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Abstract

Active learning identifies data points to la-

bel that are expected to be the most useful in

improving a supervised model. Opportunis-

tic active learning incorporates active learn-

ing into interactive tasks that constrain possi-

ble queries during interactions. Prior work has

shown that opportunistic active learning can be

used to improve grounding of natural language

descriptions in an interactive object retrieval

task. In this work, we use reinforcement learn-

ing for such an object retrieval task, to learn a

policy that effectively trades off task comple-

tion with model improvement that would ben-

efit future tasks.

1 Introduction

In machine learning tasks where obtaining labeled

examples is expensive, active learning is used

to lower the cost of annotation without sacrific-

ing model performance. Active learning allows

a learner to iteratively query for labels of unla-

beled data points that are expected to maximally

improve the existing model. It has been used in a

number of natural language processing tasks such

as text categorization (Lewis and Gale, 1994), se-

mantic parsing (Thompson et al., 1999) and infor-

mation extraction (Settles and Craven, 2008).

The most commonly used framework for active

learning is pool-based active learning, where the

learner has access to the entire pool of unlabeled

data at once, and can iteratively query for exam-

ples. In contrast, sequential active learning is a

framework in which unlabeled examples are pre-

sented to the learner in a stream (Lewis and Gale,

1994). For every example, the learner can decide

whether to query for its label or not. This results in

an additional challenge – since the learner cannot

compare all unlabeled data points before choosing

queries, each query must be chosen based on local

information only.

Multilabel active learning is the application of

active learning in scenarios where multiple labels,

that are not necessarily mutually exclusive, are as-

sociated with a data point (Brinker, 2006). These

setups often suffer from sparsity, both in the num-

ber of labels that are positive for a data point, and

in the number of positive data points per label.

Opportunistic active learning incorporates a

form of multilabel sequential active learning into

an interactive task. It was recently introduced for

the task of interpreting natural-language object de-

scriptions, motivated by the task of instructing a

robot to retrieve a specific item (Thomason et al.,

2017). In this task, a human describes one of a set

of objects in unrestricted natural language and the

agent must determine which object was described.

The agent is allowed to ask questions about other

objects in the current environment to obtain la-

bels that allow it to learn classifiers for concepts

used in such descriptions. As the questions are re-

stricted to the objects available in the current inter-

action, the learning process across interactions can

be seen as a form of multilabel sequential active

learning. Further, the agent can either restrict itself

to querying labels relevant to understanding the

current description, or be opportunistic and query

labels that can only aid future interactions – for

example querying whether some object is “round”

when trying to understand the description “a red

box”.

More generally, in opportunistic active learn-

ing, an agent is engaged in a series of sequen-

tial decision-making tasks. The agent uses one

or more supervised models to complete each task.

Each task involves some sampled examples from

a given feature space, and the agent is allowed to

query for labels of these examples to improve its

models for current and future tasks. Queries in this

setting have a higher cost than in traditional active

learning as the agent may choose to query for la-
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bels that are not relevant for the current task, but

expected to be of use for future tasks. Such op-

portunistic queries enable an agent to learn from

a greater number of interactions, by allowing it

to ask queries that would aid future tasks when it

is sufficiently confident of completing the current

task. They also allow an agent to focus on con-

cepts that could have more impact than those rele-

vant to the current task – for example by choosing

a frequently used concept as opposed to a rare one.

Further, identifying which queries are optimal for

model improvement is more difficult as the agent

does not have access to the entire pool of unlabeled

examples at any given time, similar to sequential

active learning settings.

Another sample application of opportunistic ac-

tive learning could be in a task oriented dialog

system providing restaurant recommendations to

a user. In this case, a possible opportunistic query

would be to ask the user for a Chinese restaurant

they liked, when the user is searching for an Ital-

ian one. The query is not relevant to the imme-

diate task of recommending an Italian restaurant

but would improve the underlying recommenda-

tion system.

Prior work on using opportunistic active learn-

ing in understanding natural-language object de-

scriptions has shown that an agent following

an opportunistic policy, that queries for labels

not necessarily relevant to the current interac-

tion, learns to perform better at identifying ob-

jects correctly over time (Thomason et al., 2017).

However, this work only compares static policies

that select actions based on manually-engineered

heuristics. In this work, we focus on learning an

optimal policy for this task using reinforcement

learning, in the spirit of other recent attempts to

learn policies for different types of active learn-

ing (Fang et al., 2017; Woodward and Finn, 2017).

This allows an agent to choose whether or not to

be opportunistic based on the specific interaction

as well as the overall statistics of the dataset.

Our learned policy outperforms a static base-

line by improving its success rate on object re-

trieval while asking fewer questions on average.

The learned policy also learns to distribute queries

more uniformly across concepts than the baseline.

2 Related Work

Active learning methods aim to identify examples

that are likely to be the most useful in improving a

supervised model. A number of metrics have been

proposed to evaluate examples, including uncer-

tainty sampling (Lewis and Gale, 1994), density-

weighted methods (Settles and Craven, 2008),

expected error reduction (Roy and McCallum,

2001), query by committee (Seung et al., 1992),

and the presence of conflicting evidence (Sharma

and Bilgic, 2016); as surveyed by Settles (2010).

Some of these metrics can be extended to the mul-

tilabel setting, by assuming that one-vs-all clas-

sifiers are learned for each label, and that all the

learned classifiers are comparable (Brinker, 2006;

Singh et al., 2009; Li et al.). Label statistics have

also been incorporated into heuristics for selecting

instances to be queried (Yang et al., 2009; Li and

Guo, 2013). There have also been Bayesian ap-

proaches that select both an instance and label to

be queried (Qi et al., 2009; Vasisht et al., 2014).

Our work aims to learn a policy for choosing be-

tween queries that can use information from many

such indicators, but learns to combine them appro-

priately for a given task.

Thomason et al. (2017) define the setting of op-

portunistic active learning, and apply it to an in-

teractive task of grounding natural language de-

scriptions of objects. They compare two static

policies to demonstrate that using opportunistic

queries improves task performance. We try to

learn the optimal policy for this task using rein-

forcement learning, and compare to a policy simi-

lar to theirs.

Recently, there has been interest in using re-

inforcement learning to learn a policy for ac-

tive learning. Fang et al. (2017) use deep Q-

learning to acquire a policy that sequentially ex-

amines unlabeled examples and decides whether

or not to query for their labels; using it to im-

prove named entity recognition in low resource

languages. Also, Bachman et al. (2017) use meta-

learning to jointly learn a data selection heuristic,

data representation and prediction function for a

distribution of related tasks. They apply this to one

shot recognition of characters from different lan-

guages, and in recommender systems. In contrast

to these works, we learn a policy for a task that

contains both possible actions that are active learn-

ing queries, and actions that complete the cur-

rent task, thus resulting in a greater exploration-

exploitation trade-off.

More similar to our setup is that of Wood-

ward and Finn (2017) which uses reinforcement
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learning with a recurrent-neural-network-based Q-

function in a sequential one-shot learning task to

decide between predicting a label and acquiring

the true label at a cost. This setup also has a higher

cost than standard active learning where the test

set is separated out. This is a continuous task with-

out clearly separated interactions or episodes. In

our setting, each episode or interaction allows for

querying and requires completion of an interac-

tion, which further increases the trade-off between

model improvement and exploitation. Further, we

consider a multilabel setting, which increases the

number of actions at each decision step.

There are other works that employ various types

of turn-taking interaction to learn models for lan-

guage grounding. Some of these use a restricted

vocabulary (Cakmak et al., 2010; Kulick et al.,

2013), or additional knowledge of predicates (for

example that “red” is a color) (Mohan et al., 2012).

Others do not use active learning (Kollar et al.,

2013; Parde et al., 2015; De Vries et al., 2017; Yu

et al., 2017), or do not learn a policy that guides the

interaction (Vogel et al., 2010; Thomason et al.,

2016, 2017).

Also related to our work is the use of rein-

forcement learning in dialog tasks, such as slot-

filling and recommendation (Wen et al., 2015;

Pietquin et al., 2011), understanding natural lan-

guage instructions or commands (Padmakumar

et al., 2017; Misra et al., 2017), and open domain

conversation (Serban et al., 2016; Das et al., 2017).

These typically do not use active learning. In our

task, the policy needs to trade-off model improve-

ment against task completion.

3 Opportunistic Active Learning

Opportunistic Active Learning (OAL) is a setting

that incorporates active learning queries into inter-

active tasks. Let O = {o1, o2, . . . on} be a set of

examples, and M = {m1,m2, . . .mk} be super-

vised models trained for different concepts, using

these examples. For the problem of understand-

ing natural-language object descriptions, O cor-

responds to the set of objects, M corresponds to

the set of possible concepts that can be used to

describe the objects, for example their categories

(such as ball or bottle) or perceptual properties

(such as red or tall).

In each interaction, an agent is presented with

some subset OA ⊆ O, and must make a decision

based on some subset of the models MA ⊆ M .

Given a set of objects OA and a natural language

description l, MA would be the set of classifiers

corresponding to perceptual predicates present in

l. The decision made by the agent is a guess about

which object is being described by l. The agent

receives a score or reward based on this decision,

and needs to maximize expected reward across a

series of such interactions. In the task of object

retrieval, this is a 0/1 value indicating whether the

guess was correct, and the agent needs to maxi-

mize the average guess success rate.

During the interaction, the agent may also query

for the label of any of the examples present in the

interaction o ∈ OA, for any model m ∈ M . The

agent is said to be opportunistic when it chooses

to query for a label m /∈MA, as this label will not

affect the decision made in the current interaction,

and can only help with future interactions. For

example, given a description “the red box”, ask-

ing whether an object is red, could help the agent

make a better guess, but asking whether an object

is round, would be an opportunistic query. Queries

have a cost, and hence the agent needs to trade-off

the number of queries with the success at guessing

across interactions.

The agent participates in a sequence of such in-

teractions, and the models improve from labels ac-

quired over multiple interactions. Thus the agent’s

expected reward per interaction is expected to im-

prove as more interactions are completed.

This setting differs from the traditional applica-

tion of active learning in the following key ways:

• The agent cannot query for the label of any

example from the unlabeled pool. It is re-

stricted to the set of objects available in the

current interaction, OA.

• The agent is evaluated on the reward per in-

teraction, rather than the final accuracy of the

models in M .

• The agent may make opportunistic queries

(for models m /∈ MA) that are not relevant

to the current task.

Due to these differences, this setting provides

challenges not seen in most active learning sce-

narios:

• Since the agent never sees the entire pool

of unlabeled examples, it can neither choose

queries that are globally optimal, nor use

variance reduction strategies that still use
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list of objects and attributes relevant to each im-

age region, and use these to answer queries from

the agent.

For each interaction, we uniformly sample 4 re-

gions to form the active test set, and 8 regions to

form the active training set. 2 One region is then

uniformly sampled from the active test set to be

the target object. Its description, from annotations

in the Visual Genome dataset, is provided to the

agent to be grounded. The objects and attributes

associated with active training regions are used to

answer queries. A predicate is labeled as being

applicable to a region if it is present in the list of

objects and attributes associated with the region.

In the rest of the paper, we use the terms object,

image, and region interchangeably.

5 Methodology

5.1 Perceptual Predicates and Classifiers

We assume that the description provided is a con-

junction of one-word predicates. Given a de-

scription, the agent tokenizes it and removes stop-

words. Each remaining word is stemmed and

treated as a perceptual predicate. This method al-

lows the agent to learn an open vocabulary of pred-

icates, but unable to handle multi-word predicates

or non-compositional phrases.

The agent learns a separate binary classifier

for each predicate, and we represent images with

a “deep” feature representation obtained from

the penultimate layer of the VGG network (Si-

monyan and Zisserman, 2014) pretrained on Im-

ageNet (Russakovsky et al., 2015). The agent has

no initial classifiers for any predicate, and learns

these classifiers purely from labels acquired dur-

ing interactions.

5.2 Grounding Descriptions

The learned perceptual classifiers are used to

ground natural language descriptions as follows.

Let p1, p2, . . . pk be the predicates obtained from

the natural language description. Let d(pi, o) ∈
{−1, 1} be the decision from the classifier for

predicate pi for object o, and C(pi) be the esti-

mated F1 of the classifier for pi.
3 Then the best

2The regions in the dataset are divided into separate pools
from which the active training and active test sets are sam-
pled (described as classifier-training and classifier-test sets in
section 6.2), to ensure that the agent needs to learn classifiers
that generalize across objects.

3F1 is estimated by cross-validation on the labels acquired
for the predicate.

guess, from the objects present, is chosen using

the weighted sum of the decisions of the classi-

fiers, using their estimated F1 as a weight:

oguess = argmaxo∈OA

k∑

i=1

d(pi, o) ∗ C(pi)

5.3 MDP Formulation

We model the task as a Markov Decision Process

(MDP). An MDP is a tuple 〈S,A, T,R, γ〉, where

S is a set of states, A is a set of actions, T is a

transition function, R is a reward function and γ
is a discount factor. Each interaction is an episode

in the MDP. At any point, the agent is in a state

s ∈ S, in our case consisting of the VGG features

of the images in the current interaction, the pred-

icates in the current description, and the agent’s

classifiers. The agent can choose from among ac-

tions in A, which include an action for guessing,

and an action for each possible query the agent can

make, including both label and example queries.

The guess action always terminates the episode,

and query actions transition the agent to a state

s′ ∈ S as one of the classifiers gets updated. The

agent gets a reward for each action taken. Query

actions have a small negative reward, and guessing

results is a large positive reward when the guess

is correct, and a large negative reward when the

guess is incorrect. In our experiments, we treat

the reward values as hyperparameters that can be

tuned. The best results were obtained with a re-

ward of 200 for a correct guess, -100 for an incor-

rect guess and -1 for each query.

5.4 Identifying Candidate Queries

In any interaction, the agent can make label or ex-

ample queries. In a label query, the agent can ask

for the label of any object for a specific predicate.

If OA is the set of objects present in the active

training set of the current interaction, and P is the

set of predicates that have been seen by the agent

in all interactions so far, then the set of possible

label queries is P × OA. Once the agent chooses

a predicate p and object o to be queried, it obtains

the corresponding label and can update its classi-

fier for p. In an example query, the agent asks for

a positive example for any predicate p ∈ P . The

agent will either receive a positive label for p for

some object o ∈ OA or learn that the label is neg-

ative ∀ o ∈ OA, and can appropriately update the

classifier for p.
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Since |P | grows across interactions as the agent

encounters more predicates in descriptions, the

number of candidate actions in a state increases

over time, so searching the entire space of pos-

sible queries can become intractable. Hence, we

identify a beam of promising queries that are then

provided as candidate actions for the policy to

choose among. Uncertainty sampling is a com-

mon method in pool-based active learning to iden-

tify the best example to improve a classifier. For

a given predicate p, we use this to choose the best

label query involving that predicate, picking that

object o ∈ OA which is closest to the hyperplane

of the classifier for p.

However, it is more challenging to narrow down

the number of predicates. Thomason et al. (2017)

assume that an estimate of classifier accuracy is

available, which is comparable across classifiers.

They sample predicates with a probability in-

versely proportional to the estimated accuracy of

the classifier. However, if the space of possible

predicates is large, then this results in no classifier

obtaining a reasonable number of training exam-

ples. In this scenario, it is desirable to focus on

a small number of predicates, possibly stopping

the improvement on a predicate once the classi-

fier for it has been sufficiently improved. We sam-

ple queries from a distribution designed to capture

this intuition. The probability assigned to a pred-

icate by this distribution increases linearly, for es-

timated F1 below a threshold, and decreases lin-

early thereafter. 4 The number of queries sampled

is a hyperparameter. We obtain the best results by

sampling 3 queries of each type.

5.5 Baseline Static Policy

As a baseline, we use a static policy similar to that

used by Thomason et al. (2017). At each state,

a single label query and example query are sam-

pled. The agent asks a fixed number of queries be-

fore guessing. Thomason et al. (2017) use thresh-

olds that prevent queries from being asked when

there are no predicates whose classifiers have suf-

ficiently low estimated accuracy. Since we used a

dataset with a much larger number of predicates,

these thresholds were always crossed if the agent

had even one candidate query.

4The equation for this distribution with some further dis-
cussion on its design is included in the supplementary mate-
rial.

5.6 Policy Learning

We use the REINFORCE algorithm (Williams,

1992) to learn a policy for the MDP. The agent

learns a policy π(a|s; θ), parameterized with

weights θ that computes the probability of taking

action a in state s. Given a feature representation

f(s, a) for a state-action pair (s, a), the policy is

of the form:

π(a|s; θ) =
eθ

T f(s,a)

∑
a′ e

θT f(s,a′)

where the denominator is a sum over all actions

possible in state s. The weights are updated using

a stochastic gradient ascent rule:

θ ← θ + α∇θJ(θ)

where J(θ) is the expected return from the pol-

icy according to the distribution over trajectories

induced by the policy.

The state consists of the predicates in the cur-

rent description, the candidate objects, and the cur-

rent classifiers. Since both the number of candi-

date objects and classifiers varies, and the latter is

quite large, it is necessary to identify useful fea-

tures for the task to obtain a vector representation

needed by most learning algorithms. In our prob-

lem setting, the number of candidate actions avail-

able to the agent in a given state is variable. Hence

we need to create features for state-action pairs,

rather than just states.

5.7 Features for Policy Learning

The object retrieval task consists of two parts –

identifying useful queries to improve classifiers,

and correctly guessing the image being referred to

by a given description. The current dialog length

is also provided to influence the trade-off between

guessing and querying.

5.7.1 Guess-success features

Let PA = {p1, p2, . . . pk} be the predicates ex-

tracted from the current description. For each

predicate p ∈ PA, we have the estimated F1 of the

classifier C(p), and for each object o in the active

test set, we have a decision d(p, o) ∈ {−1, 1} from

the classifier. We refer to s(p, o) = d(p, o) ∗ C(p)
as the score of the classifier of p for object o. The

following features are used to predict whether the

current best guess is likely to be correct:

• Lowest, highest, second highest, and average

estimated F1 among classifiers of predicates
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in PA – learned thresholds on these values

can be useful to decide whether to trust the

guess.

• Highest score among regions in the active test

set, and the differences between this and the

second highest, and average scores respec-

tively – a good guess is expected to have a

high score to indicate relevance to the de-

scription, and substantial differences would

indicate that the guess is discriminative. Sim-

ilar features are also formed using the un-

weighted sum of decisions.

• An indicator of whether the two most confi-

dent classifiers agree on the decision of the

top scoring region, which increases the like-

lihood of its being correct.

We compared directly using these features to

training a regressor that uses them to predict the

probability of a successful guess, and then using

this as a higher-level policy feature. We found

no difference between the two methods and the

results reported directly use these features in the

vector provided to the policy learner.

5.7.2 Query-evaluation features

The following features are expected to be useful

in predicting whether it is useful to query for the

label of a particular predicate:

• Indicator of whether the predicate is new or

already has a classifier – this allows the pol-

icy to decide between strengthening exist-

ing classifiers or creating classifiers for novel

predicates.

• Current estimated F1 of the classifier for the

predicate – as there is more to be gained from

improving a poor classifier.

• Fraction of previous dialogs in which the

predicate has been used, and the agent’s suc-

cess rate in these – as there is more to be

gained from improving a frequently used

predicate but less if the agent already makes

enough correct guesses for it.

• Is the query opportunistic – as these will not

help the current guess.

Label queries also have an image region speci-

fied, and for these we have additional features that

use the VGG feature space in which the region is

represented for classification:

• Margin of the image region from the hyper-

plane of the classifier of the predicate – moti-

vated by uncertainty sampling.

• Average cosine distance of the image region

to others in the dataset – motivated by density

weighting to avoid outliers.

• Fraction of the k-nearest neighbors of the re-

gion that are unlabeled for this predicate –

motivated by density weighting to identify a

data point that can influence many labels.

6 Experimental Methodology

6.1 Dataset

The Visual Genome dataset contains a total of

108,077 images with 540,6592 annotated regions.

Since objects and attributes are annotated with

free-form text rather than from a fixed, pre-defined

vocabulary, there is considerable diversity in the

language used for annotation. There are 80,908

unique objects annotated and 44,235 attributes.

We assume that any objects that partially overlap

with a region are present in it, as these are usually

used in descriptions. Using the annotations, we

can associate a list of objects and attributes rele-

vant to each image region. We lower-case all an-

notations, remove special characters and perform

stemming to help normalize terms.

6.2 Sampling dialogs

We want the agent to learn a policy that is inde-

pendent of the actual predicates present at policy

training and policy test time. In order to be able to

evaluate this, we divide the set of possible regions

into policy training and policy test regions as fol-

lows. We select all objects and attributes present

in at least 1,000 regions. Half of these were ran-

domly assigned to the policy test set. All regions

that contain one of these objects or attributes are

assigned to the policy test set, and the rest to the

policy training set. Thus regions seen at test time

may contain predicates seen during training, but

will definitely contain at least one novel predicate.

Further, the policy training and policy test sets are

respectively partitioned into a classifier training

and classifier test set using a uniform 60-40 split.

During policy training, the active training set

of each dialog is sampled from the classifier-

training subset of the policy-training regions, and

the active test set of the dialog is sampled from

the classifier-test subset of the policy-training set.
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During policy testing, the active training set of

each dialog is sampled from the classifier training

subset of the policy test regions, and the active test

set of the dialog is sampled from the classifier test

subset of the policy test set.

6.3 Experiment phases

For efficiency, we run dialogs in batches, and per-

form classifier and policy updates at the end of

each batch. We use batches of 100 dialogs each.

Our experiment runs in 3 phases:

• Initialization – Since learning starting with a

random policy can be difficult, we first run

batches of dialogs on the policy training set

using the static policy from section 5.5, and

update the RL policy using states, actions and

rewards seen in these dialogs. This “super-

vised” learning phase is used to initialize the

RL policy.

• Training – We run batches of dialogs on the

policy training set using the RL policy, start-

ing it without any classifiers. In this phase,

the policy is updated using its own experi-

ence.

• Testing – We fix the parameters of the RL

policy, and run batches of dialogs on the pol-

icy test set. During this phase, the agent is

again reset to start with no classifiers. We

do this to ensure that performance improve-

ments seen at test time are purely from learn-

ing a strategy for opportunistic active learn-

ing, not from acquiring useful classifiers in

the process of learning the policy.

7 Experimental Results and Analysis

We initialize the policy with 10 batches of dialogs,

and then train on another 10 batches of dialogs,

both sampled from the policy training set. Fol-

lowing this, the policy weights are fixed, the agent

is reset to start with no classifiers, and we test on

10 batches of dialogs from the policy test set. Ta-

ble 1 compares the average success rate (fraction

of successful dialogs in which the correct object

is identified), and average dialog length (average

number of system turns) of the best learned policy,

and the baseline static policy on the final batch of

testing. We also compare the effect of ablating the

two main groups of features. The learned agent

guesses correctly in a significantly higher fraction

Policy Success rate Average Dialog Length

Learned 0.44 12.95

–Guess 0.37 6.12

–Query 0.35 6.16

Static 0.29 16

Table 1: Results on dialogs sampled from the policy

test set after 10 batches of classifier training. –Guess

and –Query are conditions with the guess and query

features, respectively, ablated. Boldface indicates that

the difference in that metric with respect to the Static

policy is statistically significant according to an un-

paired Welch t-test with p < 0.05.

of dialogs compared to the static agent, using a

significantly lower number of questions per dia-

log.

When either the group of guess or query fea-

tures is ablated, the success rate clearly decreases.

While the mean success rate still remains above

the baseline, the difference is no longer statisti-

cally significant. Further, at the end of the initial-

ization phase, the average dialog length in all three

conditions is about the same. In the two ablated

conditions, the dialog length does not increase to

become close to that of the static policy, which

suggests that the agent does not learn that asking

more queries improves dialog success. This is ex-

pected because the agent is either not able to eval-

uate the usefulness of queries, or the likelihood of

success of a guess. However, in the learned policy

with all features, the agent is able to identify a ben-

efit in asking queries, and utilizes them to improve

its success rate.

It is important to note that it is non-trivial to de-

cide how to trade-off dialog success with dialog

length. This should be decided for any given ap-

plication by comparing the cost of an error with

that of the user time involved in answering queries,

and the reward function should be set appropri-

ately based on this. Ideally, we would like to see

an increase in dialog success rate and a decrease

in dialog length, as is the case when comparing

the learned and static policies. However, depend-

ing on the application, it may also be beneficial to

see a smaller increase in success rate with a larger

decrease in dialog length, as is the case in the ab-

lated conditions.

We also explored ablating individual features.

We found that the effect of ablating most single

features is similar to that of ablating a group of fea-

tures. The mean success rate decreases compared
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to the full policy with all features. It remains bet-

ter than that of the static policy, but in most cases

the difference stops being statistically significant.

Among features for evaluating the guess, the re-

moval of the difference between the two highest

scores in the active test set has a fairly large ef-

fect, compared with the value of the highest score.

This is expected because for retrieval it is suf-

ficient if an object is simply scored higher than

the other candidates. Further, since classifiers im-

prove over time, the score threshold that indicates

a good guess changes, and hence would be diffi-

cult to learn. An interesting result is that removal

of features involving the predictions of the second

best classifier has more effect than that of the best

classifier. This is possibly because when noisy

classifiers are in use, support of multiple classi-

fiers is helpful. Among query evaluation features,

we find, unsurprisingly, that removal of the feature

providing the margin of the object in a label query

affects performance much more than removal of

features such as density and fraction of labeled

neighbors, which merely indicate whether the ob-

ject is an outlier. The full results of this experiment

are included in the supplementary material.

Qualitatively, we found that the dialog success

rate was higher for both short, and very long di-

alogs, with a decrease for dialogs of intermedi-

ate length. This suggests that longer dialogs are

used to accumulate labels via opportunistic off-

topic questions, as opposed to on-topic questions.

The learned policy still suffers from high variance

in dialog length suggesting that trading off task

completion against model improvement is a dif-

ficult decision to learn. We find that the labels

collected by the learned policy are more equitably

distributed across predicates than the static policy,

resulting in a tendency to have fewer classifiers of

low estimated F1. There is relatively little differ-

ence in the number of predicates for which clas-

sifiers are learned. This suggests that the policy

learns to focus on a few predicates, as the baseline

does, but learn all of these equally well, in contrast

to the baseline which has much higher variance in

the number of labels collected per predicate.

8 Future Work

It would be interesting to examine how a policy

learned using a dataset such as Visual Genome

generalizes to a different domain such as im-

ages captured by a robot operating in an indoor

environment, possibly with some fine-tuning us-

ing a smaller in-domain dataset. The simulation

could also potentially be improved using positive-

unlabeled learning methods (Liu et al., 2002; Li

and Liu, 2003) instead of assuming that an object

or attribute not labeled in an image region is not

present in the image. It would also be interesting

to compare the effectiveness of the opportunistic

active learning framework, as well as the policy

learning, across a variety of applications.

9 Conclusion

This paper has shown how to formulate an op-

portunistic active learning problem as a reinforce-

ment learning problem, and learn a policy that

can effectively trade-off opportunistic active learn-

ing queries against task completion. We evalu-

ated this approach on the task of grounded object

retrieval from natural language descriptions and

learn a policy that retrieves the correct object in

a larger fraction of dialogs than a previously pro-

posed static baseline, while also lowering average

dialog length.

Acknowledgements

This work is supported by an NSF NRI grant (IIS-

1637736). A portion of this work has taken place

in the Learning Agents Research Group (LARG)

at UT Austin. LARG research is supported in

part by NSF (CNS-1305287, IIS-1637736, IIS-

1651089, IIS-1724157), TxDOT, Intel, Raytheon,

and Lockheed Martin. Peter Stone serves on the

Board of Directors of Cogitai, Inc. The terms

of this arrangement have been reviewed and ap-

proved by the University of Texas at Austin in ac-

cordance with its policy on objectivity in research.

References

Philip Bachman, Alessandro Sordoni, and Adam
Trischler. 2017. Learning algorithms for active
learning. In Proceedings of the 34th International
Conference on Machine Learning, volume 70, pages
301–310, Sydney, Australia. PMLR.

Klaus Brinker. 2006. On active learning in multi-
label classification. In From Data and Information
Analysis to Knowledge Engineering, pages 206–
213. Springer-Verlag.

Maya Cakmak, Crystal Chao, and Andrea L Thomaz.
2010. Designing interactions for robot active learn-
ers. IEEE Transactions on Autonomous Mental De-
velopment, 2(2):108–118.



1356

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, José MF Moura, Devi Parikh,
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