Inviscid limit for SQG in bounded domains

Peter Constantin, Mihaela Ignatova, and Huy Q. Nguyen

ABSTRACT. We prove that the limit of any weakly convergent sequence of Leray-Hopf solutions of dissipative SQG equations is a weak solution of the inviscid SQG equation in bounded domains.

1. Introduction

The behavior of high Reynolds number fluids is a broad, important and mostly open problem of nonlinear physics and of PDE. Here we consider a model problem, the surface quasi-geostrophic equation, and the limit of its viscous regularizations of certain types. We prove that the inviscid limit is rigid, and no anomalies arise in the limit.

Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with smooth boundary. Denote

$$\Lambda = \sqrt{-\Delta}$$

where $-\Delta$ is the Laplacian operator with Dirichlet boundary conditions. The dissipative surface quasigeostrophic (SQG) equation in Ω is the equation

$$\partial_t \theta^{\nu} + u^{\nu} \cdot \nabla \theta^{\nu} + \nu \Lambda^s \theta^{\nu} = 0, \quad \nu > 0, \ s \in (0, 2],$$

$$(1.1)$$

where $\theta^{\nu} = \theta^{\nu}(x,t), u^{\nu} = u^{\nu}(x,t)$ with $(x,t) \in \Omega \times [0,\infty)$ and with the velocity u^{ν} given by

$$u^{\nu} = R_D^{\perp} \theta^{\nu} := \nabla^{\perp} \Lambda^{-1} \theta^{\nu}, \quad \nabla^{\perp} = (-\partial_2, \partial_1).$$
(1.2)

We refer to the parameter ν as "viscosity". Fractional powers of the Laplacian $-\Delta$ are based on eigenfunction expansions. The inviscid SQG equation has zero viscosity

$$\partial_t \theta + u \cdot \nabla \theta = 0, \quad u = R_D^\perp \theta.$$
 (1.3)

The dissipative SQG (1.1) has global weak solutions for any L^2 initial data:

THEOREM 1.1. For any initial data $\theta_0 \in L^2(\Omega)$ there exists a global weak solution θ

$$\theta \in C_w(0,\infty; L^2(\Omega)) \cap L^2(0,\infty; D(\Lambda^{\frac{s}{2}}))$$

to the dissipative SQG equation (1.1). More precisely, θ satisfies the weak formulation

$$\int_{0}^{\infty} \int_{\Omega} \theta\varphi(x) dx \partial_{t} \phi(t) dt + \int_{0}^{\infty} \int_{\Omega} u\theta \cdot \nabla\varphi(x) dx \phi(t) dt - \nu \int_{0}^{\infty} \int_{\Omega} \Lambda^{\frac{s}{2}} \theta \Lambda^{\frac{s}{2}} \varphi(x) dx \phi(t) dt = 0 \quad (1.4)$$

for any $\phi \in C_c^{\infty}((0,\infty))$ and $\varphi \in D(\Lambda^2)$. Moreover, θ obeys the energy inequality

$$\frac{1}{2} \|\theta(\cdot,t)\|_{L^2(\Omega)}^2 + \nu \int_0^t \int_\Omega |\Lambda^{\frac{s}{2}} \theta|^2 dx dr \le \frac{1}{2} \|\theta_0\|_{L^2(\Omega)}^2$$
(1.5)

and the balance

$$\frac{1}{2} \|\theta(\cdot,t)\|_{D(\Lambda^{-\frac{1}{2}})}^2 + \nu \int_0^t \int_\Omega |\Lambda^{\frac{s-1}{2}}\theta|^2 dx dr = \frac{1}{2} \|\theta_0\|_{D(\Lambda^{-\frac{1}{2}})}^2$$
(1.6)

for a.e. t > 0. In addition, $\theta \in C([0,\infty); D(\Lambda^{-\varepsilon}))$ for any $\varepsilon > 0$ and the initial data θ_0 is attained in $D(\Lambda^{-\varepsilon})$.

Key words and phrases. inviscid limit, weak solution, Leray-Hopf, SQG.

MSC Classification: 35Q35, 35Q86.

We refer to any weak solutions of (1.1) satisfying the properties (1.4), (1.5), (1.6) as a "Leray-Hopf weak solution".

REMARK 1.2. Theorem 1.1 for critical dissipative SQG s = 1 was obtained in [6].

REMARK 1.3. Note that $C_c^{\infty}(\Omega)$ is not dense in $D(\Lambda^2)$ since the $D(\Lambda^2)$ norm is equivalent to the $H^2(\Omega)$ norm and $C_c^{\infty}(\Omega)$ is dense in $H_0^2(\Omega)$ which is strictly contained in $D(\Lambda^2)$.

The existence of L^2 global weak solutions for inviscid SQG (1.3) was proved in [8]. More precisely, (see Theorem 1.1, [8]) for any initial data $\theta_0 \in L^2(\Omega)$ there exists a global weak solution $\theta \in C_w(0, \infty; L^2(\Omega))$ satisfying

$$\int_{0}^{\infty} \int_{\Omega} \theta \partial_{t} \varphi dx dt + \int_{0}^{\infty} \int_{\Omega} u \theta \cdot \nabla \varphi dx dt = 0 \quad \forall \varphi \in C_{c}^{\infty}(\Omega \times (0, \infty)),$$
(1.7)

and such that the Hamiltonian

$$H(t) := \|\theta(t)\|_{D(\Lambda^{-\frac{1}{2}})}^2$$
(1.8)

is constant in time. Moreover, the initial data is attained in $D(\Lambda^{-\varepsilon})$ for any $\varepsilon > 0$.

Our main result in this note establishes the convergence of weak solutions of the dissipative SQG to weak solutions of the inviscid SQG in the inviscid limit $\nu \to 0$.

THEOREM 1.4. Let $\{\nu_n\}$ be a sequence of viscosities converging to 0 and let $\{\theta_0^{\nu_n}\}$ be a bounded sequence in $L^2(\Omega)$. Any weak limit θ in $L^2(0,T; L^2(\Omega))$, T > 0, of any subsequence of $\{\theta^{\nu_n}\}$ of Leray-Hopf weak solutions of the dissipative SQG equation (1.1) with viscosity ν_n and initial data $\theta_0^{\nu_n}$ is a weak solution of the inviscid SQG equation (1.3) on [0,T]. Moreover, $\theta \in C(0,T; D(\Lambda^{-\varepsilon}))$ for any $\varepsilon > 0$, and the Hamiltonian of θ is constant on [0,T].

REMARK 1.5. The same result holds true on the torus \mathbb{T}^2 . The case of the whole space \mathbb{R}^2 was treated in [1].

REMARK 1.6. With more singular constitutive laws $u = \nabla^{\perp} \Lambda^{-\alpha} \theta$, $\alpha \in [0, 1)$, L^2 global weak solutions of the inviscid equations were obtained in [3, 15]. Theorem 1.4 could be extended to this case. It is also possible to consider L^p initial data in light of the work [12].

It is worth noting that in order for a general weak solution θ of the inviscid SQG to conserve the Hamiltonian, the Onsager-type critical condition requires $\theta \in L^3_{t,x}$ (see [14] for $\Omega = \mathbb{T}^2$). On the other hand, the vanishing viscosity solutions obtained in Theorem 1.4 conserve the Hamiltonian, even though they are only in $L^{\infty}_t L^2_x$. In [4], a result in the same spirit has been obtained regarding the energy conservation of weak solutions of the Euler equation on the torus \mathbb{T}^2 .

As a corollary of the proof of Theorem 1.4 we have the following weak rigidity of inviscid SQG in bounded domains:

COROLLARY 1.7. Any weak limit in $L^2(0,T; L^2(\Omega))$, T > 0, of any sequence of weak solutions of the inviscid SQG equation (1.3) is a weak solution of (1.3). Here, weak solutions of (1.3) are interpreted in the sense of (1.7).

REMARK 1.8. On tori, this result was proved in [14]. If the weak limit occurs in $L^{\infty}(0,T; L^2(\Omega))$ and the sequence of weak solutions conserves the Hamiltonian then so is the limiting weak solution.

The paper is organized as follows. Section 2 is devoted to basic facts about the spectral fractional Laplacian and results on commutator estimate. The proofs of Theorems 1.1 and 1.4 are given respectively in sections 3 and 4. Finally, an auxiliary lemma is given in Appendix A.

2. Fractional Laplacian and commutators

Let $\Omega \subset \mathbb{R}^d$, $d \geq 2$, be a bounded domain with smooth boundary. The Laplacian $-\Delta$ is defined on $D(-\Delta) = H^2(\Omega) \cap H^1_0(\Omega)$. Let $\{w_j\}_{j=1}^{\infty}$ be an orthonormal basis of $L^2(\Omega)$ comprised of L^2 -normalized eigenfunctions w_j of $-\Delta$, i.e.

$$-\Delta w_j = \lambda_j w_j, \quad \int_{\Omega} w_j^2 dx = 1,$$

with $0 < \lambda_1 < \lambda_2 \leq \dots \leq \lambda_j \to \infty$.

The fractional Laplacian is defined using eigenfunction expansions,

$$\Lambda^{s} f \equiv (-\Delta)^{\frac{s}{2}} f := \sum_{j=1}^{\infty} \lambda_{j}^{\frac{s}{2}} f_{j} w_{j} \quad \text{with } f = \sum_{j=1}^{\infty} f_{j} w_{j}, \quad f_{j} = \int_{\Omega} f w_{j} dx$$

for $s \ge 0$ and $f \in D(\Lambda^s)$ where

$$D(\Lambda^s) := \{ f \in L^2(\Omega) : \left(\lambda_j^{\frac{s}{2}} f_j\right) \in \ell^2(\mathbb{N}) \}.$$

The norm of f in $D(\Lambda^s)$ is defined by

$$||f||_{D(\Lambda^s)} := ||(\lambda_j^{\frac{s}{2}} f_j)||_{\ell^2(\mathbb{N})}.$$

It is also well-known that $D(\Lambda)$ and $H^1_0(\Omega)$ are isometric. In the language of interpolation theory,

$$D(\Lambda^{\alpha}) = [L^2(\Omega), D(-\Delta)]_{\frac{\alpha}{2}} \quad \forall \alpha \in [0, 2].$$

As mentioned above,

$$H_0^1(\Omega) = D(\Lambda) = [L^2(\Omega), D(-\Delta)]_{\frac{1}{2}},$$

hence

$$D(\Lambda^{\alpha}) = [L^2(\Omega), H^1_0(\Omega)]_{\alpha} \quad \forall \alpha \in [0, 1].$$

Consequently, we can identify $D(\Lambda^{\alpha})$ with usual Sobolev spaces (see Chapter 1, [17]):

$$D(\Lambda^{\alpha}) = \begin{cases} H_0^1(\Omega) \cap H^{\alpha}(\Omega) & \text{if } \alpha \in (1,2], \\ H_0^{\alpha}(\Omega) & \text{if } \alpha \in (\frac{1}{2},1], \\ H_{00}^{\frac{1}{2}}(\Omega) := \{ u \in H_0^{\frac{1}{2}}(\Omega) : u/\sqrt{d(x)} \in L^2(\Omega) \} & \text{if } \alpha = \frac{1}{2}, \\ H^{\alpha}(\Omega) & \text{if } \alpha \in [0,\frac{1}{2}). \end{cases}$$
(2.1)

Here and below d(x) denote the distance from x to the boundary $\partial \Omega.$

Next, for s > 0 we define

$$\Lambda^{-s}f = \sum_{j=1}^{\infty} \lambda_j^{-\frac{s}{2}} f_j w_j$$

if $f = \sum_{j=1}^{\infty} f_j w_j \in D(\Lambda^{-s})$ where

$$D(\Lambda^{-s}) := \left\{ \sum_{j=1}^{\infty} f_j w_j \in \mathscr{D}'(\Omega) : f_j \in \mathbb{R}, \ \sum_{j=1}^{\infty} \lambda_j^{-\frac{s}{2}} f_j w_j \in L^2(\Omega) \right\}$$

The norm of f is then defined by

$$||f||_{D(\Lambda^{-s})} := ||\Lambda^{-s}f||_{L^2(\Omega)} = \Big(\sum_{j=1}^{\infty} \lambda_j^{-s}f_j^2\Big)^{\frac{1}{2}}.$$

It is easy to check that $D(\Lambda^{-s})$ is the dual of $D(\Lambda^{s})$ with respect to the pivot space $L^{2}(\Omega)$.

LEMMA 2.1 (Lemma 2.1, [15]). The embedding

$$D(\Lambda^s) \subset H^s(\Omega) \tag{2.2}$$

is continuous for all $s \ge 0$.

LEMMA 2.2. For s, $r \in \mathbb{R}$ with s > r, the embedding $D(\Lambda^s) \subset D(\Lambda^r)$ is compact.

PROOF. Let $\{u_n\}$ be a bounded sequence in $D(\Lambda^s)$. Then $\{\Lambda^r u_n\}$ is bounded in $D(\Lambda^{s-r})$. Choosing $\delta > 0$ smaller than $\min(s-r, \frac{1}{2})$ we have $D(\Lambda^{s-r}) \subset D(\Lambda^{\delta}) = H^{\delta}(\Omega) \subset L^2(\Omega)$ where the first embedding is continuous and the second is compact. Consequently the embedding $D(\Lambda^{s-r}) \subset L^2(\Omega)$ is compact and thus there exist a subsequence n_i and a function $f \in L^2(\Omega)$ such that $\Lambda^r u_{n_i}$ converge to f strongly in $L^2(\Omega)$. Then u_{n_i} converge to $u := \Lambda^{-r} f$ strongly in $D(\Lambda^r)$ and the proof is complete.

A bound for the commutator between Λ and multiplication by a smooth function was proved in [6] using the method of harmonic extension:

THEOREM 2.3 (Theorem 2, [6]). Let $\chi \in B(\Omega)$ with $B(\Omega) = W^{2,d}(\Omega) \cap W^{1,\infty}(\Omega)$ if $d \geq 3$, and $B(\Omega) = W^{2,d}(\Omega)$ $W^{2,p}(\Omega)$ with p > 2 if d = 2. There exists a constant $C(d, p, \Omega)$ such that

$$\|[\Lambda,\chi]\psi\|_{D(\Lambda^{\frac{1}{2}})} \le C(d,p,\Omega)\|\chi\|_{B(\Omega)}\|\psi\|_{D(\Lambda^{\frac{1}{2}})}.$$

Pointwise estimates for the commutator between fractional Laplacian and differentiation were established in [8]:

THEOREM 2.4 (Theorem 2.2, [8]). For any $p \in [1, \infty]$ and $s \in (0, 2)$ there exists a positive constant $C(d, s, p, \Omega)$ such that for all $\psi \in C_c^{\infty}(\Omega)$ we have

$$|[\Lambda^s, \nabla]\psi(x)| \le C(d, s, p, \Omega)d(x)^{-s-1-\frac{a}{p}} \|\psi\|_{L^p(\Omega)}$$

holds for all $x \in \Omega$.

This pointwise bound implies the following commutator estimate in Lebesque spaces.

THEOREM 2.5. Let $p, q \in [1, \infty]$, $s \in (0, 2)$ and φ satisfy

$$\varphi(\cdot)d(\cdot)^{-s-1-\frac{d}{p}} \in L^q(\Omega).$$

Then the operator $\varphi[\Lambda^s, \nabla]$ can be uniquely extended from $C_c^{\infty}(\Omega)$ to $L^p(\Omega)$ such that there exists a positive constant $C = C(d, s, p, \Omega)$ such that

$$\|\varphi[\Lambda^s, \nabla]\psi\|_{L^q(\Omega)} \le C \|\varphi(\cdot)d(\cdot)^{-s-1-\frac{d}{p}}\|_{L^q(\Omega)} \|\psi\|_{L^p(\Omega)}$$
(2.3)

holds for all $\psi \in L^p(\Omega)$.

(2.3) is remarkable in that the commutator between an operator of order $s \in (0, 2)$ and an operator of order 1 is an operator of order 0.

3. Proof of Theorem 1.1

We use Galarkin approximations. Denote by \mathbb{P}_m the projection in $L^2(\Omega)$ onto the linear span L^2_m of eigenfunctions $\{w_1, ..., w_m\}$, i.e.

$$\mathbb{P}_m f = \sum_{j=1}^m f_j w_j \quad \text{for } f = \sum_{j=1}^\infty f_j w_j.$$
(3.1)

The *m*th Galerkin approximation of (1.1) is the following ODE system in the finite dimensional space L_m^2 :

$$\begin{cases} \dot{\theta}_m + \mathbb{P}_m(u_m \cdot \nabla \theta_m) + \nu \Lambda^s \theta_m = 0 & t > 0, \\ \theta_m = P_m \theta_0 & t = 0, \end{cases}$$
(3.2)

with $\theta_m(x,t) = \sum_{j=1}^m \theta_j^{(m)}(t) w_j(x)$ and $u_m = R_D^{\perp} \theta_m$ satisfying div $u_m = 0$. Note that (3.2) is equivalent to

$$\frac{d\theta_l^{(m)}}{dt} + \sum_{j,k=1}^m \gamma_{jkl}^{(m)} \theta_j^{(m)} \theta_k^{(m)} + \nu \lambda_l^s \theta_l^{(m)} = 0, \quad l = 1, 2, ..., m,$$
(3.3)

with

$$\gamma_{jkl}^{(m)} = \lambda_j^{-\frac{1}{2}} \int_{\Omega} \left(\nabla^{\perp} w_j \cdot \nabla w_k \right) w_l dx.$$

The local existence of θ_m on some time interval $[0, T_m]$ follows from the Cauchy-Lipschitz theorem. On the other hand, the antisymmetry property $\gamma_{jkl}^{(m)} = -\gamma_{jlk}^{(m)}$ yields

$$\frac{1}{2} \|\theta_m(\cdot, t)\|_{L^2(\Omega)}^2 + \nu \int_0^t \int_\Omega |\Lambda^{\frac{s}{2}} \theta_m|^2 dx dr = \frac{1}{2} \|\mathbb{P}_m \theta_0\|_{L^2(\Omega)}^2 \le \frac{1}{2} \|\theta_0\|_{L^2(\Omega)}^2$$
(3.4)

for all $t \in [0, T_m]$. This implies that θ_m is global and (3.4) holds for all positive times. The sequence θ_m is thus uniformly bounded in $L^{\infty}(0,\infty;L^2(\Omega)) \cap L^2(0,\infty;D(\Lambda^{\frac{s}{2}}))$. Upon extracting a subsequence, we have θ_m converge to some θ weakly-* in $L^{\infty}(0,\infty;L^2(\Omega))$ and weakly in $L^2(0,\infty;D(\Lambda^{\frac{s}{2}}))$. In particular, θ obeys the same energy inequality as in (3.4). On the other hand, if one multiplies (3.3) by $\lambda_l^{-1/2} \theta_l^{(m)}$ and uses the fact that $\gamma_{jkl}^{(m)} \lambda_l^{-1/2} = -\gamma_{lkj}^{(m)} \lambda_j^{-1/2}$, one obtains

$$\frac{1}{2} \|\theta_m(\cdot, t)\|_{D(\Lambda^{-\frac{1}{2}})}^2 + \nu \int_0^t \int_\Omega |\Lambda^{\frac{s-1}{2}} \theta_m|^2 dx dr = \frac{1}{2} \|\mathbb{P}_m \theta_0\|_{D(\Lambda^{-\frac{1}{2}})}^2.$$
(3.5)

We derive next a uniform bound for $\partial_t \theta_m$. Let N > 0 be an integer to be determined. For any $\varphi \in D(\Lambda^{2N})$ we integrate by parts to get

$$\begin{split} \int_{\Omega} \partial_t \theta_m \varphi dx &= -\int_{\Omega} \mathbb{P}_m \operatorname{div}(u_m \theta_m) \varphi dx - \int_{\Omega} \nu \Lambda^s \theta_m \varphi dx \\ &= \int_{\Omega} (u_m \theta_m) \cdot \nabla(\mathbb{P}_m \varphi) dx - \int_{\Omega} \nu \theta_m \Lambda^s \phi dx. \end{split}$$

The first term is controlled by

$$\left| \int_{\Omega} (u_m \theta_m) \cdot \nabla(\mathbb{P}_m \varphi) dx \right| \le \|u_m \theta_m\|_{L^1(\Omega)} \|\nabla \mathbb{P}_m \varphi\|_{L^{\infty}(\Omega)} \le C \|\mathbb{P}_m \varphi\|_{H^3(\Omega)}.$$

According to Lemma A.1, for N and k satisfying $N > \frac{k}{2} + 1$ there exists a positive constant $C_{N,k}$ such that

$$\|\mathbb{P}_{m}\varphi\|_{H^{k}(\Omega)} \leq C_{N,k}\|\varphi\|_{D(\Lambda^{2N})} \quad \forall m \geq 1, \ \forall \varphi \in D(\Lambda^{2N}).$$
(3.6)

With k = 3 and N = 3 we have

$$\left|\int_{\Omega} (u_m \theta_m) \cdot \nabla(\mathbb{P}_m \varphi) dx\right| \le C \|\varphi\|_{D(\Lambda^6)}.$$

On the other hand,

$$\left|\int_{\Omega} \nu \theta_m \Lambda^s \varphi dx\right| \le C \|\theta_m\|_{L^2(\Omega)} \|\varphi\|_{D(\Lambda^2)}.$$

We have proved that

$$\left| \int_{\Omega} \partial_t \theta_m \varphi dx \right| \le C \|\varphi\|_{D(\Lambda^6)} \quad \forall \varphi \in D(\Lambda^6).$$

Because $L^2(\Omega) \times D(\Lambda^6) \ni (f,g) \mapsto \int_{\Omega} fgdx$ extends uniquely to a bilinear from on $D(\Lambda^{-6}) \times D(\Lambda^6)$, we deduce that $\partial_t \theta_m$ are uniformly bounded in $L^{\infty}(0,\infty;D(\Lambda^{-6}))$. Note that we have used only the uniform regularity $L^{\infty}(0;\infty;L^2(\Omega))$ of θ_m . We have the embeddings $D(\Lambda^{\frac{s}{2}}) \subset D(\Lambda^{(s-1)/2}) \subset D(\Lambda^{-6})$ where the first one is compact by virtue of Lemma 2.2, and the second is continuous. Fix T > 0. Aubin-Lions' lemma (see [16]) ensures that for some function f and along some subsequence θ_m converge to fweakly in $L^2(0,T;D(\Lambda^{\frac{s}{2}}))$ and strongly in $L^2(0,T;D(\Lambda^{(s-1)/2}))$. Apriori, both f and the subsequence depend on both T. However, we already know that $\theta_m \to \theta$ weakly in $L^2(0,\infty;D(\Lambda^{\frac{s}{2}}))$. Therefore, $f = \theta$ and the convergences to θ hold for the whole sequence. Similarly, applying Aubin-Lions' lemma with the embeddings $L^2(\Omega) \subset D(\Lambda^{-\varepsilon}) \subset D(\Lambda^{-6})$ for sufficiently small $\varepsilon > 0$ we obtain that $\theta_m \to \theta$ strongly in $C([0,T];D(\Lambda^{-\varepsilon}))$. Integrating (3.2) against an arbitrary test function of the form $\phi(t)\varphi(x)$ with $\phi \in C_c^{-\infty}((0,T)), \varphi \in D(\Lambda^6)$ yields

$$\int_{0}^{T} \int_{\Omega} \theta_{m} \varphi(x) dx \partial_{t} \phi(t) dt + \int_{0}^{T} \int_{\Omega} u_{m} \theta_{m} \cdot \nabla \mathbb{P}_{m} \varphi(x) dx \phi(t) dt - \nu \int_{0}^{T} \int_{\Omega} \Lambda^{\frac{s}{2}} \theta_{m} \Lambda^{\frac{s}{2}} \varphi(x) dx \phi(t) dt = 0.$$

By Lemma A.1,

$$\|(\mathbb{I} - \mathbb{P}_m)\varphi\|_{L^{\infty}(\Omega)} \le C \|(\mathbb{I} - \mathbb{P}_m)\varphi\|_{H^3(\Omega)} \to 0 \quad \text{as } m \to \infty.$$

The weak convergence of θ_m in $L^2(0,T; D(\Lambda^{\frac{s}{2}}))$ allows one to pass to the limit in the two linear terms. The strong convergence of θ_m in $L^2(0,T; L^2(\Omega))$ together with the weak convergence of u_m in the same space allows one to pass to the limit in the nonlinear term and conclude that θ satisfies the weak formulation (1.4) with $\varphi \in D(\Lambda^6)$. In fact, $\theta \in L^2(0, \infty; D(\Lambda^{\frac{s}{2}})) \subset L^2(0, \infty; L^p(\Omega))$ for some p > 2, hence $u\theta \in L^2(0, \infty; L^q(\Omega))$ for some q > 1. In addition, if $\varphi \in D(\Lambda^2)$ then $\nabla \varphi \in L^r$ for all $r < \infty$, and thus the nonlinearity $\int_{\Omega} u\theta \cdot \nabla \varphi dx$ makes sense. Then because $D(\Lambda^2)$ is dense in $D(\Lambda^6)$, (1.4) holds for $\varphi \in D(\Lambda^2)$.

We now pass to the limit in (3.5). The strong convergence $\theta_m \to \theta$ in $C(0,T; D(\Lambda^{-\varepsilon}))$ gives the convergence of the first term. On the other hand, the strong convergence $\theta_m \to \theta$ in $L^2(0,T; D(\Lambda^{(s-1)/2}))$ yields the convergence of the second term. The right hand side converges to $\frac{1}{2} \|\theta_0\|_{D(\Lambda^{-\frac{1}{2}})}^2$ since $\mathbb{P}_m \theta_0$ converge to

 θ_0 in $L^2(\Omega)$. We thus obtain (1.6).

Since $\theta_m \to \theta$ in $C([0,T]; D(\Lambda^{-\varepsilon}))$ we deduce that

$$\theta_0 = \lim_{m \to \infty} \mathbb{P}_m \theta_0 = \lim_{m \to \infty} \theta_m |_{t=0} = \theta |_{t=0} \text{ in } D(\Lambda^{-\varepsilon}).$$

For a.e. $t \in [0, T]$, $\theta_m(t)$ are uniformly bounded in $L^2(\Omega)$, and thus along some subsequence m_j , a priori depending on t, we have $\theta_{m_j}(t)$ converge weakly to some f(t) in $L^2(\Omega)$. But we know $\theta_m(t) \to \theta(t)$ in $D(\Lambda^{-\varepsilon})$. Thus, $f(t) = \theta(t)$ and $\theta_m(t) \rightharpoonup \theta(t)$ in $L^2(\Omega)$ as a whole sequence for a.e. $t \in [0, T]$. Recall that $\frac{d}{dt}\theta_m$ are uniformly bounded in $L^{\infty}(0, T; D(\Lambda^{-\varepsilon}))$. For all $\varphi \in D(\Lambda^6)$ and $t \in [0, T]$ we write

$$\langle \theta_m(t),\varphi\rangle_{L^2(\Omega),L^2(\Omega)} = \langle \theta_m(0),\varphi\rangle_{L^2(\Omega),L^2(\Omega)} + \int_0^t \langle \frac{d}{dt}\theta_m(r),\varphi\rangle_{D(\Lambda^{-6}),D(\Lambda^6)} dr.$$

Because $\frac{d}{dt}\theta_m$ converge to $\frac{d}{dt}\theta$ weakly-* in $L^{\infty}(0,T;D(\Lambda^{-6}))$, letting $m \to \infty$ yields

$$\langle \theta(t), \varphi \rangle_{L^2(\Omega), L^2(\Omega)} = \langle \theta_0, \varphi \rangle_{L^2(\Omega), L^2(\Omega)} + \int_0^t \langle \frac{d}{dt} \theta(r), \varphi \rangle_{D(\Lambda^{-6}), D(\Lambda^6)} dr$$

for a.e. $t \in [0, T]$. Taking the limit $t \to 0$ gives

$$\lim_{t \to 0} \langle \theta(t), \varphi \rangle_{L^2(\Omega), L^2(\Omega)} = \langle \theta_0, \varphi \rangle_{L^2(\Omega), L^2(\Omega)}$$

for all $\varphi \in D(\Lambda^6)$. Finally, since $D(\Lambda^6)$ is dense in $L^2(\Omega)$ and $\theta \in L^{\infty}(0,T;L^2(\Omega))$ we conclude that $\theta \in C_w(0,T;L^2(\Omega))$ for all T > 0.

4. Proof of Theorem 1.4

First, using approximations and commutator estimates we justify the commutator structure of the SQG nonlinearity derived in [8].

LEMMA 4.1. For all $\psi \in H^1_0(\Omega)$ and $\varphi \in C^{\infty}_c(\Omega)$ we have

$$\int_{\Omega} \Lambda \psi \nabla^{\perp} \psi \cdot \nabla \varphi dx = \frac{1}{2} \int_{\Omega} [\Lambda, \nabla^{\perp}] \psi \cdot \nabla \varphi \psi dx - \frac{1}{2} \int_{\Omega} \nabla^{\perp} \psi \cdot [\Lambda, \nabla \varphi] \psi dx.$$
(4.1)

Here, the commutator $[\Lambda, \nabla^{\perp}]\psi \cdot \nabla \varphi$ is understood in the sense of the extended operator defined in Theorem 2.5.

PROOF. Let $\psi_n \in C_c^{\infty}(\Omega)$ converging to ψ in $H_0^1(\Omega)$. Integrating by parts and using the fact that $\nabla^{\perp} \cdot \nabla \varphi = 0$ gives

$$\int_{\Omega} \Lambda \psi_n \nabla^{\perp} \psi_n \cdot \nabla \varphi dx = - \int_{\Omega} \psi_n \nabla^{\perp} \Lambda \psi_n \cdot \nabla \varphi dx$$

Because ψ_n is smooth and has compact support inside Ω , $\nabla^{\perp}\psi_n \in D(\Lambda)$, and thus we can commute ∇^{\perp} with Λ to obtain

$$\begin{split} &\int_{\Omega} \Lambda \psi_n \nabla^{\perp} \psi_n \cdot \nabla \varphi dx \\ &= -\int_{\Omega} \psi_n [\nabla^{\perp}, \Lambda] \psi_n \cdot \nabla \varphi dx - \int_{\Omega} \psi_n \Lambda \nabla^{\perp} \psi_n \cdot \nabla \varphi dx \\ &= -\int_{\Omega} \psi_n [\nabla^{\perp}, \Lambda] \psi_n \cdot \nabla \varphi dx - \int_{\Omega} \nabla^{\perp} \psi_n \cdot \Lambda (\psi \nabla \varphi) dx \\ &= -\int_{\Omega} [\nabla^{\perp}, \Lambda] \psi_n \cdot \nabla \varphi \psi_n dx - \int_{\Omega} \nabla^{\perp} \psi_n \cdot [\Lambda, \nabla \varphi] \psi_n dx - \int_{\Omega} \nabla^{\perp} \psi_n \cdot \nabla \varphi \Lambda \psi_n dx. \end{split}$$

Noticing that the last term on the right-hand side is exactly the negative of the left-hand side, we deduce that

$$\int_{\Omega} \Lambda \psi_n \nabla^{\perp} \psi_n \cdot \nabla \varphi dx = \frac{1}{2} \int_{\Omega} [\Lambda, \nabla^{\perp}] \psi_n \cdot \nabla \varphi \psi_n dx - \frac{1}{2} \int_{\Omega} \nabla^{\perp} \psi_n \cdot [\Lambda, \nabla \varphi] \psi_n dx.$$

The commutator estimates in Theorems 2.3 and 2.5 then allow us to pass to the limit in the preceding representation and conclude that (4.1) holds.

Now let $\nu_n \to 0^+$ and let $\theta_0^{\nu_n}$ be a bounded sequence in $L^2(\Omega)$. For each n let $\theta_n \equiv \theta^{\nu_n}$ be a Leray-Hopf weak solution of (1.1) with viscosity ν_n and initial data $\theta_0^{\nu_n}$. In view of the energy inequality (1.5), θ_n are uniformly bounded in $L^{\infty}(0, \infty; L^2(\Omega))$ and satisfies

$$\int_{0}^{\infty} \int_{\Omega} \theta_{n} \varphi(x) dx \partial_{t} \phi(t) dt + \int_{0}^{\infty} \int_{\Omega} u_{n} \theta_{n} \cdot \nabla \varphi(x) dx \phi(t) dt - \nu_{n} \int_{0}^{\infty} \int_{\Omega} \Lambda^{\frac{s}{2}} \theta_{n} \Lambda^{\frac{s}{2}} \varphi(x) dx \phi(t) dt = 0$$
(4.2)

for all $\phi \in C_c^{\infty}((0,\infty))$ and $\varphi \in D(\Lambda^2)$. Fix T > 0. Assume that along a subsequence, still labeled by n, θ_n converge to θ weakly in $L^2(0,T;L^2(\Omega))$. We prove that θ is a weak solution of the inviscid SQG equation. We first prove a uniform bound for $\partial_t \theta_n$ provided only the uniform regularity $L^{\infty}(0,T;L^2(\Omega))$ of θ_n . To this end, let us define for a.e. $t \in [0,T]$ the function $f_n(t) \in H^{-3}(\Omega)$ by

$$\langle f_n(t),\varphi\rangle_{H^{-3}(\Omega),H^3_0(\Omega)} := \int_{\Omega} (u_n(x,t)\theta_n(x,t)\cdot\nabla\varphi(x) - \nu_n\theta_n(x,t)\Lambda^s\varphi(x))dx$$

for all $\varphi \in H_0^3(\Omega) \subset D(\Lambda^2)$, where $H_0^{\mu}(\Omega)$ is the closure of $C_c^{\infty}(\Omega)$ in $H^{\mu}(\Omega)$ for any $\mu > 0$. Indeed, we have

$$\left| \int_{\Omega} (u_n(x,t)\theta_n(x,t) \cdot \nabla \varphi(x) - \nu_n \theta_n(x,t) \Lambda^s \varphi(x)) dx \right| \le C \left(\|\theta_n(t)\|_{L^2(\Omega)}^2 + 1 \right) \|\varphi\|_{H^3(\Omega)}.$$

This shows that f_n are uniformly bounded in $L^{\infty}(0,T; H^{-3}(\Omega))$. Then for any $\phi \in C_c^{\infty}((0,T))$, it follows from (4.2) that

$$\int_0^T \theta_n \partial_t \phi dt = -\int_0^T f_n \phi dt$$

in $H^{-3}(\Omega)$. In other words, $\partial_t \theta_n = f_n$ and the desired uniform bound for $\partial_t \theta_n$ follows. Fix $\varepsilon \in (0, \frac{1}{2})$. Aubin-Lions' lemma applied with the embeddings $L^2(\Omega) \subset D(\Lambda^{-\varepsilon}) \subset H^{-3}(\Omega)$ then ensures that θ_n converge to θ strongly in $C(0, T; D(\Lambda^{-\varepsilon}))$. Consequently ψ_n converge to $\psi := \Lambda^{-1}\theta$ strongly in $C(0, T; D(\Lambda^{1-\varepsilon}))$.

Now we take $\phi \in C_c^{\infty}((0,\infty))$ and $\varphi \in C_c^{\infty}(\Omega)$. Because of Lemma 4.1, the weak formulation (1.4) gives

$$\int_{0}^{T} \int_{\Omega} \theta_{n} \varphi(x) dx \partial_{t} \phi(t) dt + \frac{1}{2} \int_{0}^{T} \int_{\Omega} [\Lambda, \nabla^{\perp}] \psi_{n} \cdot \nabla \varphi(x) \psi_{n} dx \phi(t) dt - \frac{1}{2} \int_{0}^{T} \int_{\Omega} \nabla^{\perp} \psi_{n} \cdot [\Lambda, \nabla \varphi(x)] \psi_{n} dx \phi(t) dt - \nu_{n} \int_{0}^{T} \int_{\Omega} \theta_{n} \Lambda^{s} \varphi(x) dx \phi(t) dt = 0.$$

where $\psi_n := \Lambda^{-1} \theta_n$ are uniformly bounded in $L^{\infty}(0,T; H_0^1(\Omega))$. The weak convergence $\theta_n \rightarrow \theta$ in $L^2(0,T; L^2(\Omega))$ readily yields

$$\lim_{n \to \infty} \int_0^T \int_\Omega \theta_n \varphi(x) dx \partial_t \phi(t) dt = \int_0^T \int_\Omega \theta \varphi(x) dx \partial_t \phi(t) dt$$

and

$$\lim_{n \to \infty} \nu_n \int_0^T \int_\Omega \theta_n \Lambda^s \varphi(x) dx \phi(t) dt = 0$$

Next we pass to the limit in the two nonlinear terms. Applying the commutator estimate in Theorem 2.3 we have

$$\begin{split} & \left| \int_{0}^{T} \int_{\Omega} \nabla^{\perp} \psi_{n} \cdot [\Lambda, \nabla \varphi] \psi_{n} dx \phi dt - \int_{0}^{T} \int_{\Omega} \nabla^{\perp} \psi \cdot [\Lambda, \nabla \varphi] \psi dx \phi dt \right| \\ & \leq \left| \int_{0}^{T} \int_{\Omega} \nabla^{\perp} (\psi_{n} - \psi) \cdot [\Lambda, \nabla \varphi] \psi dx \phi dt \right| + \| \phi \nabla^{\perp} \psi_{n} \|_{L^{2}(0,T;L^{2}(\Omega))} \| [\Lambda, \nabla \varphi] (\psi_{n} - \psi) \|_{L^{2}(0,T;L^{2}(\Omega))} \\ & \leq \left| \int_{0}^{T} \int_{\Omega} \nabla^{\perp} (\psi_{n} - \psi) \cdot [\Lambda, \nabla \varphi] \psi dx \phi dt \right| + C \| \psi_{n} - \psi \|_{L^{2}(0,T;D(\Lambda^{\frac{1}{2}}))}. \end{split}$$

The first term converges to 0 due to the weak convergence of ψ_n to ψ in $L^2(0, T; H_0^1(\Omega))$ and the fact that $[\Lambda, \nabla \varphi] \psi \in D(\Lambda^{\frac{1}{2}}) \subset L^2(\Omega)$ in view of Theorem 2.3. The second term also converges to 0 due to the strong convergence of ψ_n to ψ in $C(0, T; D(\Lambda^{1-\varepsilon}))$ with $\varepsilon \in (0, \frac{1}{2})$. Finally, we apply the commutator estimate in Theorem 2.5 to obtain

$$\begin{split} & \left| \int_0^T \int_\Omega [\Lambda, \nabla^{\perp}] \psi_n \cdot \nabla \varphi \psi_n dx \phi dt - \int_0^T \int_\Omega [\Lambda, \nabla^{\perp}] \psi \cdot \nabla \varphi \psi dx \phi dt \\ & \leq \| \nabla \varphi [\Lambda, \nabla^{\perp}] (\psi_n - \psi) \|_{L^2(0,T;L^2(\Omega))} \| \phi \psi_n \|_{L^2(0,T;L^2(\Omega))} \\ & \quad + \| [\Lambda, \nabla^{\perp}] \psi \cdot \nabla \varphi \|_{L^2(0,T;L^2(\Omega))} \| \phi (\psi_n - \psi) \|_{L^2(0,T;L^2(\Omega))} \\ & \leq C \| \psi_n - \psi \|_{L^2(0,T;L^2(\Omega))} \end{split}$$

which converges to 0. Putting together the above considerations leads to

$$\int_0^T \int_\Omega \theta \varphi(x) dx \partial_t \phi(t) dt + \int_0^T \int_\Omega u \theta \cdot \nabla \varphi(x) dx \phi(t) dt = 0, \quad \forall \phi \in C_c^\infty((0,T)), \ \varphi \in C_c^\infty(\Omega).$$

Therefore, θ is a weak solution of the inviscid SQG equation on [0, T].

Finally, let us show the Hamiltonian conservation of θ . We have the energy balance (1.6) for each θ_n . If $s \leq 1$, then the uniform boundedness of θ_n in $L^{\infty}(0,T; L^2(\Omega))$ implies

$$\lim_{n \to \infty} \nu_n \int_0^t \int_\Omega |\Lambda^{\frac{s-1}{2}} \theta_n|^2 dx dr = 0, \quad t \in [0, T].$$

$$(4.3)$$

In addition, $\theta_n \to \theta$ strongly in $C(0,T; D(\Lambda^{-\varepsilon})) \subset C(0,T; D(\Lambda^{-\frac{1}{2}}))$. Letting $\nu = \nu_n \to 0$ in the balance (1.6) we conclude that the Hamiltonian of θ is constant on [0,T]. Consider next the case $s \in (1,2]$. Then since $\frac{s-1}{2} \in (0, \frac{s}{2})$ it follows by interpolation that

$$\|\Lambda^{\frac{s-1}{2}}\theta_n\|_{L^2(\Omega)}^2 \le \|\theta_n\|_{L^2(\Omega)}^{2(1-\lambda)}\|\Lambda^{\frac{s}{2}}\theta_n\|_{L^2(\Omega)}^{2\lambda} \le C\|\Lambda^{\frac{s}{2}}\theta_n\|_{L^2(\Omega)}^{2\lambda}$$

for some $\lambda \in (0, 1)$ depending only on s. Thus, for any $\delta > 0$,

$$\nu_n \int_0^t \|\Lambda^{\frac{s-1}{2}} \theta_n\|_{L^2(\Omega)}^2 dt \le Ct\nu_n \delta^{-\frac{\lambda}{1-\lambda}} + C\delta\nu_n \int_0^T \|\Lambda^{\frac{s}{2}} \theta_n\|_{L^2(\Omega)}^2 dr, \quad t \in [0,T].$$

Because of (1.5) the energy dissipation quantities $\nu_n \int_0^t \int_\Omega |\Lambda^{\frac{s}{2}} \theta_n|^2 dx dt$, $t \in [0, T]$, are uniformly bounded. Sending $\nu_n \to 0$ and then $\delta \to 0$ yields (4.3) for this case. This completes the proof.

Appendix A. A bound on \mathbb{P}_m

Recall the definition (3.1) of \mathbb{P}_m . The following lemma is essentially taken from [8]. We include the proof for the sake of completeness.

LEMMA A.1. Let $\Omega \subset \mathbb{R}^d$, $d \geq 2$, be a bounded domain with smooth boundary. For every N and $k \in \mathbb{N}$ satisfying $N > \frac{k}{2} + \frac{d}{2}$ there exists a positive constant $C_{N,k}$ such that

$$\|\mathbb{P}_m\varphi\|_{H^k(\Omega)} \le C_{N,k} \|\varphi\|_{D(\Lambda^{2N})} \tag{A.1}$$

for all $m \geq 1$ and $\varphi \in D(\Lambda^{2N})$; moreover, we have

$$\lim_{m \to \infty} \|(\mathbb{I} - \mathbb{P}_m)\varphi\|_{H^k(\Omega)} = 0.$$
(A.2)

PROOF. As $\varphi \in D(\Lambda^{2N})$, we have $\Delta^{\ell}\varphi \in H_0^1(\Omega)$ for all $\ell = 0, 1, ..., N - 1$. This allows repeated integration by parts with w_j using the relation $-\Delta w_j = \lambda_j w_j$. Using Hölder's inequality and the fact that w_j is normalized in L^2 , we obtain

$$|\varphi_j| \le \lambda_j^{-N} \|\Delta^N \varphi\|_{L^2}, \quad \varphi_j = \int_{\Omega} \varphi w_j dx.$$

By elliptic regularity estimates and induction, we have for all $k \in \mathbb{N}$ that

$$\|w_j\|_{H^k(\Omega)} \le C_k \lambda_j^{\frac{k}{2}}.$$

We know from the easy part of Weyl's asymptotic law that $\lambda_j \ge Cj^{\frac{2}{d}}$. Consequently, with $N > \frac{k}{2} + \frac{d}{2}$ we deduce that

$$\sum_{j=1}^{\infty} |\varphi_j| \|w_j\|_{H^k(\Omega)} \le C_k \|\Delta^N \varphi\|_{L^2} \sum_{j=1}^{\infty} \lambda_j^{-N+\frac{k}{2}}$$
$$\le C_k \|\varphi\|_{D(\Lambda^{2N})} \sum_{j=1}^{\infty} j^{(-N+\frac{k}{2})\frac{2}{d}}$$
$$= C_{N,k} \|\varphi\|_{D(\Lambda^{2N})}$$

where $C_{N,k} < \infty$ depends only on N and k. Because

$$(\mathbb{I} - \mathbb{P}_m)\varphi = \sum_{j=m+1}^{\infty} \varphi_j w_j,$$

this proves both (A.1) and (A.2). The proof is complete.

Acknowledgment. The research of PC was partially supported by NSF grant DMS-1713985.

References

- L. C. Berselli. Vanishing Viscosity Limit and Long-time Behavior for 2D Quasi-geostrophic Equations. *Indiana* Univ. Math. J. 51(4) (2002), 905–930.
- [2] T. Buckmaster, S. Shkoller, V. Vicol. Nonuniqueness of weak solutions to the SQG equation. arXiv:1610.00676, to appear in *Communications on Pure and Applied Mathematics*.
- [3] D. Chae, P. Constantin, D. Córdoba, F. Gancedo, J. Wu. Generalized surface quasi-geostrophic equations with singular velocities. *Comm. Pure Appl. Math.*, **65** (2012) No. 8, 1037-1066.
- [4] A. Cheskidov, M. C. Lopes Filho; H. J. Nussenzveig Lopes; R. Shvydkoy. Energy conservation in twodimensional incompressible ideal fluids. *Comm. Math. Phys.* 348 (2016), no. 1, 129–143.
- [5] P. Constantin, D. Cordoba, J. Wu. On the critical dissipative quasi-geostrophic equation. *Indiana Univ. Math. J.*, 50 (Special Issue): 97–107, 2001. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000).
- [6] P. Constantin, M. Ignatova. Remarks on the fractional Laplacian with Dirichlet boundary conditions and applications. *Internat. Math. Res. Notices*, (2016), 1-21.
- [7] P. Constantin, M. Ignatova. Critical SQG in bounded domains. Ann. PDE (2016) 2:8.
- [8] P. Constantin, H.Q. Nguyen. Global weak solutions for SQG in bounded domains. *Comm. Pure Appl. Math*, 71 (2018), no. 11, 2323-2333.
- [9] P. Constantin, H. Q. Nguyen. Local and global strong solutions for SQG in bounded domains. *Phys. D* Vol. 376-378 (2018), Special Issue in Honor of Edriss Titi, 195-203.
- [10] P. Constantin, A.J. Majda, and E. Tabak. Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. *Nonlinearity*, 7(6) (1994), 1495–1533.
- [11] P. Constantin, A. Tarfulea, V. Vicol. Absence of anomalous dissipation of energy in forced two dimensional fluid equations. Arch. Ration. Mech. Anal. 212 (2014), 875-903.
- [12] F. Marchand. Existence and Regularity of Weak Solutions to the Quasi-Geostrophic Equations in the Spaces L^p or $\dot{H}^{-1/2}$. *Comm. Math. Phys.* (2008) 277(1): 45–67.
- [13] I.M. Held, R.T. Pierrehumbert, S.T. Garner, and K.L. Swanson. Surface quasi-geostrophic dynamics. J. Fluid Mech., 282 (1995),1–20.
- [14] P. Isset and V. Vicol. Hölder continuous solutions of active scalar equations. Ann. PDE 1 (2015), no. 1, 1–77.
- [15] H. Q. Nguyen. Global weak solutions for generalized SQG in bounded domains. *Anal. PDE*, Vol. 11 (2018), No. 4, 1029–1047.
- [16] J.L. Lions, Quelque methodes de résolution des problemes aux limites non linéaires. Paris: Dunod-Gauth, 1969.
- [17] J. L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I. Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg, 1972.
- [18] S. Resnick, Dynamical problems in nonlinear advective partial differential equations. ProQuest LLC, Ann Arbor, MI, 1995, Thesis (Ph.D.)–The University of Chicago.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NJ 08544 *E-mail address*: const@math.princeton.edu

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NJ 08544 *E-mail address*: ignatova@math.princeton.edu

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NJ 08544 *E-mail address*: qn@math.princeton.edu