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ABSTRACT
Origami mechanisms are simple, lightweight, and can pos-

sess unique mechanical properties such as nonlinear tunable
stiffness and multi-stability. Many studies have examined the use
of these mechanical properties for adaptive and multi-functional
structures and material systems. However, there are very few
studies on how to exploit the mechanical properties of origami to
generate or improve the locomotion of mobile robots. In this pa-
per, we investigate the locomotion dynamics of a model origami
robot system consisting of a bistable origami structure known as
the generalized Kresling pattern attached to a Chaplygin sleigh,
a canonical nonholonomic wheeled system. By applying a pe-
riodic torque on the Kresling segment we show that locomotion
on a circle can be produced through the intrawell oscillations of
the origami pattern. Furthermore, the bistability of Kresling pat-
tern can be exploited to change the radius and speed of travel,
producing two distinct modes of motion; and a control method
is designed to switch the robot between these two modes. To the
authors’ knowledge this is the first such study of dynamic loco-
motion using origami.

∗Address all correspondence to this author.

1 INTRODUCTION

Origami is an ancient art of paper folding. One can cre-
ate complex 3-D structures and mechanisms by simply folding
a 2-D flat sheet along the prescribed fold lines. Fabrication of
such complex shapes via traditional manufacturing techniques
would indeed be very difficult if not impossible. The principle of
origami is geometric and scale-independent, thus one can essen-
tially apply the same design to create micro to macro-scale mech-
anisms. The absence of bulky rigid linkages in origami makes
the resultant mechanism extremely lightweight and simplified.
In addition, many origami mechanisms exhibit exceptional prop-
erties such as, multi-stability [1–4], auxetics [3–5], tunable non-
linear stiffness [3,6,7], etc. In particular, a multi-stable system is
one which possesses multiple stable equilibrium configurations
and perturbations around any equilibrium configuration remain
bounded in the absence of external inputs. Each of the stable
configurations corresponds to a minima of the potential energy
function associated with the mechanism. All these aforemen-
tioned properties make origami an attractive candidate for de-
signing novel very high degree of freedom robots and mecha-
nisms. Such origami systems can have many potential appli-
cations for robots that can slide, crawl and climb. In all such
applications the origami robots would have to contend with non-
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holonomic constraints.
Nonholonomic constraints play a key role in the dynamics

of mobile robots due to the relationship between rolling motion
and no slip constraints [8–11]. The study of nonholonomic sys-
tems mostly focuses on analyzing different versions of canonical
nonholonomic systems such as the rolling coin [12], the roller
racer [10,13] and the snakeboard [14–16]. One such system is the
Chaplygin sleigh [17–19]. The Chaplygin sleigh can be thought
of as a cart that has a knife edge which is not allowed to slip in
the direction perpendicular to the line joining the wheel and the
center of mass. Control of the Chaplygin sleigh via the motion
of an internal heavy particle or a rotor has been studied in numer-
ous works [20–23]. In [24–26] the motion of a Chaplygin sleigh
due to an internal spring loaded rotor or a forced oscillating mass
is shown to display a variety of qualitatively different dynamics
ranging from asymptotic straight line motion to limit cycles and
chaotic dynamics depending on several system parameters. In
particular it was identified that bistable potential functions were
an important controllable means to affect the motion of the non-
holonomic system.

In this paper, we develop an equivalent Chaplygin sleigh-
like model for the locomotion of a bistable origami pattern called
the generalized Kresling pattern. The origami system is modeled
as a Chaplygin sleigh with an internal nonlinear oscillator. By us-
ing the nonlinear spring-like behaviors from the bistable Kresling
origami, we show that intrawell oscillations of the Kresling pat-
tern can cause the sleigh to travel in a circle on average. The ra-
dius and the average velocity of the circle are different when the
Kresling pattern is oscillating around different equilibria. More-
over the physical space occupied by the mechanism is different
in each of the two equilibrium configurations, with the mecha-
nism moving faster in the larger configuration. We show that by
taking advantage of the bistability of the Kresling pattern it is
possible to switch the configuration of sleigh from the larger to
the smaller one. Such switches in configuration are useful for a
mobile robot that has to for instance navigate in narrow confined
spaces.

The rest of this paper is organized as follows. In section
2 we introduce the generalized Kresling pattern and the experi-
mental result showing the bistability of the structure. In section 3
we derive the equations of motion for the nonholonomic origami
sleigh system using the Euler-Lagrange method. In section 4 we
show the motion of the system due to periodic excitation and
demonstrate interwell switching.

2 GENERALIZED KRESLING PATTERN
The “traditional” Kresling pattern was developed by Biruta

Kresling [27] and its geometric design and bistability is exten-
sively studied in literature [28–31]. It is designed as a flat-
foldable mechanism, that is, its length at fully-contracted sta-
ble state is exactly zero. In this study, we use a “generalized”

Kresling pattern, which has a non-zero length at fully-contracted
stable state [2]. This non-zero length is described by a new de-
sign parameter H, and it opens up a new design space for the
Kresling pattern. Moreover, the generalized Kresling pattern can
better accommodate the realistic sheet material thickness in its
design.
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Figure 1: The design of the generalized Kresling pattern (a)
Crease pattern depicting the design parameters. The creases
marked with (*) are glued together to create a Kresling segment.
(b) Isometric view and top view of folded Kresling segment de-
pict the important geometric parameters and the sign convention
for rotation angle α

The design parameters of the generalized Kresling pattern
are: n (number of sides of the base and top polygon), p (side
length of the base and top polygon), µi (angle ratio), and H (Kres-
ling segment length at the fully-contracted stable state). The
crease pattern is composed of equally spaced mountain and val-
ley creases (Figure 1(a)). The first and last valley creases are
glued together to generate an axisymmetric twisted polygonal
prism (Figure 1(b)). The base and top of the cylinder create reg-
ular polygons that remain rigid during the folding motion. To
design the generalized Kresling pattern, we start from the tradi-
tional Kresling, with its geometry given by

φ =
π

n
, R =

p
2sin(φ)

, γ =
π

2
−φ,

where φ is half the internal angle of the base and top polygon, R
is the circumscribed radius of the base and top polygon, γ is the
angle between the radius vector and polygon side as shown in
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Figure 1 (b). The strain-free lengths of the valley and mountain
creases are then given by

di = 2Rcos(γ−µiγ),

bi =
√

p2 +d2
i −2pdi cos(µiγ).

The top polygon of traditional Kresling segment is translated
away from the bottom polygon by a distance of H to create the
generalized Kresling. The resulting crease pattern is no longer
flat-foldable; but retains an identical range of rotation as viewed
from the top. The new strain-free lengths of valley and mountain
crease and the angle of inclination of valley crease are given by

dg =
√

d2
i +H2,

bg =
√

b2
i +H2,

µgγ = cos−1(
p2 +d2

g −b2
g

2pdg
).

Here, the subscript i refers to the parameters for traditional Kres-
ling and subscript g refers to those for generalized pattern. The
angle of rotation (α) is used to characterize the folding motion of
a segment (Figure 1 (b)). The length of the segment (l) is defined
as the perpendicular distance between top and bottom polygon.
The lengths of valley and mountain crease are then calculated as

d =
√

2R2(1− cos(α+2φ))+ l2,

b =
√

2R2(1− cos(α))+ l2. (1)

From the fully-contracted geometry we can determine the upper
limit for α to be, αc = 2µiγ. The lower limit for α can be com-
puted by setting the length b equal to the natural length bg and
solving for α.

αe = {min(α)|b(α) = bg}.

The mountain and valley creases in Kresling segment can be as-
sumed as truss members connected by pin joints [31]. It can be
assumed that the length of the valley crease (d) remains constant
and only mountain crease (b) is compressed or stretched through-
out the folding motion [28]. With this assumption, the derivative
of d with respect to α is zero so that

l =
√

H2 +2R2(cos(α+2φ)− cos(αc +2φ)). (2)

Thus, we have closed form solutions for describing the fold-
ing kinematics. The strain (ε) and strain energy (U) due to fold-
ing can now be calculated as

ε =
b
bg
−1, and U =

1
2

Kε
2,

where K is the material stiffness. For the purpose of this analy-
sis we normalize the strain energy U by K, and define the non-
dimensional strain energy as E = 1

2 ε2. The normalized strain en-
ergy of the Kresling segment is minimum at its two stable config-
urations (Figure 2). Thus, we have two distinct potential energy
wells separated by a peak. This bistability in a Kresling segment
arises due to the non-rigid foldable nature of the facets. That is,
its facets are undeformed at the two stable states, but they have to
undergo some deformation while folding between the two stable
states. We will use this property of bistable generalized Kresling
segment to get two distinct modes of locomotion in Chaplygin
sleigh.
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Figure 2: The normalized strain energy versus rotation angle
for bistable generalized Kresling segment. (i) denotes fully-
extended stable state, le = l(αe) and (ii) denotes fully-contracted
stable state. n = 8,p = 30 mm, µi = 0.8 and H = 20 mm

2.1 EXPERIMENTAL RESULTS
We have experimentally verified the bistability of general-

ized Kresling segment. The experimental setup is shown in Fig-
ure 3. The tests were performed on ADMET Universal Testing
Machine (eXpert 5601). The generalized Kresling segment was
fabricated from paper (Daler - Rowney Canford 150 gsm). First,
the 2-D drawing of the pattern was prepared in the Solidworksr

software. This pattern was then cut out of the paper with per-
forated creases using CricutMakerr. Additional reinforcement
triangles were attached to the triangular facets using double sided
tape. Finally, the segment was folded by hand and the top and
bottom polygons were attached to the segment using double
sided tape. A custom rotation fixture was designed using dual
ball-bearing hub to allow for free rotation of one end of the Kres-
ling segment. One end of the Kresling segment was fixed to the
rotation fixture mounted on the lower base plate and the other
end was fixed to the upper platen.
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Figure 3: Experimental setup for verification of bistability for
generalized Kresling segment

Some modifications to the pattern were deemed necessary in
the fabrication of Kresling segment. During the initial testing it
was observed that excessive stresses were developing along the
mountain creases. This caused the bistable segment to tear after
a few cycles of testing. Thus, the mountain creases were cut to
allow smooth folding motion of the segment. A similar approach
is used in literature, where the resulting pattern is called Flex-
igami [32]. Additionally, triangular reinforcements were added
to the triangular facets to increase their relative stiffness com-
pared to creases and get stronger bistability. The elasticity of
paper, fabrication defects, contact between the deforming trian-
gular facets, and internal friction cause the contraction and ex-
tension path to vary slightly. As a result, we see a hysteresis loop
forming instead of a single curve for force versus displacement
as seen in analytical prediction. The bistable nature of the gener-
alized Kresling segment is evident from the Figure 4.

3 EQUATIONS OF MOTION
In this section we develop model of a Chaplygin sleigh like

nonholonomic system based on the Kresling origami pattern.
The Chaplygin sleigh is modeled as vertical plate connected to
the wheel via a rigid arm. The sleigh has mass mc and moment
of inertia I1. The sleigh has a nonholonomic constraint applied
to point P on the wheel which does not allow motion in the Yb
direction (Figure 5(a)). The Kresling segment is mounted on the
sleigh such that its base and top polygon are perpendicular to
the (x,y) plane and segment’s axis of rotation is aligned with Yb
(Figure 5(b)). One face of the segment is fixed to the Chaplygin
sleigh and the other face is free to rotate about its rotation axis.
The torque (τ) is applied to the free face about Yb axis . This face
is weighted with mass mk and moments of inertia about the z axis
and its own axis are I2 and I3 respectively.

The system has a configuration manifold SE(2)×S1 param-
eterized by q = [x,y,θ,α]T where (x,y) is the position of the
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Figure 4: Verification of the bistability of Kresling segment
(a)Experimental results: Force versus segment length. Red line
represents reaction force under contraction and the black line
represents reaction force under extension. The blue line is the
averaged reaction force. (b) Analytical predictions: Normalized
force versus segment length. (i) denotes the fully-extended sta-
ble state, le = l(αe) and (ii) denotes the fully-contracted stable
state. n=8, p=30 mm, µi=0.8, H=20 mm

sleigh, θ is the orientation and α is the rotation angle of the Kres-
ling segment. The positions and velocities of the free face can be
written as

xk = x− l(α)sin(θ)
yk = y+ l(α)cos(θ)

and

ẋk = ẋ− l̇(α, α̇)sin(θ)− l(α)θ̇cos(θ)

ẏk = ẏ+ l̇(α, α̇)cos(θ)− l(α)θ̇sin(θ).
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Figure 5: Origami inspired Chaplygin sleigh: (a) Schematic of
the system depicting design parameters and co-ordinate systems
(b) 3D visualization of the origami sleigh. The nonholonomic
constraint is applied to the sleigh at point P.

The Lagrangian of the system (L) is then given by

L =
1
2

mc(ẋ2 + ẏ2)+
1
2

mk(ẋk
2 + ẏk

2)

+
1
2
(I1 + I3 +ml2)θ̇2 +

1
2

I2α̇
2−U(α)

The system must satisfy the nonholonomic constraint that the
velocity of point P parallel to the origami structure is zero

−sin(θ)ẋ+ cos(θ)ẏ−bθ̇ = 0.

with Pfaffian one form being

−sinθdx+ cosθdy−bdθ = 0. (3)

The system is also subject to Raleigh dissipation modeled by the
dissipation function

R =
1
2

cuu2 +
1
2

ck l̇2

where u is the velocity of point P in the axis pointing to the center
of mass and ck is the damping in the Kresling pattern.The Euler-
Lagrange equations are

d
dt

(
∂L
∂q̇k

)
− ∂L

∂qk
= Wkλ+Γi + τi(t)

where λ j is the Lagrange multiplier corresponding to the jth
constraint, Wk is the coefficient of the one form dqk in (3),
Γi =− ∂R

∂qi
is the dissipation force, and τi = [0,0,0,τ]T is the ap-

plied torque. In our analysis we use a periodic torque of the form
τ = Acos(Ωt). Straight forward calculations yield the Euler-
Lagrange equations as

[
M −W T

W 0

][
q̈
λ

]
= B(q, q̇) (4)

where

B(q, q̇) =
[

C (q, q̇)q̇
Ẇ q̇

]
+

∂L
∂q

+ τ.

The matrix C (q, q̇) contains elements c jk = ∑
n
i=1 ci jkq̇i

where ci jk are the Christoffel symbols of the first kind computed

as c jk = ∑
n
i=1

1
2 (

∂Mk j
∂qi

+ ∂Mki
∂q j
− ∂Mi j

∂qk
)q̇i. The fifth equation of (4)

is obtained by differentiating the nonholonomic constraint with
respect to time. This is needed to complete the system in this
form and solve for the velocities. In our formulation we elimi-
nate the constraint force using gaussian elimination in order to
obtain the equations in matrix form useful for fixed points anal-
ysis. Let us define the body-fixed state vector ξ = [u,ω1,ω2,α]

T

where u is the velocity of P, ω1 = θ̇, and ω2 = α̇. The velocities
and accelerations of the tail may first be expressed in terms of u,
ω1 and θ as

ẋ = ucosθ

ẏ = usinθ

and
ẍ = u̇cosθ−uω1 sinθ

ÿ = u̇sinθ+uω1 cosθ.

After substituting the above expressions into (4) and eliminating
λ the following reduced equations are obtained.

[
Mb(α) 0

0 1

]
ξ̇ =

 f1(u,ω1,ω2,α)
f2(u,ω1,ω2,α)
f3(u,ω1,ω2,α)

 (5)

where f1, f2, f3 and the elements of Mb(α) are described in the
appendix.

4 DYNAMICS OF THE ORIGAMI SLEIGH WITH PERI-
ODIC ACTUATION
We simulate the equations of motion (5) under the effect of a

periodic torque τ. The origami robot exhibits limit cycle motion
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for a large range of parameters and control inputs. Although the
system may also exhibit chaos in the presence of large interwell
oscillations, we focus on control of the mobile robot through in-
trawell oscillations exploiting the bistability of the origami struc-
ture to achieve multiple motion regimes. Since the origami struc-
ture will exhibit this bistability for a large range of parameters,
we chose different parameters in the robot design than those used
in the experiment. However we emphasize that origami is scal-
able making the units and scale of motion less relevant for our
analysis. Limit cycle motion of the system is shown in Figure
6. Each of the velocities oscillates with the same frequency as
that of the input making the limit cycle a loop in the (u,ω1,ω2)
space as shown in Figure 6(c). Let us define (ū, ω̄1, ω̄2) to be
the average values of the velocities over one time period on the
limit cycle. We find that ū > 0 and ω̄1 > 0 making the limit cycle
motion in the (x,y) plane a circle on average as seen in Figure
6(a).

We find that the average values of all the limit cycle veloc-
ities change for each equilibrium position. When α(0) = αe we
get ū = 1.75× 10−2, ω̄1 = 1.47× 10−2 and ω̄2 = 0 whereas for
α(0) =αc we get ū= 4.15×10−3, ω̄1 = 7.94×10−3 and ω̄2 = 0.
We find that when the Kresling segment rotation angle is close to
αe at which the segment is fully-extended we get both a higher ū
and ω̄; which means the sleigh absorbs more of the energy from
the input torque in this position. The radius of motion in the
(x,y) plane, however, depends on both of these. A similar effect
is shown analytically for the elastic Chaplygin sleigh analyzed
in [26] For this reason we see from Figure 6(a) that the radius
for α(0) = αc is actually smaller despite ω̄1 being lower. We
also find that in the fully-extended position, the robot occupies
more space (Figures 6(d) and (e)). This becomes another trade-
off for the robot moving faster in this configuration. Based on
the required task the robot is able to move faster, with a larger
radius while occupying more space or move on a tight circle as a
smaller robot.

In order to make use of the bistability we must be able force
the Kresling segment to transition from one potential well to an-
other. Since α and l are mutually increasing and decreasing, a
torque on the free face of the segment can be efficiently used to
transition the segment to the other potential well. We show that
this can be done with PD control. The proportional term allows
us to define the desired potential well and the derivative term
serves to compound with dissipation to decrease the convergence
rate of the response. When we require the segment to transition
wells; we switch off the periodic input and apply a control law
of the form

while (|α−αd |> e) do
τ =−Kp(α−αd)−Kdω2

end while

where e is some chosen small error, αd ∈ {αe,αc} is the desired
value of the Kresling segment rotation angle and Kp and Kd are
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Figure 6: Sleigh response to periodic torque with A = 100, and
Ω = 1. Initial conditions are all zero except α(0) = αe for the
blue dashed trajectory and α(0) = αc for the black solid lines in
each subfigure. (a) The limit cycle in the velocity space, (b) The
trajectory of the sleigh in the (x,y) plane, (c) The length of the
Kresling segment versus time, (d) schematic of the system in the
fully-contracted position and (e) schematic of the sleigh in the
fully-extended position. The geometry of the Kresling segment
are n = 8, p = 7, H = 5, and µi = 0.8 with stiffness K = 5×104

and damping ck = 1. Other parameters are m1 = 0.5, m2 = 0.5,
I1 = I2 = I3 = 0.01, a = 10m and cu = 0.1.

coefficients for the controller. The controller gains must be large
enough to force a transition over the unstable position. The ex-
act values required depend on initial conditions so we simply
chose large values and show that that the control input is still of
the same order as the periodic input. The feedback control law
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allows us to switch wells immediately even while the sleigh is
moving. We first show a transition with zero initial conditions to
focus on the dynamics of this controller.
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Figure 7: Sleigh transition procedure with Kp = 400 and Kd =
400. Initial conditions are all zero except α(0) = αc. (a) The
angle of rotation of the Kresling segment, (b) The length of the
Kresling segment (c) Applied torque and (d) The trajectory in
the (x,y) plane. The geometry of the Kresling segment are n =
8, p = 7, H = 5, and µi = 0.8 with stiffness K = 5× 104 and
damping ck = 1. Other parameters are m1 = 0.5, m2 = 0.5, I1 =
I2 = I3 = 0.01, a = 10 and cu = 0.1.

In Figure 7(a) and (b) we see that the segment is able to smoothly
transition from one equilibrium position to the other in under 5
seconds. Figure 7(c) shows that the input required to transitions
is of the same order as the sinusoidal input we use to steer the
sleigh. The response of the sleigh itself is seen in Figure 7(d).

A simulation of the control law is shown in Figure 8. The
sleigh begins with α(0) = αc and we apply a periodic input with
A = 100 and Ω = 1 for t ∈ [0,300) and then the origami sleigh is
required to transition to the other stable configuration using the
transition procedure. We then apply the same periodic input until
t = 600. We see that during the first three hundred seconds the
sleigh first travels backward briefly during the transient phase
and then travels along a circle with ū = 4.15× 10−3 and ω̄1 =
7.94× 10−3 (Figure 8(a)). The system then transitions to the
other stable configuration. Once the periodic input starts again
we see another transient phase where u is on average less than
zero before the sleigh settles to a limit cycle with ū= 1.75×10−2

and ω̄1 = 1.47×10−2. The system can therefore change its speed
and radius travel using the torque on the Kresling segment as the
only control input.
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Figure 8: Robot switching from the fully-contracted position to
the fully-extended potion. Oscillations about the fully-contracted
position are shown in black lines, the transition in magenta dash-
dotted lines and oscillations about the fully-extended position in
blue dashed lines. (a) The trajectory in the plane. (b) The length
of the Kresling segment. The geometry of the Kresling segment
are n = 8, p = 7, H = 5, and µi = 0.8 with stiffness K = 5×104

and damping ck = 1. Other parameters are m1 = 0.5, m2 = 0.5,
I1 = I2 = I3 = 0.01, a = 10 and cu = 0.1.

5 SUMMARY AND CONCLUSION
This study focuses on exploiting the bistability of an origami

mechanism to control the motion of the Chaplygin sleigh. We an-
alyzed the motion of a Chaplygin sleigh mounted with an origami
structure known as the generalized Kresling pattern. Applying a
periodic torque to the Kresling segment produces periodic in-
trawell oscillations in its length. This in turn gives rise to limit
cycle motion of the Chaplygin sleigh. This motion is such that
the trajectory is a circle on average in the (x,y) plane. The radius
and speed of travel along this circular trajectory, and the size of
the robot can change based on which equilibrium position the
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Kresling segment is oscillating about.
We have also shown that the system is able to transition from

one equilibrium position to the other smoothly by using a feed-
back control law. This means that the single input of a periodic
torque on the Kresling segment is able to generate two regimes of
motion and switch between them. Hence, We are able to reduce
the complexity of the control architecture for the robot actuation.
The physical size of the robot also decreases on demand allowing
the robot to navigate smaller spaces.

To the best of the authors’ knowledge this is the first pa-
per on the dynamics of a mobile origami mechanism with non-
holonomic constraints. The results obtained here lay the ground-
work for the design of highly adaptive, lightweight, multi-stable
origami robots that can find applications in many areas such as
search and rescue, inspection, and medical applications. With
the recent findings that nonholonomic constraints govern fish-
like swimming [33–35], origami based mechanisms can also be
expected to play a significant role in designing efficient and agile
aquatic robots. The design and fabrication of the origami robot
working on these principles will be taken up as a future work.
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Appendix: Equations of motion expressions

The functions in equation (5) of section 3 are

f1 =−
1
b3

((
b3(a(mc +mk)ω

2
1− cuu)+ω1ω2r2m2(sin(−α

+αc)r2 + sin(α+2φ)H2 + r2 sin(2α+4φ)− r2 sin(α+4φ

+αc))
))

f2 =−
2l

b3a

(
ω1(−4ω2 sin(α+2φ)r2mk +u(mc +mk)a+ cω)b

− 1
2

a(− 1
2

r2 cos(2α+4φ)+ cos(α+4φ+αc)r2− cos(α

+2φ)H2 + r2(cos(α+αc)−
3
2
))mkr2

ω
2
2

)
f3 =

1
b4

(
−b3umkω1r2 sin(α+2φ)−4(2mkr2(ω2

1 +
1
8

ω
2
2)sin(α

+2φ)+ ckω2 + τ)(r4 cos(α+2φ)2 +2(r2 cos(αc +2φ)

− 1
2

H2)r2 cos(α2φ))−8mkr2(ω2 cos(αc +2φ)2r4

−ω
2
1 cos(αc +2φ)r2H2 +

1
4

H4
ω

2
1 +

1
8

ω
2
2r4)sin(α+2φ)

−4(ckω2 + τ)(r2 cos(αc +2φ)− 1
2

H2)2
)

and Mb(α) has elements

M1,1
b = mc +mk

M1,2
b =

mk

b3 (−4H2r2 cos(αc +2φ)+4H2r2 cos(α+2φ)

+2r4(cos(2αc +4φ)+ cos(2α+4φ)−2cos(α+4φ

+αc))−4r4 cos(−α+αc)+H4 +4r4)

M1,3
b = 0

M2,1
b =− lmk

ab3 (−4H2r2 cos(αc +2φ)+4H2r2 cos(α+2φ)

+2r4 cos(2αc +4φ)+2r4 cos(2α+4φ)−4r4 cos(α+4

+αc)−4r4 cos(−α+αc)+H4 +4r4)

M2,2
b =

l
a
(4cos(α+2φ)mkr2−4cos(αc +2φ)mkr2 +(2H2

+a2)mk +a2mc + I2 + I3)

M2,3
b =

lmkr2

b3 (sin(α+αcr2 + sin(α+2φ)H2 + r2 sin(2α+4φ)

− r2 sin(α+4φ+αc))

M3,1
b = 0

M3,2
b =

amkr2

b
sin(α+2φ)

M3,3
b =

1
b2 (−mkr4 cos(α+2φ)2 +mkr4−2I−2cos(αc +2φ)r2

+2I2 cos(αc +2φ)r2 +2I2 cos(α+2φ)r2 + I2H2)
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