstagescan



bemergedatrefiningtimebecauselayerswiththesame
scalingfactorhavethesamesetofnon-emptylatticepoints,
AteachBCL,weconcatenatetheinputsignalswithits

relativepositionsw.r.t.itsenclosingsimplex(itsposition
vectorminusthelatticecoordinatesofits“first”enclosing
simplexvertex).InFig.4,weuseRel.pos.todenotethe
relativepositions.Byprovidingthenetworkwithrelative
positionsdirectly,itcanachievebettertranslationalinvari-
ance.TheCNNweuseistranslationalinvariantundercer-
tainquantizationerrors,butunlikestandardCNNs,weare
interpolatingsignalsfromthecontinuousdomainontothe
discretedomain,whichleadstosomepositionalinforma-
tionloss.ByincorporatingRel.pos.intotheinputsignals,
suchlosscanbecompensated.
Sincemostlayersofourmodelalwaysoperateonsparse

latticepoints,theircomputationalcostisunrelatedtothe
sizeofpointclouds,butonlyrelatestotheactualvolume
thatthepointcloudoccupies.TotrainHPLFlowNet,we

usetheEndPointError(EPE3D)loss: sf−sf2aver-

agedovereachpoint,wheresfdenotesthepredictedscene
flowvectorandsfdenotesthegroundtruth.EPE3Disthe
counterpartofEPEfor2Dopticalflowestimation.

5.Experiments

Weshowresultsforthefollowingexperiments:1)We
trainandevaluateourmodelonthesyntheticFlyingTh-
ings3Ddataset,and2)alsotestitdirectlyonthereal-world
KITTISceneFlowdatasetwithoutfine-tuning.3)Wetest
themodeloninputswithdifferentpointdensities,4)com-
parecomputationalcostatbotharchitectureandsingle-
layerlevel,and5)conductablationstudiestoanalyzethe
contributionofeachcomponent.

Evaluationmetrics. EPE3D(m):ourmainmetric,sf−
sf2averagedovereachpoint.Acc3DStrict:astrictver-
sionofaccuracy,thepercentageofpointswhoseEPE3D
<0.05morrelativeerror<5%.Acc3DRelax:arelaxed
versionofaccuracy,thepercentageofpointswhoseEPE3D
< 0.1morrelativeerror< 10%.Outliers3D:theper-
centageofoutlierswhoseEPE3D>0.3morrelativeerror
>10%.Byprojectingthepointcloudsbacktotheimage
plane,weobtain2Dopticalflow.Inthisway,wemeasure
howwellourapproachworksforopticalflowestimation.
EPE2D(px):2DEndPointError,whichisacommonmet-
ricforopticalflow.Acc2D:thepercentageofpointswhose
EPE2D<3pxorrelativeerror<5%.

5.1.ResultsonFlyingThings3D

FlyingThings3D[29]isthefirstlarge-scalesynthetic
datasetthatenablestrainingdeepneuralnetworksforscene
flowestimation.Toourknowledge,itistheonlysceneflow
datasetthathasmorethan10,000trainingsamples. Were-
constructthe3Dpointcloudsandgroundtruthsceneflow
usingtheprovidedcameraparameters.

Trainingandevaluationdetails. Following[29,18,19],
weusethedatasetversionwheresomeextremelyhardsam-
plesareremoved3. Tosimulatereal-worldpointclouds,
weremovepointswhosedisparityandopticalflowareoc-
cluded. Following[25],wetrainonpointswithdepth
lessthan35meters. Mostforegroundmovingobjectsare
withinthisdepthrange.Werandomlysamplenpointsfrom
eachframeinanon-correspondingmanner:corresponding
pointsforthefirstframemaynotnecessarilybefoundinthe
sampledpointsofthesecondframe.Weusen=8,192for
training.Toreducetrainingtime,weuseonequarterofthe
trainingset(4910pairs),whichalreadyyieldsgoodgener-
alizationability.Themodelfinetunedonwholetrainingset
achieves0.0696/0.1113EPE3DonFlyingThings3D/KITTI.
Weevaluateonthewholetestset(3824pairs).

Baselines. Wecomparetothefollowingmethods:
IterativeClosestPoint[5]:acommonbaselinefor

sceneflowestimation,thealgorithmiterativelyrevisesthe
rigidtransformationneededtominimizetheerrormetric.
FlowNet3D[25]:thestate-of-the-artforsceneflowesti-

mationwithpointcloudinputs.Sincecodeisunavailable,
weuseourownimplementation.
SPLATFlowNet:astrongbaselinebasedonSPLAT-

Net[38];architectureistheSiamesenetworkofSPLATNet
withCorrBCLsthatisaboutthesamedepthasourmodel.
Itdoesnotusethehourglassarchitecture,butconcatenates
alloutputsfromtheBCLsandCorrBCLsofdifferentscales
tomaketheprediction.
OriginalBCL:WereplaceDownBCLandUpBCLwith

theoriginalBCLusedinpreviouswork[23,21,38]while
keepingeverythingelsethesameasourmodel.
WealsolistresultsofFlowNet3[19]forreferencepur-

poses,sincetheinputsareindifferentmodalities.It’sthe
state-of-the-artwithstereoinputs. Weremovepointswith
extremelywrongpredictions(e.g.,disparitywithopposite
signs)–theextremeswillinducetoomucherror.

Results. QuantitativeresultsareshowninTable1. Our
methodoutperformsallbaselinesonallmetricsbyalarge
margin,andistheonlymethodwithEPE3Dbelow10cm.
FlowNet3hasthebestAcc2Dbecauseitsopticalflownet-
workisoptimizedon2Dmetrics;butithasworseEPE2D
sincewemainlyevaluateonforegroundobjects,whichcan
havelargemotionsin2Dduetoprojectionandisthushard
topredict.Thefactthatitiseasilyaffectedbyextremes
(worseEPE3DandEPE2D)alsoshowsthatusingstereo
inputsismoresensitivetopredictionerrorsduetoitsin-
direct3Drepresentation.Thereasonthatourmethodout-
performsFlowNet3Dislikelythatwebetterrestorestruc-
turalinformationanddesignabetterarchitectureforcom-
bininginformationfrombothpointclouds.Ourmethodand

3https://lmb.informatik.uni-freiburg.de/data/
FlyingThings3D_subset/FlyingThings3D_subset_all_
download_paths.txt

https://lmb.informatik.uni-freiburg.de/data/FlyingThings3D_subset/FlyingThings3D_subset_all_download_paths.txt
https://lmb.informatik.uni-freiburg.de/data/FlyingThings3D_subset/FlyingThings3D_subset_all_download_paths.txt
https://lmb.informatik.uni-freiburg.de/data/FlyingThings3D_subset/FlyingThings3D_subset_all_download_paths.txt


Table1:EvaluationresultsonFlyingThings3DandKITTISceneFlow2015.Ourmethodoutperformsallbaselinemethodsonallmetrics(FlowNet3isnot
directlycomparable).ThegoodperformanceonKITTIshowsourmethod’sgeneralizationability.

Dataset Method EPE3D Acc3DStrict Acc3DRelax Outliers3D EPE2D Acc2D

FlyingThings3D

FlowNet3[19] 0.4570 0.4179 0.6168 0.6050 5.1348 0.8125
ICP[5] 0.4062 0.1614 0.3038 0.8796 23.2280 0.2913
FlowNet3D[25] 0.1136 0.4125 0.7706 0.6016 5.9740 0.5692
SPLATFlowNet[38] 0.1205 0.4197 0.7180 0.6187 6.9759 0.5512
originalBCL 0.1111 0.4279 0.7551 0.6054 6.3027 0.5669
Ours 0.0804 0.6144 0.8555 0.4287 4.6723 0.6764

KITTI

FlowNet3[19] 0.9111 0.2039 0.3587 0.7463 5.1023 0.7803
ICP[5] 0.5181 0.0669 0.1667 0.8712 27.6752 0.1056
FlowNet3D[25] 0.1767 0.3738 0.6677 0.5271 7.2141 0.5093
SPLATFlowNet[38] 0.1988 0.2174 0.5391 0.6575 8.2306 0.4189
originalBCL 0.1729 0.2516 0.6011 0.6215 7.3476 0.4411
Ours 0.1169 0.4783 0.7776 0.4103 4.8055 0.5938

Figure5:QualitativeresultsonFlyingThings3D(top)andKITTI(bottom).BluepointsarePC1,greenpointsarecorrectlypredicted(measuredby

Acc3DRelax)flowedpointsPC1+sf,andredpointsareground-truthflowedpointsPC1+sfwhicharenotcorrectlypredicted.Notethattheobjectsin
thetwodatasetshaveverydifferentmotionpatterns,whichshowsourmethod’sgeneralizationability.Thethirdfigureofthesecondrowshowsthatsome
failuresareontheground,whichsuggeststheperformanceonKITTImaybefurtherimprovedbybettergroundremovalalgorithms.

SPLATFlowNethavesimilardepthandusethesamebuild-
ingblocks,soourperformancegaincanbecreditedtoour
hourglass-likemodelandtheskiplinksthatcombinefil-
teredsignalsinthedownsamplingandupsamplingstages.
ComparisonwiththeoriginalBCLshowsthatweimprove
performancebyreductionandverifiesthattheheuristicand
asymmetricnatureofthebarycentricinterpolationmakesit
bettertoavoidunnecessaryoperations.Fig.5showsqual-
itativeresults. Ourmodelperformswellforcomplicated
shapes,largemotions,andalsothehardcasewheremulti-
pleneighboringobjectshavedifferentmotions.

5.2.Generalizationresultsonreal-worlddata

Next,tostudyourmodel’sgeneralizationabilitytoun-
seenreal-worlddata,wetakeourmodelwhichwastrained
onFlyingThings3D,andwithoutanyfine-tuningevaluate
onKITTISceneFlow2015[32,31].

Evaluationdetails. KITTISceneFlow2015isobtained
byannotatingdynamicscenesfromtheKITTIrawdatacol-
lectionusingdetailed3DCADmodelsforallvehiclesin
motion. Sincedisparityisnotgivenforthetestset,we

evaluateonall142scenesinthetrainingsetwithpublicly
availableraw3Ddata,following[25].Sinceinautonomous
driving,themotionofthegroundisnotusefulandremov-
inggroundisacommonstep[11,41,25],weremovethe
groundbyheight(<0.3m). Weusesimilarpreprocessing
asinSec.5.1exceptthatwedonotremoveoccludedpoints.

Results. Ourmethodagainoutperformsallothermethods
inallmetricsbyalargemargin;seeTable1.Thisdemon-
stratesourmethod’sgeneralizationabilitytonewreal-world
data.Withoutgroundremoval,Ours/FlowNet3DEPE3Dis
0.2366/0.3331,sooursisstillbetter.Qualitativeresultsare
showninFig.5.Eventhoughourapproachistrainedon
adatasetwithverydifferentpatternsanddifferentobjects,
itmakespreciseestimationsindrivingsceneswhereego-
motionislargeandmultipledynamicobjectshavediffer-
entmotions.Italsocorrectlypredictsthetreesandbushes
whichareneverseenbythenetworkduringtraining.

5.3.Empiricalefficiency

Ourarchitectureisoptimizedforperformance.Toshow
howefficientourproposednovelBCLvariantscanbe,



Table2:Efficiencycomparison:averageruntime(ms)onFlyingThings3D
measuredonasingleTitanV.OursandOurs-shallowaremoreefficient.

Method 8,192 16,384 32,768

FlowNet3D[25] 130.8 279.2 770.0
Ours 98.4 115.5 142.8
Ours-shallow 50.5 55.1 63.7

Table3:Results(EPE3D)underdifferentpointdensitiesonFlyingTh-
ings3DandKITTI.SomeresultsforFlowNet3Daremissingsincemem-
oryrunsoutwithoutsignificantsacrificeinspeedand/oroptimizationfor
memory.Ourdensitynormalizationschemeworkswellandachievessupe-
riorperformanceforalltestingdensitiesdifferentfromthetrainingdensity.

Dataset #points Ours NoNorm Ours-shallow FlowNet3D

FlyingThings3D

8,192 0.0804 0.0790 0.0957 0.1136
16,3840.0782 0.0779 0.0932 0.1085
32,7680.0774 0.0874 0.0925 0.1327
65,5360.0772 0.1267 0.0925 -

KITTI

8,192 0.1169 0.1187 0.1630 0.1767
16,3840.1114 0.1305 0.1646 0.2095
32,7680.1087 0.1663 0.1671 0.3110
65,5360.1087 0.1842 0.1674 -
All 0.1087 0.1853 0.1674 -

wemakeashallowerversionOurs-shallowbyremoving
Down/UpBCL6/7andCorrBCL4/5,andcuttingdowncon-
volutions(seesupp.fordetails). Table2showstheeffi-
ciencycomparisonresultsamongdifferentmodels.Oursis
fasterthanFlowNet3D.Ours-shallowisveryfastandalso
outperformsallothermethods(Table.3). Andourrun-
timedoesnotlinearlyscalewiththenumberofinputpoints,
whichempiricallyvalidatesourarchitecturaldesign.
WealsocomparewiththeoriginalBCLw.r.t.layeref-

ficiency. WemeasureruntimeofeachBCLvariantinour
architecture,averagedonFlyingThings3D.Wethenreplace
themwithoriginalBCLsanddothesame.Runtimeratio
ofourstooriginalBCLaveragedoveralllayers:56%. We
includeamoredetailedanalysisinsupp.

5.4.Generalizationresultsonpointdensity

Wenextevaluatehowourmodelgeneralizestodifferent
pointdensities. Duringtraining,wesample8,192points
foreachframe. Withoutanyfine-tuning,weevaluateon
16,384,32,768,65,536sampledpoints.ForKITTI,wealso
evaluateonallpoints.
Becauseofourarchitecturaldesign,wehavetheadvan-

tageofbeingabletoprocesslarge-scalepointcloudsatone
time,andthusdonotneedtodividethesceneandfeedthe
partsonebyoneintothenetworklike[33,35].Forallour
experiments,wefeedthetwowholepointcloudsintothe
networkinonepass.Themaximumnumberofpointsfor
oneframeinKITTIisaround86K.
Table3showstheperformanceofvariouspointdensities

onbothdatasets,wherewealsocomparewithanidentical
architecturewithoutournormalizationscheme(NoNorm).
Resultsshowthatthenormalizationschemehasslightinfor-
mationloss.NoNormhasbestperformanceonthetraining

Table4:Ablationstudies(EPE3D)onFlyingThings3D.Resultsshowthat
eachcomponentisimportant.

NoSkips OneCorr OriNorm EM NoRel.Pos. Full

0.3149 0.3698 0.6583 0.0948 0.0989 0.0804

density,butourarchitecturewithnormalizationisthemost
robustunderdifferentdensities–EPE3Ddoesnotincrease
eventhoughweevaluateontotallydifferentpointdensities
fromthedensityusedduringtraining.

5.5.Ablationstudies

Tostudythecontributionofeachcomponent,weconduct
aseriesofablationstudies,whereeachtimeweonlychange
onecomponent:

•NoSkips:Weremoveallskiplinks.
•OneCorr:TovalidatethatusingmultipleCorrBCLsof
differentscalesimprovesperformance,weonlykeepthe
lastCorrBCL.

•OriNorm:Wereplacethenormalizationschemeforeach
BCLwiththeoriginalnormalizationschemeusedinpre-
viouswork[23,21,38].

•ElementwiseMultiplication(EM):Weuseelementwise
multiplicationinpatchcorrelation. Sinceelementwise
multiplicationdoesnotsupportinputfeaturesofdiffer-
entlengthsforthetwopointclouds,weremovethelinks
frompreviousCorrBCLstothenextCorrBCLs.

•NoRel.Pos.:Weremovealltherelativepositionsthat
areconcatenatedwithinputsignals.

WeseefromTable 4thattheoriginalnormalization
schemedoesnotworkwellforsceneflowestimation.Both
skiplinksandmultipleCorrBCLscontributesignificantly.
Weseethatbyusingconcatenationinsteadofelementwise
multiplication,weareabletolinkpreviousCorrBCLstothe
nextCorrBCLs,andthusboosttheperformance.Bytaking
bothglobalandlocalpositionalinformation,ourmodelob-
tainsimprovedperformance.

6.Conclusion

WepresentedHPLFlowNet,anoveldeepnetworkfor
sceneflowestimationonlarge-scalepointclouds. Wepro-
posedthenovelDownBCL,UpBCLandCorrBCLanda
densitynormalizationscheme,whichallowthebulkofour
networktorobustlyperformonpermutohedrallatticesof
differentscales.Thisgreatlysavescomputationalcostwith-
outsacrificingperformance. Throughextensiveexperi-
ments,wedemonstrateditsadvantagesovervariouscom-
parisonmethods.
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