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Local and global strong solutions for SQG in bounded domains
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ABSTRACT. We prove local well-posedness for the inviscid surface quasigeostrophic (SQG) equation in bounded
domains of R?. When fractional Dirichlet Laplacian dissipation is added, global existence of strong solutions
is obtained for small data for critical and supercritical cases. Global existence of strong solutions with arbitrary
data is obtained in the subcritical cases.

1. Introduction

Let Q C R? be an open bounded set with smooth boundary. The surface quasigeostrophic (SQG) equation
in ) is the equation

o0 +u-VO+ kA0 =0, ac(0,1), x>0, (1.1)

where
A=v-A.
The Laplacian —A above has homogeneous Dirichlet boundary conditions, and the equation is an active
scalar equation: the scalar 6 = 0(x,t) determines u = u(x, t) for (z,t) € Q x [0, 00) by
u= R0 = VA0 (1.2)

The nonnegative number « distinguishes between the dissipative SQG equation (1.1), when x > 0, and the
inviscid SQG equation when £ = 0.

The domain of the Laplacian —A with homogeneous Dirichlet boundary conditions is
D(-A) = H*(Q) N Hy(),

and the fractional Laplacian A®, s > 0 is defined using eigenfunction expansions. The domain of definition
of the fractional Laplacian, D(A®) is endowed with a natural norm || - || p and is a Hilbert space (see section
2 below for details). In particular, the norm of D(A?) = D(—A) is equivalent to the H?(£2) norm.

The main results of this paper concerning the dissipative SQG equation are the local well-posedness for the
whole range of a € (0, 1) for arbitrary data in D(A?) and the existence of unque global solutions for small
data in D(A?).

THEOREM 1.1. Let o € (0,1) and k > 0. Let 6y € D(A?) be an initial datum.

1. There exists a constant M depending only on «, such that, on the time interval [0, T, with

K

y A —
M|\6oll3

(1.1) has a unique solution in

0 € L>([0,T]; D(A*)) N L*([0, T]; D(A**)).
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2. There exists a positive constant C' depending only on o such that the following holds: if
p K
16oll2.0 < &

then there exists a unique global-in-time solution

0 € L>([0,00); D(A?)) N L}, ([0, 00); D(A*T*))

loc

of (1.1). Moreover; the D(A?%) norm of 0 is bounded by its initial value:
10(t, ')HQ,D < ||90||2,D ae. t>0.

The subcritical SQG equation (1.1) with o € (%, 1) is globally well-posed, as in the case without boundaries:

THEOREM 1.2. Let o € (3,1), k > 0, and T > 0. Let 6y € D(A?) be an initial datum. There exists a
unique solution
0 € L>([0,T]; D(A%)) N L*([0, T]; D(A**%)) (1.3)

of (1.1).

The result of this paper concerning the inviscid SQG equation is the local well-posedness in a class of
classical solutions.

THEOREM 1.3. Letp € (2,00). Forevery fy € H(Q)NW?2P(Q), there exist T = T(|0oll g1 rw2r-p) > 0
and unique solution

6 € L>=([0,T]; H (Q) N W*P(Q))
to (1.1) with k = 0.

The surface quasigeostrophic equation of geophysical significance ([13]) serves as a two-dimensional model
for the three-dimensional Euler equations due to many mathematical and physical analogies between them
([8]). There is a vast literature devoted to local and global well-posedness issues for SQG in R2 and TZ2.
It is known that L? global weak solutions exist for arbitrary data ([20]). The subcritical dissipative case is
well-understood ([20, 11, 12]) and global solutions with small initial data in the critical space for the critical
SQG were obtained in [S]. Global regularity for the critical dissipative case is subtle and was first obtained
independently in [4, 15]. There are several later proofs of this result [16, 10]. The global regularity for the
supercritical dissipative and inviscid SQG are outstanding open problems.

The study of SQG in bounded domains with smooth boundaries was initiated in [6, 7] where L? global
weak solutions were obtained and global Lipschitz a priori interior estimates were obtained for critical
SQG. L? global weak solutions for the inviscid SQG were obtained in [9], and generalized in [19] for SQG-
type equations with more singular constitutive laws, u = V-A~50 with 8 € (0, 1). As in the cases without
boundary, uniqueness of weak solutions is not known. The presence of boundaries makes the well-posedness
issues become more delicate. The main source of difficulties is the lack of translation invariance of the
fractional Laplacian in bounded domains. This manifests itself in particular in the commutator estimates for
the fractional Laplacian. In order to appreciate these difficulties, let us consider the local well-posedness
in Sobolev spaces for the inviscid SQG. For the flow to be well-defined it is good for the velocity u to be
Lipschitz continuous, and so natural Sobolev spaces for local well-posedness (in two dimensions) are H°
with s > 2 (because u is obtained from # through Riesz transforms). The main tools for proving local well-
posedness in the whole space ([8, 12], see also [22]) are the well-known Kato-Ponce commutator estimate
([14])

[[A%, u] - VO 2r2) < Cl|Vul|poom2) VO s-1m2) + Cllull gs@2) [ VOl oo (m2y < CHUHHS(R?)HQHHZ(lRB
with s > 2, where .Z (A°f)(§) = |€]°(.Z f)(§), with .# denoting the Fourier transform. Additionally, it is
useful that withe Riesz transforms are continuous in Sobolev spaces

1RO 11- 2y < Cl0] gy ¥ > 0. (1.5)
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The bound (1.5) follows directly from the Plancheral theorem. In bounded domains the estimate (1.4) fails
because the fractional Laplacian does not commute with differentiation, and the existing sharp estimate
[6] is too expensive. In order to do regularity calculations the commutator between A® and V needs to be
considered. This has a singular behavior at the boundary [7], [9] (which is sharp in half-space):

C
(A%, V]f(z)| < W”f“ﬁ’(ﬁ)

with @ € R?, p € [1,00], and d(z) = dist(x,d2). In order to overcome this and to obtain local well-
posedness in the inviscid case the idea is to take even indices s, s = 2m, because then A>™ commutes with
V on the domain D(A?™) of A?™. This in turn however requires that the nonlinearity u - V6 to belong to
D(A?™), provided § € D(A?™). Unfortunately, this is not true in general. It is true for m = 1 because
u- V6 vanishes on the boundary. This is due to the following structure: u = V1) is tangent to the boundary
because 1|gn = 0, and V6 is normal to the boundary, because 0|gn = 0. Taking derivatives of u - VO
unfortunately breaks down this structure. Forced to work with m = 1, we face another obstacle: u € D(A?)
is not Lipschitz continuous. Therefore in Theorem 1.3 we prove local well-posedness in Hi (€2) N W2P(Q)
with p > 2, hence ensuring that « is Lipschitz. The added difficulty now is that continuity of the Riezs
transform from W?2P?(£2) to W2P(() is not available. The proof then consists of three bootstraps: Galerkin
approximations to obtain the H? regularity, a transport estimate to obtain the W?29(Q) regularity for any
q € (2, p), and finally another transport estimate to gain the full W?2({2) regularity.

The paper is organized as follows. In section 2 we present the functional setup for the fractional Laplacian in
domains using eigenfunction expansions. Theorems 1.1, 1.2, 1.3 are proved in sections 3, 4, 5, respectively.
Appendices 1 and 2 are devoted to LP bounds and local well-psoedness for the linear advection-diffusion
equations with fractional dissipation.

2. Preliminaries

Let Q be an open bounded set of R%, d > 2, with smooth boundary. The Laplacian —A is defined on
D(—A) = H?(Q) N HL(Q). Let {w;}52, be an orthonormal basis of L?(£2) comprised of L2—normalized
eigenfunctions w; of —A, i.e.

—Aw; = \jwj, / wjz-dx =1,
Q

with) < A < Mg < ... S)\J—>OO
The fractional Laplacian is defined using eigenfunction expansions,

AYf = (_A)%f — Z)\j%fjwj with f = ijw]w fi= /wajda‘
j=1 J=1

for « > 0 and
feDAY) :={feL*Q): (\2f;) € C(N)}.
The norm of f in D(A?) is defined by

[e.9]

1l = A% Loy = (S A22)2.

j=1
It is also well known that D(A) and H}(€2) are isometric, where H{ () is equipped with the norm
1 2 ) = IV fllL20)-
In the language of interpolation theory,

D(A%) = [L*(Q), D(-=A)]a  Va €]0,2]. (2.1)
3
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Moreover, it is readily seen by virtue of the Holder inequality that

1—
£ llen < 1£16, 01 lag!D

provided aj, g > 0, o« = pavy + (1 — p)as, and @ € [0, 1].
As mentioned above,
Hj(Q) = D(A) = [L*(Q), D(-A)]

)

N

hence
D(A%) = [LA(Q), H()]a Vo € [0,1].
Consequently, we can identify D(A®) with usual Sobolev spaces (see Chapter 1 [18]):

H§ () ifa € (3,1],
D(A%) = HE(Q) = {u e HZ(Q) : u/y/d@) € I2(Q)}  ifa=1,
H(Q) ifa€0,1),

We have the following relation between D(A®) and H*(12).
PROPOSITION 2.1. The continuous embedding

D(A%) C HY(Q)
holds for all o > Q.

2.2)

(2.3)

2.4)

PROOF. By interpolation, it suffices to prove (2.4) for € {0, 1,2, ...}. The case o = 0 is obvious while
the case a = 1 follows from (2.3). Assume by induction (2.4) for « < m withm > 1. Let 0 € D(Am+1)
then f := —A# € D(A™ 1) and thus f € H™ 1(Q) by the induction hypothesis. On the other hand,
6 vanishes on the boundary O in the trace sense because § € D(A!) = HZ(Q). Elliptic regularity then

implies that € H™*1() and
101 gt < Clflrm—1 < Cl|Abl[m—1,0 = Cll0]lmt1,0
which is (2.4) for o« = m + 1.

Below is the list of some notations used throughout this paper:

e (-,-): the L?(£2) scalar product.

e (-,-)x x: the dual pairing between X and its dual X".

e ~o(u): the trace of u on OS2.

e v(u): the trace of u - v on 92 where v is the outward unit normal to 95).

3. Proof of Theorem 1.1

3.1. Technical lemmas. We start with an estimate for the Riesz transforms in Sobolev spaces.

LEMMA 3.1. If0 € D(A") withr > 0 then
IRpO| ) < Cll0]lrD-

PROOF. Indeed, we have Rpf = Vi) with ) = A=10 € D(A™+1). It follows from (2.4) that

1ROl e ) < [¥llare1(@) < CllYllria,0 = Cll0]lrp-

The next lemma provides the key estimate needed for the proof of Theorem 1.1.
4
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LEMMA 3.2. Let a € (0,1) and 6 € D(A**®). Denote w = R0 and p = ﬁ There exists a positive
constant C' = C(«v, p) such that

2—a =3
1A, u- V18] 20y < CBA®S® 6] 22y, (32)

where
A= A0 12() = ll2.0, B = [A*T*0]l12(00) = 16]l240D- (3.3)

PROOF. A direct computation gives
[A,u-V]0 =Au-VO+2Vu-VVH 34
where
Vu - VVO = 01u 03,0 + Dou' 02,0 + 01u>0210 + au’Da20
if
u = (ul,u?).

Using the facts that A commutes with the Riesz transforms, because it commutes with both V and A~!, the
Riesz transforms are bounded in L" for all » € (1, 00), a fact that holds for C'! domains (see Theorem C in
[21]), together with (2.3) we deduce

AU e = |REAO| 1o < C|IAG|| 1o < C||AG|| o < C||AG]|a,p = CB. (3.5)

where the embedding H* C LP was used in the second inequality.
Letqg = % satisfy % + % = % By the embeddings (2.4), H!~% C L4 and interpolation we have

2—a

2—a a a
IVO]|La < CJl0][ 2o < Cl10]l 5 0] 7. < CA™=|10] £ (3.6)

Let us note that § € D(A?*) C D(A') = H}(€2), so 6 vanishes on the boundary 92 in the trace sense.
Elliptic estimates in L? together with the embeddings H* C L? and (2.4) imply

IVVOLe < [10llw2r < Cl A0 Ly < Cl|AO|| e < Cl0]l240,D-

Thus,
VVO|» < CB. (3.7)

Now regarding the term Vu we first use the embedding H'~% C L9 and the estimate (3.1) to have
IVullze < ullgz-o = [RBOl 20 < C|l6ll2—a,p,
and then by the interpolation inequality (2.2)
2—« @
[Vullpe < CA=2[|0] ;2. (3.8)
Finally, putting together (3.5)-(3.8) we arrive at (3.2) by using the Holder inequality with exponents p and
q. ]

We recall the following product rule (see Chapter 2, [1]) in RY, d > 1,
I f1f2ll s ey < Cllf1ll s (rayll f2ll proz (may (3.9)
provided

d
51 < sy, S1+852>0, SQ>§.

By extension, interpolation, and duality, (3.9) still holds in smooth bounded domains of R.

LEMMA 3.3. Let 0 € D(A%), v € HY Q) NH"(Q), r > 2, and u = V. Thenu - VO € HE(Q).
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PROOF. First, let us note that v (u) € H™2 (092) and (V) € H? (092). In particular, yo(u)-y0(VE)

is well defined in H 2 (09) by virtue of the product rule (3.9) for Q. Since ¥ € H(Q), v0(u) = y0(V+11) is
tangent to the boundary, and since § € H}(£2), 70(V#) is normal to the boundary. Therefore, v () -70(V6)
vanishes on the boundary. Because the mapping H"~1(Q2) x H'(Q) — H'(f) is continuous in view of
(3.9), vo(u - VO) = ~o(u) - 70(VH) = 0. For the same reason, we have u - VO € H'() and hence
u-V0 € H}(Q). O

3.2. Uniqueness. Let
0; € L*([0,T); D(A*)) N L*([0,T]; D(A***)), « € (0,2),
j = 1,2, be two solutions of the inviscid SQG equation with the same initial data . Then the difference
0 = 61 — 05 solves
00 +u -V +uy- VO + kA*9 =0, 0l—g=0. (3.10)
Here, u = Rﬁ@. Multiplying this equation by 0, then integrating over €2 gives

R — —_—— . — J— [ .
9 t||9||L2(Q) = / 9U1 59 / HUCGQ /i/ OGN0

After integrating by parts, the last term is nonpositive, the first term vanishes because u; is divergence free.
The middle term is bounded by

1611 L2 |1 RBON| 12 () |V 02| 1o () < C||9H%2(Q)H92||2+a,D>

where we used the embeddings D(A?T®) ¢ H?T*(Q2) ¢ W1*°(Q2). Because 62 € L?([0,T]; D(A*™*)),
the Gronwall lemma concludes that # = 0 on [0, 7], and thus 6; = 6.

3.3. Local existence. Let o € (0,2) and let 6y € D(A?) = H?(Q) N H}(2) be an initial datum. We
prove local existence of solutions using the Galerkin approximations. Denote by IP,,, the projection in L?
onto the linear span L2, of eigenfunctions {wn, ..., wy, }, i.e.

Pof = fjw; forf=>" fuw;.

j=1 j=1
It is readily seen that ,,, commutes with A® on D(A®) for any s > 0.

The mth Galerkin approximation of (1.1) is the following ODE system in the finite dimensional space
P, L%(Q):

3.11)

O + Pty - VOp) + £AZ0,, =0 >0,
O = Py t=0

with 0, (z, ) = 377" Gj(.m) (t)w;(z) and u,, = Rpr 0, automatically satisfying div u,, = 0. Note that in

general u,, ¢ Lfn. The existence of solutions of (3.11) at fixed m follows from the fact that this is an ODE:

de(m) = m) o(m) p(m anlm
= Y AR + aze™ =0
k=1

with
(m) -1 .
Vil = )‘j 2 /Q (V W Vwk) wydz.

Since P,, is self-adjoint in L2, u,, is divergence-free and w; vanishes at the boundary (2, integrations by
parts give

/ O Pr (U, - VO )dax = / O thy, - VO,dz =0
Q . Q



and
/ A0, 0 dx = || A0 |3 2.
Q
It follows that
1d

2dt
and in particular, the L? norm of 6,, is bounded:

16, 12162 = IPmbo (- 0)l[Z2) < 160l 72(q
(m)

This can be seen directly on the ODE because y Kl is antisymmetric in k, [. Therefore, the smooth solution
0., of (3.11) exists globally. Observe that for the sake of global existence of (3.11), the dissipative effect is
not needed, i.e. k can be 0. Obviously, 0,,(-,t) € D(A") forall » > 0 and ¢ > 0. According to Lemma 3.3,
U - O, € HE(2) which combined with the fact that A(u - 6,,) € L*(Q) implies w, - 0, € D(—A). Now
applying A2 = —A to (3.11) and noticing that A% commutes with IP,,, on D(A?) result in

O (A%0,) + P ([A2, iy - V]Om) + Py (i - V(A%0,,)) + kAZT220,,

— 110172 + £ A% |72 = 0 (3.12)

Next, we take the scalar product with A2%0,,, use the commutator estimate (3.2), and the fact that P, is
self-adjoint in L? to arrive at the differential inequality
1d

4—a «@
2 2 2 2
537 Am + 6B < CBmAn? |0 f2 < CBR A7, (3.13)

where A, and B, are defined as in (3.3) for 6,,. Then an application of the Young inequality allows us to
hide B,,, on the right-hand side of (3.13) and obtain

—— —B: < —A”. 3.14

2dt ™ * 2 Mg (3-14)
Ignoring B,, and integrating (3.14) leads to

A2 (t) < 242,(0) Wt € [0,Tn)
with
T = 5o 2 T = sgame A0 =]
™ 2CAR(0)2 T T 2CA(0)2 ol

In other words, 6, is uniformly in m bounded in L>° ([0, T]; D(A?)). Using the equation we find that 9;6,,,
is uniformly in m bounded in L ([0, T); L?(£2)). The Aubin-Lions lemma ([17]) then allows us to conclude
the existence of a solution 6 of (1.1) on [0, T']. Moreover, by integrating (3.14) we find that 6 satisfies

0 € L*>([0,T]; D(A*)) N L*([0, T]; D(A*™)). (3.15)

3.4. Global existence. Let o € (0,2) and let 6y € D(A?) be an initial datum. We reuse the notations
of section 3.3. Recall from (3.13) that

5 g7 Am + KB, < CBy, A HemHLz (3.16)

It is readily seen by the interpolation inequality (2.2) that
Am = [|0mll2.0 < C||A2+O‘0m|!L2‘* ||9m\|”°‘ —cBpe H9mH2*°‘-
Consequently
d—a a 1 a  24a
By A H‘gm”LQQ = BmAm_a||9mHL22Am2
< CBn Ay 0| 22 Bil16]] 22

< CB% A,
7



and thus J
AL KB < OB (A — g), C = C(a). (3.17)
Integrating this leads to

t t
A2 (1) +/O kB2 ds < A% (0) + C/O B2 (Am — g)ds vt > 0.

By a coninuity argument, if

K
A(0) = [lbollz,p < (3.18)
then A,,(t) < & fort > 0 and thus, in view of (3.17), A;,,(t) < Ag for ¢t > 0. In other words, the D(A?)
norm of 6, is uniformly in m bounded over all finite time interval [0, T']. Using the equation, we deduce a
uniform bound for ;0,,, in L>°([0, T]; L?(Q2)). Passing to the limit m — oo then can be done by virtue of
the Aubin-Lions lemma ([17]) on each finite time interval [0, T']. By uniqueness, we obtain a unique global
solution.

4. Proof of Theorem 1.2

We first prove the following key estimate for the nonlinearity.

LEMMA 4.1. Leta € (1,1], % €(0,a—1),s€fo,a+1]. Fixd € (0, 3(a— 1 — %)) and put
- fs#3+a,
N={%24 _ )

Then with 0 € D(A?) and u = R0 we have for all & > 0

< 3ell6l2 40,0 + ellullfysra + Cellullza 1011 + CellOlZallullZs. @1

/ ASTEONS ™% (u - VO)dx
Q

PROOF. According to Lemma 3.3, u - VO € D(A). Let p satisfy % + % = 1 and put

5= 1—|—%—a ifs;é%—l—oz,

1+%—a+(5 ifs:%—i-a.
Note that § € (0,«) and N = O?fo‘ﬂ is the conjugate exponent of ;Taﬂ, ie ++ O‘TZB = 1. By (2.3),
D(AS™®) = H5™*(Q) if s — a # 1 and Hy *™(Q) € D(A* @) if s — o = . Writing u - V6 = div(uf)
we estimate using the Holder inequality

I= < |10lls+a,0ll div(ud)|[gs-a < [[0llsta,pl|ub] gs+1-a

/ ASTEONS ™ (u - VO)dx
Q

if s — a # 3, and similarly,
I'< H0”S+a,DHU(9||Hs+1_a+5
1

1fs—a:§.

In R? we have
[0102]| pst1-0 < CligillLallP2llwsti-ar + Clidz]|Lal|d1llwstr-ar
< Cligrllzalloal s + Cligallallorll prs+s
in view of the embedding H+#(R?) c W5+1~2P(R?). Then by extension and interpolation the following
inequality holds in €2
[¢102| s+1-a < C||¢1HL‘1H¢;2HHS+5 + Cllo2llLall o1l s+s



which implies
[ubl| gs1-o < CllullLal|0]l s + CllOl| o l[ull s
The same estimate holds with « replaced with o — §. We thus obtain in both cases
I < Cl|0lls+a.pllullzallbll s+ + CllOllsta,p 10| La l[ull grs+s-
By interpolation, we have

B a=f
101l ms+6 < 1@l Freralldll g -
Applying Young inequalities yields for all € > 0

=3 25 SA\N

«@ o 3

10lls-+a, 011wl allOll s < ellOll S0 pllON e + Ce(llullza IO g2 )
2 28

= el|6l|5 0 p 0l 5t + Cellull o161/
N
< ell0Z a0 + elOlrera + CellullZa 0] Zs
and similarly,
1054001100 allull ros < €010, + ellulFora + CellOllZe 7.

Using the embedding D(AST*) C H5* and putting together the above considerations leads to the estimate
4.1). O

REMARK 4.2. When Q = R2, T2, the estimate (4.1) holds for any s > 0 (see Chapter 3 [20]). Here, for
domains with boundaries, the restriction s < 1+ o was imposed because s —« > 1 requires more vanishing
conditions for u - V6 on 9§ in order to have u - VO € D(AS™®). In addition, product rules for A®(ab)
with 3 > 1 are not available. In the above proof, the fact that s — a < 1 helped bounding ||A®(ab)| 2 by
||abl| g5, in view of (2.3), and then we could use the product rules in usual Sobolev spaces.
The restriction s < 1+ at first limits the regularity of the solution, i.e. § € L D(A**)NL2D(A'2%), In
order to gain the full regularity L3° D(A%)N L2 D(A%T%) we note that u = Rj0 € L2D(AYF2) ¢ L2W?24
with ¢ > 2 because 2o > 1. Then, using the result of Appendix 2, we know that in general the linear
transport equation

Of+u-Vf+rA22f=0
has a solution f € L{°D(A?)NLZ D(A?T*). Moreover, uniqueness holds in the class of f € L{°(HNL™).
The known regularity of 6 is thus enough to conclude that § = f, and thus 6 has the full regularity. The rest
of this section is devoted to implement this strategy.

Let 6y € D(AQ) be an initial datum and T > 0 be fixed. We construct a solution for (1.1) using the retarded
mollifications. To this end we pick a ¢ € C°((0,0)), ¢ > 0, with supp ¢ € [1, 2], and let

Usl6](t) = /0 " G(rIRB6( — b7)dr

where we set 6(¢t) = 0 for all ¢t < 0. In particular, Us[6](¢) depends on the values of 6(¢') only for
tet—26,t—4)

Step 1. We pick a sequence 6,, — 0" and consider the approximate equations for ,,

04O + Uy - VOr, + KA?Y0,, =0 4.2)
with initial data 6,,(0) = 6y and velocity u,, := Uy, [0,,]. For a fixed m, equation (4.2) is linear on each
subinterval I}, := [tg,tr+1], tk := kdm, k € 7Z, because u,, is determined by the values of 6,, on the two

previous subintervals [ and I;_». By our setting, 6,,, = 0 on Ug<olx. On Iy, uy, = 0 and the linear
equation (4.2) with initial data 6,,(0) = 6y has a unique solution

Hm(t) = Ze_/\?teo,jwj with 9073‘ = / ng]’d:ﬁ.
>1 @
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Direct estimates show that
O € L™ (1o; D(A%)) N L?(Io; D(A*T)).
This implies in view of (3.1) that
U, € L*(I1; H*T) ¢ WP

withp = % > 2. This regularity of u,, on I; suffices to conclude by applying Theorem 4 in [6] that there
exists a unique solution 6,,, on I; and thus, by induction, on [ for all £ > 1, and

Om € L™ (Ir; D(A?)) N L? (Ir; D(A*T9)).

The proof of Theorem 4 in [6] makes use of a general commutator estimate for [A, u - V]6 in D(A%) derived
in the same paper. In Appendix 2, we give a direct proof without the commutator estimate.

We showed so far that for any fixed integer m, equation (4.2) with initial data 6 has a solution

0m € L>([0,T]; D(A?)) N L*([0, T]; D(A*19)). (4.3)
Step 2. We appeal to Lemma 4.1 to pass to the limit m — oo in the larger space D(A®T1). First, it follows
from (3.1), (4.3), and the definition of w,, that

t t
/ () 3 < © / 102 pdr, ¢ €[0,T], r€[0,2+al. 4.4)
0 0

Secondly, according to Proposition 6.1, the L™ bounds

sup [[ug (7)]| - < Cs[ur]) 10m(T)llr < Cll6ol[r, T € [0,T], (4.5)
0,t

)

hold for all r > 4.
Letusfixs =« + 1 and

1\ -1
in<4, (a— = .
q>m1n{ ,(a 2) }
Applying A5~ in (4.2), then taking the scalar product with ASt0,,, we obtain

1d

55 10ml0 4 K10 v = | [ 470,050, 90,,)d).
Q

Using (4.1) (note that 6,,, € D(A?)) to estimate the right-hand side and then integrating the differential
inequality we obtain for ¢t < T

t
10m(®) 2 + 26 /O 10 (7120 il
t t
< 1602 + 6 /0 10 ()24 0l + 26 /0 et (7) Bl

t t
el /0 et ()25 180 (7) [ + - /O 16 ()| Vst () [ 3

We choose € = ﬁ, M being sufficiently large, use (4.4), (4.5), (2.4) and the Gronwall lemma to arrive at

HemHL‘”([O,T};D(AS)) + H0m||L2([O,T};D(AS+O‘)) < CHGOHOA,D exXp (CT”QQH%I) (4.6)

with C' = C(k). The use of equation (4.2) and the bound (4.4) implies that 9;6,,, is uniformly in m bounded
in L2([0,T]; L?(£2)). The Aubin-Lions lemma ([17]) then allows us to conclude the existence of a solution

0 € L>([0,T); D(A®)) N L*([0, T); D(A®1®))
of (1.1). Moreover, 6 obeys the bound (4.6).



We note that u = R560 € L2([0,T]; HST*(Q)) with s+ = 1+2a > 2 and hence u € L2([0, T]; W?P(12))
with p = % > 2. According to Theorem 7.1 1., there exists a solution
01 € L>([0,T]; D(A%)) N L*([0, T]; D(A**®)) 4.7
of the linear equation
01 +u - VO + A0 =0, 01]i—o = O € D(A?).

The regularity of 6 is sufficient to conclude using Theorem 7.1 2. that § = 6; and thus 6 has the full
regularity as in (4.7). Uniqueness follows from section 3.2.

5. Proof of Theorem 1.3

Let 0y € H} () N W2P(Q) with p € (2, 00). The proof proceeds by Picard’s iterations in each of which a
viscosity approximation is added: 6,, n > 1, is defined as the solution of the problem
0l + up - VO, — kA0, =0, (x,t) € Q2x(0,00), k>0,
Un, = Rj50,1, (5.1)
0n|t:0 = 90.
We prove by induction that there exist

To = To([l0oll zrawzes p) > 0, Mo = Mo (|60l 1wz, ) > 0,
both are independent of n and &, such that
On € L*([0, To); Hy (2) N W2P(9)) (5.2)
and
100 oo (jo, 100 w2 (2)) < Mo. (5.3)
When n = 0, both (5.2) and (5.3) hold for any T > 0. Assume they hold forn < k — 1, k > 1, we prove

it for n = k. The regularity (5.2) of ), will be obtained by three bootstraps: H2, then W2 with ¢ € (2, p),
and finally W?2P.

Step 1. H? regularity. We note that Auy = R5A0,_1 € LP(). On the other hand, by Sobolev’s
embedding 01 € C1(Q) for some v > 0, and 70(fx_1) = 0, Proposition 3.1 [3] then yields A™10;_; €
C?7(Q), and thus uy, € C+¥(Q) c WhH*(Q). Thus,

[Aukllze(0) + [lukllwree @) < CllOk—1llw2r(o)- (5.4)

Note however that we do not have u;, € WP () in general but only wuy, € VVif (2), by interior elliptic
estimates. Then according to Theorem 7.1, the transport problem (5.1) has a unique solution

0 € L([0,T]; D(A*)) N L2([0, T); D(A))
for any 7" > 0 and

10| £oo (0,77 p(A2)) + K10kl L2 (0,170 (A2 2 < Cllfoll2,0 exp (Cl10k—11l 10, 73,2.7))

(5.5)
< Cll6oll2,p exp (CT)|0k—1ll Loo (fo,17;w2:2) -
Step 2. W24 regularity. Fix ¢ € (2, p). We observe that w;, = Afy, satisfies
Owy + uy, - Vwg, — kAw,, = —Au1 VO, — 2Vuy, - VVO,. (5.6)
It follows from (5.4), (5.5), and the embeddings D(A?) C H?(2) ¢ W (Q) for any r < oo, that
1ALV Ok Lago) < AUkl Lo @) VOl L) (5.7
< Oll0k-1llw2r @) 100ll2.0 exp (CT (811 ]| Lo o, 17,2 ) » (5.8)
here % = % + %



In addition, because vo(6x) = 0 and ), € D(A*) € H4(), elliptic estimates combined with (5.5) imply

IVVOk| Loy < [10kllw2a) < CllAO| La) = CllwkllLaq)- (5.9)
Now we multiply (5.6) by g|wy |7~ 2wy, using the inequality (6.5), the fact that div u; = 0, and (5.9) to get

%HwquLg < Q\lﬁukveklhgllwk!@l + 24| Vg || £ge |V V0| g e ]| T
< ql| Aup Vx| o llwrllfs " + ¢ClVur ]l e llwr]fs-

Consequently, for any T' > 0,
HwkHLOO([O,T];Lq)
< C([lwr(0) | za + ([ Aur VO]l 110, 17;29)) €xp (ClIVugl| L1 (o, 17;150))
< (I0ollw2.a + CTN0—1l oo jo,11.w29)100]12,0 €xD (CT||0x—1 | oo (jo, 77:w2.2)) ) €xD (CT||Ok—1 | oo 0, 7720
< F(ll0ollw2.a + TOk—11l Loo jo,17;m27))

for some increasing function F : R™ — R™, where (5.7), (5.4) were used. In what follows, F may change
from line to line but is independent of k and .
As in (5.9), elliptic estimates yield

10kl Loo (o, w20) < Cllwgll oo o,13;29) < F 0 llw2.a + T0k—1llw2.a)-
Step 3. W?? regularity. By the Sobolev embedding W?24(2) C W1 (), we have
10kl Loo (jo,r); w100y < Fl[0ollwz.a + TNNOk—1l oo ([0,77;w27))
which, combined with (5.4), implies
|AukN Okl Lo~ 0,730y < Akl oo 0,73,20) [V Ok Lo (f0.77:%)
< CllOk-1ll oo o, ryw2e) F (100llwz.a + TN|0k—1| Loo (0,17, 20))-
Then, multiplying (5.6) by p|wy|P~2wy, and argue as above leads to the LP bound
[will oo (jo.7:) < C (lwk (0) o + | Aur VO 11 jo,17;20y) €xP (VU L1 jo,77,2))
< F([l0ollw2r) + Tll0k—1l Lo (jo,17,w2.0))-
By elliptic estimates, we obtain that
10k Loo (jo,1) w20y < Fl00llw2p () + TlOk—1llLoo (o, m9w20))-
Step 4. Concluding. Now by the induction hypothesis,
10k—11] Loo (jo, 0020y < Mo,

with Ty = T0(||90|]H30W2,p,p) >0, My = MO(HQOHH[%QWQ,,,,p) > 0 . Therefore, if we choose

[100llw20 () 160llw20(0)
Mo > F(2[l0o|lw2r()), 1o < M, = F@lollwerc)
then
F(”%szqm + TOMO) < My,
and thus

10k] Loo (j0, 10020y < Mo. (5.10)
This completes the proof of (5.2) and (5.3). Then, using the first equation in (5.1), (5.4), (5.5), it follows
easily that
10:0n]| oo (j0,10);12) < M (5.11)
for some M; > 0 independent of n and k.
12



Using the uniform bounds (5.3), (5.11), we can first pass to the limit n — 0 by virtue of the Aubin-Lions
lemma, then send x — 0 to obtain a solution

0 € L=([0, To]; Hy (2) N W*P(€2))

to the inviscid SQG equation. Finally, uniqueness follows easily by an L? energy estimate for the difference
of two solutions as done in section 3.2, noticing that V0 € L WaP Ly, withp > 2.

6. Appendix 1: L? bounds

Let Q C R? be an open set with smooth boundary.

PROPOSITION 6.1. Let o € (0,1] and k > 0. Let u € L*°([0, T]; L?(Q)?) be a divergence-free vector field
and consider the linear advection-diffusion equation

00 +u- VO + kA*0 =0, 0|—o = bo. (6.1)
(i)Ifa € (3,1) and
0 € L*([0,T]; D(A*)) N L*([0,T]; D(A**)) (6.2)
is a solution of (6.1) then we have for any r € [4, 0]
10]] oo (0, 73;27()) < 60ll - (02)- (6.3)
(i) If o € (0, 5] and
0 € L>([0,T]; D(A?)) (6.4)

is a solution of (6.1) then (6.3) holds for any r € [2, ]
PROOF. We first note that in both cases, equation (6.1) is satisfied in L?([0,T]; L"(f2)) for any r €
[1, 00]. Therefore, § € C([0,T]; L"(§2)) for any r € [1, o0].

(i) Case 1: o € (3,1) and r € [4, oc]. It suffices to consider 7 € [4, 00) because the case r = oo follows by
sending r — oo. We have

i||9||gr :/r\er—?e)ate: —/u-vwdx—m/r|e|*—29A2aeda:.
dt 0 Q Q

In two dimensions, the condition § € D(A?) implies |0|" € H}(Q). Since u is divergence-free, the first
term on the right-hand side vanishes in view of the Stokes formula. Regarding the dissipative term, we use
the Cérdoba-Coérdoba inequality ([12], see also [20]) which was proved for bounded domains in ([6]):

' (fINf — A% (®(f)) >0, s€]0,2], (6.5)

almost everywhere in Q C R? for f € H}(Q) N H%(Q) and C%(R) convex & satisfying ®(0) = 0. Note
that in two dimensions, f € L>(Q) and ®(f) € Hg(Q) N H?(2), hence each term in (6.5) is well defined
in L?(£2). Under condition (6.2), with ®(z) = |2|™ € C?, m = § > 2, we have

/r|eyr—29A2a9dx: 2/ 10 m|8|™ 20N> 9dx
Q Q
> 2/ |0]™ A2 |0 dx:
Q

= 2/ |A¥[0™2dz > 0.
Q

(i) Case 2: a € (0,4] and r € [2,00]. If s € [0,1] it suffices to assume f € H{(Q2) N H*(Q) with s > 1
and ® € C*(R) convex to get the inequality (6.5). Indeed, we then have ®(f) € HZ(Q) = D(A!) and thus
13

Consequently %(|0]|7 < 0 and (6.3) follows.



AS(®(f)) belongs to L?(€). Therefore, (6.3) holds for any > 2 by choosing ®(z) = |z|2 € C" as in
Q). 0

7. Appendix 2: Linear advection-difussion

Let Q2 c R% d > 2, be an open set with smooth boundary. Let o € (0,1] and k > 0. Let u be a vector field
on 2 and consider the linear advection-diffusion equation of 6,

010 +u - VO + kA0 = 0. (7.1)
Define

B@Q) = {veL?(Q): Vve L®(Q),Av e L1(Q),q > 2} ifd=2, 7.2
C\{v e L}Q) : Vv e L®(Q), Av e L2(Q)} ifd>3 '
endowed with its natural norm. We prove (see also [6])

THEOREM 7.1. Assume that u is divergence-free and parallel to the boundary, i.e. y(u) = 0.

1. (Existence) Assume u € L*([0,T]; B(Q)%) with T > 0. Equation (7.1) with initial data 6y € D(A?) has
a solution 0 satisfying

10| oo (f0,77:0(A2)) + KOl L2(0,17: D(AZ+0)) < Cllboll2,0 exp (Cllull L1(o,11:8(9))) -
2. (Uniqueness) Assume u € L2([0,T]; L>=()9). Equation (7.1) has at most one weak solution 6 €
L>=([0,T); L*(2)) satisfying
0 € L2((0, T); HY(9) N 1(9).

PROOF. 1. We proceed as in section 3.1 using the Galerkin approximations. It suffices to derive a priori
bounds for 6,, € P,,L? solution to

O + P (1 - VOy) + kA0, =0 >0, a3)
0, = P00 t=0. ’
As in Lemma 3.3, u - V6, € H}(2), and hence u - V6,, € D(A?). Applying in the first equation of (7.3)
A? = —A, then taking the scalar product with A26,,, and taking into account the fact that P,, is self-adjoint

and commutes with A? on D(A?) we obtain

1d
3510 + KBl = [ ~Au-0,) A0, do
2dt ’ ’ Q
= / u - VA?0,,A%0,,dx + / A% u - V)0,,A%0,,dx.
Q Q
Since A26,, vanishes on the boundary 92 and u is divergence-free, an integration by parts gives
1
/ - VA20,,020,,dx = / w-V [A%0,,| dz = 0.
Q 2 Ja
We recall from (3.4) that
A, u- V)0, = Au -V, +2Vu-VV0,,,
hence
1A, - V]0mll 12 < Cllullpo)10mllr2 < Cllullp@)l|0mll2,0-

We obtain thus

10l Lo ([0,77:D(A2)) + El1Omll L2([0,77:D(A2+0)) < Cllb0ll2,0 exp (Cllull L1 jo.1;5(02))) -
Passing to the limit 1m — oo can be done by means of the Aubin-Lions lemma ([17]).
2. Under the assumed regularity of u and 6, equation (7.1) is satisfied in L2([0, T]; H~1(2)):

00 + div(ub) + kA**0 = 0.
14



In addition, § € L*([0,T]; H}(2)) < L2([0,T); H:(Q)), hence § € C([0,T]; L*(2)) and for a.e. t €
[0, T'] (see Chapter 2, [2])

Ld
2dt
Since 0 € HY(Q) N L>(Q), |6]*> € H*(Q). The Stokes formula then yields

H9HQL2 = (00, 0) -1 111 = —<diV(U9)79>H71,H(} - ’%<A2a979>H*1,H3 = (uf-, Vo) — HHGH%(AQ)-

1
for divu = 0 and y(u) = 0. Consequently,
d
160132 <0

and thus 0(t) = 0 for t € [0,7]if 6(0) = 0. O
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