Discontinuity-Sensitive Optimal Control Learning by Mixture of Experts

Gao Tang and Kris Hauser, Member, IEEE

Abstract— This paper proposes a machine learning method
to predict the solutions of related nonlinear optimal control
problems given some parametric input, such as the initial state.
The map between problem parameters to optimal solutions is
called the problem-optimum map, and is often discontinuous
due to nonconvexity, discrete homotopy classes, and control
switching. This causes difficulties for traditional function ap-
proximators such as neural networks, which assume continuity
of the underlying function. This paper proposes a mixture
of experts (MoE) model composed of a classifier and several
regressors, where each regressor is tuned to a particular
continuous region. A novel training approach is proposed that
trains classifier and regressors independently. MoE greatly
outperforms standard neural networks, and achieves highly
reliable trajectory prediction (over 99.5% accuracy) in several
dynamic vehicle control problems.

I. INTRODUCTION

Nonlinear Optimal Control Problems (OCPs) are critical
to solve to obtain high performance in many engineering
applications. For example, model predictive control (MPC)
requires an OCP being solved in every control loop [1],
while kinodynamic motion planners rely on solving OCPs
between sampled states [2]. However, OCPs are generally
difficult to solve to global optimum quickly and with high
confidence due to inherent nonconvexity. This has led to an
intense interest in using learning to obtain approximations of
optimal control policies, either using supervised learning [3],
[4], [5] or reinforcement learning [6], [7].

This paper highlights the problem that function approx-
imators such as standard neural networks (SNN) perform
poorly near discontinuities that are prevalent in many non-
linear OCPs. Fig. 1 shows the results of learning a pendulum
swingup task by SNN from optimal trajectories. The optimal
trajectories have three possible goal states so the problem-
optimum mapping is not globally continuous, so near dis-
continuities neural networks tend to predict an interpolating
result, leading to severe performance degradation (Fig. 1.b).

Our approach addresses this problem by modifying the
Mixture of Experts (MoE) [8], [9], [10] model to learn
the solutions to parametric OCPs. The model structure uses
a classifier (gating network) to select a regressor (expert)
which makes the final prediction (Fig. 2). We intend for
each regressor to work in a region of the parameter space
where the problem-optimum mapping is continuous. This is

*This work is supported by NSF grant #IIS-1816540.

G. Tang is with the Department of Mechanical Engineering and
Material Science, Duke University, Durham, NC, 27708 USA e-mail:
gao.tang @duke.edu.

K. Hauser is with the Departmeent of Electrical and Computer
Engineering, Duke University, Durham, NC, 27708 USA e-mail:
kris.hauser@duke.edu.

—— Optimal
—————— SNN Pred.

4 6 8
6
(b) SNN prediction

—— Optimal
ffffff MoE Pred.

4 6 8
6

(d) MoE prediction

(c¢) Clustered data

Fig. 1. Learning a pendulum swingup task from (a) samples of optimal
trajectories. The red circles are possible target states. (b) Standard neural
network (SNN) poorly predicts the solution for a selected state. Solid and
dashed lines denote optimal and predicted trajectories, respectively. (c) By
clustering optimal trajectories (clusters distinguished by color) and training
separate networks for each cluster, (d) MoE predicts the solution trajectory
accurately.

reminiscent of a divide and conquer approach, which has
already been widely used for controller design [11]. Fig. 1.c
illustrates that the pendulum swingup dataset can be divided
into three regions, and by classifying them and approximat-
ing them separately, MoE outperforms SNN (Fig. 1.d).

Considerable care must be taken during MoE training. Al-
though MoE is generally trained using backpropagation [10]
or expectation maximization [9], training can be unstable. We
propose a training approach specially designed for learning
optimal trajectories for parametric OCPs. We first partition
the data into several clusters, and then train the classifier
to predict the identity of the partition. A separate expert is
trained for each partition. Interestingly, this outperforms joint
training as is typically done in MoE, as well as weighted
blending of experts [8]. For the clustering method, we found
that PCA in trajectory space followed by k-Means performs
well given a suitable number of experts.

Experiments on toy underactuated control problems and
more challenging agile vehicle control problems, with state
space dimension up to 12, demonstrate that suitably trained
MoE models can learn near-optimal trajectories suitable
for trajectory tracking with remarkably high success rates
(99.5+%). In contrast, standard neural networks succeed less
than 90% of the time, even given hundreds of thousands of
training examples.

II. RELATED WORK

Nonconvex OCP is generally difficult to solve to global
optimum, despite much work to enlarge the convergence
domain, e.g., [12]. Moreover, numerical trajectory optimiza-
tion [13] techniques are, in general, too computationally
expensive for highly reactive motions. As a result, machine
learning approaches have been proposed to solve OCPs
approximately but in real-time. RL learns the optimal policy
by interacting with the environment, and deep neural network
policy approximators have been shown to solve complex
control problems [6]. Another approach uses supervised
learning to learn from precomputed optimal solutions to
solve novel problems, and has seen successful application in
trajectory optimization [3], [14], [15] and global nonlinear
optimization [16]. In [3] precomputed optimal motions are
used in a regression to predict trajectories for novel situations
to speed up subsequent optimization. In [14] the nearest-
neighbor optimal control (NNOC) method is proposed, with
a multiple restart method proposed to handle discontinu-
ities. In both these works, the techniques work faster than
optimizing from scratch, but still require some amount of
optimization for their predicted trajectories. Optimal trajec-
tories for quadrotors are learned in [5] and applied on a real
system for aggressive maneuvers, demonstrating the potential
of learning based control. This paper also learns optimal tra-
jectories instead of optimal policies, which has the advantage
that trajectories can be tracked using a stabilizing feedback
controller to handle model uncertainties and disturbances. It
should be noted that the predicted trajectory might not fully
satisfy the system dynamics constraints. However, if learning
is sufficiently accurate, then this should not be an issue
because a feedback controller can correct for such violations,
as demonstrated in [5].

The discontinuity of the solutions to parametric OCPs as
a function of problem parameters has long been known [17],
a fact that has been underappreciated in the control learn-
ing community. Under certain assumptions, this function
is piecewise continuous, and discontinuity-tolerant methods
have been proposed for learning from optimal solutions [16],
[14]. However, their approaches do not explicitly try to
partition the space into regions. In contrast, the discontinuity-
sensitive approach proposed here does indeed segment the
dataset according to estimated discontinuities.

Clustering is a fundamental problem in machine learning
and many algorithms such as k-Means have been proposed.
Existing literature on trajectory clustering [18] studies trajec-
tories of hurricane or animal movement which are different
from the trajectories in this work. To the best of the authors’
knowledge, little attention is paid to clustering of optimal
trajectories of robotic systems.

The most related work is previous research on MoE [9],
[10], [19]. This is the first time MoE is applied to trajectory
learning to the best of the authors’ knowledge. This paper
proposes several modifications to MoE make it suitable
for learning optimal control. We use hard classification
boundaries to avoid predicting an average of both sides, and

we also modify the training approach. Traditionally MoE
is trained using either backpropagation [10] or expectation
maximization [9] so the gating function and experts are
both updated. However, we train the classifier and regressors
individually, and experiments suggest that this significantly
increases trajectory tracking accuracy.

Deep RL has shown success in robot control problems [7]
by learning a control policy. Our method is different from
Deep RL as the optimal trajectory is directly learned using
supervised methods. As a result, the prediction is a trajec-
tory and can be directly combined with trajectory tracking
controller for real robotics application, with success in prior
work [5]. On the contrary, deep RL learns a policy and has
to be directly executed, losing guarantee of stability. Another
difference is our method uses to supervised learning where
optimal trajectories are precomputed by offline optimization.
However, deep RL does not need supervision but the sample
efficiency is low. One reason is deep RL has to explore a
large proportion of state-action joint space which are actually
far from the optimal state-action distribution. Other authors
have observed that deep RL has exhibited instability in
training and difficulty in reproducibility [20].

III. PROBLEM FORMULATION

In this section, the problem of learning from optimal
control is formulated and the key components are analyzed.
The proposed approach first formulates a parametric OCP
and then performs the following procedure:

1) Input: sample OCP parameters and collect dataset of
problem-optimum pairs.

2) Cluster: select a clustering approach to cluster the
trajectories (it also partitions parameter space).

3) Train: weights of classifier and regressors are trained
individually using backpropagation.

4) Validate: predict optimal trajectories for states in the
validation set and perform trajectory rollout.

A. Parametric Optimal Control

A system is governed by dynamical equations

x=f(t,x,u,p) (D

where ¢t is time; x € R” is the state variable; u € R is the
control variable; p € R is the problem parameters and cap-
tures the variability of studied problems. The vector p may
specify the initial state, model parameters, and modifications
to costs or constraints. We use subscript 0 and f to denote
the variables at initial and final times, respectively. The goal
is to control the system from some state xo to some state xy
while minimizing the cost function

ty
J=o(to,x0,t7,xr,p)+ | L(t,x(t),u(t),p))
fo

where @ and L are functions mapping to R. Practical OCPs
may have state, control, and terminal set constraints that have
to be satisfied and we refer to [13] for details.

In this work we employ a direct transcription method [13]
with sparse nonlinear optimization solver SNOPT [21] to

classifier

Y1 Yr

regressor 1

f !

€T i

regressor r

Fig. 2. Illustration of MoE. The prediction is made by one out of r
regressors selected by the classifier.

solve OCPs. The solution trajectory is a sequence of state
and control variables at a time grid. Stacking the trajectory
into a vector of length R, our goal is to approximate the
mapping from problem parameters p to optimal trajectories,
denoted as z*(p) € RR.

B. Optimal Trajectory Database Generation

To train and test models we generate a database of optimal
trajectories zi,...,2y to sampled problems py, ..., py where
M is the data size. We adopt a nearest-neighbor approach
[14] to help generate large databases quickly. We first sample
some number of problems (fewer than M but much larger
than the number of expected partitions) and use an exhaustive
random restart approach to solve them. These solutions are
used as the initial database. Then we sample more parame-
ters, and for each new problem we attempt local optimization
from each of its k-nearest neighbors to find k local optima.
The best solution is kept in the database. As reported in
[14], this approach is computationally efficient and has
high probability of finding global optima. We note that this
process is done completely offline and is parallelizable.

C. Mixture of Experts

The MoE model is composed of a classifier and r re-
gressors, as shown in Fig. 2. In this paper both models are
chosen as fully-connected neural network. The goal is to
learn a function z: R — RR that approximates z(p). Each
regressor takes input p € R/ and makes a prediction yi(p) €
RRi=1,...,r. The classifier takes input p and predicts r
values {c;}/_,. The output of the classifier are combined with
softmax to assign probabilities for each model, i.e.

=t 3)

i—1 EXPCi

or argmax to select one model only (in this case, P, = 1
for k = argmax;c; and P, = 0 otherwise.) The difference
between them is softmax predicts a mixture of all experts’
predictions. Argmax, however, selects one model and ignores
other models’ predictions. While softmax has been widely
used [8], [9], [22] since argmax has no gradient to update
the classifier, our proposed model uses argmax since softmax
assign weights to regressors and has the averaging issue.

In either case, the ultimate prediction is a mixture of
predictions from all regressors, i.e.

z2(p) =Zi_ Pi(p)yi(p) 4)

The target is to find weights of the classifier and regressors
in order to minimize

L=Eppy,loss(z(p), 7" (p)) (5)

where Pya, is a distribution over problems and loss(-,-) is
any regression loss function. Another possible cost function
is used to encourage specialization of experts instead of
cooperation [22]:

L=Ep py,) Fi(p)loss(z(p), 2" (p)), (6)
i=1
which is a weighted average of loss functions over each
regressors’ outputs. Jacobs et.al. [8] introduced another loss
function based on the negative log probability of generating
desired outputs

a 1 * *
Liegressors = Ep~py,,, —10g Z P;exp (_ 5 (Z — Zi)T (Z — Zi))
i=1
(7

where Gaussian distribution with identity covariance matrix
is assumed. These are only used when training regressors,
while the cost function for classifier training remains Eq. (5).
For each mini-batch of data, regressors and classifier are
updated independently. We refer to [22] for details.

Although those two cost functions improve upon the
straightforward one, our experiments show they are still
unlikely to find correct trajectory clusters purely through
backpropagation.

D. Trajectory Clustering

Our training method divides the dataset {(p;,z;)}., into

r groups Ci,...,C,, ideally so that z*(p) is a continuous
function for all p in a given region. This problem can be
formulated as a clustering problem and each cluster denotes
a region of the partitioned parameter space. The classifier
is then trained directly to predict the one-hot encoding of
cluster labels.

Although expert knowledge can be used to cluster the
trajectories, such as the pendulum problem shown in Fig. 1,
a more general approach with minimum human involvement
is generally preferred. The simplest approach is to perform
standard clustering techniques after dimensionality reduction.
In this paper, PCA and k-Means are used for dimensionality
reduction and clustering, respectively. These approaches are
straightforward to implement and work well empirically. We
note that a mini-batch version of k-Means has to be used
[23] to scale to larger datasets.

This approach introduces the hyperparameter r of how
many clusters to use. The optimal value is high enough to
place cluster boundaries along discontinuities in z(p), but not
so high as to over-fragment the data. We empirically study
how the parameter choice affects the performance of MoE.

IV. NUMERICAL EXPERIMENTS

Numerical examples demonstrate the effectiveness of our
MOoE approach several dynamically-constrained optimal con-
trol problems. For each problem a dataset and validation set
is generated according to the same distribution of problem
instances. 80% of the dataset is used for training and the
remaining 20% is for testing.

In all experiments, neural networks are used as classifier
and regressors. The network topology is described by an
array which denotes the size of each layer, from input to
output. Hidden layers use the LeakyReL U activation function
with o = 0.2 and a linear output layer is used. The smooth
L1 and cross entropy loss are used for regression and
classification, respectively. We use the Adam optimizer with
learning rate 0.001 for training.

A. Benchmark Problems Description

We study several benchmark optimal control problems
with increasing state space dimensionality. In each problem,
the problem parameter is the initial state, while the goal
state is fixed. These problems are summarized in Tab. I. All
problems are solved using a direct transcription approach
[13] with a fixed discretization grid, shown in Tab. I. We
note that these problems have free final time so final time is
also an decision variable. For a discretization grid of size N,
the trajectory dimension is thus Nn+ (N — 1)m+ 1 where n
and m are the state and control dimensions, respectively.

In this paper both MoE and SNN are trained to predict the
optimal trajectories. As a result, trajectory tracking controller
can be designed which compensates for uncertainties in
system dynamics and prediction errors from learned models.
For all the benchmark problems, we use LQR to design the
tracking controllers. Since all problems terminate at a equi-
librium state, we further use an LQR stabilizing controller
to stabilize the system. It has benefits of compensating for
trajectory tracking error. We define the process of tracking
a trajectory and stabilizing at the equilibrium as trajectory
rollout.

For a trajectory regression task, we minimize the loss
function between model prediction and optimal trajectories.
However, for a control task, we care more about if the
predicted trajectory allows the system to achieve the goal. As
a result, trajectory rollout success rate should be preferred as
the metric for model evaluation. In fact, the averaging effect
is beneficial to loss function but detrimental to trajectory
rollout.

1) Pendulum Swing-Up : The system dynamic equations
are

=0, ®=u—sind (8)

where 6 is the pendulum angle, @ is the angular velocity,
and u € [—1,1] is the control torque. The target state is the
straight up state, i.e. @y =0, mod (6f,27) = . The cost
function is a weighted sum of time and control energy, i.e.
sz(tf—to)—i-rj}gfuzdt withw=1,r=1.

The parameter space is a subset of R? and we directly sam-
ple parameters on a uniform grid of 61 x 21. The validation

set is sampled at random. Samples of optimal trajectories
are shown in Fig. 1. The LQR stabilizing controller after
trajectory tracking is simulated for 5 s and rollout success is
determined by the norm of system state being within 0.1.

2) Vehicle: We model a ground vehicle with second-order
dynamic equations

i=vsinB,y=vcosB, 0 =ugv, v =u, 9)

where the state x = [x,y,0,v] € R* includes the planar
coordinates, orientation, and velocity of the vehicle; the
control # = [ug,u,] includes the control variables which
change the steering angle and velocity, respectively. The goal
is to control the system to the origin with zero velocity and
mod (6f,27) = 0. The cost function is a weighted sum of
time and control energy, i.e. J =w(ty —19) + fti)f riud +roul d
with w =10,r; = rp, = 1. It is noted that stabilizer is not used
since the linearized system is not controllable at the target
state. As a result, rollout success is determined by the norm
of system state being within 0.5.

3) Drone with One Spherical Obstacle: The system has
state x = (X,,2,Vx, Vy, V2, 9,0, ¥, p,q,r) € R'2 and control
u € R*, and uses the dynamic equations specified in [24].
One spherical obstacle is considered which imposes path
constraints on the state variables. The obstacle is charac-
terized by its center (oy,0y,0;) and radius o,. The goal
is to control the drone from any equilibrium state with
position within [~10m,10m]> and all other states zero
to the goal state 0. The cost function is J = w(t; —
to) + j}g xTQx+ u"Rudt which is a weighted sum of time,
control energy, and penalty on states with w = 10, Q =
diag(0,0,0,1,1,1,0.1,0.1,0.1,1,1,1), R = diag(1,1,1,1).

We uniformly sample initial positions of the drone. We
randomly sample obstacles with radius within [1m,5m]
around the straight line connecting initial and final positions
with at least 0.5 m penetration. Additionally, the obstacle
is required to be at least 0.5 units from initial and final
positions. By trajectory rollout the drone can always reach
the target position, but with different amount of constraint
violation, i.e. the drone is too close to the obstacle. The
rollout metric for each trajectory is chosen as the maximum
constraint violation (in meter, lower value is desired.).

4) Drone with Two Spherical Obstacles: This problem is
similar to the previous one and the only difference is two
obstacles are considered. It increases the problem parameter
dimensionality to 11.

B. Comparison of Training Approach

This section compares our proposed MoE approach with
other training methods, using the pendulum swing-up bench-
mark task for better visualization. Results are comparable
on other benchmarks. We compare 1) SNN; 2) MoE trained
using (6) (MoE 1); 3) MoE trained using (7) (MoE II); 4)
our proposed decoupled MoE training with r clusters found
by k-Means, denoted as “k-Means-r".

The SNN architecture is chosen to have size (2, 300, 75),
which was tuned during testing to outperform architectures
with more hidden layers or a larger hidden layer. The

TABLE I
SUMMARY OF BENCHMARK PROBLEMS

Pendulum Vehicle Drone-One-Obstacle Drone-Two-Obstacle

State dims 2 4 12 12
Control dims 1 2 4 4
Problem param. R? R* R’ R
Param range [-m, 7] x [-2,2] [-10,10]> x [-m, 7] x [-3.1,3.1] [-10,10]° x [1,5] [-10,10])° x [1,5]?
Discretization 25 25 20 20
Trajectory dims 75 149 317 317
Dataset size 1,281 120,009 189,990 454,635
Mini-batch k-Means No Yes Yes Yes
SNN size (2, 300, 75) (4, 200, 200, 149) (7, 500, 500, 317) (11, 2000, 2000, 317)
Validation size 1,000 10,000 4,728 9,106

TABLE II

VALIDATION LOSS AND SUCCESS RATE ON PENDULUM PROBLEM

Model SNN MoEI MoEIl k-3 k-5 k-10
Valid. loss 0.046 0.057 0.055 0.085 0.089 0.093
Succ. rate 86.3% 853% 83.9% 96.9% 99.9% 100.0%

MOoE architectures are chosen such that the total number of
parameters in all regressors equals SNN. For the classifier,
we use a (2, 100, r) size where r is the number of regressors.
For this comparison, we use r =5 for MoE I and MoE 1I
because results from k-Means-5 give high success rate and
indicate 5 is a reasonable choice. We also test k-Means-r
with 3, 5, and 10 clusters, adjusting regressor sizes to keep
the total number of network weights the same.

Tab. II lists the validation loss and rollout success for each
model, Fig. 3 plots the prediction error in 6y, i.e. the final
angle, and Fig. 4 plots the regions that each regressor is
assigned to. Tab. II shows that with r at least 5, our method
achieves extremely high rollout success rates. Moreover, loss
is not directly related to success rate. In fact, the k-Means
models have higher success rate despite higher loss.

Fig. 3 shows SNN, MoE I and MoE II have problems in
trajectory prediction for initial states close to the discontinu-
ities shown in Fig. 1.c. Due to instability of backpropagation,
neither MoE I or MoE II are able to train the classifier well,
as can be seen in Fig. 4. MoE I actually is dominated by 2
regressors and has only one input space partition boundary.
MoE 1II learns more boundaries, but they are in fact quite
different from the true discontinuities.

With an insufficient number of clusters, k-Means-r makes
large prediction errors at the smoothed-out discontinuity.
r > 5, our method learns discontinuities quite accurately.
With larger numbers of clusters, the input space may be
oversegmented, but with a sufficient amount of data the
success rate is not affected much.

C. Trajectory Rollout Results

These experiments now compare SNN and our MoE
method using clustered training, but with varying numbers
of clusters. The SNN sizes shown in Tab. I are fine-tuned for
each problem. MoE network architectures are set to match
the total number of parameters in SNN.

7

6

3 5
4

k-Means-3 k-Means-5 k-Means-10 g

3 1
0

0 5 0 5 0 5 !
0 0 0
Fig. 3. Prediction error in 8 for several models. Blue denotes small pre-

diction error. Red means an error of 27, which indicates a misclassification,
but it does not affect trajectory tracking because an upright state is reached.
Other colors indicate problems with averaging. (Best viewed in color)

MoE II

MoE |

k-Means-3 k-Means-5

3
1
24 L |
0 2 1 6 0 2 1 6
0 0

Fig. 4. Input space partition by the classifier. In MoE I 2 regressors
dominate the other 3 and the boundary is quite far from discontinuity
boundary. MoE II is unable to find boundaries either. k-Means with 3 clusters
partially finds the boundary. k-Means with 5 clusters identifies discontinuity
boundary with over segmentation.

First, let us examine a few examples for the vehicle and
drone-one-obstacle problems. Fig. 5 shows the predictions
from SNN and MoE on a selected initial state on Vehicle, as
well as the optimal trajectories of its neighbors. SNN fails to
predict the final orientation correctly, as shown by the orange
arrow. The reason is that near this parameter, its neighbors
belong in different clusters, leading to an averaging effect.
MoE with 10 clusters does not have this effect, and its result
is nearly equal to ground truth.

Fig. 6 shows examples of optimal trajectories and pre-
dictions on the Drone-One-Obs problem. As the initial state

101]
SNN 10
gl === MoE s
— Opt. e
64 Start 61 Start
= 4 4

[
o

ol Goal N Goal
Cluster 6
24 2 —— Cluster 2
0 5 0 5

& T

Fig. 5. Left: The optimal trajectory and predictions (no tracking) from
SNN and MoE for a chosen start state for the Vehicle problem. MoE makes
accurate prediction that SNN which predicts an average trajectory of two
clusters. The arrow denotes the final angle (straight up is desired) and SNN
makes large prediction on it. Right: the neighbors of the chosen state. The
pink and green lines are the neighbors of the start so they start from different
locations. They demonstrate the existing discontinuity within trajectories.

SNN 2

Fig. 6. Optimal trajectories and prediction (no tracking) from SNN and
MoE for two selected close states for the Drone-One-Obstacle problem.
SNN predicts a trajectory that violates obstacles avoidance constraints.
Green sphere: obstacle with center (0, 4, 4) and radius 3. Solid, dashed
and dotted lines: optimal trajectories, prediction of MoE, and prediction of
SNN, respectively.

moves along z direction, the optimal trajectories turns from
going above to going below the obstacle. SNN is unable
to handle the discontinuity and predicts a trajectory that
severely violates the constraints. However, MoE with 20
clusters is able to detect the discontinuity, and each regressor
near this boundary predicts either trajectories above or below
the obstacle, but never through it.

Fig. 7 shows the average rollout error over the validation
set, with varying numbers of clusters. For the pendulum
and vehicle problem, MoE reaches 99.5+% success rate in
reaching the target with at least 10 clusters. For the two
drone problems, MoE improves the constraint violation error
by over 50% improvement, thus has higher reliability than
SNN. The number of clusters r is an important parameter for
performance. If it is too low, some cluster may learn from
a proportion of parameter space with function discontinuity
and has the same averaging issue with SNN. As it increases,
the performance tends to improve significantly until a certain
threshold is reached. If it further increases, the performance
tends to degrade slightly, which is likely due to over-fitting
since each cluster has less data. Another explanation may

—_
o

L
—_
(==}

L

---- SNN
—e— MoE

Success Rate
(=]
ot
1
1
1
H
%)
=2
=2
Success Rate
o
ot
1

<
o
o
o

10 20 5 10 20 40
lusters # Clusters
endulum (b) Vehicle

(ST
20

0,1o~'\\

0.054 ---- SNN
—eo— MoE

o
B
<
o

m

Constraint Violation
Constraint Violation

b
o

0.00 = y y T T -
5 10 20 40 80 5 10 20 40 80

Clusters # Clusters
(c) Drone-One-Obs (d) Drone-Two-Obs

Fig. 7. Comparison between MoE and SNN on benchmark problems.
MoE outperforms SNN in all problems. For (a) and (b), MoE achieves
higher than 99% success rate. For (c) and (d) MoE has 50% improvement
in terms of constraint violation. It also shows as cluster number increases,
MOoE performance increases and eventually decreases.

be with more clusters, the number of artificial boundaries
increases and the neural network has to perform more
extrapolation instead of interpolation.

V. CONCLUSION

This paper demonstrates that optimal trajectories can be
learned with extremely high accuracy if the special struc-
ture of optimal control problems is taken into account.
Without taking the structure into account, learning performs
poorly even with huge datasets. The MoE model is designed
such that each expert approximates a smooth region in the
problem-optimum map, and the classifier handles discon-
tinuities without averaging. Experiments demonstrate that
randomly initialized MoE training with cost functions found
in existing literature tend to perform worse than our proposed
technique, which pre-trains the classifier with clusters of
states that produce similar trajectories. As the number of
clusters increases, the MoE performance tends to increase
first due to better conformance to discontinuity boundaries,
and eventually decrease slightly due to overfitting.

Limitations of this approach include the need for a param-
eterization of the problem domain, which can be challenging
for some tasks. For example, to capture different numbers of
spherical obstacles, the data collection and training procedure
have to be repeated for each obstacle count. Moreover, for
obstacles with irregular shape, it is not easy to find a low-
dimensional representation.

Future work includes developing more sophisticated clus-
tering algorithms that automatically find the best partitioning
strategy. Also, for certain OCPs, differential flatness can be
used such that the predicted trajectory satisfies dynamical
constraints. We are also interested in proving the stability of
the predicted trajectories under perturbations, and to scale up
to handle larger problems, e.g., from sensor data or model
uncertainties.

[1]

[2]

[4]

[5]

[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The explicit
solution of model predictive control via multiparametric quadratic
programming,” in Proc. American Control Conf., vol. 1-6, 2000, pp.
872 — 876.

B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM (JACM), vol. 40, no. 5, pp. 1048-1066,
1993.

N. Jetchev and M. Toussaint, “Fast motion planning from experi-
ence: trajectory prediction for speeding up movement generation,”
Autonomous Robots, vol. 34, no. 1-2, pp. 111-127, Jan. 2013.

R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, and
J. Peters, “Trajectory planning for optimal robot catching in real-time,”
in 2011 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 3719-3726.

G. Tang, W. Sun, and K. Hauser, “Learning trajectories for real-
time optimal control of quadrotors,” in Intelligent Robots and Systems
(IROS), 2018 IEEE/RSJ International Conference on. IEEE, 2018,
pp- —

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

R. A. Jacobs, M. L. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural computation, vol. 3, no. 1, pp. 79—
87, 1991.

M. I Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and
the em algorithm,” Neural computation, vol. 6, no. 2, pp. 181-214,
1994.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.

R. Murray-Smith and T. Johansen, Multiple model approaches to
nonlinear modelling and control. CRC press, 1997.

F. Jiang, H. Baoyin, and J. Li, “Practical techniques for low-thrust
trajectory optimization with homotopic approach,” J. Guid. Control
Dynam., vol. 35, no. 1, pp. 245-258, 2012.

J. T. Betts, “Survey of numerical methods for trajectory optimization,”
Journal of guidance, control, and dynamics, vol. 21, no. 2, pp. 193—
207, 1998.

G. Tang and K. Hauser, “A data-driven indirect method for nonlinear
optimal control,” in Intelligent Robots and Systems (IROS), 2017
IEEE/RSJ International Conference on. 1EEE, 2017, pp. —.

T. Tomié, M. Maier, and S. Haddadin, “Learning quadrotor maneuvers
from optimal control and generalizing in real-time,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on. IEEE,
2014, pp. 1747-1754.

K. Hauser, “Learning the problem-optimum map: Analysis and ap-
plication to global optimization in robotics,” IEEE Trans. Robotics,
vol. 33, no. 1, pp. 141-152, Feb. 2017.

A. V. Fiacco, “Introduction to sensitivity and stability analysis in
nonlinear programming.” 1983.

J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: a partition-
and-group framework,” in Proceedings of the 2007 ACM SIGMOD
international conference on Management of data. ~ACM, 2007, pp.
593-604.

B. Tang, M. 1. Heywood, and M. Shepherd, “Input partitioning to
mixture of experts,” in Neural Networks, 2002. IICNN’02. Proceedings
of the 2002 International Joint Conference on, vol. 1. 1EEE, 2002,
pp. 227-232.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and
D. Meger, “Deep reinforcement learning that matters,” arXiv preprint
arXiv:1709.06560, 2017.

P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM review, vol. 47, no. 1,
pp. 99-131, 2005.

S. Masoudnia and R. Ebrahimpour, “Mixture of experts: a literature
survey,” Artificial Intelligence Review, vol. 42, no. 2, pp. 275-293,
2014.

D. Sculley, “Web-scale k-means clustering,” in Proceedings of the 19th
international conference on World wide web. ACM, 2010, pp. 1177—
1178.

[24] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation

and control for precise aggressive maneuvers with quadrotors,” The
International Journal of Robotics Research, vol. 31, no. 5, pp. 664—
674, Apr. 2012.

