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Abstract 

Lifted inference algorithms for first-order logic 
models, e.g., Markov logic networks (MLNs), have 
been of significant interest in recent years. Lifted 
inference methods exploit model symmetries in or- 
der to reduce the size of the model and, conse-  
quently, the computational cost of inference. In this 
work, we consider the problem of lifted inference 
in MLNs with continuous or both discrete and con- 
tinuous groundings. Existing work on lifting with 
continuous groundings has mostly been limited to 
special classes of models, e.g., Gaussian models, 
for which variable elimination or message-passing 
updates can be computed exactly. Here, we develop 
approximate lifted inference schemes based on par- 
ticle sampling. We demonstrate empirically that 
our approximate lifting schemes perform compara- 
bly to existing state-of-the-art models for Gaussian 
MLNs, while having the flexibility to be applied to 
models with arbitrary potential functions. 

 
1 Introduction 

Statistical Relational Learning/AI (SRL) [Getoor and Taskar, 

2007; Raedt et al., 2016] models combine the representa- 
tional power of logic/relational models with the ability of 
probability theory to model noise and uncertainty. While 
powerful in representation, until recently, learning and rea- 
soning in these models were considered challenging.  On  
the reasoning side, given a first-order (logical) model, a 
class of probabilistic inference methods called lifted infer- 

ence [Poole, 2003] methods were developed to perform ef- 
ficient inference.  The key idea is to exploit the underly-   
ing symmetries that exist in the model (top-down) or the 

data (bottom-up). The top-down approaches [Poole, 2003; 
de Salvo Braz et al., 2005; den Broeck, 2013; Gogate and 

Domingos, 2011] perform splitting or shattering where the 
groups of similar objects are split according to the evi- 

dence. The bottom-up approaches [Kersting et al., 2009] 

start from a fully grounded model and group variables based 
on the evidence. Similar to standard graphical model in- 
ference, there exist exact and approximate methods. Ex- 
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act lifted inference is intractable in the presence of evidence 
while message passing [Singla and Domingos, 2008; Kerst- 
ing et al., 2009] and sampling [Venugopal and Gogate, 2012; 
Niepert, 2012] can handle evidence more robustly. 

However, these methods have been mainly applied to dis- 
crete domains, with the exception of Lifted Gaussian BP [Ah- 
madi et al., 2011] and Lifted Kalman Filters [Choi et al., 
2011] which apply to continuous models with a Gaussian dis- 
tribution assumption, and do not extend to hybrid models. 

Inspired by the success of color passing [Kersting et al., 
2009], we develop a particle message-passing approach that 
passes messages between clustered variables and  factors. 
We demonstrate how the proposal distributions need to be 
adapted to the clusters by counting the number of objects   
in each cluster. In addition, combining the idea of coarse- 
to-fine [Habeeb et al., 2017; Sarkhel et al., 2015] and evi- 
dence grouping [Venugopal and Gogate, 2014], we derive a 
coarse-to-fine algorithm that computes approximate symme- 
tries. Note that exact symmetry computation is quite imprac- 
tical for continuous domains. Our approach clusters all the 
evidence in the beginning and, over the course of message 
passing, refines these clusters to compute more accurate ev- 
idence as necessary. Unlike existing approaches to lifting, 
our method is not limited to simple classes of potential func- 
tions, e.g., Gaussian distributions, nor does it require that all 
variables be discrete or that all variables be continuous. This 
makes our approach significantly more versatile. 

We make these key contributions: (1) We develop the first 
hybrid lifted inference algorithm for real world data. (2) Ours 
is a generalized lifted inference approach for hybrid data that 
does not make any distributional assumptions. Our work  
can be seen as generalizing the work on Lifted Kalman Fil- 

ters [Choi et al., 2011] and Hybrid MLNs [Wang and Domin- 

gos, 2008] to arbitrary (integrable) potentials. (3) We show 
theoretically that our approach is indeed a reasonable approx- 
imation under local conditions. (4) We demonstrate the ef- 
ficiency and effectiveness of this approach on several tasks 
against standard baselines where most lifted inference tech- 
niques cannot be naturally adapted. 

2 Preliminaries 

A Markov random field (MRF) is a graphical model defined 
by a hypergraph G = (V, C) that represents a joint probability 

distribution of random variables xi ∈ Xi for each i ∈ V as 
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distribution over is given by 

x c∈C fc(xc) is a normal- 

1  

a product of nonnegative potential functions over hyperedges for each i ∈ V , T samples, x(1), . . . , x(T ), are drawn from 

of G. Here, i is the set of possible states of the variable i, 
e.g., the finite set 0, 1 or R. In this work, we will consider 
models with a combination of both discrete and continuous 

the proposal distribution qi. The PBP approximated message 
from factor node c to variable node i is defined as 

T 

variables. Given a collection of nonnegative potential func- 
tions fc  :  Xc  →TIR≥0 for each c ∈ C , the joint probability 
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m̂  l (x ). 

where xc is the subset of random variables indexed by ele- 
i→c i 

T · q(xi) cl∈nb(i)\c 
c →i i 

ization constant. If some of the variables are discrete, the 
integral over those variables is replaced with the appropriate 
sum, but for ease of notation, we will use the integral notation 
in what follows. We can represent an MRF with the above 

 
b(xi) � m̂ c→i(xi). (1) 

c∈nb(i) 

factorization using a factor graph, a bipartite graph with vari- 
able nodes for each i ∈ V , factor nodes for each c ∈ C, and 

an edge joining c ∈ C to i ∈ V if i ∈ c. 

2.1 Loopy BP and Particle Message Passing 

Our primary goal is to compute the probability of a set of 
query variables conditioned on evidence variables. While this 
inference task is #P-complete in general, for tree-structured 
factor graphs, these conditional probabilities can be com- 
puted exactly in polynomial time by a message-passing al- 
gorithm known as belief propagation (BP). When the factor 
graph is not tree structured, belief propagation is no longer 
exact. However, loopy BP has been shown to have reasonable 
empirical performance as an approximate inference algorithm 
[Berrou et al., 1993; Murphy et al., 1999]. 

In the case that all of the variables are discrete, the integrals 
in the BP message updates reduce to sums and can be com- 
puted efficiently. Similarly, if all of the variables are contin- 
uous and all of the potential functions are Gaussian, then the 
message passing algorithm is known as Gaussian belief prop- 
agation (GaBP) and the integrals can be computed in closed 

form [Weiss and Freeman, 2000; Malioutov et al., 2006; 

Moallemi and Roy, 2009; Ruozzi and Tatikonda, 2013]. Be- 
yond these special cases, however, inference with BP be- 
comes practically challenging: in the case of hybrid models, 
i.e., models with both continuous and discrete variables, and 
general potential functions, the messages produced by BP do 
not necessarily correspond to a finitely parametrizable family 
of functions nor can the integrals typically be computed in 
closed form. 

Several alternative message-passing schemes have been 
proposed to address these issues. Nonparametric belief prop- 
agation (NBP) represents each message as a mixture of Gaus- 
sians and uses an efficient sampler to compute approximate 
message updates, but this approach is often too slow to be 

practical [Sudderth et al., 2010]. Another alternative, the par- 
ticle belief propagation (PBP) method approximates the mes- 
sages using a finite collection of particles rather than a Gaus- 

sian mixture [Ihler and McAllester, 2009]. In this approach, 
the integrals are approximated via importance sampling or an 
MCMC sampling method.  Specifically, consider a proposal 

distribution qi(xi) for each i  ∈  V .   In each PBP  iteration, 

The choice of proposal distribution greatly impacts the 

practical performance of PBP. Ihler and McAllester [2009] 

suggest using the approximate beliefs as proposal distribu- 
tions and drawing samples from them via a standard MCMC 
sampling approach. An alternative approach that empirically 
results in faster convergence, is to generate an approximate 
proposal distribution from some tractable exponential fam- 

ily using a parallel message-passing strategy [Lienart et al., 

2015]. This approach is dubbed expectation particle belief 
propagation (EPBP) as the approximate proposal messages 
are formed using an approach similar to that of the expecta- 

tion propagation algorithm [Minka, 2001]. Here, like Lienart 

et al. [2015], we use Gaussian distributions as the tractable 
exponential family. 

2.2 Relational Models 

SRL models [Raedt et al., 2016] combine the power of graph- 
ical models to model uncertainty and the ability of first-order 
logic to handle relational data. Examples include the directed 

Probabilistic Relational Model [Koller, 1999] and undirected 

Markov Logic Networks [Richardson and Domingos, 2006]. 
While specific semantics differ, they employ parameterized 
(conditional probabilities or weights) logic/relational rules. 
For the purposes of lifted inference, most of these models are 

converted to parameterized factor graphs [Poole, 2003]. 

2.3 Color Passing 

Lifted message passing methods typically employ the notion 
of a compressed factor graph G composed of super vari- 
ables, V, and super factors, C. These sets correspond to a 
regrouping of the original variable nodes and factor nodes 
for which the message-passing algorithm behaves identically, 
i.e., nodes/factors in a cluster send and receive the same mes- 

sages. While top-down [Singla and Domingos, 2008] and 

bottom-up [Kersting et al., 2009] methods exist, we employ 
the later to construct the super variables and factors. 

The bottom-up method operates in two key steps - first 
lifted graph is constructed from a ground probabilistic net- 
work and then a modified BP is run on this graph. To con- 
struct the lifted graph, the method performs color (structure) 
passing. Initially, all variable and factor nodes are clustered 
based on evidence and the potential functions. Variables with 

is the importance weighted message from vari- wi→c 

j∈c\i t=1 
i i∈V X 

where 

ments of the clique c and Z = 
Upon convergence, the beliefs are computed as 
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the same evidence value v or variables with same domains 
will be grouped together, i.e., receive the same color. Each 
node sends its color to its neighbors. Each factor stacks the 
colors of all its neighbors, appends its own color, and sends a 
message back to the neighbors. After each step, the nodes and 
factors are grouped together based on the colors. The process 
is repeated until no more grouping is possible at which point, 
all nodes (correspondingly factors) inside the same cluster 
send and receive the same messages. 

In the second step, this method runs the modified BP by 
introducing counts – #(c, i) denotes the number of identical 
messages that would be sent from the super factor c to each 
node in the super variable i if BP was carried out on the orig- 
inal factor graph G. The message from a super variable i to a 
super factor c in the compressed graph is now, 

Algorithm 1 Lifted Hybrid EPBP  

1: Input: A factor graph G with variables X, factors f , and 
evidences e 

2: Return: The approximated belief b(xi) 
3: Run CP until convergence to compute G = (V, C) 
4:  Initialize messages m̂  and proposals q 
5: repeat 

6: for i V, c nb(i) do 
7:  Update m̂ i   c(xi) 
8: end for 
9: for c C, i c do 

10: Compute the cavity distribution q c from (4) 

11: Update ηc i using (5) 
12: end for 
13: for i ∈ V do 

TI 
l

 #(c,i) cl→i i 14: Sample T points, x(1), . . . , x(T ), from qi 

mi→c (xi) = c ∈nb(i) 
.
 

mc→i(xi) 
i i 

15: end for 

The denominator shows that a super variable’s message to a 
super factor excludes the corresponding factor’s message to 
the variable if BP was performed on G. The unnormalized 

belief of the random variable xi can be computed by 

16: for c C, i c do 

17: Update m̂ c   i(xi) using (2) and (3) 
18: end for 
19: until Converge 
20: Compute beliefs from the converged messages 

b(xi) = 
c∈nb(i) 

3 Hybrid Lifted BP 

mc→i(xi)
#(c,i). 

 
 

 
where ŵ is the collection of weighted messages from super 
variables to super factors: 

While PBP/EPBP can be applied to general factor graphs with 
TI

cl∈nb(i) m̂ cl→i(xi)
#(cl,i)

 
 both continuous and discrete variables, care must be taken if 

these approaches are to be used in a lifted context as lifting 
ŵi→c(xi) � 

T · q(xi) · m̂ c→i 

. (3) 

(xi) 

with continuous domains introduces some additional chal- 
lenges that are not present in the fully discrete case. In partic- 
ular, exploiting symmetries in a factor graph with continuous 
evidence is complicated by the observation that each differ- 
ent evidence variable would likely be considered as distinct 
under the standard color passing algorithm, potentially de- 
stroying many of the symmetries in the model. In this section, 
we propose an intuitive strategy to generalize the color pass- 

The weighted messages for a discrete super variable can be 
computed exactly as in the lifted version of BP. 

The proposal distributions, qi(xi), used by the lifted EPBP 

algorithm are computed by introducing the counts into the 
appropriate place in the standard EPBP algorithm. Define 

qi(xi) � ηc→i(xi)#(c,i), (4) 
c∈nb(i) 

ing and EPBP algorithms to handle the case of continuous 
variables in a lifted setting. where the η’s represent the approximate messages in the de- 

sired exponential family. We define the lifted cavity distribu- 
Recall that the lifted approximate inference method has tion q  (x ) = q (x )/η (x ) and the corresponding tilted 

two steps - constructing a compressed factor graph from a \c i i i c→i i 

large grounded graph and then running a modified lifted in- 
ference algorithm on this graph. We first show how EPBP 
can be applied on the compressed graph before outlining the 
process of constructing the compressed graph. 

3.1 Lifted EPBP 

We now introduce our Lifted EPBP (LEPBP) algorithm. Con- 
sider a compressed graph G with a set of super variables V, 

a set of super factors C, and proposal distribution qi(xi) for 

each super variable i  ∈  V.  For each iteration of EPBP,  we 

draw T samples x(1), . . . , x(T ) for each super variable i ∈ V 

distribution  m̂ c→i(xi)q\c(xi).   The  proposal  message  ηc→i 
is updated by minimizing the KL-divergence between qi(xi) 
and the tilted distribution. 

ηc   i arg min D(m̂ c   i(xi)q c(xi)    η(xi)q c(xi))    (5) 
η∈exp.fam. 

The complete procedure is described in Algorithm 1. Note 
that in line 3, it calls a standard color passing algorithm that 
constructs the compressed graph. However, as we mentioned 
earlier, continuous domains, do not exhibit exact symmetries 
and hence we need an improved color passing algorithm. We 

 from the corresponding proposal distribution qi(xi). The par- 
ticle approximated message from super factor c to continuous 
super variable i c is 

T 

3.2 Coarse-to-fine Lifting 

In situations with a large number of continuous evidence vari- 

m̂ (x ) � 
  

f (x , x(t) )  
   

ŵ (x(t)), (2) 
 

 
 

ables, the number of exact symmetries in the factor graph is 

 

severely limited. Here, we propose a coarse to fine lifting ap- 
proach for detecting approximate symmetries. Our approach 

j∈c\i t=1 

refer to this as coarse-to-fine lifting, which we explain next. 
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is to begin with a coarse clustering of the evidence values 
into k clusters, S1, . . . , Sk (k could be as small as one). In 
EPBP, for each a 1, . . . , k , we will treat all of the evi- 
dence variables in Sa as having the same value, given by the 
cluster average. We can use this coarse clustering as an initial 
grouping of nodes in a color passing algorithm. 

The above clustering scheme introduces an approximation 
to the evidence: The closer each evidence variable is to the 
respective mean of its assigned cluster, the more accurate the 
approximation. However, higher accuracy typically results in 
fewer model symmetries to exploit. In coarse-to-fine lifting, 

Algorithm 2 Lifted EPBP with Coarse-to-Fine Lifting  

1: Input: A factor graph G with variables X, factors f , 
evidence values v, and threshold E 

2: Return: The approximated belief b(xi) 
3: 2V initial clustering of evidence variables 
4: Group variables with same domain and factors with same 

potential together 
5: Run one iteration of CP to initialize G = (V, C) 
6:  Initialize messages m̂  and proposals q 
7: repeat 
8: for each Sa ∈ S do 

the aim is to gradually improve the clustering, interleaving it 9: if maxi∈S |vi − avg(vS )| > E then 
with the lifted EPBP algorithm, while reducing the total com- a 10: Run k a to subdivide S 

putational cost, possibly at the expense of some inaccuracy in 
the early rounds of LEPBP. 

After an initial coarse grouping of the evidence variables, 
we iteratively refine the grouping of evidence by subdivid- 

11: end if 
12: end for 

13: for i ∈ V do 

-means with k = 2 a 

ing the current set of coarse clusters.  In this work, we use 
the k-means algorithm for finding an appropriate  split,  e.g., 

14: collect colors from neighbors of Vi and construct 
new groups according to color symmetries 15: 

running k-means for cluster Sa with k = 2 will replace the 
current cluster with two new clusters. Note that this is a 

 

16: 

end for 
Update m̂  using one iteration of Algorithm 1 over G 

one-dimensional k-means clustering application, which can 

be solved optimally in polynomial time [Wang and Song, 

2011]. After splitting the coarse clusters, we run one itera- 
tion of color passing and lifted EPBP, using the coarse EPBP 
messages from last iteration. We can keep iterating this pro- 
cedure until lifted EPBP converges. In practice, it is not nec- 
essary or even desirable to continue splitting evidence groups 
until each cluster only contains a single evidence variable. We 
can stop refining an evidence group if the difference between 
each element of the cluster and the cluster average is below a 
chosen threshold. Details can be found in Algorithm 2. 

Intuition suggests that if every evidence value is suffi-  
ciently close to its respective cluster mean, then the estima- 
tion error introduced by the coarse-to-fine approach should be 
relatively small when compared to LEPBP. In general, this re- 
quires some restrictions on the allowable potential functions 
if we aim to make this intuition precise. 

Theorem 1.  Fix  E > 0 and L > 0.  Let E  V  denote the  
set of continuous evidence variables with values given by vE. 
If the evidence nodes are grouped into k sets S1, . . . , Sk such 
that for all a    1, . . . k , maxi  Sa    vi    avg(vSa )     E and 

c C, log fc is Lipschitz continuous with constant L > 0,  
then            

17: until convergence 
 

 

 
Note that the log potential functions do not actually need to 

be Lipschitz over their entire domain for a similar argument to 
work; they only need to be locally Lipschitz over the evidence 
variables. This is a much weaker assumption, which is likely 
to be true in practice, e.g., Gaussian potentials. 

4 Experimental Results 

We aim to answer the following questions focusing on hybrid 
probabilistic relational models. 

Q1: Does lifting significantly reduce the running time of par- 
ticle based approaches for approximate inference? 

Q2: Is LEPBP accurate when compared with alternative 
state-of-the-art methods for both exact and approximate 
inference? 

Q3: Is LEPBP a practical tool for inference? 

Q4: Does coarse-to-fine lifting improve upon LEPBP in 
practice? 

Baselines. For comparison against LEPBP and Coarse-to- 
fine EPBP (C2FEPBP), we consider (1) the standard EPBP 

     ZB/ZB ≤ exp(LE |c|), 
c∈C 

algorithm of Lienart et al. [2015],  which is adapted here  
for generic inference in hybrid models, (2) the lifted Gaus- 

where ZB is the maximum BP estimate of the partition func- 
tion using the approximate evidence and ZB is the maximum 
estimate of the partition function for the given evidence. 

Proof. (Sketch) Potential fc depends on at most c different 
evidence variables. Let vE correspond to the evidence values 
after averaging over each cluster. By Lipschitz continuity, 

log fc(vc) ≤ log fc(vc) + L||vc − vc||2 

≤ log f (v ) + LE  |c|.    

sian belief propagation algorithm of Ahmadi et al. [2011] as 
the message updates can be computed in closed form for this 
approximate inference method, and (3) the lifted relational 

Kalman filtering method of Choi et al. [2015] as it performs 
exact variable elimination in a lifted setting whenever all of 
the potential functions are Gaussian. 

Implementation. EPBP, LEPBP, C2FEPBP, and LGaBP 
were implemented in Python 3.6, and all source code is avail- 
able on GitHub1. A MATLAB implementation of LRKF was 

Plugging this into the definition of the Bethe free energy formed on a machine with a 2.2 GHz Intel Core i7-8750H 
[Yedidia  et  al.,   2001],   whose  maximum  determines ZB,    

yields the desired result. 1Code: github.com/leodd/Hybrid-Lifted-Belief-Propagation 

obtained from Choi et al. [2015]. All experiments were per- 
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4.2 Relational Kalman Filtering 

We next investigate approximate/exact inference methods for 
the Kalman filter, a widely applied tool, e.g., robotic control 
and object motion prediction, etc., to estimate the state of a 
dynamical system given evidence and controls. Specifically, 
given a set of state variables x, the Kalman filter represents 
the dynamic features of a state variable by x and observation noise by t+1 = Axt + w 

ot = Cxt + v, where A is a tran- 
sition matrix, C is an observation matrix, w ∼ N (0, Q), and 

 

 

 
Table 1: Evaluation of lifted methods on relational Gaussian models 
with varying levels of evidence. Error was computed against LGaBP. 
The best performing methods are highlighted in bold. 

 

 
CPU and 16 GB of memory. For sake of comparison, all al- 
gorithms, except LRKF, were restricted to a single core. 

 
4.1 Relational Gaussian Models 

 
We employ a continuous relational model with multivariate 
Gaussian potentials following the Recession model described 

by Choi et al. [2010]. The model has three bivariate Gaus- 
sian parfactors (i.e., parameteric factors) over two classes of 
instances (“bank” and “category”). We generate 100 “cate- 
gory” instances and 5 “bank” instances, which creates 606 
grounded random variables. We randomly select 5%, 10%, 
and 20% of the variables in each instance as evidence and 
assign them evidence values sampled from the uniform dis- 
tribution on [−30, 30]. 

As the potentials are Gaussian, we used GaBP, which com- 
putes the BP message updates exactly, as a strong baseline 
for comparison. All message-passing algorithms were run for 
15 iterations and sampling-based methods used 20 sampling 
points for the integral approximations. For coarse-to-fine lift- 
ing, we use k-means clustering with k = 2 for evidence group 
splitting and use dynamic splitting of the threshold which was 
initially being set to E = maxSa (avg(vSa )) and was de- 
creased each iteration until E = 0. Each algorithm was run 5 
times for each test, and the average CPU time and average L1 
error compared to GaBP can be found in Table 1. 

The results illustrate that, both LEPBP and C2FEPBP are 
significantly faster than EPBP on the original graph without 

increasing the average £1 error too much (EPBP draws more 
sampling points overall, which explains the accuracy differ- 
ence with LEPBP and C2FEPBP). However, as the fraction of 
continuous evidence increases, the number of symmetries in 
the graph are significantly reduced, and the performance dif- 
ference between the lifted methods and EPBP narrows. Still, 
the coarse-to-fine lifting method is roughly twice as fast as 
LEPBP as a result of reduced computation time in the early 
iterations when the evidence groupings are coarse. These ob- 
servations suggest that Q1, at least when the amount of con- 
tinuous evidence is relatively low, and Q4 are true. 

v (0, R). The covariance matrices Q and R relate to the 
transitions and observations respectively. We can represent 
the univariate transition model of a Kalman Filter with the 

linear Gaussian exp((xt+1 Axt)2/σ2). For the multivariate 
transition model, we decompose the linear Gaussian potential 
into several pairwise potentials. The relational Kalman filter, 
[Choi et al., 2011; Choi et al., 2015], represents the tran- 
sition model in a lifted (parameterized) way, where groups 
of similar state (correspondingly observation) variables share 
the same parameters for the transitions (correspondingly ob- 
servations), also known as parameter tying. 

We used groundwater level data extracted from the Repub- 

lican River Compact Association model [McKusick, 2003], 
which is a monthly record of the measured head position of 

3420 wells over 850 months. As in Choi et al. [2015], we 
grouped wells in same area together and assume that wells 
in the same group share the same transition and observation 
model. We tested two cases 1) a tree-structured model 2) a 
cyclic model. For the first case, we select one group of wells 
that has 76 instances and defined a model – A = α I, C = I, 
Q = β I, R = γ I where α U (0.5, 1), β U (5, 10), 
γ U (1, 5) and I is the identity matrix. For the second task, 
we constructed two groups of wells with 3 instances each. 
We define model similarly, except that A = α I + 0.01 and 
Q = β J , where J is the matrix of ones. We construct a 
Kalman filter model with 20 time steps and use 20 months of 
data as the observations. We evaluated the message-passing 
algorithms with 20 iterations and the sampling-based algo- 
rithms used 50 particles to approximate the integrals. For ev- 
idence splitting threshold E, we used the same setting as in 
Section 4.1. 

We compared the MAP value of variables in the last time 
step. As can be seen from Table 2, the difference between 
the result of our approaches and the result of exact LRKF and 
LGaBP are significantly smaller. The range of the continuous 
values are between [-5,5] for the tree case and between [-1,9] 
for the loopy case. Our methods have a less than 1% error in 
the tree case and around 3% error in the loopy case even with- 
out making any restrictive assumptions about the potentials, 
thus answering Q2 affirmatively. 

4.3 Hybrid Markov Logic Networks 

To demonstrate the efficiency of our approach in truly hy- 
brid models, following the hybrid MLN work of Wang 

and Domingos [2008], we simulated an advisedBy domain 
where we employed two clauses: 1.0 : author(P, Pa) 
firstAuthor(S, Pa) advisedBy(S, P ) and 0.1 : 
advised(S, P ) [minSchool(S) = pLength(P )]. The first 
clause states that a professor advises a student if they are 
coauthors in a paper where the student is a primary author. 

 Algorithm Time(s) £1 Error 

1
%

 o
b

s EPBP 

LEPBP 

C2FEPBP 

530.75 

23.29 

18.77 

0.06 ± 0.01 

0.10 ± 0.02 

0.14 ± 0.04 

5
%

 o
b

s EPBP 

LEPBP 

C2FEPBP 

509.52 

113.25 

64.94 

0.06 ± 0.01 

0.09 ± 0.04 

0.08 ± 0.02 

1
0

%
 o

b
s EPBP 

LEPBP 

C2FEPBP 

436.98 

164.99 

89.24 

0.07 ± 0.01 

0.08 ± 0.02 

0.09 ± 0.01 

2
0

%
 o

b
s EPBP 

LEPBP 

C2FEPBP 

381.92 

261.26 

133.14 

0.05 ± 0.005 

0.04 ± 0.006 

0.08 ± 0.016 
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Table 2: Accuracy of lifted Particle methods on relational Kalman 
filter models against LRKF (exact) and LGaBP. 

 
Algorithm Time(s) £1 Diff. 

EPBP 

LEPBP 

C2FEPBP 

15.57 

7.9 

7.17 

- 

0.35 ± 0.28 

0.36 ± 0.25 

Table 3: Performance on the hybrid MLN where the query is on  
the months in school and the project length. Rough accuracy was 
computed against the average value of 5 EPBP runs. 

 

This is a hybrid MLN as the second clause is a soft equality, 
i.e., α = β is interpreted as a shorthand for (α β)2. Es- 
sentially this is a Gaussian penalty with the the mean being 
the equality constraint of months in school (minSchool) of 
the student and project length pLength, i.e., -(minSchool- 

pLength)2 and a variance of 0.1. Note that since there does 
not exist a hybrid lifted inference method to compare against, 
we employ the average of five runs of EPBP as the baseline 
and compute the difference to EPBP by our methods. 

We generated 100 students, 20 Professors and 50 papers 
for testing. We sampled 20% of the students from a uni- 
form distribution and set evidence e value minSchool(S), 
where e (0, 5). The assignments of authorships were 
performed based on sampling of the first rule. The queries 
include the months in school for the other 80 students and the 
project lengths of the Professors. The message-passing algo- 
rithms were run for 10 iterations and sampling-based methods 
used 20 particles. For evidence splitting threshold E, we used 
the same setting as in Section 4.1. As can be seen from Ta- 
ble 3, the proposed lifted methods are significantly faster than 
EPBP even on this smaller network while achieving nearly 
the same performance (the range of values is 30 and hence, 
the methods have around 1% difference to EPBP). This al- 
lows us to answer Q3 affirmatively in that our approach ap- 
pears to be promising for real tasks where hybrid SRL models 
need to be employed. 

4.4 Image Denoising 

As a final task, we compared the running times of EPBP, 
LEPBP, and coarse-to-fine LEPBP on a simple image de- 

noisnig task [Lienart et al., 2015], which is challenging for 
regular lifting as the evidence essentially breaks all model 
symmetries. For this task,  a 50  50 grayscale image has  
been corrupted with Gaussian noise and the aim is to re- 
construct the original image. We construct  a  grid  MRF 
over the image with a random variable for each pixel whose 
real value is assumed to be hidden while the noisy image  
pixel itself is treated as the observation. Following Lienart 

et al. [2015], we define a potential between hidden vari- 

(a) Noisy image (b) LEPBP (c) C2FEPBP 

Figure 1: Denoising of the 50 × 50 image (a). 

ables f (xi, xj) exp(   α max( xi xj , β)) and potential 
between hidden variable and observation node f (xi, oi) 

exp(  (xi oi)2/2σ2), where we choose parameters α = 
0.285, β = 25 and σ = 2.24. 

In this example, we tested EPBP, LEPBP, and coarse-to- 
fine lifting, running all three algorithms for 10 iterations. The 
sampling methods used 10 particles and coarse-to-fine lift- 
ing used the same splitting threshold E as in Section 4.1. 
Figure 1 shows the resulting denoisings.   The CPU time  
for all three algorithms are: (EPBP) 109.5312s, (LEPBP) 
117.9062s, (C2FEPBP) 60.6562s. The result for EPBP was 
not shown since, in this instance, LEPBP are the same as 
EPBP as regular lifting will return the grounded graph. The 
denoised result of C2FEPBP is very close to the one of 
LEPBP, but with almost half CPU time of LEPBP. This not 
only answers Q4 affirmatively, in that the lifting improves 
upon LEPBP, but also allows for the algorithm to be poten- 
tially employed in practical tasks (Q3). 

5 Conclusion 

We presented the first lifted inference method for hybrid rela- 
tional probabilistic models. Our proposed approach consists 
of two key steps, constructing the compressed network and 
then running a modified particle BP method. The key aspect 
of our work is that we do not make any restrictive assump- 
tions on the potentials (the only assumption is that the inte- 
grals exist). We demonstrated the effectiveness both theoret- 
ically (under locality assumptions) and empirically in several 
different settings. Although all of the sampling methods are 
slower than GaBP on a single core, they have the flexibility to 
be run over generic potential functions and can be efficiently 
parallelized, an important future direction. We are currently 
exploring variational methods, similar in spirit to Guo et al. 
[2019], to scale lifted inference to large hybrid domains as 
well as POMDPs, where such algorithms can be used for ef- 
ficient tracking and uncertainty modeling. 
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 Algorithm £1 Diff.(LRKF) £1 Diff.(LGaBP) 

T
re

e 

EPBP 

LEPBP 

C2FEPBP 

0.12 ± 0.05 

0.12 ± 0.10 

0.09 ± 0.09 

0.12 ± 0.06 

0.11 ± 0.10 

0.10 ± 0.08 
C

y
cl

e EPBP 

LEPBP 
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