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Abstract

Active learning identifies data points to la-
bel that are expected to be the most useful in
improving a supervised model. Opportunis-
tic active learning incorporates active learn-
ing into interactive tasks that constrain possi-
ble queries during interactions. Prior work has
shown that opportunistic active learning can be
used to improve grounding of natural language
descriptions in an interactive object retrieval
task. In this work, we use reinforcement learn-
ing for such an object retrieval task, to learn a
policy that effectively trades off task comple-
tion with model improvement that would ben-
efit future tasks.

1 Introduction

In machine learning tasks where obtaining labeled
examples is expensive, active learning is used
to lower the cost of annotation without sacrific-
ing model performance. Active learning allows
a learner to iteratively query for labels of unla-
beled data points that are expected to maximally
improve the existing model. It has been used in a
number of natural language processing tasks such
as text categorization (Lewis and Gale, 1994), se-
mantic parsing (Thompson et al., 1999) and infor-
mation extraction (Settles and Craven, 2008).

The most commonly used framework for active
learning is pool-based active learning, where the
learner has access to the entire pool of unlabeled
data at once, and can iteratively query for exam-
ples. In contrast, sequential active learning is a
framework in which unlabeled examples are pre-
sented to the learner in a stream (Lewis and Gale,
1994). For every example, the learner can decide
whether to query for its label or not. This results in
an additional challenge — since the learner cannot
compare all unlabeled data points before choosing
queries, each query must be chosen based on local
information only.

Multilabel active learning is the application of
active learning in scenarios where multiple labels,
that are not necessarily mutually exclusive, are as-
sociated with a data point (Brinker, 2006). These
setups often suffer from sparsity, both in the num-
ber of labels that are positive for a data point, and
in the number of positive data points per label.

Opportunistic active learning incorporates a
form of multilabel sequential active learning into
an interactive task. It was recently introduced for
the task of interpreting natural-language object de-
scriptions, motivated by the task of instructing a
robot to retrieve a specific item (Thomason et al.,
2017). In this task, a human describes one of a set
of objects in unrestricted natural language and the
agent must determine which object was described.
The agent is allowed to ask questions about other
objects in the current environment to obtain la-
bels that allow it to learn classifiers for concepts
used in such descriptions. As the questions are re-
stricted to the objects available in the current inter-
action, the learning process across interactions can
be seen as a form of multilabel sequential active
learning. Further, the agent can either restrict itself
to querying labels relevant to understanding the
current description, or be opportunistic and query
labels that can only aid future interactions — for
example querying whether some object is “round”
when trying to understand the description “a red
box”.

More generally, in opportunistic active learn-
ing, an agent is engaged in a series of sequen-
tial decision-making tasks. The agent uses one
or more supervised models to complete each task.
Each task involves some sampled examples from
a given feature space, and the agent is allowed to
query for labels of these examples to improve its
models for current and future tasks. Queries in this
setting have a higher cost than in traditional active
learning as the agent may choose to query for la-
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bels that are not relevant for the current task, but
expected to be of use for future tasks. Such op-
portunistic queries enable an agent to learn from
a greater number of interactions, by allowing it
to ask queries that would aid future tasks when it
is sufficiently confident of completing the current
task. They also allow an agent to focus on con-
cepts that could have more impact than those rele-
vant to the current task — for example by choosing
a frequently used concept as opposed to a rare one.
Further, identifying which queries are optimal for
model improvement is more difficult as the agent
does not have access to the entire pool of unlabeled
examples at any given time, similar to sequential
active learning settings.

Another sample application of opportunistic ac-
tive learning could be in a task oriented dialog
system providing restaurant recommendations to
a user. In this case, a possible opportunistic query
would be to ask the user for a Chinese restaurant
they liked, when the user is searching for an Ital-
ian one. The query is not relevant to the imme-
diate task of recommending an Italian restaurant
but would improve the underlying recommenda-
tion system.

Prior work on using opportunistic active learn-
ing in understanding natural-language object de-
scriptions has shown that an agent following
an opportunistic policy, that queries for labels
not necessarily relevant to the current interac-
tion, learns to perform better at identifying ob-
jects correctly over time (Thomason et al., 2017).
However, this work only compares static policies
that select actions based on manually-engineered
heuristics. In this work, we focus on learning an
optimal policy for this task using reinforcement
learning, in the spirit of other recent attempts to
learn policies for different types of active learn-
ing (Fangetal.,2017; Woodward and Finn, 2017).
This allows an agent to choose whether or not to
be opportunistic based on the specific interaction
as well as the overall statistics of the dataset.

Our learned policy outperforms a static base-
line by improving its success rate on object re-
trieval while asking fewer questions on average.
The learned policy also learns to distribute queries
more uniformly across concepts than the baseline.

2 Related Work

Active learning methods aim to identify examples
that are likely to be the most useful in improving a

supervised model. A number of metrics have been
proposed to evaluate examples, including uncer-
tainty sampling (Lewis and Gale, 1994), density-
weighted methods (Settles and Craven, 2008),
expected error reduction (Roy and McCallum,
2001), query by committee (Seung et al., 1992),
and the presence of conflicting evidence (Sharma
and Bilgic, 2016); as surveyed by Settles (2010).
Some of these metrics can be extended to the mul-
tilabel setting, by assuming that one-vs-all clas-
sifiers are learned for each label, and that all the
learned classifiers are comparable (Brinker, 2006;
Singh et al., 2009; Li et al.). Label statistics have
also been incorporated into heuristics for selecting
instances to be queried (Yang et al., 2009; Li and
Guo, 2013). There have also been Bayesian ap-
proaches that select both an instance and label to
be queried (Qi et al., 2009; Vasisht et al., 2014).
Our work aims to learn a policy for choosing be-
tween queries that can use information from many
such indicators, but learns to combine them appro-
priately for a given task.

Thomason et al. (2017) define the setting of op-
portunistic active learning, and apply it to an in-
teractive task of grounding natural language de-
scriptions of objects. They compare two static
policies to demonstrate that using opportunistic
queries improves task performance. We try to
learn the optimal policy for this task using rein-
forcement learning, and compare to a policy simi-
lar to theirs.

Recently, there has been interest in using re-
inforcement learning to learn a policy for ac-
tive learning. Fang et al. (2017) use deep Q-
learning to acquire a policy that sequentially ex-
amines unlabeled examples and decides whether
or not to query for their labels; using it to im-
prove named entity recognition in low resource
languages. Also, Bachman et al. (2017) use meta-
learning to jointly learn a data selection heuristic,
data representation and prediction function for a
distribution of related tasks. They apply this to one
shot recognition of characters from different lan-
guages, and in recommender systems. In contrast
to these works, we learn a policy for a task that
contains both possible actions that are active learn-
ing queries, and actions that complete the cur-
rent task, thus resulting in a greater exploration-
exploitation trade-off.

More similar to our setup is that of Wood-
ward and Finn (2017) which uses reinforcement
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learning with a recurrent-neural-network-based Q-
function in a sequential one-shot learning task to
decide between predicting a label and acquiring
the true label at a cost. This setup also has a higher
cost than standard active learning where the test
set is separated out. This is a continuous task with-
out clearly separated interactions or episodes. In
our setting, each episode or interaction allows for
querying and requires completion of an interac-
tion, which further increases the trade-off between
model improvement and exploitation. Further, we
consider a multilabel setting, which increases the
number of actions at each decision step.

There are other works that employ various types
of turn-taking interaction to learn models for lan-
guage grounding. Some of these use a restricted
vocabulary (Cakmak et al., 2010; Kulick et al.,
2013), or additional knowledge of predicates (for
example that “red” is a color) (Mohan et al., 2012).
Others do not use active learning (Kollar et al.,
2013; Parde et al., 2015; De Vries et al., 2017; Yu
etal., 2017), or do not learn a policy that guides the
interaction (Vogel et al., 2010; Thomason et al.,
2016, 2017).

Also related to our work is the use of rein-
forcement learning in dialog tasks, such as slot-
filling and recommendation (Wen et al., 2015;
Pietquin et al., 2011), understanding natural lan-
guage instructions or commands (Padmakumar
et al., 2017; Misra et al., 2017), and open domain
conversation (Serban et al., 2016; Das et al., 2017).
These typically do not use active learning. In our
task, the policy needs to trade-off model improve-
ment against task completion.

3 Opportunistic Active Learning

Opportunistic Active Learning (OAL) is a setting
that incorporates active learning queries into inter-
active tasks. Let O = {01, 09,...0,} be a set of
examples, and M = {my,ma,... my} be super-
vised models trained for different concepts, using
these examples. For the problem of understand-
ing natural-language object descriptions, O cor-
responds to the set of objects, M corresponds to
the set of possible concepts that can be used to
describe the objects, for example their categories
(such as ball or bottle) or perceptual properties
(such as red or tall).

In each interaction, an agent is presented with
some subset O4 C O, and must make a decision
based on some subset of the models M4 C M.

Given a set of objects O 4 and a natural language
description [, M4 would be the set of classifiers
corresponding to perceptual predicates present in
l. The decision made by the agent is a guess about
which object is being described by [. The agent
receives a score or reward based on this decision,
and needs to maximize expected reward across a
series of such interactions. In the task of object
retrieval, this is a 0/1 value indicating whether the
guess was correct, and the agent needs to maxi-
mize the average guess success rate.

During the interaction, the agent may also query
for the label of any of the examples present in the
interaction o € Oy4, for any model m € M. The
agent is said to be opportunistic when it chooses
to query for a label m ¢ M 4, as this label will not
affect the decision made in the current interaction,
and can only help with future interactions. For
example, given a description “the red box”, ask-
ing whether an object is red, could help the agent
make a better guess, but asking whether an object
is round, would be an opportunistic query. Queries
have a cost, and hence the agent needs to trade-off
the number of queries with the success at guessing
across interactions.

The agent participates in a sequence of such in-
teractions, and the models improve from labels ac-
quired over multiple interactions. Thus the agent’s
expected reward per interaction is expected to im-
prove as more interactions are completed.

This setting differs from the traditional applica-
tion of active learning in the following key ways:

e The agent cannot query for the label of any
example from the unlabeled pool. It is re-
stricted to the set of objects available in the
current interaction, O 4.

e The agent is evaluated on the reward per in-
teraction, rather than the final accuracy of the
models in M.

e The agent may make opportunistic queries
(for models m ¢ M) that are not relevant
to the current task.

Due to these differences, this setting provides
challenges not seen in most active learning sce-
narios:

e Since the agent never sees the entire pool
of unlabeled examples, it can neither choose
queries that are globally optimal, nor use
variance reduction strategies that still use
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near-optimal queries (such as sampling from
a beam of near globally optimal queries).

e Since the agent is evaluated on task comple-
tion, it must learn to trade-off finishing the
task with querying to improve the models.

e The agent needs to estimate the usefulness of
a model across multiple interactions, to iden-
tify good opportunistic queries.

4 Task Setup

We consider an interactive task where an agent
tries to learn to ground natural-language object
descriptions.  Grounded language understand-
ing is the process of mapping natural-language
referring expressions to object referents in the
world (Thomason et al., 2016). We consider a
grounded-language problem based on object re-
trieval — given a free form natural-language de-
scription of an object, the agent needs to identify
which of a set of objects is best described by the
phrase (Thomason et al., 2016; Guadarrama et al.,
2014). In this work, objects are presented as im-
ages, but the methods are applicable to any feature
representation of objects. We consider a task of in-
teractive object retrieval where the agent is given
a natural-language object description, and allowed
to interact with the user before it attempts to guess
the object being referred to.

In each interaction, the agent is presented with
two sets of objects. The first set of objects is called
the active training set, and is to be used by the
agent to improve its model of object properties.
The second set of objects is called the active test
set, and the agent will have to retrieve an object
from this set. The agent is provided with a natural
language description of the object it is expected to
retrieve.

Before guessing, the agent is allowed to ask
queries of the following two types:

e Label queries - A yes/no question about
whether a predicate can be used to describe
one of the objects in the active training set,
e.g. “Is this object yellow?”.

e Example queries - Asking for an object, in the
available training set, that can be described
by a particular predicate, e.g. “Show me a
white object in this set.”. This is used for ac-
quiring positive examples since most predi-
cates tend to be sparse. !

! Alternately, we could return all positive examples for the

Train_3

—

Train_6

Train_7

— i |

Train_8

Oracle Target A white umbrella
Description

Robot Label Query  <Train_6, yellow=

Oracle Binary Label 0

Robot Example Query <white>

Oracle Image Train 1

Robot Guess Test 4

Oracle Success (/1)  Correct

Figure 1: A sample OAL interaction. Perceptual pred-
icates are marked in bold.

A sample interaction is shown in Figure 1. The
agent goes through a series of such interactions,
and needs to learn to maximize the number of cor-
rect guesses across interactions, without frustrat-
ing the user with too many queries. The separate
active training set and active test set ensures that
the agent needs to learn models for object descrip-
tors. If queries and guessing were performed on
the same set of objects, the agent could simply
query whether each specific object satisfies each
predicate in the description, and use this to guess.

In our experiments, we simulate such di-
alogs using the Visual Genome dataset (Krishna
et al., 2017); which contains images with regions
(crops) annotated with natural-language descrip-
tions. Bounding boxes of objects present in the
image are also annotated, along with attributes
of objects. Region descriptions, objects and at-
tributes are annotated using unrestricted natural
language, which leads to a diverse set of predi-
cates. Using the annotations, we can associate a
Mactive training set, but we chose to return a

single example to allow the agent to minimize the amount of
supervision obtained
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list of objects and attributes relevant to each im-
age region, and use these to answer queries from
the agent.

For each interaction, we uniformly sample 4 re-
gions to form the active test set, and 8 regions to
form the active training set. > One region is then
uniformly sampled from the active test set to be
the target object. Its description, from annotations
in the Visual Genome dataset, is provided to the
agent to be grounded. The objects and attributes
associated with active training regions are used to
answer queries. A predicate is labeled as being
applicable to a region if it is present in the list of
objects and attributes associated with the region.
In the rest of the paper, we use the terms object,
image, and region interchangeably.

5 Methodology

5.1 Perceptual Predicates and Classifiers

We assume that the description provided is a con-
junction of one-word predicates. Given a de-
scription, the agent tokenizes it and removes stop-
words. Each remaining word is stemmed and
treated as a perceptual predicate. This method al-
lows the agent to learn an open vocabulary of pred-
icates, but unable to handle multi-word predicates
or non-compositional phrases.

The agent learns a separate binary classifier
for each predicate, and we represent images with
a “deep” feature representation obtained from
the penultimate layer of the VGG network (Si-
monyan and Zisserman, 2014) pretrained on Im-
ageNet (Russakovsky et al., 2015). The agent has
no initial classifiers for any predicate, and learns
these classifiers purely from labels acquired dur-
ing interactions.

5.2 Grounding Descriptions

The learned perceptual classifiers are used to
ground natural language descriptions as follows.
Let p1,pa, ... px be the predicates obtained from
the natural language description. Let d(p;,0) €
{—1,1} be the decision from the classifier for
predicate p; for object o, and C(p;) be the esti-
mated F1 of the classifier for p;. > Then the best

2The regions in the dataset are divided into separate pools
from which the active training and active test sets are sam-
pled (described as classifier-training and classifier-test sets in
section 6.2), to ensure that the agent needs to learn classifiers
that generalize across objects.

3F1 is estimated by cross-validation on the labels acquired
for the predicate.

guess, from the objects present, is chosen using
the weighted sum of the decisions of the classi-
fiers, using their estimated F1 as a weight:

k
Oguess = argmaxonAZ d(pi7 0) * C(pz)

i=1

5.3 MDP Formulation

We model the task as a Markov Decision Process
(MDP). An MDP is a tuple (S, A, T, R, ), where
S is a set of states, A is a set of actions, 7" is a
transition function, R is a reward function and ~
is a discount factor. Each interaction is an episode
in the MDP. At any point, the agent is in a state
s € S, in our case consisting of the VGG features
of the images in the current interaction, the pred-
icates in the current description, and the agent’s
classifiers. The agent can choose from among ac-
tions in A, which include an action for guessing,
and an action for each possible query the agent can
make, including both label and example queries.
The guess action always terminates the episode,
and query actions transition the agent to a state
s’ € S as one of the classifiers gets updated. The
agent gets a reward for each action taken. Query
actions have a small negative reward, and guessing
results is a large positive reward when the guess
is correct, and a large negative reward when the
guess is incorrect. In our experiments, we treat
the reward values as hyperparameters that can be
tuned. The best results were obtained with a re-
ward of 200 for a correct guess, -100 for an incor-
rect guess and -1 for each query.

5.4 Identifying Candidate Queries

In any interaction, the agent can make label or ex-
ample queries. In a label query, the agent can ask
for the label of any object for a specific predicate.
If O4 is the set of objects present in the active
training set of the current interaction, and P is the
set of predicates that have been seen by the agent
in all interactions so far, then the set of possible
label queries is P x O 4. Once the agent chooses
a predicate p and object o to be queried, it obtains
the corresponding label and can update its classi-
fier for p. In an example query, the agent asks for
a positive example for any predicate p € P. The
agent will either receive a positive label for p for
some object o € O 4 or learn that the label is neg-
ative V o € Oy, and can appropriately update the
classifier for p.
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Since | P| grows across interactions as the agent
encounters more predicates in descriptions, the
number of candidate actions in a state increases
over time, so searching the entire space of pos-
sible queries can become intractable. Hence, we
identify a beam of promising queries that are then
provided as candidate actions for the policy to
choose among. Uncertainty sampling is a com-
mon method in pool-based active learning to iden-
tify the best example to improve a classifier. For
a given predicate p, we use this to choose the best
label query involving that predicate, picking that
object o € O 4 which is closest to the hyperplane
of the classifier for p.

However, it is more challenging to narrow down
the number of predicates. Thomason et al. (2017)
assume that an estimate of classifier accuracy is
available, which is comparable across classifiers.
They sample predicates with a probability in-
versely proportional to the estimated accuracy of
the classifier. However, if the space of possible
predicates is large, then this results in no classifier
obtaining a reasonable number of training exam-
ples. In this scenario, it is desirable to focus on
a small number of predicates, possibly stopping
the improvement on a predicate once the classi-
fier for it has been sufficiently improved. We sam-
ple queries from a distribution designed to capture
this intuition. The probability assigned to a pred-
icate by this distribution increases linearly, for es-
timated F1 below a threshold, and decreases lin-
early thereafter. * The number of queries sampled
is a hyperparameter. We obtain the best results by
sampling 3 queries of each type.

5.5 Baseline Static Policy

As a baseline, we use a static policy similar to that
used by Thomason et al. (2017). At each state,
a single label query and example query are sam-
pled. The agent asks a fixed number of queries be-
fore guessing. Thomason et al. (2017) use thresh-
olds that prevent queries from being asked when
there are no predicates whose classifiers have suf-
ficiently low estimated accuracy. Since we used a
dataset with a much larger number of predicates,
these thresholds were always crossed if the agent
had even one candidate query.

“The equation for this distribution with some further dis-
cussion on its design is included in the supplementary mate-
rial.

5.6 Policy Learning

We use the REINFORCE algorithm (Williams,
1992) to learn a policy for the MDP. The agent
learns a policy m(a|s;f), parameterized with
weights 6 that computes the probability of taking
action ¢ in state s. Given a feature representation
f(s,a) for a state-action pair (s, a), the policy is
of the form:

T (s.0)

malsi0) = & i

where the denominator is a sum over all actions
possible in state s. The weights are updated using
a stochastic gradient ascent rule:

0+ 0+ aVyJ(0)

where J(0) is the expected return from the pol-
icy according to the distribution over trajectories
induced by the policy.

The state consists of the predicates in the cur-
rent description, the candidate objects, and the cur-
rent classifiers. Since both the number of candi-
date objects and classifiers varies, and the latter is
quite large, it is necessary to identify useful fea-
tures for the task to obtain a vector representation
needed by most learning algorithms. In our prob-
lem setting, the number of candidate actions avail-
able to the agent in a given state is variable. Hence
we need to create features for state-action pairs,
rather than just states.

5.7 Features for Policy Learning

The object retrieval task consists of two parts —
identifying useful queries to improve classifiers,
and correctly guessing the image being referred to
by a given description. The current dialog length
is also provided to influence the trade-off between
guessing and querying.

5.7.1 Guess-success features

Let P4 = {pi1,p2,...pr} be the predicates ex-
tracted from the current description. For each
predicate p € P4, we have the estimated F1 of the
classifier C'(p), and for each object o in the active
test set, we have a decision d(p, 0) € {—1, 1} from
the classifier. We refer to s(p, 0) = d(p,0) * C(p)
as the score of the classifier of p for object 0. The
following features are used to predict whether the
current best guess is likely to be correct:

o Lowest, highest, second highest, and average
estimated F1 among classifiers of predicates
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in P4 — learned thresholds on these values
can be useful to decide whether to trust the
guess.

e Highest score among regions in the active test
set, and the differences between this and the
second highest, and average scores respec-
tively — a good guess is expected to have a
high score to indicate relevance to the de-
scription, and substantial differences would
indicate that the guess is discriminative. Sim-
ilar features are also formed using the un-
weighted sum of decisions.

e An indicator of whether the two most confi-
dent classifiers agree on the decision of the
top scoring region, which increases the like-
lihood of its being correct.

We compared directly using these features to
training a regressor that uses them to predict the
probability of a successful guess, and then using
this as a higher-level policy feature. We found
no difference between the two methods and the
results reported directly use these features in the
vector provided to the policy learner.

5.7.2 Query-evaluation features

The following features are expected to be useful
in predicting whether it is useful to query for the
label of a particular predicate:

e Indicator of whether the predicate is new or
already has a classifier — this allows the pol-
icy to decide between strengthening exist-
ing classifiers or creating classifiers for novel
predicates.

o Current estimated F1 of the classifier for the
predicate — as there is more to be gained from
improving a poor classifier.

e Fraction of previous dialogs in which the
predicate has been used, and the agent’s suc-
cess rate in these — as there is more to be
gained from improving a frequently used
predicate but less if the agent already makes
enough correct guesses for it.

o Is the query opportunistic — as these will not
help the current guess.

Label queries also have an image region speci-
fied, and for these we have additional features that
use the VGG feature space in which the region is
represented for classification:

e Margin of the image region from the hyper-
plane of the classifier of the predicate — moti-
vated by uncertainty sampling.

e Average cosine distance of the image region
to others in the dataset — motivated by density
weighting to avoid outliers.

e Fraction of the k-nearest neighbors of the re-
gion that are unlabeled for this predicate —
motivated by density weighting to identify a
data point that can influence many labels.

6 Experimental Methodology

6.1 Dataset

The Visual Genome dataset contains a total of
108,077 images with 540,6592 annotated regions.
Since objects and attributes are annotated with
free-form text rather than from a fixed, pre-defined
vocabulary, there is considerable diversity in the
language used for annotation. There are 80,908
unique objects annotated and 44,235 attributes.
We assume that any objects that partially overlap
with a region are present in it, as these are usually
used in descriptions. Using the annotations, we
can associate a list of objects and attributes rele-
vant to each image region. We lower-case all an-
notations, remove special characters and perform
stemming to help normalize terms.

6.2 Sampling dialogs

We want the agent to learn a policy that is inde-
pendent of the actual predicates present at policy
training and policy test time. In order to be able to
evaluate this, we divide the set of possible regions
into policy training and policy test regions as fol-
lows. We select all objects and attributes present
in at least 1,000 regions. Half of these were ran-
domly assigned to the policy test set. All regions
that contain one of these objects or attributes are
assigned to the policy test set, and the rest to the
policy training set. Thus regions seen at test time
may contain predicates seen during training, but
will definitely contain at least one novel predicate.
Further, the policy training and policy test sets are
respectively partitioned into a classifier training
and classifier test set using a uniform 60-40 split.
During policy training, the active training set
of each dialog is sampled from the classifier-
training subset of the policy-training regions, and
the active test set of the dialog is sampled from
the classifier-test subset of the policy-training set.
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During policy testing, the active training set of
each dialog is sampled from the classifier training
subset of the policy test regions, and the active test
set of the dialog is sampled from the classifier test
subset of the policy test set.

6.3 Experiment phases

For efficiency, we run dialogs in batches, and per-
form classifier and policy updates at the end of
each batch. We use batches of 100 dialogs each.
Our experiment runs in 3 phases:

o Initialization — Since learning starting with a
random policy can be difficult, we first run
batches of dialogs on the policy training set
using the static policy from section 5.5, and
update the RL policy using states, actions and
rewards seen in these dialogs. This “super-
vised” learning phase is used to initialize the
RL policy.

e Training — We run batches of dialogs on the
policy training set using the RL policy, start-
ing it without any classifiers. In this phase,
the policy is updated using its own experi-
ence.

e Testing — We fix the parameters of the RL
policy, and run batches of dialogs on the pol-
icy test set. During this phase, the agent is
again reset to start with no classifiers. We
do this to ensure that performance improve-
ments seen at test time are purely from learn-
ing a strategy for opportunistic active learn-
ing, not from acquiring useful classifiers in
the process of learning the policy.

7 Experimental Results and Analysis

We initialize the policy with 10 batches of dialogs,
and then train on another 10 batches of dialogs,
both sampled from the policy training set. Fol-
lowing this, the policy weights are fixed, the agent
is reset to start with no classifiers, and we test on
10 batches of dialogs from the policy test set. Ta-
ble 1 compares the average success rate (fraction
of successful dialogs in which the correct object
is identified), and average dialog length (average
number of system turns) of the best learned policy,
and the baseline static policy on the final batch of
testing. We also compare the effect of ablating the
two main groups of features. The learned agent
guesses correctly in a significantly higher fraction

Policy | Success rate | Average Dialog Length
Learned 0.44 12.95
—Guess 0.37 6.12
—Query 0.35 6.16

Static 0.29 16

Table 1: Results on dialogs sampled from the policy
test set after 10 batches of classifier training. —Guess
and —Query are conditions with the guess and query
features, respectively, ablated. Boldface indicates that
the difference in that metric with respect to the Static
policy is statistically significant according to an un-
paired Welch t-test with p < 0.05.

of dialogs compared to the static agent, using a
significantly lower number of questions per dia-
log.

When either the group of guess or query fea-
tures is ablated, the success rate clearly decreases.
While the mean success rate still remains above
the baseline, the difference is no longer statisti-
cally significant. Further, at the end of the initial-
ization phase, the average dialog length in all three
conditions is about the same. In the two ablated
conditions, the dialog length does not increase to
become close to that of the static policy, which
suggests that the agent does not learn that asking
more queries improves dialog success. This is ex-
pected because the agent is either not able to eval-
uate the usefulness of queries, or the likelihood of
success of a guess. However, in the learned policy
with all features, the agent is able to identify a ben-
efit in asking queries, and utilizes them to improve
its success rate.

It is important to note that it is non-trivial to de-
cide how to trade-off dialog success with dialog
length. This should be decided for any given ap-
plication by comparing the cost of an error with
that of the user time involved in answering queries,
and the reward function should be set appropri-
ately based on this. Ideally, we would like to see
an increase in dialog success rate and a decrease
in dialog length, as is the case when comparing
the learned and static policies. However, depend-
ing on the application, it may also be beneficial to
see a smaller increase in success rate with a larger
decrease in dialog length, as is the case in the ab-
lated conditions.

We also explored ablating individual features.
We found that the effect of ablating most single
features is similar to that of ablating a group of fea-
tures. The mean success rate decreases compared
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to the full policy with all features. It remains bet-
ter than that of the static policy, but in most cases
the difference stops being statistically significant.
Among features for evaluating the guess, the re-
moval of the difference between the two highest
scores in the active test set has a fairly large ef-
fect, compared with the value of the highest score.
This is expected because for retrieval it is suf-
ficient if an object is simply scored higher than
the other candidates. Further, since classifiers im-
prove over time, the score threshold that indicates
a good guess changes, and hence would be diffi-
cult to learn. An interesting result is that removal
of features involving the predictions of the second
best classifier has more effect than that of the best
classifier. This is possibly because when noisy
classifiers are in use, support of multiple classi-
fiers is helpful. Among query evaluation features,
we find, unsurprisingly, that removal of the feature
providing the margin of the object in a label query
affects performance much more than removal of
features such as density and fraction of labeled
neighbors, which merely indicate whether the ob-
jectis an outlier. The full results of this experiment
are included in the supplementary material.

Qualitatively, we found that the dialog success
rate was higher for both short, and very long di-
alogs, with a decrease for dialogs of intermedi-
ate length. This suggests that longer dialogs are
used to accumulate labels via opportunistic off-
topic questions, as opposed to on-topic questions.
The learned policy still suffers from high variance
in dialog length suggesting that trading off task
completion against model improvement is a dif-
ficult decision to learn. We find that the labels
collected by the learned policy are more equitably
distributed across predicates than the static policy,
resulting in a tendency to have fewer classifiers of
low estimated F1. There is relatively little differ-
ence in the number of predicates for which clas-
sifiers are learned. This suggests that the policy
learns to focus on a few predicates, as the baseline
does, but learn all of these equally well, in contrast
to the baseline which has much higher variance in
the number of labels collected per predicate.

8 Future Work

It would be interesting to examine how a policy
learned using a dataset such as Visual Genome
generalizes to a different domain such as im-
ages captured by a robot operating in an indoor

environment, possibly with some fine-tuning us-
ing a smaller in-domain dataset. The simulation
could also potentially be improved using positive-
unlabeled learning methods (Liu et al., 2002; Li
and Liu, 2003) instead of assuming that an object
or attribute not labeled in an image region is not
present in the image. It would also be interesting
to compare the effectiveness of the opportunistic
active learning framework, as well as the policy
learning, across a variety of applications.

9 Conclusion

This paper has shown how to formulate an op-
portunistic active learning problem as a reinforce-
ment learning problem, and learn a policy that
can effectively trade-off opportunistic active learn-
ing queries against task completion. We evalu-
ated this approach on the task of grounded object
retrieval from natural language descriptions and
learn a policy that retrieves the correct object in
a larger fraction of dialogs than a previously pro-
posed static baseline, while also lowering average
dialog length.
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