Inviscid limit for SQG in bounded domains

Peter Constantin, Mihaela Ignatova, and Huy Q. Nguyen

ABSTRACT. We prove that the limit of any weakly convergent sequence of Leray-Hopf solutions of dissipative
SQG equations is a weak solution of the inviscid SQG equation in bounded domains.

1. Introduction

The behavior of high Reynolds number fluids is a broad, important and mostly open problem of nonlinear
physics and of PDE. Here we consider a model problem, the surface quasi-geostrophic equation, and the
limit of its viscous regularizations of certain types. We prove that the inviscid limit is rigid, and no anomalies
arise in the limit.

Let Q C R? be a bounded domain with smooth boundary. Denote
A=vV-A

where —A is the Laplacian operator with Dirichlet boundary conditions. The dissipative surface quasi-
geostrophic (SQG) equation in €2 is the equation

00" +u” - VO +vA°0” =0, v>0,s¢e(0,2], (1.1)
where 0¥ = 6 (x,t), u¥ = u”(z,t) with (z,t) €  x [0, 00) and with the velocity u” given by
u’ = R50” .= VEATI9Y, V= (=0,0)). (1.2)

We refer to the parameter v as “viscosity”. Fractional powers of the Laplacian —A are based on eigenfunc-
tion expansions. The inviscid SQG equation has zero viscosity

o0 +u-VO=0, u=Rp0. (1.3)
The dissipative SQG (1.1) has global weak solutions for any L? initial data:
THEOREM 1.1. For any initial data 0y € L?*(X2) there exists a global weak solution 0
0 € Cy(0,00; L2(2)) N L?(0, 00; D(A2))
to the dissipative SQG equation (1.1). More precisely, 0 satisfies the weak formulation

/ /9@ )dxdpp(t) dt+/ /u9 Vo(x)dzp(t dt—y/ /A29A2 x)dzxp(t)dt =0 (1.4)

forany ¢ € C°((0,00)) and ¢ € D(A?%). Moreover, § obeys the energy inequality

S16C, )0y + 7 / [ Insedsdr < 3ol o (15)
0 Jo
and the balance .
1 s=1 1
SIOCOI g +v [ [ 18T 0P dadr = G100l ) (1.6
fora.e. t > 0. In addition, § € C([0,00); D(A™%)) for any ¢ > 0 and the initial data 6y is attained in
D(A™®).
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We refer to any weak solutions of (1.1) satisfying the properties (1.4), (1.5), (1.6) as a “Leray-Hopf weak
solution”.

REMARK 1.2. Theorem 1.1 for critical dissipative SQG s = 1 was obtained in [6].

REMARK 1.3. Note that C2°(2) is not dense in D(A?) since the D(A?) norm is equivalent to the H?({2)
norm and C'2°(2) is dense in HZ(£2) which is strictly contained in D(A?).

The existence of L? global weak solutions for inviscid SQG (1.3) was proved in [8]. More precisely, (see
Theorem 1.1, [8]) for any initial data g € L?(€2) there exists a global weak solution § € C,,(0, 00; L?(€2))
satisfying

/ / 00y pdxdt +/ / uf - Vdzdt =0 Vo € C°(Q x (0,00)), (1.7)
0 Jo o Ja

and such that the Hamiltonian

H(t) = I\G(t)lli)( (1.8)

A" Z)
is constant in time. Moreover, the initial data is attained in D(A~¢) for any £ > 0.

Our main result in this note establishes the convergence of weak solutions of the dissipative SQG to weak
solutions of the inviscid SQG in the inviscid limit v — 0.

THEOREM 1.4. Let {v,} be a sequence of viscosities converging to 0 and let {6;" } be a bounded sequence
in L?(Q). Any weak limit 6 in L?(0,T; L?*(Q)), T > 0, of any subsequence of {6*"} of Leray-Hopf weak
solutions of the dissipative SQG equation (1.1) with viscosity vy, and initial data 6" is a weak solution of the
inviscid SQG equation (1.3) on [0, T]. Moreover, € C(0,T; D(A™¢)) for any € > 0, and the Hamiltonian
of 0 is constant on [0, T.

REMARK 1.5. The same result holds true on the torus T2. The case of the whole space R? was treated in

[1].

REMARK 1.6. With more singular constitutive laws u = V+A~%0, a € [0,1), L? global weak solutions
of the inviscid equations were obtained in [3, 15]. Theorem 1.4 could be extended to this case. It is also
possible to consider LP initial data in light of the work [12].

It is worth noting that in order for a general weak solution  of the inviscid SQG to conserve the Hamiltonian,
the Onsager-type critical condition requires 6 € Lf’,x (see [14] for Q = T?). On the other hand, the vanishing
viscosity solutions obtained in Theorem 1.4 conserve the Hamiltonian, even though they are only in L{°L2.
In [4], a result in the same spirit has been obtained regarding the energy conservation of weak solutions of
the Euler equation on the torus T2.

As a corollary of the proof of Theorem 1.4 we have the following weak rigidity of inviscid SQG in bounded
domains:

COROLLARY 1.7. Any weak limit in L*(0,T; L*(Q2)), T > 0, of any sequence of weak solutions of the
inviscid SQG equation (1.3) is a weak solution of (1.3). Here, weak solutions of (1.3) are interpreted in the
sense of (1.7).

REMARK 1.8. On tori, this result was proved in [14]. If the weak limit occurs in L°°(0,T; L?(£2)) and the
sequence of weak solutions conserves the Hamiltonian then so is the limiting weak solution.

The paper is organized as follows. Section 2 is devoted to basic facts about the spectral fractional Laplacian
and results on commutator estimate. The proofs of Theorems 1.1 and 1.4 are given respectively in sections
3 and 4. Finally, an auxiliary lemma is given in Appendix A.
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2. Fractional Laplacian and commutators

Let @ C R?% d > 2, be a bounded domain with smooth boundary. The Laplacian —A is defined on
D(=A) = H*(Q) N Hy(2). Let {w;}52, be an orthonormal basis of L*(€2) comprised of L*—normalized
eigenfunctions w; of —A, i.e.

—Awj = \jwj, / w?dx =1,
Q

with0 < Ay < A < ... S)\j—>OO.
The fractional Laplacian is defined using eigenfunction expansions,

Af=(-A %f—Z)\Qwaj with f = Zf]wj, fi= /fw]dm

fors > 0and f € D(A®) where

D(A%) == {f € L*(Q) : (A2 f;) € L)}
The norm of f in D(A®) is defined by
£ lp) = 1 55l
It is also well-known that D(A) and H}(€2) are isometric. In the language of interpolation theory,
D(A%) = [L*(), D(=A)]s  Va € [0,2].
As mentioned above,

Hg(Q) = D(A) = [L*(Q), D(=A)]

i

=

hence
D(A%) = [L*(Q), Hy(Q)]a Vo € [0,1].
Consequently, we can identify D(A%) with usual Sobolev spaces (see Chapter 1, [17]):
)

HY(Q) N HY(Q) ifa € (1,2],
D(A%) = (Q) if a € (3,1], o
He(Q) = {u € HF(Q) - u/\/d(@) € LX)} ifa=1, '
Ho(Q) ifael0,3).

Here and below d(z) denote the distance from z to the boundary 0f2.
Next, for s > 0 we define
o0 .
ATF =D % fwg
j=1
if f=3272, fjwj € D(A™®) where

DA™ =4S fru; e Z(Q): f; € R, SN fuy € LA(Q)
j=1

j=1
The norm of f is then defined by

1

I lpa—s) == 1A Fll2@) = ZA *f7)z.

It is easy to check that D(A %) is the dual of D(A®) with respect to the pivot space L?(12).
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LEMMA 2.1 (Lemma 2.1, [15]). The embedding
D(A®) C H*(Q) 2.2)
is continuous for all s > 0.
LEMMA 2.2. Fors,r € R with s > r, the embedding D(A®) C D(A") is compact.
PROOF. Let {u,} be a bounded sequence in D(A®). Then {A"u,} is bounded in D(A®~"). Choosing
& > 0 smaller than min(s—r, 1) we have D(A5™") C D(A®) = H°(Q2) C L?(Q2) where the first embedding
is continuous and the second is compact. Consequently the embedding D(A5~") C L?(Q) is compact and

thus there exist a subsequence n; and a function f € L?(€2) such that A"uy,; converge to f strongly in
L?(2). Then up,; converge to u := A~" f strongly in D(A") and the proof is complete. O

A bound for the commutator between A and multiplication by a smooth function was proved in [6] using
the method of harmonic extension:

THEOREM 2.3 (Theorem 2, [6]). Let x € B(Q) with B(Q) = W4(Q) nW1>°(Q) ifd > 3, and B(Y) =
W?2P(Q) with p > 2 if d = 2. There exists a constant C(d, p, Q) such that

2

Pointwise estimates for the commutator between fractional Laplacian and differentiation were established
in [8]:

THEOREM 2.4 (Theorem 2.2, [8]). For any p € [1,00] and s € (0,2) there exists a positive constant
C(d, s, p, Q) such that for all ip) € C°(2) we have

, _e—1—d
[A°, V()] < C(d,s,p, Q)d(@) "7 [ 1oy
holds for all x € (.
This pointwise bound implies the following commutator estimate in Lebesque spaces.
THEOREM 2.5. Let p, q € [1,00], s € (0,2) and ¢ satisfy
d
p()d(-) TP € LYQ).

Then the operator o[A®, V| can be uniquely extended from CZ°(S2) to LP(S2) such that there exists a positive
constant C = C(d, s, p, Q) such that

_g_1_4d
@[A%, VYl Loy < Clle()d) ™ 77 | oy ¢l oy (2.3)
holds for all ¢ € LP(Q).

(2.3) is remarkable in that the commutator between an operator of order s € (0, 2) and an operator of order
1 is an operator of order 0.

3. Proof of Theorem 1.1

We use Galarkin approximations. Denote by PP,,, the projection in L?(£2) onto the linear span L2, of eigen-
functions {w1, ..., Wy, }, i.e.

P f = ijwj for f = Z fiw;. (3.1)
j=1 Jj=1
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The mth Galerkin approximation of (1.1) is the following ODE system in the finite dimensional space L2,

{ém 4 Pt - VO) + VA0, =0 >0,

32
Hm = Pm90 t= 0’ G2

with O, (2,8) = 377" Hj( )( t)w;(z) and uy, = Rp™0,, satisfying div u,, = 0. Note that (3.2) is equivalent
to

+ > J’,;’})e e L oae™ =0, 1=1,2,..,m, (3.3)
7,k=1
with

_1
fyj(,ZlL) = )\j 2 /Q <Vle . Vwk> wydx.

The local existence of 6,,, on some time interval [0, T},,] follows from the Cauchy-Lipschitz theorem. On the

other hand, the antisymmetry property 7](.7]:;) = *’YJ(';Z) yields

1 ¢ s 1 1
S0 Oy v [ [ N30 Pdedr = Sl < 510000 G4

for all t € [0,T,,]. This implies that 6, is global and (3.4) holds for all positive times. The sequence 6,,
is thus uniformly bounded in L>°(0, 0o; L*(Q)) N L?(0, 00; D(A2)). Upon extracting a subsequence, we
have 6,,, converge to some 6 weakly-* in L°(0, oo; L?(€)) and weakly in L2(0, co; D(A?)). In particular,

0 obeys the same energy inequality as in (3.4). On the other hand, if one multiplies (3.3) by )\;1/ 29l(m) and
uses the fact that 'yj( kl) A2 = l(,:; IA1/2 , one obtains
oGy v [ e = i) 35)
o 17m " D(A_l) v 0 m| AT T—2 mY0 D(A_%)' .

We derive next a uniform bound for d;0,,,. Let N > 0 be an integer to be determined. For any ¢ € D(A%Y)
we integrate by parts to get

/Oté?mgodx:—/Pmdiv(qum)godx—/l/ASngpd:U
0 Q Q

_ / () - V(B yop)dar — / VO ASGdz.
Q

Q
The first term is controlled by

/Q(umem) “V(Prp)dz| < Hum‘9m||L1(Q)||VPm80HL°°(Q) < CHPm‘PHH?’(Q)

According to Lemma A.1, for V and k satisfying N > E + 1 there exists a positive constant C'y j such that
Pl v () < Cnillelpaony Vm > 1, Y € D(A®Y). (3.6)
With £ = 3 and N = 3 we have

< Cllel pasy-

/(umﬁm) -V(Pryp)dx
Q

‘/ v, A pdx

Q

‘/ Ot0mpdx
Q

On the other hand,

< Cll0m|l 20 lell p(a2)-

We have proved that

< Cllgllpsy Ve € D(A®).
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Because L(2) x D(A®) 3 (f,9) — [, fgda extends uniquely to a bilinear from on D(A~%) x D(AS),
we deduce that 9;0,, are uniformly bounded in L°(0,00; D(A~%)). Note that we have used only the
uniform regularity L>(0; co; L2(£2)) of 6,,. We have the embeddings D(Az) ¢ D(AS~D/2) ¢ D(A0)
where the first one is compact by virtue of Lemma 2.2, and the second is continuous. Fix 7" > (0. Aubin-
Lions’ lemma (see [16]) ensures that for some function f and along some subsequence 6,, converge to f
weakly in L2(0,T; D(A2)) and strongly in L2(0,T; D(A®~1Y/2)). Apriori, both f and the subsequence
depend on both T. However, we already know that 6,, — 6 weakly in L?(0,00; D(A2)). Therefore,
f = 6 and the convergences to ¢ hold for the whole sequence. Similarly, applying Aubin-Lions’ lemma
with the embeddings L?(2) ¢ D(A~¢) C D(A~9) for sufficiently small £ > 0 we obtain that 6,,, —
strongly in C([0, T']; D(A™¢)). Integrating (3.2) against an arbitrary test function of the form ¢(t)p(x) with
¢ € C((0,T)), ¢ € D(AS) yields

T T T ; s
/0 /Qﬁmgp(:v)dzatgb(t)dt + /0 /Qumﬁm - VPp(z)dzo(t)dt — 1//0 /QASHmIU e(x)dze(t)dt = 0.

By Lemma A.1,
(I = Pm)epl @) < CIlI—Pr)ellms@) — 0 asm — oo.

The weak convergence of 6, in L2(0,T; D(A2)) allows one to pass to the limit in the two linear terms.
The strong convergence of 6, in L?(0,T; L?(f2)) together with the weak convergence of w,, in the same
space allows one to pass to the limit in the nonlinear term and conclude that 6 satisfies the weak formulation
(1.4) with ¢ € D(AS). In fact, 0 € L?(0,00; D(A2)) C L0, 00; LP(£2)) for some p > 2, hence uf €
L?(0, 00; LI(Q2)) for some ¢ > 1. In addition, if ¢ € D(A?) then Vo € L for all r < oo, and thus the
nonlinearity [, uf-Vdz makes sense. Then because D(A?) is dense in D(A®), (1.4) holds for ¢ € D(A?).

We now pass to the limit in (3.5). The strong convergence 60, — ¢ in C(0,T; D(A™¢)) gives the conver-

gence of the first term. On the other hand, the strong convergence 6,, — 6 in L?(0, T'; D(A®~1Y/2)) yields

the convergence of the second term. The right hand side converges to %HGO Hi)(A_ b since IP,,, 0y converge to
2

6o in L2(Q2). We thus obtain (1.6).
Since 6,,, — 6 in C ([0, T]; D(A™¢)) we deduce that

0p = lim P,,0p = lim 9m|t:0 = 9’,5:0 in D(Ais).
m—00 m—00

For a.e. t € 0,77, ,,(t) are uniformly bounded in L?((2), and thus along some subsequence m, a priori
depending on ¢, we have 0, (t) converge weakly to some f(t) in L*(2). But we know 6,,(t) — 6(t) in
D(A™#). Thus, f(t) = 6(t) and 0,,,(t) — 6(¢) in L?(2) as a whole sequence for a.e. ¢t € [0, T]. Recall that
49, are uniformly bounded in L>(0, T; D(A~%)). For all ¢ € D(A%) and t € [0, 7] we write

t
d
(Om(t) @) r2(0),22(0) = (Om(0), ) L2(),22(0) +/0 (50m () ) p(a-5), DA%y dr-

Because %Qm converge to %9 weakly-* in L°°(0,T; D(A~%)), letting m — oo yields

d

t
(0(t), ) 1200, .2(0) = (00, P) 12(02),22(9) +/O (0(r): ) p(a-s),Dasydr

for a.e. t € [0, 7). Taking the limit ¢ — O gives

W (0(1), ) 12().22(0) = (0o: )20, L2(0)
for all ¢ € D(A®). Finally, since D(A%) is dense in L?(2) and § € L>(0,T; L?(£2)) we conclude that
6 € C,(0,T; L?(2)) for all T > 0.
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4. Proof of Theorem 1.4

First, using approximations and commutator estimates we justify the commutator structure of the SQG
nonlinearity derived in [8].

LEMMA 4.1. Forall v € H}(Q) and p € C2°(2) we have
1 1
/ APV - Vpds = 3 / [A, V1] - Vohdr — 3 / V- (A, Volida. 4.1)
Q Q Q

Here, the commutator [A, Vﬂi/} -V is understood in the sense of the extended operator defined in Theorem
2.5.

PROOF. Let ¢, € C°(Q) converging to ¢ in Hj(Q). Integrating by parts and using the fact that
V1. Ve =0 gives

/ AUV, - Vipda = — / VA - Vioda,
Q Q

Because 1, is smooth and has compact support inside Q, V+,, € D(A), and thus we can commute V-
with A to obtain

/ A, V1, - Vpda:
Q
- / Un[VE, Aty - Vipdar — / U AV, - Vioda
Q Q
- / UnlVE, Aty - Vipdr — / Vi, - A(WV)da
Q 9]

- / VAl - Viotnda — / V4 - [A, Veltnde — / Vi - Viphtuda.
Q Q Q

Noticing that the last term on the right-hand side is exactly the negative of the left-hand side, we deduce that

/ AV - Vipder = / A,V b - Vipde — / V- 4h - [A, Vplthnde.
Q

The commutator estimates in Theorems 2.3 and 2.5 then allow us to pass to the limit in the preceding
representation and conclude that (4.1) holds. ]

Now let ,, — 07 and let 65" be a bounded sequence in L?(£2). For each n let §,, = 6" be a Leray-Hopf
weak solution of (1.1) with viscosity I/n and initial data 6. In view of the energy inequality (1.5), 6,, are
uniformly bounded in L>(0, oo; L?(€2)) and satisfies

/ /anp )dxdyp(t dt+/ /une - Vo(z)dzo(t dt—z/n/ /A?G A2<p Ydxp(t)dt =0

(4.2)
for all p € C°((0,00)) and ¢ € D(A?). Fix T > 0. Assume that along a subsequence, still labeled by
n, 0, converge to § weakly in L?(0,T; L*($2)). We prove that  is a weak solution of the inviscid SQG
equation. We first prove a uniform bound for 9;6,, provided only the uniform regularity L>(0,T; L?(Q2))
of 6,,. To this end, let us define for a.e. t € [0, T the function f,,(t) € H—3(Q) by

{(Fn®)s @) -30),m3(0) = /Q(un(x,t)%( t) - Vo(x) = vnbn(z, )\ p(x))dx

for all ¢ € H3(Q) C D(A?), where H}(Q2) is the closure of C2°(92) in H*(£2) for any p > 0. Indeed, we
have

/Q (@, )0 (2, 1) - V() — v, DA p(@))de| < C 10Dz + D)l

7



This shows that f,, are uniformly bounded in L>°(0, T'; H~3(2)). Then for any ¢ € C2°((0,T)), it follows

from (4.2) that
/ 0,0:pdt = / frnodt
0

in H3 (). In other words, 9;0,, = f, and the desired uniform bound for 9;6,, follows. Fix ¢ €

(0,1). Aubin-Lions’ lemma applied with the embeddings L?(€2) C D(A™%) C H~3(Q) then ensures

that 6,, converge to 6 strongly in C'(0,T; D(A~¢)). Consequently 1), converge to 1) := A1 strongly in
C(0,T; D(A*=9)).

Now we take ¢ € C2°((0,00)) and ¢ € CZ°(2). Because of Lemma 4.1, the weak formulation (1.4) gives
T T
|| oo [ ] 89490, Vel
0
— / / Vg, - (A, V()] gndee(t)dt — un/ / 0, N (x)dz g (t)dt

where ¢, := A~16,, are uniformly bounded in L>(0,T; H}(f2)). The weak convergence 6, — 6 in
L?(0,T; L?(2)) readily yields

Tim_ / / O0(2)dzdyd(t)dt = / / O (x)dzdd(t)dt
Tim v, /0 ' /Q 0,0\ (z)dze(t)dt =

Next we pass to the limit in the two nonlinear terms. Applying the commutator estimate in Theorem 2.3 we
have

/T/ Y+, - [A, Vel dredt — /OT/QVL#] A, Vlpdeadt

and

/ V0~ 00 A Vilwdoodt] + 167 bl Vel — lzoeioy

(0,15D(A2))’

)[4, Vilvdzod] + Clln — vl

The first term converges to 0 due to the weak convergence of 1, to ¥ in L?(0,T; H}(£2)) and the fact that

[A,Voly € D(A%) C L%*(Q) in view of Theorem 2.3. The second term also converges to 0 due to the
strong convergence of 1, to ¢ in C(0,T; D(A'~¢)) with ¢ € (0, 3). Finally, we apply the commutator
estimate in Theorem 2.5 to obtain

T T
A V- Viprndaodt — [ [ (840 Vipvdzods
Q 0 Q

< IVeIA, V) (n = ) 20,1220 19%n | 2200712 ()
+ 1A, VY - Vol rzorze@pllo(n — )l 201120
< CllYn = Yllz20,10202)

which converges to 0. Putting together the above considerations leads to

T T
/ / 0 () dwdy (1) di + / / b - Vo(z)dzo(t)dt = 0, Yo € C((0,T)), ¢ € C=(Q).
0 Q 0 Q

Therefore, 6 is a weak solution of the inviscid SQG equation on [0, T'].
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Finally, let us show the Hamiltonian conservation of 6. We have the energy balance (1.6) for each 6,,. If
s < 1, then the uniform boundedness of 6, in L>°(0, T; L?(2)) implies

t
lim yn/ / A2 0,2 dwdr =0, te[0,T]. (4.3)
0 JQ

n—oo

In addition, #,, — 6 strongly in C'(0,7; D(A~¢)) C C(0, T} D(A_%)). Letting v = v,, — 0 in the balance
(1.6) we conclude that the Hamiltonian of 6 is constant on [0, 7"]. Consider next the case s € (1,2]. Then
since % € (0, 3) it follows by interpolation that

s—1 2(1—-X 5 )
AT 0320y < 10175000 1501173 ) < ClIAZOLIR g

for some A € (0, 1) depending only on s. Thus, for any § > 0,

t T )
,,n/ ||A“519n|\%2(9)dt§ Ot % +C’51/n/ 126,132 (qdr, ¢ €[0,T).
0 0

Because of (1.5) the energy dissipation quantities v, fot Jo |A20,,|2dzdt, t € [0, T, are uniformly bounded.
Sending v, — 0 and then § — 0 yields (4.3) for this case. This completes the proof.

Appendix A. A bound on P,,

Recall the definition (3.1) of P,,,. The following lemma is essentially taken from [8]. We include the proof
for the sake of completeness.

LEMMA A.l. Let Q C R d > 2, be a bounded domain with smooth boundary. For every N and k € N
satisfying N > g + g there exists a positive constant Cy i, such that

1Pl ey < Cnillell pazyy (A1)
forallm > 1and ¢ € D(A2N); moreover, we have

(I =Pr)oll e = 0. (A2)

lim ||
m—r0o0

PROOF. As ¢ € D(AY), we have Ay € H}(Q) forall ¢ = 0,1,...N — 1. This allows repeated
integration by parts with w; using the relation —Aw; = Ajw;. Using Holder’s inequality and the fact that
w; is normalized in L2, we obtain

loil <A MIAN o2, @5 = /Q pwjda.
By elliptic regularity estimates and induction, we have for all k¥ € N that
k
[w;ll ey < CrAS-

We know from the easy part of Weyl’s asymptotic law that \; > Cj i, Consequently, with N > % + % we
deduce that

0o oo Ntk
N ek
S leillwjllae < CrllaAN gl 2 DA 2
j=1 J=1

N (LN E)2
< Ck||<PHD(A2N)ZJ( N+2)a
j=1

= Cnllell pazyy
9



where C 1, < oo depends only on N and k. Because

j=m+1

this proves both (A.1) and (A.2). The proof is complete. U

Acknowledgment. The research of PC was partially supported by NSF grant DMS-1713985.

References

[1] L. C. Berselli. Vanishing Viscosity Limit and Long-time Behavior for 2D Quasi-geostrophic Equations. Indiana
Univ. Math. J. 51(4) (2002), 905-930.

[2] T. Buckmaster, S. Shkoller, V. Vicol. Nonuniqueness of weak solutions to the SQG equation. arXiv:1610.00676,
to appear in Communications on Pure and Applied Mathematics.

[3] D. Chae, P. Constantin, D. Cérdoba, F. Gancedo, J. Wu. Generalized surface quasi-geostrophic equations with
singular velocities. Comm. Pure Appl. Math., 65 (2012) No. 8, 1037-1066.

[4] A. Cheskidov, M. C. Lopes Filho; H. J. Nussenzveig Lopes; R. Shvydkoy. Energy conservation in two-
dimensional incompressible ideal fluids. Comm. Math. Phys. 348 (2016), no. 1, 129-143.

[5] P. Constantin, D. Cordoba, J. Wu. On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J.,
50 (Special Issue): 97-107, 2001. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN,
2000).

[6] P. Constantin, M. Ignatova. Remarks on the fractional Laplacian with Dirichlet boundary conditions and applica-
tions. Internat. Math. Res. Notices, (2016), 1-21.

[7] P. Constantin, M. Ignatova. Critical SQG in bounded domains. Ann. PDE (2016) 2:8.

[8] P. Constantin, H.Q. Nguyen. Global weak solutions for SQG in bounded domains. Comm. Pure Appl. Math, 71
(2018), no. 11, 2323-2333.

[9] P. Constantin, H. Q. Nguyen. Local and global strong solutions for SQG in bounded domains. Phys. D Vol.
376-378 (2018), Special Issue in Honor of Edriss Titi, 195-203.

[10] P. Constantin, A.J. Majda, and E. Tabak. Formation of strong fronts in the 2-D quasigeostrophic thermal active
scalar. Nonlinearity, 7(6) (1994), 1495-1533.

[11] P. Constantin, A. Tarfulea, V. Vicol. Absence of anomalous dissipation of energy in forced two dimensional fluid
equations. Arch. Ration. Mech. Anal. 212 (2014), 875-903.

[12] F. Marchand. Existence and Regularity of Weak Solutions to the Quasi-Geostrophic Equations in the Spaces LP
or H='/2. Comm. Math. Phys. (2008) 277(1): 45-67.

[13] I.M. Held, R.T. Pierrehumbert, S.T. Garner, and K.L. Swanson. Surface quasi-geostrophic dynamics. J. Fluid
Mech., 282 (1995),1-20.

[14] P. Isset and V. Vicol. Holder continuous solutions of active scalar equations. Ann. PDE 1 (2015), no. 1, 1-77.

[15] H. Q. Nguyen. Global weak solutions for generalized SQG in bounded domains. Anal. PDE, Vol. 11 (2018), No.
4, 1029-1047.

[16] J.L. Lions, Quelque methodes de résolution des problemes aux limites non linéaires. Paris: Dunod-Gauth, 1969.

[17] J. L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I. Translated from
the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag,
New York-Heidelberg, 1972.

[18] S.Resnick, Dynamical problems in nonlinear advective partial differential equations. ProQuest LLC, Ann Arbor,
MI, 1995, Thesis (Ph.D.)-The University of Chicago.

10



DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NJ 08544

E-mail address: const@math.princeton.edu

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NJ 08544

E-mail address: ignatova@math.princeton.edu

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NJ 08544

E-mail address: an@math.princeton.edu



	1. Introduction
	2. Fractional Laplacian and commutators
	3. Proof of Theorem 1.1
	4. Proof of Theorem 1.4
	Appendix A. A bound on ¶m
	References

