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ABSTRACT

The Sun ionizes a small fraction of Earth’s atmosphere above roughly 60 km, pro-
ducing the plasma that constitutes the ionosphere. Radio signals passing through the
ionosphere scatter off of plasma density structures created by the Farley-Buneman
instability (FBI). While numerous studies have characterized the FBI’s intrinsic na-
ture, its evolution within the broader context of the surrounding plasma remains
enigmatic. This dissertation answers two fundamental questions about the FBI: How
does it interact with density gradients? How does its non-linear evolution depend on
the background plasma?

The fourth chapter examines the combined development of the FBI and the gra-
dient drift instability (GDI) using a 2-D simulation of the equatorial ionosphere. A
half-kilometer wave perturbs a plasma layer perpendicular to the ambient magnetic
field, causing the perturbed layer to develop GDI waves along the gradient aligned
with the ambient electric field, as well as FBI waves in a region where the total

electric field exceeds a certain threshold. Early radar observations suggested that

vii



these two instabilities were distinct phenomena; the reported results illustrate their
coupled nature.

The fifth chapter presents 2-D simulations in which a one-kilometer plasma wave
develops an electric field large enough to trigger meter-scale waves. Such large-scale
waves arise via the GDI within the daytime ionospheric gradient around 100-110
km. Typical ionospheric radars only observe meter-scale irregularities but observa-
tions show meter-scale waves tracing out larger structures. Simulated meter-scale
FBI in the troughs and crests of kilometer-scale GDI matches radar observations of
the daytime equatorial ionosphere, answers a question about electric-field saturation
raised by rocket observations in the 1980s, and predicts an anomalous cross-field
conductivity important to magnetosphere-ionosphere (M-I) coupling.

The sixth chapter of this dissertation presents 3-D simulations of the FBI at a
range of altitudes and driving electric fields appropriate to the auroral ionosphere,
where it plays a role in M-I coupling. Research has thoroughly established the linear
theory of FBI but rigorous analysis of radar measurements requires an understanding
of the turbulent stage. These simulations explain the change in instability flow

direction with altitude, with regard to the direction of background plasma flow.
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Chapter 1

Introduction

1.1 Overview

This dissertation addresses the role of a particular type of density wave in the electri-
cally charged upper atmosphere of Earth. These waves, described in detail below, are
especially common around 100 km during the daytime, but have also been observed
at night. Many places in the solar system meet the conditions for their existence,
and recent theoretical research has even invoked them to explain heating in the solar
chromosphere (Fontenla, 2005; Fontenla et al., 2008; Madsen et al., 2014; Fletcher
et al., 2018). We know they exist in the Earth’s atmosphere because they strongly
scatter very high frequency (VHF) radio waves, which made them obvious to the first
radio operators as far back as the 1940s. We also know, through both theory and
observations, that they grow most readily at wavelengths of a few meters. What we
do not know is how they interact with larger-scale structures, including other types

of waves, and how their saturated, turbulent behavior changes with altitude.

1.2 The Ionospheric Canvas

Earth’s atmosphere above roughly 60 km is partially ionized during the day by solar
EUV and soft X-ray radiation. The resultant plasma is called the ionosphere and
comprises three main regions: the D region from 60 km to 90 km, the E region

from 100 km to 150 km, and the F region from 150 km to several thousands of km.



Studying the motion of the plasma in the ionosphere, including plasma instabilities, is
crucial to knowing how electromagnetic (EM) energy passes through and couples into
the upper atmosphere. This dissertation focuses on plasma instabilities in the lower
to middle E-region, spanning roughly 90 km to 115 km. There, Earth’s magnetic field
(By) and ambient electric fields (Egy) dominate electron motion while collisions with
neutral particles dominate ion motion — in other words, electrons are magnetized and
ions are unmagnetized. In addition, ionization layers and the increasing background
plasma density provide medium- to large-scale density gradients.

Two instabilities that generate waves and, ultimately, turbulence in such a plasma
have garnered significant attention since the advent of radar: A two-stream instabil-
ity called the Farley-Buneman instability (FBI) that derives its free energy from ion
inertia when magnetized electrons stream supersonically through unmagnetized ions,
and the gradient drift instability (GDI), which derives its free energy from an ion-
ization gradient aligned with an electric field. The two instabilities are special cases
of one dispersion relation and may therefore occur in the same volume of plasma,
provided appropriate fields and gradients exist. Furthermore, large GDI waves can
create polarization electric fields high enough to trigger FBI waves in a parametric
instability.

The FBI and GDI produce waves at various wavelengths but the observations
that motivate their analysis come from radars that are sensitive to wavelengths of a
few meters or less. At the heart of this dissertation is a desire to understand how,
to adapt a phrase from Hysell et al. (2018), meter-scale waves produced by the FBI

and GDI paint the natural “canvas” of the E-region ionosphere.

1.3 Motivation

The following questions motivate the work presented in this dissertation:



1. How do density irreqularities from co-evolving Farley-Buneman (FBI) and gra-
dient drift instabilities (GDI) relate to historical classifications of radar spectra?

Chapter 4 addresses this question.

2. How does a kilometer-scale wave give rise to vertically propagating meter-scale
waves and how do those meter-scale waves feed back to their kilometer-scale
driver?

Chapter 5 addresses these questions.

3. How does the spectrum of F'BI turbulence change with altitude and how well do
two-dimensional (2-D) simulations model the three-dimensional (3-D) dynam-
ics?

Chapter 6 addresses these questions.

1.4 Earth’s Global Ionosphere and Thermosphere

This section describes the global structure of Earth’s thermosphere and ionosphere,
filling in and expanding upon the picture sketched out in §1.2. The main goals are
to allow the reader to appreciate the body of previous research described in §1.5 and
to accept the body of new research described in Chapters 4, 5, and 6. The excellent
texts by Rishbeth and Garriott (1969); Schunk and Nagy (2004); Prolls (2004); Kelley
(2009) provide historical introductions to ionospheric research, instruction in the
relevant mathematical concepts, and explanations of the fundamental physical and
chemical processes in the upper atmosphere and ionosphere.

The ionosphere makes up a tiny fraction of the Earth’s atmosphere — composi-
tionally, it is a collection of trace species embedded in the neutral gas above roughly
60 km. Nonetheless, it supports strong currents and large-scale electric fields, it
interacts with the surrounding neutral species, and it affects EM waves that pass

through it.



A London-based watchmaker named George Graham provided the first account
of daily fluctuations in Earth’s magnetic field as recorded by a compass needle, and
published his findings in the Royal Society of London’s Philosophical Transactions,
in 1724. In 1839, Friedrich Gauss proposed that currents in the upper atmosphere
caused such observed fluctuations of the geomagnetic field on the ground. In 1860,
Lord Kelvin echoed Gauss’s conclusion and Elias Loomis made the first connec-
tion between the aurora and Earth’s magnetic field. Balfour Stewart built on the
ideas of Gauss and Kelvin to further conjecture, in 1882, that tidal winds drive
a dynamo which produces the currents responsible for geomagnetic fluctuations.
Guglielmo Marconi made the first demonstration of transatlantic radio communi-
cation by bouncing an EM signal off of a conducting layer in the upper atmosphere
in 1901; while Marconi and his contemporaries did not understand the nature of that
conducting layer, those transmissions set the stage for modern ionospheric research.

The original physicists and radio operators who followed Marconi’s successful
transatlantic transmission called the reflecting layer the Kennelly-Heaviside (or sim-
ply Heaviside) layer, after Arthur Kennelly and Oliver Heaviside proposed in 1902
that free charges in the upper atmosphere were responsible for reflecting Marconi’s
radio waves. In the same year, Oliver Lodge put forth the pioneering physical theory
that the influence of solar radiation increases the conductivity of the air by produc-
ing free electrons. In 1924, two teams of researchers — Edward Appleton and Miles
Barnett in England, and Gregory Breit and Merl Tuve in the USA — made what the
aeronomy community generally accepts as the first measurements of height of Mar-
coni’s reflecting layer. In fact, Appleton originated the D/E/F nomenclature scheme
by marking the observed conducting layer with an F in his notes to signify that it
supports electric fields. Upon observing a second layer at higher altitude, he had the

presence of mind to mark that layer with an F, as well as to denote a conjectured



lower layer with a D.

1.4.1 Fundamental concepts

Before delving into more detailed descriptions of ionospheric dynamics, it is impor-
tant to understand the ionosphere and the atmosphere that hosts it. First, a few

general definitions:

1. Debye length and Debye sphere
The Debye length is the fundamental length of plasma physics. It is essentially
the length at which the inward electrostatic pull of a charged particle on a
more mobile, oppositely charged particle balances the outward thermal motion

of the more mobile particle. Mathematically, its expression is

eokpT; .
Ap; = in meters
J n.q2 )
74

where j stands for any charged species (e.g., j = e for electrons), €, is the
permittivity of free space, kp is Boltzmann’s constant, and 7}, n;, and ¢; are
the temperature, density, and charge of species j. On spatial scales much larger
than the Debye length, the lighter particles shield the charge of the heavier

particle. A Debye sphere is simply a sphere with radius Ap;.

2. Plasma
A plasma is an ionized gas that is electrically neutral on large scales and that
behaves collectively. The first criterion means that, on average, particles in a
given region shield particles farther away from the electrostatic force of their
nearby neighbors. More concisely: there are many particles in a Debye sphere
(defined above). The second criterion means that when there is a charge im-
balance in a particular region, it has long-range EM effects for which there

are no parallels in a neutral gas. For example: In space, no one can hear you



scream because the density of neutral particles is negligibly small, preclud-
ing the inter-particle collisions that comprise sound waves. However, moving

charged particles can create magnetic fields that stretch to infinity and beyond.

. Weakly, partially, and fully ionized plasmas

All ionospheres comprise a plasma embedded in a neutral gas. The role of
collisions between two charged species versus collisions between charged and
neutral species determines whether a plasma is weakly, partially, or fully ion-
ized. In a weakly ionized plasma, the neutral density is many orders of mag-
nitude larger than the ionized density, so collisions between charged species
and neutral species dominate. The D and E regions of Earth’s ionosphere are
weakly ionized. In a partially ionized plasma, the neutral density is a few or-
ders of magnitude larger than the ionized density, so both charged-charged and
charged-neutral collisions are important. The F region of Earth’s ionosphere is
a partially ionized plasma. In a fully ionized plasma, neutral species may still
exist but collisions between charged species and neutral species are negligible.

The topside ionosphere is a fully ionized plasma.

. Plasma frequency

The plasma frequency is the most fundamental oscillation in a plasma. Given
two oppositely charged species, one lighter than the other, any separation be-
tween the two will create a restorative electrostatic force. The lighter species
will respond to this force by moving toward the heavier species but its inertia
will cause it to overshoot and move away in the opposite direction. This oscil-
latory behavior will continue until some outside force, such as a collision, stops

it. The oscillation frequency is the plasma frequency.
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Figure 1-1: Altitude profiles of (a) MSIS neutral temperature from
0 to 300 km and (b) IRI electron density from 0 to 1000 km at the
magnetic equator. Solid lines correspond to daytime and dashed lines
correspond to nighttime.

1.4.2 Ionospheric structure and composition

Taking a cue from Kelley (2009), the altitudinal profiles of neutral temperature and
electron density in Figure 1-1 gives a cursory description of the neutral atmosphere
and the ionosphere, respectively. The temperature profile comes from the 2000 ver-
sion of the Naval Research Laboratory Mass Spectrometer Incoherent Scatter radar
model extending to the Exobase (NRLMSISE-00 or simply MSIS) (Picone et al.,
2002) and the electron density profile comes from the 2016 version of the Interna-
tional Reference Ionosphere (IRI2016, or simply IRI) (Bilitza et al., 2017). Moving
up from sea level, the daytime temperature in the troposphere drops exponentially
until it reaches the tropopause at h ~ 10 km. Above the tropopause, ozone in the
stratosphere absorbs ultraviolet (UV) radiation and causes the temperature to in-
crease with altitude until the stratopause at A ~ 50 km. The stratopause marks a
transition from UV heating to radiative cooling, and the temperature drops precipi-
tously through the mesosphere. The temperature hits its minimum at the mesopause,

around 90 km, at which point extreme ultraviolet (EUV) and soft X-ray photons heat



the neutral gas from roughly 130 K to 1000 K or more over 100 km. This region of
intense heating is aptly called the thermosphere. The nighttime temperature profile
follows the daytime profile fairly closely at the magnetic equator; it only diverges by
a modest amount above h ~ 150 km due to the lack of solar irradiation. Neither
daytime nor nighttime profile change much above 300 km.

The electron density profile serves as a measure of total ionization as a result of
the quasi-neutrality assumption. Note that even though the vertical axis extends to
sea level, appreciable ionization (and hence the ionosphere) starts at around 60 km.
From 60 km to 90 km, the daytime electron density climbs from effectively zero to
about 10° m~3. This is the D region ionosphere. It disappears at nighttime. The
electron density increases even more quickly until about 100 km, where it reaches
a local peak. Although the nighttime E-region density is more than an order of
magnitude lower, the peak is far more noticeable. The E-region peak exists because
of the specific neutral composition, which the following section will describe in more
detail. Above the E-region peak and corresponding “valley region”, the electron
density again increases, this time up to its maximum. The F region begins around
150 km — the distinction is again more obvious at night — and the F-region peak is
also the global ionization peak in the atmosphere.

Figure 1-2 shows the composition of charged and neutral species from IRI and
MSIS, respectively. Neutral density for Ny, O,, and Ar in Figure 1-2a decrease
exponentially with altitude at about the same rate up to the turbopause around 100
km, where turbulent mixing stops. Above the turbopause, they separate out based on
masses, according to hydrostatic equilibrium. The profiles of atomic oxygen, atomic
nitrogen, and atomic hydrogen differ from the simple exponential fall-off because of
chemical interactions in the upper atmosphere. Most of the O is bound up in O,

below 100 km or so, but as altitude increases, there is more solar radiative flux, which
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Figure 1-2: Altitude profiles of density of (a) neutral species and (b)
charged species from 0 to 1000 km at the magnetic equator. Individ-
ual species names are placed as close as possible to the corresponding
profile. The neutral-species densities from from MSIS and the charge-
species densities come from IRI.

causes some (Jy molecules to dissociate into O. Above the turbopause, the density
of O will naturally decrease more slowly than the density of Oy due to their different
scale heights.

The electron profile in Figure 1-2b is identical to the daytime profile in Figure
1-1b. Figure 1-2b shows that the E region consists mainly of NOT and O ions, while
O™ gradually increases to provide most of the plasma in the F region. The difference
between molecular ions in the E region and atomic ions in the F region accounts for
the difference between daytimes and nighttime electron profiles in Figure 1-1b. At
E-region altitudes, N», O, and O absorb photons with wavelengths less than 790 A,
910 A, and 1030 A, respectively, to produce N7, OF, and OF . Although neither O
nor O constitute major species in the E region, both can act as a catalyst to form
NOT from N, , and even though the density of O is less than the densities of N,
and Os, it is still far greater than any of the ion densities. Likewise, the E region

nearly disappears at night because recombination works much more efficiently for



10

molecular ions than for atomic ions and because the higher neutral density makes
collisions much more frequent.

There are also phenomenological distinctions between different regions in the iono-
sphere. The D region ionosphere is very weakly ionized and it supports more exotic
ions, including negatively-charged water-cluster ions, and charged dust. Throughout
most of the D region, ions and electrons collide so frequently with neutral species
that neutral dynamics significantly influence their behavior. The D region has collo-
quially developed the nickname “the ignorosphere” because its ionization is too low
to produce the density irregularities that radars typically observe and because it is
difficult to measure in situ. However, it can significantly impact radio-wave propa-
gation because of its high electron-neutral collision frequency, v,, since a plasma will
attenuate EM waves when the wave frequency is near v,. More precisely, the product
nel. is what matters for absorption, since the EM wave passes straight through the
neutral atmosphere. The neutral density, and therefore v,, is roughly constant at
D-region altitudes, so increasing n. leads to increased absorption. For that reason,
the daytime D region heavily attenuates short-wave radio signals in the 1-8 MHz
range, whereas those signals propagate with significantly reduced attenuation after
the D region disappears at night. X-ray flares can produce severe attenuation at HF
frequencies (3-30 MHz) by drastically increasing the electron density. Naturally, the
D region has recently garnered increase attention precisely because the aeronomy
community knows so little about it, not to mention the fact that the mesosphere
hosts interesting neutral phenomena which may have charged counterparts. New
observational techniques and the push to understand energy transfer throughout the
whole atmosphere-ionosphere system will almost certainly lead to increased interest
in the D region.

The E region was the first known ionosphere region because it reflects radio
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waves. It also supports appreciable electric fields and strong currents, the latter of
which deflect ground-based magnetometers and compasses. It is weakly ionized in
the sense of the definition above, but there is an important distinction between ions
and electrons. In the low to middle E region, ions typically collide with neutral par-
ticles more frequently than they complete a gyro-orbit in the Earth’s magnetic field,
meaning that they tend to follow neutral dynamics. Electrons, on the other hand,
respond to the magnetic field more than to the neutral dynamics. This dynamical
difference leads to the plasma instabilities that are at the heart of this dissertation,
which section 1.6 will describe in detail.

The equatorial and auroral E regions host strong currents called electrojets. The
equatorial electrojet arises because of tidal motions of the neutral atmosphere and
the auroral electrojet arises because of strong magnetospheric currents that flow
along field lines and close in the ionosphere. In the equatorial case, the energy in
solar radiation that does not go into ionizing neutral particles goes into heating the
neutral gas. This heating causes an upward (vertical) neutral wind that drags ions
across magnetic field lines. The primary neutral wind component is the migrating
diurnal tide — migrating meaning that the effect moves with the Sun and diurnal
meaning that the effect has a daily period. This wind produces an east-west (zonal)
dynamo electric field on the order of 1 mV/m (Schunk and Nagy, 2004). The zonal
electric field drives a small Pedersen current, J.,,., but that current is not the
equatorial electrojet. Rather, the J.,,, X Bg force due to the zonal current moves
electrons upward and ions downward.

The plasma conductivity significantly drops off below 90 km, due to the decrease
in ionization, and again above 120 km, due to increased ion magnetization; the com-
bined effect produces a vertical electric field to cancel the charge polarization and

maintain quasi-neutrality. That vertical polarization electric field is larger than the
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zonal field by a factor of oy /op ~ 10, where oy and op are the Hall and Ped-
ersen conductivities. The total zonal current iS J,ona = 0 Everticat + OPEonal =
[(UH/UP)2 + 1] 0pE.onal = 0cE.ona, Wwhere o, = 0% /op is called the Cowling con-
ductivity (Kelley, 2009). This total current comprises the equatorial electrojet. In
the auroral zone geomagnetic storms produce strong electric fields that map along
highly conducting magnetic field lines until they reach the E region, where they
drive Pedersen and Hall currents that close the field-aligned currents (FACs). The
resultant Hall current comprises the auroral electrojet.

Near the top of the E region, the ion collisions become less important than ion
motion in the Earth’s magnetic field and the F region consists of a partially ionized
plasma that responds mostly to EM forces. The electrostatic instabilities of the E
region give way to new instabilities, including huge plasma bubbles and plumes that
create the radar phenomenon known as equatorial spread F (ESF) and that cause
scintillation of global positioning satellite (GPS) signals. The F region extends up to
the exobase, where the mean free path (MFP) becomes larger than the scale height
(this applies in an average sense, since both quantities differ among species). At that
point, particles can escape the atmosphere before colliding with other particles, so

the exobase effectively represents the edge of space.

1.4.3 Ionospheric observation techniques

The aeronomy community observes the ionosphere using both remote sensing and
in situ observations. We perform remote sensing with radars across a wide range
of radio frequencies: Coherent scatter radars in the HF (3-30 MHz), VHF (30-300
MHz), and UHF (300-3000 MHz) bands reflect from ionospheric irregularities with
sizes ranging from a few centimeters to tens of meters, providing information about
plasma density irregularities; incoherent scatter radars (ISRs) typically operating

at hundreds of MHz reflect from a sea of thermal electrons, providing information
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about density, temperature, and composition. The term coherent scatter refers to
the coherent return signal that builds up after many partial reflections from wave
fronts spaced out at half the wavelength of the radar beam. The term incoherent
scatter refers to the reflection of the radar beam from many electrons in a common
volume, whose motions are not organized into coherent wave fronts. A special class
of ISRs, called phased-array radars, produce volumetric images of ionospheric state
parameters through sophisticated electronic steering and data-analysis software; and
active heating experiments perturb small patches of the ionosphere while measuring
the effect with other instruments. We also perform remote sensing with lidar. Lidar
instruments operate on principles similar to radars (in fact, the term “lidar” is an
extension of the term “radar”), except instead of reflecting or scattering off collections
of free electrons in the ionosphere, they can reflect off of ions, neutral atoms and
molecules, or more complex particles such as dust grains. All-sky images provide a
way to passively observe naturally occurring ionospheric processes that emit light,
including aurora and air glow — they are often very sensitive and may collect light
over a range of wavelengths or at one particular wavelength. Remote sensing was
once primarily a ground-based approach, but space craft now routinely fly radars,
lidars, and cameras as part of their instrument packages.

Of course, those same space craft also provide valuable in situ data. That data
may include measurements of ion and neutral species composition, ambient magnetic
and electric field strength and orientation, or electrostatic and electromagnetic waves.
Most standard satellite orbits have perigees no closer than a few hundred kilometers,
meaning they do not sample the E-region ionosphere on a regular basis, though some
satellites have taken data during their final descent. Small satellites (e.g., cubesats,
nanosatellites, etc.) may pass below a few hundred kilometers on dedicated missions,

but atmospheric drag limits the lifetime of any such orbit. Balloons provide in situ
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data of the lower atmosphere, but the loss of buoyancy as atmospheric density drops
exponentially with altitude limits their maximum height to around 40 km — too low
to probe the ionosphere directly.

Rockets have proven to be a reliable method for directly observing the ionosphere,
especially the E region, but they provide only one shot at getting a set of measure-
ments. Rocket payloads often carry instruments similar to those on satellite payloads
— instruments designed to measure electromagnetic fields, neutral and charged par-
ticles, and plasma waves. While rockets are likewise bound to follow laws of orbital
motion, a particular mission design may allow a rocket to spend more time at a target
altitude, or sample all altitudes up to apogee. A mission may even feature multiple
rockets with various trajectories. Finally, rockets can also modify the ionosphere
via chemical release. Explosive injection of a chemical such as barium produces an
isolated plasma which responds to local winds and electromagnetic fields, and whose
gradients can produce confined density irregularities.

Radar and rocket data provide the observational basis for the work presented
in this dissertation because radars have been measuring coherent scatter from the
E region since the 1930s, beginning with radar aurora, and rockets have been a
consistent vehicle for in situ measurement of the E region since around the same
time. The advent of small satellites provides an exciting new avenue for directly
probing the low ionosphere.

Numerical modeling has benefited immensely from recent (and on-going) revolu-
tions in computing technology and power. Thanks to Moore’s Law, along with the
increasing commercial market for computer scientists and IT specialists, numerical
modeling is widely accessible to the scientific community. Modern supercomputers
allow researchers to easily run simulations on tens of thousands of nodes.

Analytic theory produces rigorous explanations of observed and simulated data
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within the scope of physical laws. Even as computers grow more powerful and as
artificial intelligence becomes a more robust method for sussing out physical patterns,
mathematical theory provides rigorous insight and makes predictions that lead to

further research.

1.5 Review of relevant literature

Researchers have studied radio-frequency echoes from the E-region ionosphere since
at least the 1940s; as a result, the body of potentially “relevant” literature is substan-
tial. This section will provide adequate background on the general research related
to E-region instabilities, and chapters 4, 5, and 6 will fill in more specific information
as necessary. For excellent reviews, see Fejer (1979); Fejer and Kelley (1980); Forbes
(1981); Farley (1985, 2009). For the most part, this section progresses historically.
The characterization of E-region irregularities began in earnest in the early 1960s,
when research teams from the National Bureau of Standards, lead by Dr. Kenneth
Bowles, fixed their radars on the ionosphere above the magnetic equator (Bowles
et al., 1960, 1963). Earlier observations of “radar aurora”, beginning with an em-
ployee in the Research and Development Department of Marconi’s Wireless Telegraph
Co., Ltd. (Eckersley, 1937), showed that a sufficiently strong HF radio apparatus
could observe radar echoes associated with the visible aurora. A little less than two
decades later, Bowles (1954) used a 25.4 MHz radar to study the auroral echoes and
determine that the radar aurora is highly aspect sensitive — that is, it only reflects
radio-frequency waves when the transmitter and receiver are oriented close to per-
pendicular to the magnetic field. Two years later, Booker (1956) established that
auroral radar echoes come from field-aligned irregularities (FAI) in the electron den-
sity, with scale sizes on the order of a meter perpendicular to By and five to ten

meters parallel to By.
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These and other observations inspired the move to the geomagnetic equator,
where the relative quiescence of the ionosphere makes it an excellent natural plasma
laboratory. Those observational campaigns of the early 1960s at Jicamarca Radio
Observatory (JRO) included the work by Bowles et al. (1960, 1963). The first — a
two-and-a-half-page letter — took the crucial step of proposing that auroral and equa-
torial electrojet irregularities were not quite Booker’s field-aligned ellipsoidal density
structures, but rather plane waves propagating perpendicular to By with field-aligned
wave fronts. They also made the prescient assertion that these VHF echoes may re-
sult from longitudinal waves of electron density. Farley (1963b) responded with a
brief note of his own, outlining a theoretical description of the irregularities that
Bowles et al. (1960) had observed. In that note, he showed that by extending the
existing kinetic theory of two-stream plasma waves to include the effect of the back-
ground magnetic field and charge-neutral collisions, he could explain the electrojet
observations as long he used a collision term that only affects the charged species’
velocity distributions (not their distributions in space). In the same published vol-
ume, Buneman (1963) outlined a simplified fluid version of the modified two-stream
instability in the E-region ionosphere. As a result, the aeronomy community has
come to call this process the Farley-Buneman instability (FBI).

Shortly after Farley and Buneman published their theoretical outlines, Bowles
et al. (1963) expanded on the work of Bowles et al. (1960), summarizing the nature
of aspect-limited E-region echoes as distinct from other phenomena observed at VHF,
describing additional observations at the magnetic equator, and placing both obser-
vations and theory in the context of the equatorial and auroral electrojets. In the
same volume, Cohen and Bowles (1963) explain more thoroughly how the observed
irregularities are embedded in the electrojet, and demonstrate that irregularities only

occur when the electrojet exceeds a certain strength. Finally, Farley (1963a) pub-
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lished the detailed version of the kinetic theory he had outlined in Farley (1963b)
and showed that it explained the recent observations. In particular, he noted that
Buneman (1963) assumed that fluid theory sufficiently described electron and ion be-
havior in the modified two-stream instability, but that that assumption breaks down
for short enough wavelengths. The kinetic description is crucial to ion dynamics
when the wave oscillation frequency, w, is on the order of the ion collision frequency,
v; — for the parameters he used, that occurs at wavelengths around 1.5 m. Farley’s
theory also explains that the previously observed threshold condition of electrojet
irregularities arises from the need for electrons to stream through ions faster than
the plasma acoustic speed. Some authors argue that this threshold criterion is the
only robust prediction that linear theory has to offer (e.g., (Hysell et al., 2012)).

Balsley (1965) performed two subsequent VHF experiments at JRO. The first ex-
periment showed that the E-region echoing layer is bifurcated before and after local
noon, but converges to a single layer slightly thicker than the sum of the two layers
around noon. The second experiment showed that there exist a class of echoes that
the two-stream plane-wave theory cannot explain. Notably, the unexplained echoes
traveled at speeds slower than the plasma acoustic speed. Cohen and Bowles (1967)
corroborated the observations of slower echoes with a more sensitive VHF system.
They also reported weak echoes in radar beams pointed vertically and obliquely, and
described a power asymmetry in vertical echoes. Dougherty and Farley (1967) at-
tempted to attribute the second class of echoes to the natural result of mode-coupling
of modified two-stream modes as part of a nonlinear inverse cascade. However, such
a model fails to account for the presence of such irregularities when the electrojet is
not strong enough to trigger the modified two-stream instability.

The end of 1967 saw the first self-consistent 2-D model of the dynamo theory

for the equatorial region, by Untiedt (1967), who constructed a meridional model
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of the electrojet which neglects local winds and local time variations but which
allows for vertical current flow. Additional observations by Balsley (1969) established
that there are, in fact, two distinct types of spectra in VHF observations of the
equatorial electrojet: type-I spectra produced by the modified two-stream instability,
and type-II spectra, produced by some other mechanism. In response, Rogister
and D’Angelo (1970) produced a fluid treatment of electrojet irregularities including
gradients with an emphasis on explaining type-II irregularities. After discarding a few
likely but ultimately insufficient instability candidates, they declared that the type-II
mechanism requires an ionization gradient. They identified a high-frequency version
of a gradient-driven instability first studied in the laboratory by Simon (1963) and
Hoh (1963), and applied to the ionospheric case by Maeda et al. (1963), as the culprit.
The aeronomy community now commonly knows this instability as the gradient-drift
instability (GDI). Although these pioneering researchers had not adopted the terms
FBI and GDI to describe the mechanisms behind type-I and type-II irregularities,
respectively, the remainder of this presentation will employ those terms. Figure 1-3
shows canonical type-I spectra from Cohen and Bowles (1967) and type-II spectra
from Balsley (1969). Both sets of observations are from JRO.

Rockets as a tool for ionospheric study matured in the late 1960s/early 1970s,
providing a new perspective to compliment radar spectra and suss out irregularity
mechanisms. Prakash et al. (1969) recorded irregularities in three altitude ranges:
97-106 km, 142-155 km, and around 170 km and reported that the spectral indices of
irregularities, which describe the change of irregularity amplitude with wavelength,
in the lower range suggested two distinct types of spectra. They also acknowledged
that electric fields, more than neutral turbulence, must play an important role. From
a second rocket flight, Prakash et al. (1970) reported density irregularities with scale

sizes in the ranges 1-15 m and 30-300 m. All irregularities occurred in regions where
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Figure 1-3: Canonical type-I (left) and type-II spectra (right). The
left panel is from Cohen and Bowles (1967), showing a composition of
spectra taken near noon at Jicamarca, during relatively strong elec-
trojet. The top two panels show echoes from 70° west and east, the
middle panel shows echoes from vertical, and the bottom two panels
show echoes from 45° west and east. The right panel is from Balsley
(1969), showing simultaneous spectra taken near 18:00 at Jicamarca.
The top panel shows echoes at 11° west, the middle panel shows echoes
at 26° west, and the bottom panel shows echoes at 51° west.

the background density gradient was favorable to the GDI, but the GDI can only
account for the those in the 30-300 m range. The authors seem to consider that the
FBI may play a role in generating the small-scale instabilities but they suggested
further study.

Balsley and Farley (1971) investigated the wavelength dependence of the prop-
erties of type-I and type-II equatorial electrojet irregularities at three frequencies:
16.25 MHz, 49.92 MHz, and 146.25 MHz. They found that when type-I echoes are
present, they dominate the 50-MHz spectrum more than they dominate the 16-MHz

spectrum, and type-II echoes are always important at 16 MHz but are absent at 146
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MHz. They also noticed that type-I echoes show up more or less simultaneously
in all three frequencies, after the flow speed crosses the two-stream threshold while
smaller drift velocities produce type-1I echoes only at lower frequencies. Overall, the
type-I mechanism appeared to efficiently generate irregularities over a wide range of
wavelengths, whereas the efficiency of the type-II mechanism dropped off rapidly as
wavelength decreases. The authors certainly understood the type-I mechanism but
the manifestation of gradient-driven turbulence in radar spectra remained unclear.
They suggested that the irregularities at 16 and 50 MHz arise from nonlinear inter-
actions between directly gradient-driven modes (i.e., a turbulent cascade) and that
those at 146 MHz were in the diffusive subrange. As the community wrestled with
type-11I spectra, Rogister (1972) published a theoretical analysis of one-dimensional
gradient-driven turbulence in the equatorial electrojet, showing that linearly unstable
long-wavelength modes transfer energy to short-wavelength modes which are stabi-
lized by classical diffusion, supporting the conclusions of Balsley and Farley (1971).

Shortly thereafter, Sudan et al. (1973) published a 2-D model that accounts
for short-wavelength electrojet irregularities when the drift speed is below the FBI
threshold. Their 2-D model allows long-wavelength waves produced by the back-
ground plasma gradient to drive obliquely propagating meter-scale irregularities. A
companion paper by Farley and Balsley (1973) presented the observational evidence
for that proposed mode-coupling scheme and concluded, in part, that the electrojet
is highly turbulent over hundreds of meters, the local drift velocity within large-scale
structures controls production of small-scale structures, and the local drift velocity
may differ substantially from the mean drift velocity. They also offered the hypothesis
that type-I spectra saturate at the acoustic speed because the observations represent
waves that have had time to grow to relatively large amplitudes, and are traveling

at the threshold speed as they leave the unstable region.
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Later that year, Balsley and Farley (1973) published radar observations with im-
proved spatial and temporal resolution that gave strong support to the proposal that
large-scale irregularities generated by GDI produce small-scale GDI and FBI irregu-
larities. They believed that, while one-dimensional wave steepening and turbulence
may play some role in generating type-II spectra, its effect is weaker than that of
2-D coupling between large and small structures. Schmidt and Gary (1973) then
presented the first kinetic derivation of a linear dispersion relation for FBI including
gradients by deriving a solution to the kinetic equation in the Ey x B frame, where
E, disappears. They compared their kinetic treatment to the fluid theory of Rogister
and D’Angelo (1970) and showed that a fluid approximation is valid for electrons in
the region of interest. They also showed that a gradient increases the growth rate at
k < 1072 m~! and that ion fluid theory is valid for w < v;/10.

A short theoretical work by Farley and Fejer (1975) lead those authors to suggest
that large-scale waves directly excite type-I irregularities when the local plasma meets
threshold conditions, which could explain the rocket observations by Prakash et al.
(1970). Fejer et al. (1975a,b) presented JRO observations of the E-region at oblique
angles, with roughly 1.1-km altitude resolution, during daytime and dusk. Fejer et al.
(1975a) observed type-I echoes only above about 105 km and noted that the width
of type-II echoes becomes large before type-I echoes appear. They saw no echoes
above the daytime type-I power peak at about 107 km and observed a peak in phase
velocity at about 104 km. Fejer et al. (1975b) presented observations during dusk
and noted that the observed switch in echoing regions was consistent with reversal of
electrojet, with its attendant reversal in direction of favorable gradient. Both works
provided strong evidence that the GDI produces type-II irregularities, as long as the
linear theory includes recombination.

Daytime JRO observations at vertical incidence by Fejer et al. (1976) contained
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no sign of type-I echoes above 108.25 km, with a peak in power at around 104 km.
Their most notable observation was an up/down asymmetry in the power of type-I
echoes despite the fact that the relative Doppler shift was the same. They found
that vertically propagating type-I irregularities could change direction in a matter of
seconds and they also observed that the asymmetry reversed at night. Knowing that
previous measurements had shown an east-west power asymmetry, they proposed
that the two asymmetries are related and that both arise from an asymmetry in
nonlinear limiting processes that depend on the direction of electrojet current. This
evidence, as well as the fact that type-II echoes dominated the spectra during longer
integration times, fortified the picture of a highly turbulent electrojet scattering
region. Similar nighttime observations by Farley et al. (1978) showed that type-I
power could dominate the spectrum at times and could occur over a wider range of
altitudes than during the day, with evidence of structures on the scales of kilometers
to tens of meters in addition to the meter-scale irregularities that the radar observed
directly.

Around this time period, a small group of researchers began publishing observa-
tions of irregularities in the equatorial electrojet above Africa, using an HF system
in Ethiopia. Hanuise and Crochet (1977) used measurements at 5, 7, and 10 m to
show that irregularities appear at longer wavelengths sooner than at smaller wave-
lengths and that type-1I phase velocity is constant across frequencies whereas type-I
increases with frequency. The latter conclusion is consistent with theories that in-
clude a gradient in electron density, since the density gradient affects the threshold
phase velocity (Farley and Fejer, 1975). They also confirmed that the echoing laying
bifurcates during daytime at all frequencies. Crochet et al. (1979a,b) reported obser-
vations during counter-electrojet conditions, when the electrojet reverses direction.

Their observations that type-II echoes disappear during counter-electrojet were con-
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sistent with linear theory, since the electric field and plasma gradient were no longer
favorably aligned. They observed oblique type-I echoes above 105 km but noted
that the type-I Doppler shift followed a cosine law with zenith angle, unlike typical
type-I echoes. They also took advantage of HF refraction in the E region to observe
horizontally propagating echoes, which they call “type H” at 100-105 km.

A few years later, Crochet and Hanuise (1981) introduced a new multiple-scatter
technique to probe the k spectrum at multiple angles with a single radar, using
the F region and the ground as reflecting surfaces. A subsequent three-paper series
outlined important results of HF observations with the Ethiopia system: Hanuise and
Crochet (1981b) presented observations of backscatter from irregularities with phase
velocities below 200 m/s. The measured phase velocity of irregularities varied with
wavelength from 5 m to 50 m, and with elevation angle, and the spectral width was
on the order of the Doppler shift, indicating strong turbulence. Hanuise and Crochet
(1981c) presented observations of type-1 irregularities at intermediate wavelengths
(tens of meters). The phase velocity was near the instability threshold value and was
constant with elevation angle. The spectral width increased with wave number, was
constant with elevation angle, and was on the order of the Doppler shift at the longest
wavelength observed. Hanuise and Crochet (1981a) presented observations during
counter-electrojet observations of two-stream spectra with phase velocities that follow
the linear-theory expression — that is, they have a cosine dependence on the angle
between the radar line-of-sight (LOS) and the background plasma convection. This
angle is important to radar observations and is called the “flow angle”. They called
these “type 07 irregularities to distinguish them from type-I irregularities observed
during normal electrojet times, since the later appear to have roughly constant phase
speed near the acoustic speed.

Computers became more useful in the 1960s and 1970s for calculating numerical
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solutions to some theoretical problems, though self-consistent computer simulations
of ionospheric phenomena still lagged radar, rocket, and laboratory observations as a
scientific tool. Newman and Ott (1981) produced the first numerical simulations of
nonlinear two-stream instability by using modeling electrons and a single species of
ions with the two-fluid equations. Their simulations had constant By and orthogonal
Ey, collisions between charged and neutral particles, and a viscous term to mimic
the ion Landau damping that a fluid model lacks. The background plasma was
homogeneous and isothermal. They presented results from two models: Model A used
a constant-direction electric field source; Model B assumed the spatial average of the
vertical current density to be zero. Model A showed horizontal waves dominating the
spectrum whereas Model B showed a more isotropic distribution of phase velocities.
In Model B, phase velocity of the dominant modes tends to the acoustic velocity.
They found that Model A best explained the behavior of type I irregularities in
the absence of type II irregularities while Model B acted like a stable system that
had been hit by an impulsive force. Model B was less physical in that it required an
external field to vary as irregularities grew in a local region, but it exhibited a rotation
in angular spectrum with respect to the current density, indicating a stabilization
mechanism responsible for deactivating the two-stream instability.

ISR measurements by Schlegel and St.-Maurice (1981) showed anomalous electron
heating in the polar E region. Previous work had reported some cases of enhanced
electron temperatures but this is the first to identify it as a feature of the E region
that can not be due to classical heat sources. Comparison of temperature and drift
data led the authors to conclude that heating is due to plasma waves in a region of
large Hall currents and low collision frequencies — in other words, FBI waves. The
observed electron temperatures correlate well with the DC (direct current — that is,

constant) electric field. implications to the polar E region include increased chemical
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reaction rates and modified energy budget. The results also have implications for
ISR measurements, which typically assume equal electron and ion temperatures. A
companion paper by St.-Maurice et al. (1981) contained a theoretical analysis of
anomalous electron heating by plasma waves and produced theoretical temperature
profiles similar to observed profiles. They found that the single most important
factor is DC electric field strength, with electric fields below 45 mV/m producing
little heating. They concluded that the amount of wave heating may equal as much
as half of the Joule heating for electric fields above that threshold.

Kudeki et al. (1982) Showed existence of kilometer-scale, horizontally propagating
waves during type-I conditions with an interferometry technique at JRO. This work
also showed that the frequency and growth rate typically cited for meter-scale waves
do not apply to wavelengths on the order of a kilometer. A companion paper by Pfaff
et al. (1982) presented in-situ rocket observations of “intense electrostatic waves” on
the upward electron gradient during the day and downward electron gradient during
the night, at the magnetic equator. Their observations were consistent with the
gradient drift instability explanation of wave generation.

Sudan (1983) reviewed then-known characteristics of type-I and type-II echoes
before applying a theory of plasma turbulence, partially developed by the author, to
the equatorial electrojet. The theory predicted an irregularity power spectrum for
both the absolute magnitude and variation with £, without recourse to any empirical
laws. The author claimed that the theory predicts every feature of type-II irregular-
ities; he also provided a rational explanation of why type-I irregularities appear to
be isotropic in azimuthal angle and limited to phase velocities near C,. He devel-
oped a nonlinear model of an isothermal, electrostatic, quasi-neutral plasma with the
heuristic assumption that the electron fluid contains the principle nonlinearity. This

approach included augmenting the electron collision frequency, v, — v, + v, where
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the second term represents an electron collision frequency driven by wave-induced
electron diffusion. According to Sudan and Keskinen (1984), the theory predicted
the magnitude of the wave-power spectrum as a function of wavelength in terms of a
strength parameter similar to a Reynold’s number that defines the level of turbulence.

Fejer et al. (1984) developed a general theory for electrojet waves (e.g., FBI
and GDI) and waves observed at higher altitudes (e.g., ion-cyclotron and current
convective waves). Their theory neglects electron inertia, neutral winds, and electric
field shear effects and assumes quasi-neutrality and an isothermal plasma. It is valid
for wavelengths much larger than the ion MFP or the ion Larmour radius, whichever
is smaller. Depending on wavelength, the electron density gradients, electron-ion
collisions, and recombination can substantially affect the threshold drift velocity.
They derived a dispersion relation (their Equation 4) of which the typically cited
relations for the v < w,, kL > [k; (1 4 )] limit, and the y ~ w,, kL < [r; (1 + )]
limit are special cases. They note that the general instability criterion for gradient-
driven turbulence is that k - V; and k - (Vn x By) have the same sign, but they
consider only waves propagating parallel to k - (Vn x By).

Kudeki et al. (1985) proposed, on theoretical grounds, that up—down asymmetry
is a result of nonlinear development of the primary GDI wave. Before developing
the theory, they discarded various previously suggested mechanisms including the
following: different up/down propagation at different altitudes (later observations
with higher resolution showed that up-going and down-going waves can exist at the
same altitude), nonlinear rotation of the angular spectrum due to effects of type-
I waves (the rotation angle is insufficient), the primary-scale waves simply are not
sinusoidal (the authors didn’t rule this out directly, but said there is no evidence of it
occurring in the E region), and the unequal effect on up-going and down-going type-I

threshold velocities due to density gradients in the primary-scale wave (the largest
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perturbations occur where primary-wave density gradients are small). They note
that a purely sinusoidal primary wave drives a net downward electron flux during
the daytime (upward during the nighttime) due to the basic GDI process, and assert
that if there were a balancing asymmetry in the vertical velocity waveform of the
primary wave, that asymmetry would have the correct sense to match observations.

The Condor rocket campaign in 1983 produced a host of publications, three of
which are especially relevant here. Kudeki et al. (1987) showed radar interferometer
observations at JRO of the unstable equatorial electrojet during the rocket flights.
Major results relevant to the daytime electrojet include simultaneous radar and rocket
observations of kilometer-scale plasma waves, a “remarkable consistency” between
radar/rocket observations of wave parameters and theory, identification of a top-
side pure two-stream layer above 108 km, and the implication that nonlinear mode
coupling could compete with the anomalous diffusion described in Sudan (1983) to
saturate two-stream waves in the topside layer.

Pfaff et al. (1987a) presented rocket data that showed three irregularity regions:
a two-stream region between 103 km and 111 km, a gradient-drift region between 90
km and 106.5 km, and an interaction region between 103 km and 106.5 km. They
also found that kilometer-scale waves dominated the in-situ spectrum despite the
fact that the linear growth rate predicted a large-scale peak at a few hundred me-
ters. Measurements of kilometer-scale § ' and dn/ng verified the predicted in-phase
relationship and amplitudes of the kilometer-scale waves were 10-15 mV /m — strong
enough to drive vertical two-stream secondary waves. Large-scale waveforms in the
vicinity of two-stream activity displayed remarkable steepening and theretofore un-
observed flat-top structures. Irregularity power showed a broad range of wavelengths
in the lower electrojet, with a peak near tens to hundreds of meters and a rapid decay

toward smaller scales.
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Pfaff et al. (1987b) focused on the two-stream waves, both in the interaction region
from 103 km to 106.5 km and in the top-side region above 106.5 km. The top-side
region coincides with the portion of observations where the large-scale gradient was
stabilizing (i.e., the gradient drift condition was zero or negative), and contained a
laminar, horizontal two-stream flow. The two-stream flow was strongest near 108 km,
coincident with the altitude of strongest electrojet current in previous observations.
Waves had phase velocities comparable to the electron drift velocity of 500 m/s, and
peak wavelengths of 2-3 m. The rocket also observed distinct vertically oriented waves
that the authors attribute to a mode-coupling process with waves that originated in
the interaction region. Two-stream waves appeared to have wavelengths as short as
50 cm.

St.-Maurice et al. (1989) reported the first observations of coherent backscatter
with the 440-MHz steerable radar at Millstone Hill. That radar frequency, which
is in the ultra high frequency (UHF) band, is sensitive to irregularities with a 34-
cm wavelength. They observed echoes within one half degree of perpendicular to
By, at a mean height varying between 105 km and 115 km. The layer could be as
thin as 4-5 km at times, and that the scattering occasionally split into two layers.
They also observed that the Doppler shift of 34-cm irregularities corresponded to
the electron drift, up to a limiting value at the ion acoustic speed, and found the
strength of echoes to increase with ambient electric field strength. Note, however,
that Foster and Tetenbaum (1992) point to an error in the phase-velocity analysis
that St.-Maurice et al. (1989) used.

The work by St.-Maurice et al. (1989) leveraged the power of an ISR to observe
coherent scatter from irregularities probably produced by the FBI. They comment
that the Millstone Hill 440-MHz radar had much greater power and sensitivity in

comparison to other coherent scatter radars in operation at the time, was the only
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UHF radar with which to study coherent E-region echoes at aspect angles perpen-
dicular to By, had excellent spatial resolution due to its narrow beam, could also
observe F-region incoherent scatter, and routinely observed the E region at lower
latitudes than similar radars. It continues to provide unique insight to sub-auroral
ionospheric processes.

Foster and Tetenbaum (1991) extended the work of St.-Maurice et al. (1989) by
using the Millstone Hill 440-MHz radar to provide observations at higher spatial and
temporal resolution. The higher resolution allowed them to address variability of
UHF echoes on spatial scales of 6-10 km and on temporal scales of 20-60 s. They
observed echoing events that lasted for around 30 minutes, during which backscatter
amplitude oscillated with the period of ultra low frequency geomagnetic micropulsa-
tions. Interspersed throughout these events were intense bursts of backscatter lasting
for a few minutes. Foster and Tetenbaum (1992) found that the phase speed of 34-cm
echoes increased with increasing backscatter amplitude, indicating no limit such as
the ion acoustic speed. On the other hand, their observations did suggest a direct re-
lation between changes in irregularity phase speeds and changes in ambient E-region
electric field.

In a seminal paper, Foster and Erickson (2000) showed that the phase speed of
34-cm irregularities ¢s limited by the ion acoustic speed after accounting for the effect
of wave heating on electron temperature, 7., which in turn increases the ion acoustic
speed. Those observations were the result of an experimental setup in which the main
beam of the Millstone Hill 440-MHz radar measured Ey; x Bg drift velocity from
the F region while side-lobe contamination yielded E-region irregularity strength.
Those combined measurements showed an excellent agreement between Ey and T,.
Erickson et al. (2002) used the linear relationship between backscattered power at

440 MHz and Eg, along with a detailed model of the radar response to irregularities



30

generated by the FBI, to provide insight into the fine-scale structure of a mid-latitude
polarization jet and sub-auroral ion drift (SAID) event — both signatures of sub-
auroral magnetosphere-ionosphere coupling.

Ronchi et al. (1989) performed a nonlocal linear analysis of the GDI in the daytime
equatorial electrojet. The main feature of their analysis was the inclusion of the
altitude dependence of ion-neutral and electron-neutral collisions. They numerically
integrated the nonlocal linear equations and interpreted the results via an eikonal
analysis of wave packets. They found that the major characteristics of the unstable
modes were not sensitive to the details of the equilibrium plasma density profile, but
rather to the average gradient value and to the profiles of the Pedersen and Hall
conductivity, which ultimately determine ion and electron mobilities.

Ronchi et al. (1991) presented two-fluid numerical simulations of the GDI in the
daytime equatorial electrojet. Their grid supported wavelengths from about 100 m to
10 km and incorporated the effects of smaller scales via anomalous electron diffusion
and mobility terms. They simulated both in-situ rocket and remote radar observa-
tions. In the former case, they were able to reproduce some power spectra similar to
observations, while in the latter case, they found that spectral features of 3-m type-
IT echoes acted as tracers for large-scale dynamics. The authors make particular
note of the fact that a purely linear nonlocal analysis predicts that all kilometer-
scale perturbations will eventually be damped through velocity shear whereas the
non-linear effects present in their simulation, including energy coupling from inter-
mediate wavelengths back to long wavelengths, can overcome the linear damping and
maintain instability.

Ronchi et al. (1991) and similar work in the early 1990s mark the emergence of
numerical simulations as a mature tool for studying electrojet irregularities. Jan-

hunen (1994b) reported results from a particle-in-cell (PIC) simulation of FBI in the
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plane perpendicular to By. He found that phase did not saturate at the acoustic
speed and he observed waves propagating at nonzero flow angle for Eq clearly above
the FBI threshold. He also reported no perpendicular wave heating, and concluded
that if waves heat electrons in the ionosphere, heating must be due to the parallel
component. Janhunen (1994a) used the results of Janhunen (1994b), which were
in press at the time, to develop a formalism for FBI saturation based on flow-angle
stabilization, rather than the anomalous collision theory that Sudan (1983) proposed.

Oppenheim et al. (1995) reported results from hybrid simulations in 2.5 dimen-
sions of FBI in the topside equatorial electrojet. They drew four principle conclusions
from their simulations: First, wave growth propagates at an angle offset from Eq x B
(i.e., at a nonzero flow angle) and the angle depends on the strength of the driving
electric field, Eq. Second, primary FBI modes couple nonlinearly to modes that prop-
agate perpendicular to the local primary wavefronts. Third, waves propagate at or
above the acoustic speed but well below the speed predicted by linear theory. Fourth,
primary-wave phase velocities remain nearly constant when the authors scanned a
simulated radar over the simulation volume.

Oppenheim et al. (1996) added to these results the conclusion that nonlinear
0E x By motion dominates the behavior of saturated waves. Their analysis of this
nonlinear effect in FBI waves was similar to those of Sudan et al. (1973) and Kudeki
et al. (1985) for coupling large-scale GDI waves to small-scale FBI waves. Oppen-
heim and Otani (1996) published additional results from the simulations described
in Oppenheim et al. (1996), this time focused on the wave spectra of the saturated
state. They reported that 1) saturated two-stream waves produce type-I spectra
over a broad range of elevation angles, 2) the phase velocity of two-stream waves
is below that predicted by linear theory, 3) mode-coupling leads to type-II spectra

even in the absence of a density gradient, 4) mode-coupling also leads to long wave-
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lengths, and 5) the spectral power decreases at a rate of 0.3 dB/degree of elevation
angle. Oppenheim (1996) extended the argument of Kudeki et al. (1985) to show
that a large-scale wave-driven current arises from FBI waves and predicted that it
would also arise from GDI waves. The nonlinear JE x By drift of electrons in the
wave troughs and crests produces a net current because electrons drift at the same
speed in roughly opposite directions. Since there are more electrons in crests than in
troughs, the process produces a net current. The wave-driven current should reduce
the wave polarization electric field, which could limit the speed of irregularities to the
threshold speed — namely, the ion acoustic speed. This applies especially to oblique
FBI driven by large-scale GDI in the equatorial ionosphere.

Oppenheim (1997) applied the results of Oppenheim (1996) to a 1-D slab model
of the electrojet and showed that a parameterized nonlinear current that reproduces
the large-scale effects of nonlinear JE x By from saturated FBI waves reduces the
electrojet current closer to, but still greater than, the FBI threshold. That work also
reiterated the point from Oppenheim (1996) that nonlinear drift effects can create
flat-top waveforms in large-scale wave electric fields similar to those observed by Pfaff
et al. (1987a,b).

At the same time as the simulation work by Oppenheim and collaborators, Dimant
and Sudan (1995a) developed a kinetic theory for electron dynamics in low-frequency
E x B instabilities that carefully considered various effects related to electron-neutral
collisions. They first considered the asymptotic short-wavelength case and showed
how the new theory can significantly alter results in the lower ionosphere, then used
the new theory to derive the general dispersion relation for FBI in the whole wave-
length band in the low-frequency limit Dimant and Sudan (1995b).

Dimant and Sudan (1995¢) applied the theory of Dimant and Sudan (1995a,b) to

low-frequency instabilities in ionosphere and showed that it predicts long-wavelength
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waves at low altitudes. The predicted waves travel along the bisector between the
Ey and Eqy x B directions due to perturbations in the electron current as a result
of the modified Pedersen conductivity. They authors propose that waves with wave-
lengths around ten meters can be excited at altitudes too low for the standard FBI,
assuming the electric field is strong enough. Fortuitously, a rocket campaign in 1991
designed to study dynamics and chemistry of sodium and iron layers in the upper
mesosphere/lower thermosphere carried plasma instruments.

Blix et al. (1996) showed observations from the METAL rocket campaign of
plasma waves with characteristics that matched those predicted by Dimant and Su-
dan (1995c). Dimant and Sudan (1997) followed those rocket observations with a
simplified fluid analysis of the low-frequency, long-wavelength instability mechanism.
They explained that the new instability draws its free energy from Ohmic heat-
ing of electrons by a perturbed electric field and operates efficiently in the upper
D/lower E regions, where related instabilities like the FBI and GDI do not. The
low-altitude preference comes from the attendant increase in electron Pedersen con-
ductivity. The instability arises due to two mechanisms: The first is due to the
sign of plasma pressure perturbations being opposed to the density perturbations;
the second mechanism results from thermal perturbations of the electron Pedersen
conductivity, which increases monotonically with temperature via v,,. The first
mechanism is stabilizing at positive flow angle (k - Eq > 0) and destabilizing at neg-
ative flow angle (k - By < 0); the second mechanism is always destabilizing. The
pressure-perturbation (i.e. first) mechanism maximizes along the bisector between k
and —Eq because that is where the projection of Eq has the same sign as the per-
turbed electric field, dE. Strong enough drift velocities can also excite the instability

via the electron-Pedersen-conductivity (i.e. second) mechanism.
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1.6 Theory of E-region instabilities

The FBI and GDI both arise from a warm, weakly ionized plasma. They both re-
quire that electrons are magnetized while ions are demagnetized via collisions with
surrounding neutral particles. The magnetization parameter of a charged species
quantifies these requirements: x; = €Q;/v;, where Q; = ¢;By/m; is the gyrofrequency
(or cyclotron frequency) of species j with charge ¢; and mass m; in a magnetic field
of strength By, and v; is that species’ collision frequency. The analysis in this section
will apply to a plasma consisting of electrons and one species of ions, denoted by
subscripts e and i, respectively. In plasmas that are more than weakly ionized (i.e.
partially or fully ionized), collisions between charged particles are important. How-
ever, “collisions” in this dissertation shall imply collisions between charged particles
and neutral particles unless otherwise specified. In the lower- to middle- E-region
ionosphere, k. > 1 and x; < 1; this is what it means for electrons to be magnetized
and ions to be (collisionally) demagnetized.

The difference between s, and x; is crucial to both the FBI and GDI because
it causes electrons to separate from ions in the frame of reference of natural per-
turbations. Figure 1-4 shows a cartoon of how electrostatic instabilities form in a
warm, collisional plasma. For the sake of specificity, suppose the background mag-
netic field, By, points out from the page and that there is a vertical background
electric field, Eg. We can define a right-handed coordinate system in which 2 points
to the right, § points up, and 2 points out of the page, so that Eqg = Eyy, By = ByZz,
and Eq x Bg = EgBpZ. In a frame of reference fixed to the neutral atmosphere, the
predominant electron motion is a Hall drift in the Eq x By direction whereas the
predominant ion motion is to follow the neutrals with which they frequently collide.
In the frame of reference of a small, naturally arising perturbation, that discrepancy

manifests as an electron drift in Z and an ion drift in —2Z. Since there are more
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electrons and ions in regions of high relative perturbed density, where dn/ny > 0,
the adjacent regions of low relative perturbed density, dn/ng < 0, cannot neutral-
ize the separation of electrons from ions. That separation produces a polarization
electric field, dE,/FEy, whose sign is in phase with the sign of én/ng. Another way
to think about this field is that it is the plasma’s attempt to get rid of any flux
divergence that would drive it away from quasi-neutrality. The polarization electric
field plays a role in both the Farley-Buneman and gradient drift instabilities, though
the roles are different. Sections 1.6.1 and 1.6.2 describe the physical nature of these

two instabilities.
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Figure 1-4: Cartoon of electrostatic E-region instability formation.
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1.6.1 The Farley-Buneman instability (FBI)

The Farley-Buneman instability (FBI) arises when the electron drift speed exceeds
the plasma acoustic speed by a small factor of order unity, typically labeled . Chap-
ter 2 describes the parameter 1) in greater detail — it suffices to say at this point that
1 is a measure of how much more mobile electrons are when compared to ions. Figure
1-5 shows the physical setup leading to the FBI, with alternating bright (dn/ng > 0)
and dark (0n/ng < 0) regions representing the seed perturbation from Figure 1-4.
The supersonic electron drift imparts kinetic energy to the ions through the polar-
ization electric field. Since ions drift in the —2Z direction in the wave frame, dE,/Ey
tends to slow them down at wave crests and speed them up at wave troughs. Un-
der conditions of subsonic electron flow, the attendant increase in thermal pressure
would smooth out the resulting density gradients. As the electron drift speed ap-
proaches the threshold Cj (14 ¢, ), which is roughly equal to the plasma acoustic
speed, ion inertia overcomes plasma pressure and relative density perturbations grow,
leading to instability. The ion inertial represents a gradient in the ion kinetic en-
ergy. Under sub-threshold conditions, increased pressure in the regions of relatively
high perturbed density — where dn/ng > 0 — smooths out density perturbations. In-
creasing the electric field causes electrons to stream more quickly through ions and
the electrostatic attraction forces ions to follow. In order to conserve flux, the ion
velocity is largest where dn/ng is smallest; therefore, the kinetic energy they gain
from the electrostatic force is also largest where dn/ng is smallest. When this new
energy overcomes the plasma pressure, ions move out of regions of on/ng < 0 and
into regions of dn/ng > 0. These amplifications of |dn/ng| drive the FBI. See also

Dimant and Sudan (1995c).
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Figure 1-5: Cartoon of the Farley-Buneman instability mechanism.

1.6.2 The gradient drift instability (GDI)

The gradient drift instability arises from a perturbed Hall drift of both ions and
electrons in the seed-wave troughs and crests. Figure 1-6 shows the physical setup
leading to the GDI, with alternating bright (dn/ny > 0) and dark (d0n/ny < 0)
regions again representing the seed perturbation. The difference is that now there is
an additional background density gradient, Vng. In the case of the GDI, the relative
drifts that lead to dE,/Fy are still important but a supersonic electron drift is no
longer necessary. Instead, the polarization field leads to a JE x Bq drift directed
parallel to Vng in the troughs and anti-parallel in the crests. The fact that there
is relatively more plasma in the crests and less in the troughs (by definition) means
that a region of dn/nyg > 0 flows into a region where ng is even smaller, so that

on/ng increases further. Likewise, regions of dn/ng < 0 decrease further. These
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amplifications of |0n/ng| drive the GDI. See also Dimant and Sudan (1997).

The Gradient Drift Instability
(GDI)

fi\ 571 5Ex
E,
5, E, ny 0
® 2B, #E,xB,—> Ey-Vny>0

Figure 1-6: Cartoon of the gradient drift instability mechanism.
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Chapter 2

Theoretical Framework

Section 1.6 elucidated the physical mechanisms behind the FBI and GDI in a qualita-
tive manner. This chapter delves more deeply into the quantitative underpinnings of
both instabilities and demonstrates how they may arise simultaneously if the plasma
meets certain criteria. Section 2.1 begins the description by developing the fluid
theory relevant to a warm, electrostatic plasma. It proceeds through an introduction
to linear instability analysis, followed by a derivation of the general dispersion rela-
tion that captures both FBI and GDI. Finally, it identifies the short-comings of the
fluid approach, most notably in the case of FBI wave growth. Section 2.2 introduces
the fundamental concepts of kinetic plasma theory, then picks up where section 2.1
left off by showing how a kinetic approach overcomes the difficulty faced by a fluid
treatment of the FBI. The hybrid numerical simulations at the heart of much of this
dissertation treat electrons as a fluid and ions as particles (i.e., kinetically). Section
2.3 derives the electrostatic potential equation that ties the dynamics of those two

species together.

2.1 Linear Fluid Theory

On scales much larger than the Debye length and much slower than the plasma fre-
quency, the ionospheric plasma behaves as a quasi-neutral fluid comprising electrons,
multiple species of ions, and perhaps even charged dust or ice. Plasma fluid theory

in the context of the ionosphere seeks to understand the dynamics of those individ-
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ual species’ self-consistent evolution as they react to ambient electromagnetic and
gravitational fields and interact with the neutral gas in which they are embedded
while simultaneously gaining or losing constituent particles due to ionization and
recombination. The following analysis applies to any single plasma species treated
as a fluid, here denoted by subscript s.

The primary equation of interest in studying a plasma species’ dynamics is the
momentum equation:

P
8us+(uSV)uS:£(E+uSXB)—V 2

ot M NgMg

—uy (Ve — ) — &, (2.1)

where u, denotes the fluid velocity, g, denotes the charge, m, denotes the mass,
E and B are the total electric and magnetic fields, P, is the pressure tensor, ng
denotes the number density, v, represents the average frequency of collisions with
neutral particles, a, represents the rate at which various methods (sources and sinks)
produce or destroy particles of this species, and g is the acceleration due to gravity.
The second term on the left-hand side (LHS) describes changes in momentum due
to gradients in the fluid flow.

Equation 2.1 is essentially an application of Newton’s Second Law to a weakly
ionized gas. The first term on the right-hand side (RHS) is the Lorentz force. The
total electric and magnetic fields comprise background terms, Ey and By, as well as
any fields that the plasma self-consistently generates. The second term, containing
the pressure tensor, captures the effects of density and temperature gradients. Section
2.2 will demonstrate the potential complexity of this term; for now, a convenient
form of P that applies to many ionospheric phenomena is P, = nykTil, where | is
the identity tensor, kg is the Boltzmann constant, and T} is the plasma temperature.
This form of the pressure tensor simplifies when the plasma is isothermal, so that

VT, = 0. The third RHS term contains the combined effects of collisions, particle
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production, and particle loss on altering the momentum of the overall fluid. In
the simplest sense, the effect of collisions with neutral particles is intuitive: more
collisions will slow the fluid. To understand the effect of production and loss in an
equivalently simple sense, consider what would happen if an ionization source were
to create a bunch of new species-s particles: the existing fields and gradients would
accelerate them in the same manner that those fields and gradients had accelerated
the existing species-s particles. Now, the fluid has more mass moving at the same
velocity, and thus greater momentum. The magnitude of the Lorentz force is roughly
ten-thousand times greater than that of the gravitational force for even modest E-
region parameters and, whereas gravity has a pronounced influence on the neutral
atmosphere and on large-scale, slowly evolving F-region instabilities, its effect on the
FBI and GDI is negligible. Therefore, the remainder of this analysis will ignore the
effect of gravity on ions and electrons.

A general treatment of Equation 2.1 requires Maxwell’s equations for E and B.
However, B is effectively constant in the E-region ionosphere, especially on time scales
appropriate to the FBI and GDI, so it will suffice to know Eg, By, and any electric
fields that develop due to plasma inhomogeneities. After specifying an appropriate
form for Py and appropriate values for physical constants (e.g., ¢; and my), all that
remains is to determine how n, evolves. The relevant equation is the continuity

equation:
ong
ot

=_V- (nsus) + . (2-2)

Equation 2.2 states that two factors determine the time rate of change of species-s
number density: 1) the flux out of the volume of interest and 2) the creation or
destruction of species-s particles.

Equations 2.2 and 2.1 include terms related to the production and loss of particles

of a given species; the remainder of this analysis will neglect them. Though their
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effect is more relevant than, say, that of gravity, the simulations presented in chapters
4,5, and 6 are concerned more with the evolution of an existing plasma on time scales
shorter than those of ionization and recombination in the E region.

The following linear fluid instability analysis of a plasma consisting of a electrons
and ions explains how even the relatively simple system embodied by equations 2.1
and 2.2, under the aforementioned assumptions, gives rise to both the FBI and GDI.
The first step is to identify the dynamic variables.

Linear analysis begins by assuming that all dynamic variables consist of a zeroth-
order background term and first-order perturbations that are small in magnitude
compared to the background term. In the case of density, for example, n (r,t) ~
no + ny (r,t) with ng > ny. The next assumption is that all first-order quantities
vary as complex exponentials: ny (r,t) = n’exp[—i(wt —k-r)]. The second as-
sumption effectively converts differential equations into algebraic equations, which
tremendously simplifies the math. Specifically, taking the time derivative of ny (r,t)
is equivalent to multiplying by —iw and taking the spatial gradient is equivalent to
multiplying (in an appropriate way) by k. Symbolically,

%%—iw V—oik V-—ik- Vx—=ikx.

The goal of linear perturbation analysis is to derive a dispersion relation, which is a
function that expresses the frequency, w, as a function of wave number, k.

Given the electrostatic nature of the FBI and GDI, there is only a background
magnetic field. On the other hand, the electric field consists of both zeroth- and first-
order quantities. The first-order quantities comprise the electrostatic perturbations
of interest, so E(r,t) = Eg — V¢ (r,t). This linear analysis also explicitly assumes
P, = n.kpT, with VT, = 0 and it wraps kp into T so that temperature has units of

energy. This is partially a matter of convenience but it also reduces the likelihood of
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confusion between the Boltzmann constant, kg, and the wave number, k.

In general, vector quantities can have components in all three directions. Chap-
ters 4 and 5 present results from 2-D simulations while Chapter 6 presents results
from both 2-D and 3-D simulations. The following analysis applies to 3-D dynamics
but starts from the following additional assumptions for the sake of clarifying the
underlying physics: 1) By = By 2 and Ey = Eygy; 2) ions Pedersen predominantly
drift in the direction of +E, but have a small component in the Ey x By at higher
altitudes, where v; is small; 3) electrons Hall predominantly drift in the Ey x By di-
rection but have a small Pedersen component in the —E direction at lower altitudes,
where v, is large; 4) the background gradient, Vng, points parallel to Eq; 5) waves
propagate orthogonal to Vng (i.e. k = k,Z + k,y); 6) the background ion drift is
negligible; 7) the background electron drift is not negligible but it is divergence free
(i.e., V-u, = 0). Figure 2-1 shows the relative directions of relevant quantities in
the plane perpendicular to By.

The linearized inertialess electron momentum is

e , iT,. n!
0=——(—tk¢' + u, x By) — —k—= — v.u..
me me Mo
) iek, @’ , ik, T.n, ,
() 0= - Qeu,, — —= — veu
Y ex
Mme meNo
~ / /
(y> 0= Qeuez = Vellgy
. iek,¢' ik, T.n! ,
(Z) 0= - — Velg,
Mme MeNg

Solving the § equation for u’ey in terms of u,, and plugging into the Z equation yields

ieky Q% ik, T.n! ,
= T T Uy — T T Ve,
me Ve meng

ul, = _ ke et — Tene
meve (1 4 K2) i

0
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Solving the 2 term for u., yields

- !
;o ik, , Il
U, = ep —

Mmele no

Note that u., contains all the effects of gyromotion in the x. and that u, > u., by

a factor of (k,/k,)(1+ k2). Even with k,/k, ~ 0.01 typical of the FBI, the fact that
ke ~ 100 — 200 in the E region means that electron perturbations move much more
quickly along By, as one should expect.

The linearized electron continuity equation is

dn,
wny, = UeokaMy, + nokaty, + noku,, — iug,
dy
dn,
= okl + nokyul, + nok,ul,, — ikeul, —
dy
Solving for u., yields
n/
u, = (ky —ikeG) ™! [(w — kyue) =5 — kzu’ez]
o
_ n ik? T.n!
= (ky — ikG) 7" [(w — kpieg) — — —2 (egb’ — eﬂ
o VeMe o

where G = ng 'dn./dy measures the gradient strength and the second line uses u’,
from the momentum equation. The remainder of this analysis will assume that
G > 0, which implies that u, - (dn./dy)y > 0, corresponding to an electric field
parallel to the electron density gradient.

Plugging this expression back into the equation for electron momentum perpen-

dicular to By eliminates u.,:

/ <1.2 T / - T /
(ky — ikeG) ™ | (w — kytie) ne ik eq — clle ) | — ik, ed — Zelle
Mele )

no Velle no
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The linearized ion momentum equation is

, € . i1 n;
—iwu, = +— (—ik¢' + u; x Bg) — —k— — pul.
my mi o

Ions are unmagnetized for much of the altitude range of interest to this dissertation.
At upper-electrojet altitudes, the ion drift component in the Hall direction grows
to an appreciable fraction of the electron Hall component but the present analysis
will still capture the interesting physics while assuming that ions are unmagnetized.
Under that assumption, the ion momentum equation has no component in the gy

direction.

. / . !
. eke’ T kn; ,
m; m;ng

k Tn'
WK (e¢/ N ﬁ)
m; (w ~+ iv;) no

The linearized ion continuity equation, under the assumption that ions are sta-

tionary in the neutral frame, yields an expression for k - u;

/

wn'

I i

k'u,[/ _— .
no

Dotting k into the ion moment equation leads to

no m; (w + iv;) ng

The next step is to couple the ion and electron momentum through the perturbed

potential, ¢'. From the ion equation,

mw (W + iy, n;
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Inserting this into the electron equation and rearranging terms gives

miw (w + iv;) . n; . meve (1 + K2)
k2 ‘I ng mo |ik2 + Kk G+ ik2 (1 + K2)
iTe [ik2 4 kek, G 4 k2 (14 k2]
X S w — kyUeo +
Mele 1+ K2

This analysis has thus far used four equations — electron and ion momentum and
continuity — in five dynamical variables — the perturbed electron and ion densities,
the perturbed ion and electron velocities, and the perturbed potential. It requires an
additional equation to fully eliminate all perturbed quantities. The final necessary
assumption is that this plasma is quasi-neutral. That means that n; ~ n. = n, so

that the perturbed densities are equal. Under this assumption,

ik2 + Kok, G + ik? (1 4+ k2)] m;
w — kzueo - kQVe (1 + I{g) - |:
—~ (ﬂ . iwl/’ieka

v; k2vy;

o Vel o kr 2 Kekz 2
wL:QeQi’ ¢=¢L[(?) +< k)]

and Cy = /(T; + T;) /m; is the isothermal sound speed. The final step in deriving

.z’ —k2 2
. w (w+ i) C?

) w (iw — v;) — ik*C?] (2.3)

where

Equation 2.3 took advantage of the fact that 2 > 1.
All that remains is to rearrange Equation 2.3 to get an expression for the complex

frequency, w, in terms of the wavenumbers, (k,, k,). After carrying out some algebra,

w? + iwy; (1 + Z—E) — 1k UeV4 (Z—E) — kQC’SZ ~ 0, (2.4)

where

e = k (ki + i) kek,G/E)  and 6 = (k) + (¥ Kok, G/k)?
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When there is no gradient, G = 0, n, = 1/, and Equation 2.4 reduces to

1 kgueov;
w? + iwy; (1+—)—i r 0 L KC? =0.
(G ¥

The roots of Equation 2.4 give the wave frequency as a function of wave number, as
required. These roots are complex in general. The usual analytic approach is to write
W = w,+iw;, where w, is the real wave frequency and w; is the growth or damping rate.
To understand these quantities in a physical sense, remember that this derivation be-
gan by assuming quantities vary as exp [—i (wt — k - r)]. Plugging w = w,+iw; in gives
exp(w;) exp [—i (w,t —k - r)]. Clearly, if w; < 0, perturbations will decay exponen-
tially whereas if w; > 0, perturbations will grow exponentially. Next, we can factor
out the wave-number magnitude, k, from the argument of the complex exponential
and define the phase velocity, V,, = w,/k, to get exp(w;) exp [—ik (Vput — k - r/k)].
This form more makes the notion of plane waves more apparent.

The standard approach in the literature to determining w, (or V,;) and w; is to
assume |w,| > |w;|, which is to say that perturbations undergo many oscillations
in the time it takes their amplitude to increase by a factor of e ~ 2.7. What this
approximation really comes down to is assuming w? &~ w? while w & w, + iw;. With
these assumptions, Equation 2.4 becomes

(w2 _ k202

v

) B — o [+ ROm)] — S(m) (@r — hrtto)

=i {—w; [0k + R(me)] + wiS(k) + kzueoR(me) } (2.5)

The real and imaginary parts must each vanish independently. The imaginary part

of Equation 2.5 reads

Wy [0k + R(me)] — wiS (M) — kzueoR(mc) = 0
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We can assume that the term ~ w; is negligible compared to the other terms. For
wavelengths of a few meters and gradient scale lengths of a kilometer or more, §, >
R(me) and the imaginary-part equation yields an expression for the real frequency:

o kxueo
149

(2.6)

Wy

In general, ions have some degree of magnetization and the phase velocity is not
parallel to the Hall direction. In that more general case, k,u.0 — k - ug in Equation
2.6, where uy = u.9 — u,g is the relative drift velocity.

This equation predicts that the phase velocity during linear instability growth
should be proportional to the electron drift velocity but less than it by a factor slightly
greater than unity. However, much of the research cited in §1.5 has established that
FBI perturbations propagate with a phase speed close to the plasma acoustic speed,
Cs.

The real part of Equation 2.5 reads

(w2 — k2C?

v

) Ok — w; [0k + R(m)] — (k) (wr — kzttep) =0

Again, assuming perturbation wavelengths of a few meters and a gradient scale length
of a kilometer or more, i ~ (kv)? and i + R(m) =~ k*(1 + +). Taking advantage
of these approximations and Equation 2.6 yields an expression for the growth rate:

Y [wE - ECE Keky
YTy PR YTy (2.7)

The term proportional to w? describes the ion inertial energy that powers the FBI, as
described in §1.6.1. The term proportional to k?C? describes diffusive damping. The
term proportional to w,G describes the additional ion inertia provided by the zeroth-
order electron density gradient. Instability growth occurs when w; > 0. In order for

that to happen, both terms containing w, must combine to overcome —k*C?. Note
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that if this analysis had not assumed G > 0, a negative value would flip the sign of
the w,G term and inhibit instability.

Both Equations 2.6 and 2.7 are equivalent to standard expressions for the real
frequency and growth rate as reported in the literature, after accounting to notational
differences. See, for example, Fejer and Kelley (1980). One important aspect of
Equation 2.7 is that it increases monotonically with k,. In physical terms, this
means that the growth rate increases without bound as the wavelength decreases
toward zero. Since an infinite growth rate is unphysical, there must be something
missing. What is missing is a kinetic effect called “ion Landau damping” in which
ions steal energy from waves with wavelengths shorter than a few ion MFPs. The

next section explains how kinetic plasma physical differs from fluid plasma physics.

2.2 Linear Kinetic Theory

At its root, plasma kinetic theory is a statistical description of the position and
velocity of a collection of particles over time. At a particular moment in time, a
distribution of particles — having three position coordinates and three velocity coor-
dinates, in general — exists in a six-dimensional space called “phase space”. Figure
2-2 shows phase space for one-dimensional motion. It depicts changes in particle
trajectories along one spatial axis (r) and the corresponding velocity axis (v). A
straight line parallel to the r axis, in the +v half-plane, represents a particle moving
with constant positive velocity in the +r direction. Likewise, a straight line parallel
to the r axis, in the —v half-plane, represents a particle moving with constant nega-
tive velocity in the —r direction. A closed circle in phase space represents a particle
trajectory that always returns to the same position and velocity after a fixed amount
of time — in other words, a periodic orbit. More complex trajectories may combine

elements of constant velocity and changing velocity (i.e., acceleration) as long as their
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changes in position are self-consistent, and a single phase-space plot like that shown
in Figure 2-2 may contain multiple trajectories, each corresponding to an individual
particle. Unfortunately, representing phase space in higher dimensions presents a
graphical challenge, since it requires at least four coordinate axes.

One cubic meter of E-region plasma contains tens of billions of particles, each with
their own six-dimensional phase-space trajectories, so the task of visualizing a plasma
at this fundamental level quickly becomes impossible. Instead of following every
particle in a plasma, it is convenient to consider all the particles in a small volume
of phase space bounded by (740, 740, 720, V20, Uyo, Vz0) and (140 + drg, 7y + dry, 720 +
dr, Vg0 + dvg, vy + dvy, V.0 + dv,), and written d*rd®v. The density of particles of
species s in this small volume is f(r,v) = N,(r,v)/d*rd®v; this phase-space density,
fs, is called the distribution function of species s. The task of understanding the
dynamics of species s now manifests as the task of deducing the time evolution of

fs through phase space. Since r = r(t) and v = v(t), the total time derivative of

fs(r,v) is

dfs(r,v) Of,  dr dv
dat Ot +dt Vels+ dt Vols,

where V,. and V, are the total gradients in configuration and velocity space, respec-
tively. The analysis thus far has not considered any way to add or remove particles
from d3rd®v, so dfs/dt = 0 by Liouville’s Theorem. One major element missing is
the effect of collisions. Since collisions may change a particle’s position and velocity,
they simply alter that particle’s trajectory through phase space, thereby altering f
in time. Therefore, a full treatment requires additional term that removes particles
from d®rd®v when it increases. This additional term, nominally representing colli-
sions, balances dfs/dt. In fact, even production and loss of plasma particles simply
add or subtract particles at a certain location in phase space, so they, too enter

into the (as yet unspecified) collision term. This final form is called the Boltzmann
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equation:
ofs dr dv Ofs
. . = 2.
ot T dl V’“fSert Vols {&]C (2:8)
The simplest collision operator is
ofs| _
] =

This exponentially damps out perturbations in f, with a time scale of v; !. The main
short-coming of this form is that the number of particles in phase space is conserved
on average but not locally; it exaggerates the collisional damping of longitudinal
waves (Farley, 1963a). A slightly more complex collision operator, known as the

BGK collision operator after Bhatnagar, Gross, and Krook (Bhatnagar et al., 1954),

ofs| M
|: 5t :|C = Vs (fs - n_0f50> )

where fy is the zeroth-order distribution function, and n, and ny are the number

has the form

densities corresponding to fs and fy. Farley (1963a) showed that this term is sufficient
to account for collisional processes in electrostatic turbulence.
Equation 2.8 for the ion distribution, with the BGK collision operator, and under

the influence of an ambient magnetic field, is

J +_r'vrfi+£(E+Vi X Bo) - Vofi = —v4 (fz‘_z_fio)
; 0

ot  dt m;

To develop an expression similar to that describes FBI ion dynamics kinetically,

we can assume that the ion Hall drift is negligible (v; x By — 0) and linearize:

—i(w—k-v+iy) fu+ mi (Eo - Vofi + Ei -V, fio) = Vi%fio
; i0

)

It is reasonable to assume that Eq only has a component in the Pedersen direction, so

that Eq-V, fi1 — 0. Conveniently, this also makes the problem analytically tractable.
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This analysis will also assume that k = k.2, in order to prevent the mathematical
development from obscuring the crucial physics, which occur in the Hall direction.
Assuming (w — kv, + iv;) # 0 almost everywhere, we can normalize by that term

and integrate over all velocities to get an expression that depends only on space and

time.
+0o0
/ fa B — ek / 1 afzo Bo _ bina / fio . B
m; w — kv, + 1v; v, Nio w — kyv, + 114
E 8 i 1
inﬂ _ ern fO : d31)
Ov, |w+iv; — kyvip — kg (U, — vip)
+o00 1
Vil 3
_ . : d
Mo / Juo [w +iv; — kyvip — kg (vz — vm)] !

+oo
ek dfio {w +iv; — kyvip kg (Up — UiD)} - PE
_ v
miv/2kvi, v,

ﬂkvith ﬂkvith

+oo ) ]

VN1 / f {w —+ W, — kmviD k‘x (Ux — UiD)} d3
nio\/ék'%‘th ’ ﬂkvith \/§kmith

where vy, = \/T;/m; is the ion thermal speed and v;p = eFy/m;v; is the ion drift

speed. At this point, it is helpful to define the following auxiliary variables

k’z (Ux — Uz’D) w + iVi — kaiD

\/§kvith \/§I€Uz’th

Note that the first definition implies dv, = V2vndt. Substituting those auxiliary

t

¢

variables gives

6sz 1 V’Lnll //
i —_— dtd ydv, i dtd dv,
iy = mZ\/_kvzth /// fuol®) e

The integrals imply integration over (—oo,+00) in all three coordinates. Having

an equation for f;p would help here. Having an equation for f;y whose function
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and first derivative both have well-behaved integrals would really help. Fortunately,
assuming f;p is a Maxwellian is pretty reasonable since we assume that these linear

perturbations grow out of thermal noise. In that case the first integral on the RHS

dfio 1 1 de 1
///——dtdvydvz— 2\/7_mith/ 5 C—tdt

and the second becomes

/ / fio(t) dtdvydvz = \/_ / dt

There is a special function in plasma physics called the plasma dispersion function.

becomes

Its definition is
1 et

val <

Conveniently, we can write its first derivative as

/86_t2 1
=) ot t—¢

These special functions, together with the integrated Maxwellians, allow us to write

Z(¢) =

the ion response in its final compact form:

] nioef , VN1 M0
ing = — 0L m) Z(C) + —2lA (/) 7
! Qmiﬁkvgth( \/_) © V27Tni1kvith( \/_) N
nierl y V;ni1
W —7
2mi/€7},~2th <<) \/_nzﬂkvzth (O
n, e E'Z'(¢)

(2.9)

no E\/Ql/ivich(C) — i2kv,

In the final line, primes again represent the amplitude of Fourier-transformed quan-
tities.

At this point, we need a way to relate n. to £’, so that the final expression does not

depend on perturbed quantities. The electric field couples ion behavior to electron
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behavior, so the natural next step is to relate Equation 2.9 to the electron response
due to E’. Since the kinetic ion development neglected the component parallel to

By, a2-D version of the electron response from §2.1 will suffice:

w — kuey nl, kv, ,  T.nl
— = | e¢ — .
k—ikeGng  me(Q2+12) no
Recalling that E' = —ik¢’, we can solve this for the electron fluid response:
Me _ o | (CTEUON (11 k) i, + kT, B (2.10)
< =—c —_— KZ) mev, + ikT, :
i k —ik.G N

After solving both Equations 2.9 and 2.10 for eE’, invoking quasineutrality, equating

(1 - MZG) (2.11)

This equation has a form similar to Equation 2.3. The difference is that the ion

the resultant expressions, and rearranging terms, we get

w — KUeg =

ve (1+ K2) me -

1 mi | V2vikva Z(C) — i2kv2,  ik*T,
Z’(C) my

contribution contains w via . The analytic approaches that transformed Equation
2.3 into Equations 2.6 and 2.7 are no longer available. Equation 2.11 requires a
sophisticated root solver to handle Z(¢) and Z’(¢). Xie (2013) describes an example

of such a sophisticated algorithm.

2.3 Quasi-Neutral Potential Equation

The hybrid plasma model at the heart of much of the work in this dissertation treats
electrons as an inertialess fluid and ions as kinetic particles. Chapter 3 describes the
hybrid model in greater detail; this section is concerned with deriving the electrostatic
potential equation that couples electrons and ions. Despite the fact that this work
treats ions kinetically, a fluid description of ion dynamics will suffice to derive an

appropriate expression for the potential. The inertialess fluid treatment for electrons



95

is predicated on the assumption that their relatively small mass lets them respond
essentially instantaneously to any accumulation of positive charge — NOT is the
dominant ion species in the E-region ionosphere, so the ion to electron mass ratio is
m;/me = 55,000.

The inertialess electron momentum equation is

Dv, e VP,
0=—(E . X B)—
Dt me( +ue x B) NeMe

Q

— VeUe, (2.12)

where the LHS represents the full convective derivative of the electron fluid velocity,
and all other terms have the meaning of those in section 2.1 applied to electrons. A

modest amount of algebra transforms Equation 2.12 into

E -P.
u, = —(1+ /{3)_16 ( ¢ + v ) (2.13)
melje nemeye
where
1 -k 0
e Qe
e=\| +re 1 0 Ke = €2
0 0 1+k2 Ve

Section 1.6 introduced the magnetization parameter of a plasma species, kg, defined
as the ratio of cyclotron frequency to collision frequency. Similarly, the e tensor
captures the effects of electromagnetic Hall drift and collisions with neutrals on the
electron fluid momentum.

The continuity equation relates a species velocity to its density. For electrons,

using Equation 2.13 for v, gives

on en.E V-P
e _ . 1 —1 e e
o \Y4 {( + Re) E(meue + p— )} + S,

This dissertation considers electrostatic plasma processes that occur on time
scales for which 0B/0t ~ 0. Faraday’s Law then states that V x E ~ 0. Be-

cause the curl of the gradient of a scalar function vanishes identically, the solution to
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V x E = 0 for an arbitrary electric field is E = —V¢. For the cases of interest here,
it is convenient to split the total electric field into a constant background component,
Ey, and a spatiotemporally varying component, —V¢(z,y, z,t). Since the magnetic
field does not vary, it is also convenient to write B = By. Plugging these new field
expressions into the electron continuity equation and solving for ¢ yields

V- (neeVo) =V {nee (Eo A Pe)} +(1+ ni)mzye (Se - 8ne)

en. ot

Up to this point, this treatment has allowed electron and ion densities to differ.
However, the plasma processes of interest occur on temporal scales much slower
than the plasma frequency and on spatial scales much larger than the Debye length.
Therefore, the plasma is quasi-neutral and n, =~ n; = n. In light of quasi-neutrality,
the ion continuity equation reads

g—? =—-V - (hy)+ S,

and since quasi-neutrality implies On. /0t = dn/0t, the potential equation becomes

V- (neVe) =V - [ne (Eg + Ve'npe)} +(1+ ng)mz”e S, + V- (nu;) — S}]

This equation suffices to describe the potential that couples inertialess electrons to
ions in a quasi-neutral plasma, given background electric and magnetic fields, a quasi-
neutral density, an expression for the electron pressure, an electron-neutral collision
frequency, and an expression for the ion (fluid) velocity. However, this dissertation
is concerned with the FBI and GDI in the absence of plasma production and loss, so
Se = 0 and S; = 0. Finally, writing the ion flux as nu; = I'; and collecting divergence

terms leads to the following flux-conserving form of the potential equation:

V-P,

V- (neVe) =V - [ne (Eo + ) + (1+12) mz”eri . (2.14)
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Ion dynamics only appear in the flux term, I';. The first velocity moment of the ion

distribution gives the average flux:

(nu;) = ///vfi d*v

and this quantity is easy to calculate in a PIC simulation. Therefore, despite the

foregoing fluid development, Equation 2.14 applies readily to hybrid simulations.
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Figure 2-1: The geometry that gives rise to the combined FBI and
GDI dispersion relation in the E region. The background electric field,
Ey, and plasma-density gradient, Vng, point vertically. The back-
ground magnetic field, By, points out of the page. The electron drift
velocity, u,., points predominantly in the Ey x Bq direction, the ion
drift velocity, u;, points predominantly in the +Eq direction, and
uy; = u, — u; is the relative drift velocity. The directions of u;, u,,
and uy have been exaggerated to show altitudinal range, and are not
necessarily consistent with k.
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Figure 2-2: A plot of one-dimensional motion in phase space, with
examples of single-particle motions.
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Chapter 3

Numerical Framework

3.1 The Particle-In-Cell (PIC) Method

The Boltzmann equation introduced in Chapter 2 describes the time evolution of
a single particle species distribution. Ostensibly, one could simulate the evolution
of Equation 2.8 by approximating the second and third terms (i.e., the phase-space
derivatives) at each time step, prescribing a numerical form of the right-hand-side
collisional term, and using an appropriate time-stepping scheme to evolve the parti-
cle distribution. A popular alternative to following individual particles is to follow
“macro-particles” that each represent millions of physical particles. The macro-
particles have a prescribed shape that determines their charge density, which the
model weights to a grid at each time step. The model can then derive a self-consistent
electric field value at each grid point at each time step simply by knowing each parti-
cle’s position. The complexity of this approach increases in proportion to the number
of particles, N; for contrast, the complexity of calculating the electric field by eval-
uating Coulomb’s Law for each pair of particles would increase in proportion to N2.
The method of calculating field quantities by extrapolating particle positions to a
grid is called the particle-in-cell (PIC) method (Birdsall and Langdon, 1991).

The Electrostatic Parallel PIC (EPPIC) code, designed by Professor Meers Op-
penheim, employs a PIC approach with additional collision routines to simulate the
sort of weakly ionized plasma found in the Earth’s E-region ionosphere. Developing

a hybrid extension of EPPIC, which treats electrons as an inertialess, isothermal
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fluid in quasi-neutrality with ions, has been a major component of this dissertation
research. A description of EPPIC, with an emphasis on the hybrid extension, follows.

EPPIC begins by initializing the particles based on a given distribution. A nat-
ural initial distribution is to have spatially homogeneous particle positions and a
Gaussian distribution of velocities. Such a simple initial condition can nonetheless
address many fundamental aspects of kinetic plasma physics. The simulations pre-
sented in Chapter 6 initialized particles homogeneously with special modifications
designed to reduce the noise inherent in approximating a continuous distribution on
a discrete grid. Should the physical model require a more complex initial distribution,
the user must chose an algorithm that defines particle positions and velocities in a
physically realistic way. One method for defining particle positions is the “transfor-
mation method”. The transformation method assigns particle positions based on the
inverse of the integral of the target distribution. It is efficient but it clearly requires
that the distribution have a finite, invertible integral. The simulations presented in
Chapter 4 initialized particles via the transformation method. Another method for
defining particle positions is called the “rejection method”. The rejection method is
not specific to the PIC method nor even to plasma models — it is a general technique
for generating random deviates from a known distribution function (Press et al.,
2007). The simulations presented in Chapter 5 initialized particles via the rejection
method.

Following the particle-initialization stage, as well as other setup tasks, EPPIC
proceeds to “gather” the particle positions into either quasi-neutral density, n(r),
and ion flux, Iy(r) = n(r)vi(r), or into charge density, pc(z,y,2) = >, qn;(r),
where the g; are the species’ charges and the n; are the individual species’ densities.
In either case, r represents whatever positional coordinates are appropriate for mod-

eling the system of interest. The choice of n and T'; or p. depends on whether the
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physical model assumes quasi-neutrality or not. Given gathered quantities, the gen-
eral PIC method would calculate the electric field, E(r), and magnetic field, B(r), on
the grid. For a fully electromagnetic system, it would use a gathered current density,
J(r), to derive E(r) and B(r) from Maxwell’s equations. However, the simulations
presented in this dissertation assume the plasma is electrostatic. Under the electro-
static assumption, magnetic perturbations are negligible and Faraday’s Law reads
V x E = 0. General rules of vector calculus state that the curl of the gradient of a
scalar function is identically zero, meaning that the electrostatic statement of Fara-
day’s Law implies E = —V¢; here, ¢(r) is the electrostatic potential and the negative
sign ensures that ions and electrons move in the correct directions. The pure-PIC
version of EPPIC does not assume quasi-neutrality, and can therefore use Gauss’s
Law in the form of Poisson’s equation, VZ¢ = —p./¢o, to calculate the potential.
The scientific computing community has a wealth of experience solving Poisson’s
equation; the solution is particularly simple for simulations with periodic boundary
conditions. The results presented in Chapter 6 employed a fast spectral method for
solving Poisson’s equation with periodic boundary conditions. Quasi-neutrality, on
the other hand, assumes by definition that p. &~ 0. Such a model cannot take ad-
vantage of the the nice properties inherent in Poisson’s equation and must calculate
the potential by an alternative approach. The results presented in Chapters 4 and 5
employed the quasi-neutral hybrid version of EPPIC, which solves Equation 2.14 for
the potential via a finite difference method.

EPPIC uses a particle parallelization scheme in which multiple processors essen-
tially run independent PIC simulations that come together to compute the electric
field. Each processor updates particle velocities and positions independently, using
the existing electric field, then gathers the positions as described above. Next, EP-

PIC uses the Message Passing Interface (MPI) to calculate an average density (and
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ion flux, if applicable) across processors, which it passes to the field-solver routine.
This parallelization scheme allows EPPIC to run efficiently on up thousands to tens

of thousands of processors.

3.2 The Hybrid Approach

Given the success of PIC simulations in plasma physics, it is natural to ask: Why
bother with the hybrid approach? The more rigorous way to model electrons and
ions would be to treat them both as particles; even with the assumptions inherent
in the PIC scheme, this seems like the best approach. The FBI is an ion instability
and requires a kinetic treatment of ions but the fully kinetic code also accounts for
electrons heating effects that the hybrid code can not capture in its current state. It
also does not suffer from the same limitations as the quasi-neutral code because it
does not have to solve Equation 2.14 at each time step. One major limitation of the
quasi-neutral solver was its inability to handle electron magnetizations much larger
than k. = 150. Since magnetization increases with altitude, that makes altitudes in
the middle-to-upper electrojet inaccessible. The drawbacks to using the pure-PIC
version of EPPIC are that it must resolve the electron Debye length, Ap., in space
and (the inverse of) the electron plasma frequency, wy., in time.

The electron Debye length is the length beyond which electrons shield the positive
charge of ions, producing a quasi-neutral plasma. The pure-PIC version of EPPIC
typically sets and maintains an equal total number of electrons and ions but does
not assume quasi-neutrality. Therefore, it must resolve electron-ion separation on
scales smaller than the Debye length in order to calculate the electrostatic potential
via Poisson’s equation. The Debye length varies as \/m , where T is the electron
temperature and ng is the background plasma density. That means that lowering ng

or raising 7T, would make it easier for the simulation to resolve Ap.. The first option
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is feasible to a degree, but Rosenberg and Chow (1998) showed that a simulation
requires Wy;.sim/Visim > 1 for quasi-neutrality, where wp;.sim and v;.4, are the simu-
lated values of ion plasma frequency and ion-neutral collision frequency, respectively.
Raising T, is a reasonable aid because the FBI typically heats electrons anyway. In
practice, we have used a combination of both approaches.

The electron plasma frequency — the fundamental oscillation that electrons make
in a neutralizing background of a positively charged species — depends on the electron
mass. In the E-region ionosphere, the positively charged species may be NO* or OF,
both of which are more than 5 x 10 times more massive than an electron. The code
can save some time by evolving electron dynamics on a time scale of 1/w,. while
“subcycling” ions on a time scale of 1/w,;. However, the FBI is an ion instability,
meaning that the code needs to ultimately resolve ion dynamics. In order to resolve
both electron dynamics and ion dynamics, the code needs to take \/W electron
time steps for each ion time step. For E-region ions, that means taking nearly 250
electron time steps for each ion time step. One common approach to this problem
is to artificially inflate the electron mass, thereby lowering \/W This leads to
problems in defining other parameters that depend on the electron mass, notably the
electron-neutral collision frequency. EPPIC conserves momentum and energy during
electron-neutral collisions by artificially inflating the neutral mass specifically during
that collision process while using the true neutral mass during ion collisions. Note
that even though w,. depends on ny — a parameter that is arguably more flexible
than m, — the challenge is in the ratio of time scales. Unlike the case of resolving
Ape, changing ny does not help here. Furthermore, changing ng in one direction for
either wy. or Ap. makes the problem worse for the other quantity. See Oppenheim

and Dimant (2004) for more details about the limitations of pure-PIC EPPIC.
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3.3 Finite-Difference Scheme for the Potential Equation

We can write electron pressure tensor on the RHS of Equation 2.14 as P, = nkgT.l,
where | is the identity tensor. Assuming isothermal electrons, we get V-P, = kgT,.Vn,
so the RHS depends only on quasi-neutral density, ion flux, and constant parameters.
Suppose we split the physical domain into a 2-D grid of discrete points. Each point
has an index, (7, 7). We know the value of the RHS after gathering ions into density
and flux as described above. We want to know the potential at each point, so we need
to discretize the LHS. The centered finite-difference (FD) approach in 1 D computes
the difference between a function at neighboring half grid steps. For some arbitrary

function, f(x), first and second derivatives become

ﬁ B f(z‘+1/2) _ f(1—1/2)

dr ~ Ax
d2f d df f(i+1) _ 2f(i) + f(i71)
d?  du (@) ) (Ar)? ’

where Ax is the grid-step size and parenthetical superscripts denote grid locations.
Note that the half-cell locations do not actually exist on the computational grid — if
we were to halve the grid-cell size, we would have better resolution but we would still
label each point (7, 7). The FD approach requires a method for evaluating functions
at half-cell points, but we will deal with that later. For the sake of clarity, we can

define the intermediate variable L = neV .

i+1/2,j i—1/2,j 1,54+1/2 ij—1/2
V.L:(?LeraLy%Lgch/J)—Lgc /j)_{_LZ(/JJr/)—Lé] /2) (31)
ox oy Ax Ay '
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This contains four terms in L, each evaluated at a grid point neighboring (3, 7).

Expanding the first L, term yields

Lgci+1/2,j) — p+1/2.5) (€v¢>§:i+1/2,j)

— n1/20) [9,6li129) _ e 9, 6+1/29)]
S _ glid)  gHZIELR) _ g(i1/25-1/2)
Az e Ay ’

~ p(i1/2:9)

where 0, and 0, denote partial derivatives in « and y, respectively. The second-order
differential operator has taken care of the half-cell terms that behave like 0,,¢ and
Dy @, which is not surprising, given the FD expression for d*f/dz* above. To deal
with n and the remaining ¢ terms at half-cell locations, we will assume that they

change smoothly from one cell to the next that a simple average will suffice:

n(i+17j) + n(lu])

n(i1/2,5)
2
¢(i+1/27j+1/2) _ ¢(z+173+1) + ¢(Z+LJ) 4 ¢(w) + ¢(w+1)
4
Bli+1/25-1/2) _ ¢t 4 =D 4 glta Y + §0)
1 )

Note that evaluating the ¢ terms at half-cell locations in both directions requires an

average of four neighboring points. Cancelling terms and dividing by Az leads to

LFY29) 1) 4 ()
Az 2
BliH19) _ (i) GUALITY) 4 Glidtl) — g(+Li=1) — lii—1)
J— He

(Ax)Q 4AyAx
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The process for expanding the three other L terms is identical and it yields

LEY20) pd) 4 pli-14)

Q

Ax 2
{ a7 1AyAx }
Ay 2
PUALITY) o plit1g) _ (i=Li+1) _ g(i=Ld) (i +1) _ (i)
X | Ke
{"5 4AzAy T )y }
Ay - 2
{ PUHLI) 4 ¢(z‘+1,j—1) _ ¢(i—17j) _ ¢(i—17j—1) ¢(iJ) - Qs(ivj—l)]
X | Ke +
4AzAy (Ay)®

All that remains is to plug these expressions back into Equation 3.1 and rearrange in

terms of ¢ at the nine relevant grid points. After an appropriate amount of algebra,
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the FD expression for the LHS of Equation 2.14 is

V- (neVo) ~
(i) { [n(iﬂd‘) 4 onlid) o n(i—l,j)] |:n(i,j+1) +onlid) 4 n(i,j_l)] }
7 2 (Ax)? N 2(Ay)?
1 i g 1) (i1
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Note that k. — 0 reduces Equation 3.2 to

V- (V) ~
(i) {_ {n(i-&-Lj) +onlid) o n(i—l,j)} B {n(@j-&-l) +onlid) o n(i,j—l)} }
2 (Az)? 2 (Ay)®
o [0 00)
2 (Azx)’
+ ¢l—19) {n(iyﬂ') + pli=1.9) }
2 (Ax)?
1 plid+D) {”(i’jﬂ) + n(B9) }
2(Ay)”
+ a1 {”(i’j) + 7D }
2(ay )

which is diagonally dominant and is therefore relatively simple to solve numerically.
The physical significance of this limit is that, as electrons become unmagnetized,
they Pedersen drift with the ions and there is no Hall contribution to the potential.

In the further limit of homogeneous density, Equation 3.2 becomes

nV3¢ ~
HIH) — 266 — 1D i) — 9g6d) — i)
(Ax)* (Ay)*

This is just Poisson’s equation and is, as mentioned above, very computationally
friendly.

The immediate advantage of writing Equation 3.2 in the form given is that it
allows for easy translation it into a matrix system of the form A¢ = p. At each grid
point, Equation 3.2 provides represents the product A¢ and the RHS of Equation
2.14, evaluated at the grid point of interest, provides a single numerical value for p.

The numerical challenge to invert the matrix equation to provide ¢ = A=1p.
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It may be tempting to first expand the divergence operator in Equation 3.2 as

V- (neVe) =V - [n (0.0 — keOy@) T + n (K0zp + 0y@) Y]

=nV2p+Vn- Vo + k. (Vn x Vo) - 2

and apply centered FD expressions directly to Vn, V¢, and V2¢. However, this
approach yields incorrect results when density perturbations grow large. The reason
is that the matrix A is singular, since adding any constant to ¢ is also a solution to
V - (neV¢) = f. The iterative-inversion approach to solving the potential equation
in EPPIC projects out the nullspace of A in order to eliminate the singularity; the
direct-inversion approach applies a method originally described in Oppenheim et al.
(1996) which implicitely sets the DC component of ¢ and solves a reduced linear
system with one fewer row and one fewer column. The latter approach retains the
advantages of a centered FD scheme to accurately capture the divergence-free nature

of Equation 2.14.

3.4 Matrix Inversion Methods

The hybrid EPPIC results presented in Chapter 4 used an iterative-inversion ap-
proach that combined Hypre’s algebraic multigrid (AMG) method, BoomerAMG
(Falgout and Yang, 2002), with the generalized minimal residual (GMRES) method
(Saad and Schultz, 1986). Algebraic multigrid is an extension of geometric multi-
grid. Geometric multigrid approximates a numerical problem on coarser and coarser
meshes, finds a solution (usually via a direct-inversion method) to the simplified
problem on the coarsest grid, then interpolates that solution back to the fine grid.
Algebraic multigrid arose as a response to problems without a well-defined grid. It
takes advantage of algebraic connections between matrix elements rather than spatial

proximity on a physical grid (Briggs et al., 2000).
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The hybrid EPPIC results presented in Chapter 5 used a direct-inversion numer-
ical library called MUItifrontal Massively Parallel Solver (MUMPS) (Amestoy et al.,
2001, 2006). Frontal solvers, in general, use a variant of Gaussian elimination that
avoids having to handle many terms that equal zero. A multifrontal method is simple
an extension of the frontal method that can run efficiently on parallel systems. The
general multifrontal method (Liu, 1992) performs a Cholesky matrix decomposition
(A = LL*) but Cholesky decomposition only applies to symmetric matrices. The
quasi-neutral potential equation produces an unsymmetric matrix, so MUMPS must
perform a Gaussian decomposition (A = LU). superLU_DIST(Li et al., 1999) is an
alternative numerical library for directly inverting large parallel matrices. The work
presented in Chapter 5 used MUMPS because it employs very efficient memory usage
and because MUMPS ran faster than superLU_DIST in identical EPPIC test runs.

3.5 Hybrid EPPIC Development

This section describes significant contributions to EPPIC that I implemented while
developing the hybrid version, but which are not immediately relevant to the presen-

tations in Chapters 4, 5, and 6.

3.5.1 Electron distribution

EPPIC allows the user to declare what type of distributions they want to simu-
late. The most common and well-supported option is to simulate multiple particle
distributions (i.e., the pure-PIC version of EPPIC) but routines exist to handle var-
ious types of fluid distributions. The isothermal, quasi-neutral, inertialess hybrid
approach evolves a particle distribution of ions but it need not actually follow a
distribution of electrons. The work presented in Chapters 4 and 5 focuses on ion

dynamics, with electrons providing a quasi-neutralizing background that couples to
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ions via the potential equation. That fact allowed me to streamline hybrid EPPIC
by creating a new type of distribution, which is simply a set of constant parameters.
Using that method for hybrid electrons, EPPIC simply reads in electron parameters
(e.g., mass, charge, collision frequency) from an input file and passes them to the
potential equation. Doing so precludes the need to set up a dynamic distribution

that the rest of the code will never use.

3.5.2 One-step hybrid gather

The standard PIC approach only gathers particle positions into charge density but
Equation 2.14 requires number density and ion flux. I extended the pure-PIC gather
routine to compute both number density and flux components in one pass. Num-
ber density is trivial: It simply involves interpolating particle positions to the grid
without weighting each distribution by its respective charge. The extension to flux
components is also natural, since the routine will have already calculated the in-
terpolation factors — all that remains is to multiply each particle by its velocity in
each direction to compute each flux component. This approach requires storing an
additional array for each dimension of the physical system, but it requires only one
pass through each particle distribution. Memory is inexpensive and computational
efficiency is of primary concern for EPPIC. Each particle distribution can consist of
millions of PIC particles on each processor, so favoring algorithmic efficiency over

memory efficiency makes sense.

3.5.3 Using PETSc for potential

Hybrid EPPIC leverages the Portable, Extensible Toolkit for Scientific Computation
(PETSc) (Balay et al., 2018, 2015, 1997) to switch between solution methods for
the linear system given by A¢ = p. PETSc provides data structures and algorithms

for the scalable parallel solution of PDEs, exposing an effective “algebra of composi-
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tion” that lets the easily user experiment with different iterative and direct methods.
Adding PETSc functionality to the existing version of EPPIC was a fundamental
component of the research presented in this dissertation and will allow future users

to test other methods for solving Equation 2.14

3.5.4 Efficient PETSc setup

I initially put all the PETSc code into the potential-solver routine, which EPPIC
calls at each time step. That meant that EPPIC asked PETSc to create and de-
stroy data structures at each time step. That was fine for an iterative method such
as BoomerAMG+GMRES but it made direct methods such as MUMPS seem pro-
hibitively slow. Removing the routines that create and destroy data structures and
placing them in EPPIC’s main procedure allowed PETSc to reuse existing struc-
tures. This is crucial to efficient use of a direct method because the setup processes,
in which the algorithm factors the matrix, is often the most time consuming. Mov-
ing the data-structure creation to the main procedure meant that MUMPS could
perform that factorization once and reuse it, making direct solution of A¢p = p much

more efficient over multiple time steps.

3.5.5 Running PETSc on a subset of communicators

EPPIC exhibits nearly perfect weak scaling with respect to particle-related routines.
Weak scaling measures the ability of a parallel numerical algorithm to complete a
large version of a given problem in the same time as it would take to compute a smaller
version, provided it can use more parallel processors. Weak scaling differs from strong
scaling in that the later measures how much an algorithm speeds up when it can use
more processors. EPPIC’s nearly perfect weak scaling for particles arises from the
previously described particle parallelization scheme in which each process handles its

own PIC distribution. A global operation like the potential solver should exhibit at
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least good strong scaling if it is to be useful. The biggest pitfall is inter-processor
communication — the user must look for a sweet spot between providing enough
processors to divide the problem into manageable chunks but not so many that
inter-processor communication dominates the algorithm. For the research presented
in Chapter 5, the efficiency of MUMPS appeared to decrease for processor counts
larger than 256. However, keeping the processor count at or below 256 meant either
assigning more particles to each processor than it could fit in memory, or settling
for low particle counts. The first option is clearly unfeasible and the second option
resulted in systems with too much particle noise to discern the relevant physics. The
solution was to implement the ability to run PETSc on a subset of the total number
of processors. This allowed me to rerun the simulations presented in Chapter 5 with
much lower particle noise, and was fundamental to producing the results of that

chapter.
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Chapter 4

Coupled Growth and Evolution of
Farley-Buneman/Gradient Drift
Instabilities on Meter and Decameter

Scales in a Common Plasma Volume

4.1 Introduction

Type-Iirregularities exhibit a narrow spectrum. The early observations by Cohen and
Bowles (1967) led researchers to conclude that Type-I irregularities have a Doppler
shift that is constant with zenith angle, but more recent work suggests that their
Doppler shift varies with the cosine of elevation angle (Woodman and Chau, 2002;
Hysell et al., 2007). They occur due to the Farley-Buneman instability (FBI) when
the total electric field rises above a threshold level and causes the relative E x B drift
speed to exceed the acoustic speed by a factor slightly larger than unity. The electrons
Hall drift through collisionally demagenitized ions, which are Pedersen drifting much
more slowly than the electron Hall drift, and pull ions in the E x B direction in the
presence of density perturbations. The influence of supersonic electron drift causes
ion inertia to overcome plasma thermal pressure, causing areas of relative density
enhancement (dn/ng > 0) or depletion (dn/ng < 0) to become respectively more
enhanced or depleted, leading to instability. The instability threshold criterion is
that the wave phase-speed component parallel to the background electron drift exceed

the plasma acoustic speed by the factor 1 4 ¢, where 1, is the ratio of electron
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to ion mobilities and is typically 0.2 to 0.3 in the lower equatorial E-region (Dimant
and Oppenheim, 2004). Since this instability develops in the absence of background
density gradients, the electron drift speed is |Veo| = |Eo X Bg|/ B and the instability
criterion is equivalently a criterion on the background electric field. Although theory
predicts that type-I irregularities should have a phase speed proportional to the
electron drift speed, observations show that they saturate at the ion acoustic speed,
Cs. A kinetic treatment shows that the FB instability has a maximum growth rate
at a wavelength of a few meters (Oppenheim et al., 1996).

Type-II irregularities exhibit a broad spectrum at small Doppler shifts that in-
crease with zenith angle. They do not have a threshold electric field predicted by
linear theory in the way that type-I irregularities do, but they do require that magne-
tized electrons drift through collisional ions fast enough to produce the polarization
electric field that drives electrostatic irregularities. Type-II irregularities occur in the
presence of background density gradients when E - Vng > 0. A small perturbation
electric field (0E/Ey o dn/ng) causes regions of dn/ny < 0 to 0E x B drift into
regions of higher background density and regions of dn/ng > 0 to drift into regions
of lower background density.

Ronchi et al. (1991) asked what role large-scale waveforms play in the dynamics
of meter-scale irregularities and suggested that 3-m irregularities detected in radar
backscatter experiments may be passively advected with kilometer-scale waves. They
note “considerable experimental evidence that the characteristics of the short wave-
length two-stream irregularities depend upon the presence or absence of long wave-
length activity”. With the advent of improved radar technology at Jicamarca and
the new imaging techniques described in Hysell and Chau (2006), Hysell et al. (2007)
identified 3-m waves generated by, and advecting with, kilometer-scale gradient-drift

waves, consistent with the predictions of Ronchi et al. (1991). Hassan et al. (2015)
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presented a fluid model of the E-region designed to reproduce Type-I and Type-II
irregularities, but their simulation box extended only 100 m x 100 m, and did not
show the effect of large-scale waves on the generation of meter-scale irregularities.

The work presented in this chapter and the next shows numerical simulation
results that support the conclusions of Ronchi et al. (1991) and observations of Hysell
et al. (2007), and provide a connection between meter-scale density irregularities and
larger background wave perturbations. It shows that such large-scale density waves
must give rise to the meter-scale irregularities routinely observed by VHF radars in
the E-region equatorial ionosphere, even when the measured ambient electric field is
too small to drive pure two-stream turbulence.

This chapter is organized as follows: Section 4.2 provides background on the
theory of coupled FBI/GDI, section 4.3 describes the numerical model and simulation
methods, section 4.4 describes the simulation results, section 4.5 discusses the results

within the context of observations and theory, and section 4.6 concludes the chapter.

4.2 Theory

The production of meter-scale irregularities from large-scale perturbations can be
understood from linear theory. Consider a quasi-neutral, electrostatic, isothermal
plasma with inertialess electrons propagating perpendicular to the background mag-
netic field. In the E-region, around 100 km, electrons are magnetized while ions are
collisionally demagnetized. In terms of the gyrofrequency, Q; = |¢;|B/m,;, and colli-
sion frequency, v}, of electrons (j = e) and ions (j = i), that means x. = Q. /v, > 1
while k; = Q;/v; < 1. This work assumes geomagnetically quiet conditions with a
static vertical background electric field, Eg = EyZ, and meridional magnetic field,
By = —Byy. All dynamics occur in the plane perpendicular to By. Linearizing the

fluid equations for electrons and a single ion species in the rest frame of the ions and in



78

the presence of a simple vertical density gradient with scale length L = ng (dng/ dz)_l

leads to the dispersion relation

w—k Vg = ﬂ [w (iw — v;) — ik*C?] (1 _ A ) : (4.1)

[ Vek}L

where V g is the total electron drift velocity and C’f = Ky(T;+~.T.)/m; is the plasma
acoustic speed. Writing w(k) = w, (k) + iw;(k) and assuming |w;(k)| < |w,(k)|, the

oscillation frequency and linear growth rate are given by

k-V,
(A Qe wy 2 2 ~2 1
(K 2o L _ ey =, 4.2b
all = P[Pl oy (4.2

where ¢, = v.1;/Q.8; (Sudan et al., 1973; Rogister and D’Angelo, 1970). The
system will be unstable when w;(k) > 0.

Table 4.1 gives the parameter values used in this work, which presents three
simulations of the equatorial E-region ionosphere at 100 km altitude. All runs used
a constant horizontal magnetic field By = —2.5 x 107°§ T. The threshold electric
field magnitude for pure-FB instability in the absence of gradients is E. = ByCs(1 +
) ~ 11.2 mV/m. Pfaff et al. (1997) measured vertical DC electric field values of
approximately 9 mV/m in situ during a sounding rocket campaign and Moro et al.
(2016) inferred vertical DC electric field values in the range 0.51 to 20.67 mV /m,
with a mean diurnal value of 8.12£1.51 mV/m, from radar data. One goal of the
hybrid simulations was to examine the effects of the vertical background electric field,
so the three runs presented here are sorted by background vertical electric field. One
run used Fy, = 9 mV/m, consistent with the Pfaff et al. (1997) measurement around
100 km and the average value inferred by Moro et al. (2016); a second run used
Ey, = 12 mV/m, just above the threshold for FB instability; and a third run used

Ey. = 6 mV/m, a value far too low to trigger FB turbulence but still reasonable for
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the equatorial E region. This work ignores the zonal electric field, which is typically
an order of magnitude smaller than the vertical field. The geometry causes the
zeroth-order electron Ey x By drift to point from east to west (in the 2 direction).
All runs were seeded by the same initial density wave, as described in §4.4.1. The
initial density wave has a more complex structure than that which equation 4.1
assumes; §4.5.2 will address the more complex density gradient structure. The NRL
MSIS Atmosphere Model (Picone et al., 2002) provides neutral temperatures and
densities, and the following formulas from Schunk and Nagy (2004) provide the ion

and electron collision frequencies:

v = 4.34x 10y,

ve = 2.33x 10 'Mny, (1-1.21x 107'T,) T,

where ny, is the Ny density in cm™ and the constants have appropriate units to

1 Because this work does not attempt to sim-

make the units of v; and v, both s~
ulate a particular event, it uses parameters from 01 January 2000, 12:00 UT as a

representative case.

4.3 Numerical Model

This work employs a numerical code similar to the Electrostatic Parallel Particle-
In-Cell (EPPIC) code described in Oppenheim et al. (2008) and Oppenheim and
Dimant (2004). It incorporates a novel parallelized electrostatic potential solver
based on theory described in Oppenheim et al. (1996). This section first describes the
evolution of the collisional ion distribution, then describes the electrostatic potential
equation that arises due to quasi-neutrality with inertialess electrons.

For ion dynamics, this code follows the standard particle-in-cell (PIC) approach

(Birdsall and Langdon, 1991), solving the collisional ion momentum equation in two
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stages: Particles first move under the influence of the electric and magnetic fields,
using a standard Boris mover. They then collide with neutral particles, using the
statistical characteristics of a given neutral distribution with a prescribed collisional
algorithm to change the ion momentum. The simulation runs presented here used
a single ion species, NOT, and a single neutral species, N, since those are the
dominant species in the E-region ionosphere. Unlike the pure-PIC version of EPPIC,
the quasi-neutral version does not use an artificially inflated electron mass to relax the
time-step constraints set by the ion-to-electron mass ratio. It also takes ion dynamics
to be representative of overall plasma dynamics since n; ~ n, = n, but requires a new
approach to calculating the perturbed electric field via the electrostatic potential. A
description of that approach follows.

The hybrid PIC code treats electrons as an inertialess thermal fluid with temper-
ature T, and either an isothermal or linearly adiabatic equation of state. Treating
electrons as inertialess relaxes the pure-PIC requirement of resolving electron dynam-
ics on a time scale ~ 1/ f,. and on spatial scales ~ Ap,, and allows the simulation to
use the true value of the electron mass as a parameter. The assumption of inertialess
fluid electrons, coupled with the quasi-neutral condition (V -J = 0), leads to an
equation for the electrostatic potential in terms of density, n, ion flux, I'; = nv;, and

parameters of the electron fluid (e.g. v, and m,):

V- [neVe] =V - {ne (EO + kae@) + (1+x2) mZVeI‘Z- : (4.3)

e n €
where

65(1 _'%) and REE&
Ke 1 Ve

The hybrid model casts equation 4.3 as a linear system of centered finite-difference
equations which can be converted to a matrix equation of the form A¢ = f(n,T}).

The simulation solves the matrix equation for ¢ at each time step using routines from
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Table 4.1: Simulation Parameters for Chapter 4

Symbol Value

m 5.0 < 107 [kg]

Me 9.1 x 10~ [kg]

M, 4.6 x 10-% [kg]
T,=T =T, 220 [K]

V; 3.0 x 103 [Sil]

Ve 3.0 x 10* [s71]

Byo —2.5 x 1075 [T]

fom 6.0, 9.0, 12.0 [mV/m|

o 1010 [m—3

N, 2048 &cells]]

dx 0.25 [m]

N, 1024 [cells]

dz 0.25 [m]

N, 8192 [steps]

dt 5 x 1070 [s|

the Portable Extensible Toolkit for Scientific Computing (PETSc) (Balay et al., 2015,
1997). The specific numerical approach involves preconditioning the linear system
with hypre’s BoomerAMG algebraic multigrid method (Falgout and Yang, 2002),
then performing the actual solve with the restarted generalized minimal residual
(GMRES) method (Saad and Schultz, 1986).

Table 4.1 lists the cell width in each direction, dz and dz, the number of cells,
N, and N, the the time step, dt, and the number of time steps, ;. The simulation
spans 512 m in zonal (east-west) distance, 256 m in vertical distance, and 409.6 ms in
real time. The simulation used periodic boundary conditions. The following section

describes the initial density condition.

4.4 Results

This section presents the results of the three simulation runs, with background ver-
tical electric fields Ep, = 6 mV/m, 9 mV/m, and 12 mV/m. It first describes the
initial imposed density configuration and resultant potential, then shows snapshots

of the perturbed density and total electric field at the end of each run. Following
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those results, it describes the spectral power as a function of line-of-sight (LoS) angle

and phase velocity for 2-m, 3-m, and 8-m waves.

4.4.1 Density and electric field

Figure 4-1 shows the initial relative perturbed density (dn/ng) in color with electro-
static potential (¢) contours for all runs. The initial density consists of a Gaussian
bump with a full width at half maximum (FWHM) of 146 m, ranging from 8 x 10°
m~2 to 1.2 x 10! m~3. The bump is uniformly perturbed by a single period of the
function z(x) = —zpsin (27x/L,), where zp = 32 m and L, = 512 m. This serves
to mimic a large-scale wave seeding the system. The results presented here show
density and electrostatic potential shifted vertically by NN,/2 because the interest-
ing dynamics develop along the positive vertical density gradient and in the density
trough. The electrostatic potential results from solving equation 4.3; its shape is
determined by density gradients (second term in the RHS of equation 4.3), and the
relative drifts of electrons and ions (first and third terms in the RHS of equation 4.3).
The density gradients lead to ambipolar electric fields that add to or subtract from
the vertical polarization electric field. The shape of the large-scale seed wave creates
a zonal polarization that modifies ion and electron drifts to enforce V -J = 0. The
precise shape of ¢ for each run depends on FEj,, but for the early stages of each run
(i.e. before turbulence develops), all the runs appear similar.

Figure 4-2 shows the final dn/ng for each run. In all panels, waves with wave-
lengths on the order of ten meters grow along the positive vertical density gradient.
This result is consistent with local linear theory, which predicts that gradient-drift
waves will grow when Ey - Vn > 0. The most obvious difference among these three
figures is the increasing growth of small-scale density perturbations in the central
density trough with increasing Ej,. Here, “small-scale” implies perturbations on the

order of a few meters as opposed to both the ubiquitous tens-of-meter gradient-drift
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Figure 4-1: Initial configurations of relative perturbed density
(0n/ng; color) and electrostatic potential (¢; contours). The initial
density consists of a Gaussian bump centered at z = 128 m and mod-
ulated by a 512-m wave. The electrostatic potential is the result of
solving equation 4.3 at the first time step.



84

waves that grow along the positive vertical density gradient and the 512-m seed
wave. Movies included as supplemental information show the evolution of relative
perturbed density for each simulation run.

Figure 4-3 shows the final total electric-field magnitude (Er = |Ey — V¢|) in
grayscale for each run, with contours of electrostatic potential (¢) overlaid in color.
The grayscale range is the same for all plots and spans 0 to twice E. ~ 11.2 mV/m.
The color contours span + max(|¢|), with the + max(|¢|) in red and —max(|¢|) in
blue; the actual values are max(|¢|) = 0.28 V for Ey, = 6 mV/m, max(|¢|) = 0.45
V for Ep, = 9 mV/m, and max(|¢|) = 0.54 V for Ey, = 12 mV/m. In all three runs,
the electric field peaks near the center of the simulation domain, within the density
trough, coincident with small-scale wave growth in the £y, = 9 mV/m and 12 mV/m
runs. Although the peak value of Ep changes with different values of Ej,, the shape
of ¢ determines the location of the peak. The exact values of ¢ depend on Eg via
the ion and electron drifts, so the overall shape differs among runs, but the location
of the peak in —V¢ lies in roughly the same place for all three runs. This suggests
that the large-scale density configuration plays a more important role in determining
the peak location than do the relative drifts.

When FB irregularities develop for Ey, = 9 mV/m and 12 mV/m, they develop
in the center of the simulation, in the density trough at the western edge of the upper
large-scale density wave. In this region, —V¢ has its greatest magnitude and points
from lower-right to upper-left. Note that, due to periodic boundary conditions, the
right edge of the simulation box wraps around to the left edge. Shifting the domain
zonally (x direction) by 256 m would represent a reversal of the perturbing sine wave
that effectively places the density trough at the eastern edge of center. In that way,
these runs also account for the case in which the large-scale density wave is reversed.

Figure 4-4 shows the average total electric field within a 64 m x 64 m box in the
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Figure 4-2: Final relative perturbed density for each run: (a) Ey, = 6
mV/m, (b) Ey, =9 mV/m, (¢) Ep, = 12 mV/m. In all runs, gradient-
drift instability develops along the positive vertical gradient. For Ey, =
9 mV/m and 12 mV/m, Farley-Buneman instability develops in the
central density trough, with faster growth for Ey, = 12 mV/m.
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Figure 4-3: Final total electric field (grayscale) and potential (color
contours) for each run: (a) Ep, = 6 mV/m, (b) Ep. = 9 mV/m,
(¢) Ep. = 12 mV/m. The grayscale bar shows values in multiples of
the threshold electric field for Farley-Buneman instability, E. ~ 11.2
mV/m. In all runs, the total electric field peaks in the central density
trough. For Ey, = 9 mV/m and 12 mV/m, the total electric field
is well above E.. The contours span £ max(|¢|), red to blue, where
max(|¢|) is (a) 0.28 V, (b) 0.45 V, (c) 0.54 V.
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center of the simulation domain as a function of time for the first 25.6 ms of each run.
This box captures the area where |V¢|, and thus E7, is greatest during the beginning
of each run. The initial drop in average electric field is an artifact of start-up. The
plot shows that Ep < E,. for the Ey, = 6 mV/m run whereas Er > E, for both the
Ep, =9 mV/m and Ey, = 12 mV/m runs. Note that E7p is still growing at 25.6 ms
in the Ey, = 12 mV/m run whereas it levels off almost immediately in the other two
runs. The direction of Er for each run, which is given by the counterclockwise angle
from +# (i.e. tan~!(E,/E,)) and is nearly constant over the time span of Figure 4-4,
is 101° (6 mV/m), 107° (9 mV/m), and 107° (12 mV/m). Thus a super-threshold
total electric field arises very quickly in the density trough along the rising edge of
the density wave for Ey, > 9 mV/m, causing electrons in that region to E x By
drift at super-threshold speeds at approximately 17° from purely westward, thereby

triggering FB turbulence in the density trough.

4.4.2 Spectra

This section presents results from a spectral analysis of each run, at three wave-
lengths: 3, 8, and 2 m. The first wavelength corresponds to what the 50-MHz radar
at Jicamarca should observe via coherent back scatter. The second wavelength repre-
sents Type-1I irregularities driven directly by the 512-m initial density perturbation
and is near the wavelength observed by Patra et al. (2005) with the 18-MHz radar
at Trivandrum, India. The third wavelength corresponds to peak growth of Type-I
turbulence due to pure FB instability in the 9-mV/m and 12-mV/m runs. Although
this wavelength does not lend itself immediately to comparison with observations
(the authors are not aware of a 75-MHz E-region radar), it is an interesting case be-
cause it represents the combined growth of Type-I and Type-II irregularities. Though
all simulations show characteristics of Type-II irregularities at all wavelengths, the

12-mV/m run develops a primary high-speed population of Type-I irregularities at
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Figure 4-4: Average electric-field magnitude in the central 64 x 64
m for the first 25.6 ms. For Ey, = 6 mV/m (black trace), the average
electric field does not rise above the threshold for Farley-Buneman
instability, whereas it does for Fy, = 9 mV/m and 12 mV/m (blue
and green traces).
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2 m and a secondary high-speed population at 3 m. The end of this section briefly
discusses these high-speed populations.

Figure 4-5 shows the normalized spectral power as a function of LoS angle, 6,
(counterclockwise from +) and phase velocity, V,, = w/k, for 3-m waves. The color
in panel (a) shows the spectral power normalized to the peak value at each angle
for the Fy, = 6 mV/m run and the white line indicates the mean phase velocity,
(Vpn). Panel (d) shows spectral width, AV}, (i.e. FWHM), for the same run. Panels
(b) and (e) show the same quantities for the E;, = 9 mV/m run, and panels (c)
and (f) show those quantities for the Ep, = 12 mV/m run. In all runs, the mean
phase velocity varies approximately as (Vp,) ~ —Ep,cosf. For E;, = 6 mV/m,
—0.5Cs < (Vpn) S 0.5C; for Ep, = 9 mV/m, —0.7Cs; < (Vpn) S 0.7C5; and for
Ey, =12mV/m, —0.9C; < (V) < 0.9Cs. The spectral width approximately equals
(Vo) near § = 0° and 6 = 180°, and increases as 6 approaches 90°.

Figure 4-6 shows the normalized spectral power as a function of angle for 8-
m waves, with panels corresponding to the same quantities as in Figure 4-5. The
trends are similar to those of 3-m waves: (V,n) ~ —Ep,cos, AV, ~ (V,;) near
6 = 0° and 6 = 180°, and AV}, increases as 6 approaches 90°. For E;, = 6 mV/m,
—0.4Cs S (Vo) S 0.4C; for Ey, = 9 mV/m, —0.5C; < (Vpn) S 0.6C5; and for
Ey, =12 mV/m, —0.8Cs S (Vo) S 0.7C.

The fact that (V) < Veo/(1+1 1) when 6 = 0° in Figures 4-5 and 4-6 represents
a departure from linear theory (equation 4.2a). A likely explanation for the relatively
low mean phase velocities is that the simulated observer with LoS at  sees a mix of
linearly growing waves and nonlinear turbulence, including mode coupling and wave
broadening effects. A full description of the turbulent state of combined FBI/GDI is
beyond the scope of this chapter; instead, the authors refer the reader to St.-Maurice

and Hamza (2001), Drexler et al. (2002), and references therein. Regardless of the
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Figure 4-5: Spectral power and width at 3 m as a function of phase
velocity (V) and angle from +2, (i.e. Eg x By): (a) & (d) Eyp, = 6
mV/m, (b) & (e) Fo, = 9mV/m, (c) & (f) Ep. = 12 mV/m. The white
line in (a)-(c) shows the mean phase velocity and the sign convention
is such that negative velocities imply waves traveling away from an
observer with line-of-sight 6.
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nonlinear mechanisms at work, turbulent perturbations should not travel significantly
faster than the linear phase velocity predicted by equation 4.2a, so any contributions
from nonlinear effects only act to decrease the mean value.

The fact that (V) differs in magnitude between 3-m and 8-m waves represents
an additional departure from linear theory, which predicts a phase velocity indepen-
dent of wavelength. This is not surprising, since Figure 4-2 clearly shows a turbulent
system. The trend toward lower peak (V,;) continues to longer wavelengths (not
shown), suggesting that as waves grow to the scale size of the gradient, they interact
directly with the slowly moving large-scale wave rather than propagating perpendic-
ular to the local gradient. This non-local interaction slows waves as a function of
wavelength.

Figure 4-7 shows the normalized spectral power as a function of angle for 2-m
waves, again in the style of Figure 4-5. These waves differ substantially from 3-m
and 8-m waves in that, for Fy, = 12 mV/m, the spectral-power distribution in panel
(c) skews toward V), ~ —425 m/s for 6 € [0°,30°]. Beyond 6 = 30°, (V,,) increases
linearly until 6 ~ 150°, at which point it is nearly constant over 6 € [150°,180°].
Likewise, panel (f) shows that AV, is not symmetric about # = 90°, with the
steeper slope for 0 < 6 < 90 caused by the fact that the spectral-power distribution
skews toward the narrow high-speed component up to # ~ 30°. The next paragraph
further discusses the asymmetric behavior of 2-m waves in this simulation.

Figure 4-8 illustrates the asymmetry in Figure 4-7: Panel (a) shows the spectral
power in 2-m waves for each run, at = 15°, averaged over a 2-degree beam. The
angle # = 15° corresponds to roughly the direction of E x By in the central density
trough, where E is the total electric field (cf. the discussion of Figure 4-4 in §4.4.1).
Each curve was normalized to the peak power of the 12-mV/m curve. Note that

the horizontal axis is not symmetric about V,, = 0 m/s. The relative amplitudes
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94

of 2-m waves in the 6-mV/m and 9-mV/m runs are less than 10% of the 12-mV/m
run and the skewed shape of the 12-mV/m run is clear. Unlike the broad spectra
in the 6-mV/m and 9-mV/m runs, the 12-mV/m run generates a broad component
centered near -300 m/s and a narrow component centered near -425 m/s. Panel
(b) shows the spectral power of 2-m, 3-m, and 8-m waves for the 12-mV/m run.
The 8-m curve is broad and nearly symmetric, but the 2-m and 3-m curves show an
asymmetry that is not clear in Figure 4-5, namely, an inflection point near 400 m/s.
This suggests a second distribution with higher negative velocity. The high-speed 3-
m population may result from the locally enhanced electric field or it may result from
mode coupling. Such mode coupling probably takes the form of an inverse cascade
process (Oppenheim et al., 2008) in the region where the pure FB instability creates
2-m waves, but may also include contributions from a forward cascade process related
to the gradient-drift instability. The growth of 2-m Type-I irregularities represents a
parametric instability in which the large-scale seed wave drives meter-scale turbulence
by enhancing the electric field. In a larger simulation (beyond the capabilities of the
present simulator), we expect that a similar parametric instability could generate

3-m waves, as observed as Type-I echoes (Hysell et al., 2007).

4.5 Discussion

This section first describes similarities between simulation results and observations
of coherent echoes reported in the literature, then connects results to a more general

theory of coupled FBI/GDI growth than that presented in §4.2.

4.5.1 Connection with observations

This work not only represents the first kinetic simulations of coupled FBI/GDI but

also lends insight to observations of E-region plasma irregularities observed by radars.
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Patra et al. (2005) reported east-west asymmetries in Type II irregularities observed
with an 18-MHz radar located near the magnetic equator, and attributed the asym-
metry to the tilt in kilometer-scale primary waves at E-region altitudes. Hysell
et al. (2007) connected east-west asymmetries with up-down Type I asymmetries
observed with a 50-MHz radar and noted that the depleted phases (i.e. troughs) of
kilometer-scale primary waves should have larger electric fields than the correspond-
ing enhanced phases (i.e. crests), leading to observations of larger line-of-sight drifts
and preponderance of Type I echoes in westward-aligned beams. The density results
presented in Figure 4-2, while not directly comparable to kilometer-scale processes,
are consistent with those observations and the total electric field results presented
in Figure 4-3 account for the development of Type-I irregularities within the de-
pleted region westward of a large-scale wave. In that region, the positions of density
troughs and crests modifies the electrostatic potential in a manner that enhances the
polarization electric field. This adds to the background and ambipolar electric fields
within the density trough between the two large-scale density crests. These results
also support the conclusion by Ronchi et al. (1991) that long wavelength activity
affects the characteristics of short wavelength two-stream irregularities. In the work
presented here, long wavelength activity creates the electrostatic potential field that
drives short-wavelength two-stream irregularities within the density trough between
long wavelength waves Sudan et al. (1973). It is worth noting again that Figure
4-7c shows a thin band of relatively high normalized power near V,;, ~ —425 m/s
for 0° < 0 < 30°, suggesting that two-stream irregularities have a constant V,,, over
this range. This result is consistent with early claims that the phase speed of Type-I
irregularities is constant with zenith angle (Cohen and Bowles, 1967). Furthermore,
(Vo) (the white line) never exceeds £C; ~ 350 m/s, suggesting that the mean phase

speed saturates at Cy. This claim is also consistent with observations (Sudan, 1983).
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4.5.2 Dispersion relation

An analysis of instability growth in these simulations must account for magnetized
electrons and unmagnetized ions with arbitrary wavevector in the presence of a 2-D
background gradient. Sudan et al. (1973) derived the two-fluid dispersion relation
for an isothermal, electrostatic, quasi-neutral plasma with a strictly vertical back-
ground gradient and static horizontal background magnetic field. The appendix of
Fejer et al. (1975b) shows the derivation of a similar two-fluid dispersion relation, al-
lowing for plasma production and an arbitrary wavevector. Sudan (1983) developed
a nonlinear theory of Type II irregularities from which he obtained a linear disper-
sion relation similar to that given by Sudan et al. (1973). Dimant and Oppenheim
(2011Db) derived a fluid dispersion relation for the combined FBI/GDI with arbitrary
magnetization, gradients, and wavevector, including production and recombination
effects. Makarevich (2016) presents a general dispersion relation for E- and F-region
instabilities that makes no assumptions about altitude, wavevector, or background
density gradient.

Equation A29 with equations A34 and A35 in Dimant and Oppenheim (2011b),
under the additional assumptions k = 0 and x; < 1, yield a local linear growth rate
appropriate to the present work:

o l(wz_kgcs>_Qe<k><z3).G

(K) =
wilk) L+ |y vkt

wr |, (4.4)

The symbols ¥, v;, ve, e, w,, and C have the same meanings as in equations 4.2;
b is a unit vector parallel to the magnetic field (—g in the present geometry) and
G = ny;'Vny. Note that some of the notation used here differs from that used in
Dimant and Oppenheim (2011b) for the sake of consistency.

Figure 49 shows w;(k) from equation 4.4 evaluated numerically for 2-m, 3-m,
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and 8-m waves propagating at § = 15°, given the initial density and total electric
field in each run. In the calculation of w, (k) for w;(k), V. includes the Hall drift
and the diamagnetic drift. Panels (a), (b), & (c¢) show that w;(k) is non-positive
everywhere for 2-m waves when FEy, = 6 mV/m, and becomes increasingly positive
with increasing Fj., as expected. The location of w;(k) > 0 is not exactly cospatial
with the peak in FB irregularities in Figure 4-2¢, which coincide with a more localized
region centered on the peak in Ep. The reason is two-fold: First, 2-m waves develop
quickly along the entire positive vertical density gradient of the background wave
and are less severely damped near the central trough than longer-wavelength waves.
Nonlinear wave interaction along the density gradient produces cascading features
composed of a range of wavelengths from a few to tens of meters, effectively washing
out the 2-m waves. Second, the preceding fluid analysis does not capture the fact
that the kinetic FB growth rate peaks at a few meters. In the region of enhanced
electric field, the true growth rate (i.e. including kinetic effects) will be higher for
waves with wavelengths of a few meters.

There are also trends for fixed Ey, and varying wavelength. Panels (a), (d), &
(g) show that, in the run with Ey, = 6 mV/m, w;(A = 8 m) > w;(A = 3 m) >
wi(A = 2 m) with w;(A = 2m) < 0. This is consistent with Figure 4-2a, in which
long-wavelength gradient-drift turbulence grows along the positive vertical density
gradient of the background wave. For Ey, = 9 mV/m, panels (b), (e), & (h) show
that w;(A = 8 m) = w;(A = 3 m) =~ w;(A = 2m) > 0 along the positive gradient
near the central region but w;(A = 8 m) > w;(A =3 m) > w;(A =2 m) =~ 0 away
from the center. This is consistent with the increased growth of meter-scale waves
in the central region and the predominance of longer wavelengths near the edges,
but does not exactly predict the smallest-scale wave growth in the central trough

for the reasons described above. For Fy, = 12 mV/m, panels (c), (f), & (i) show
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Figure 4-9: Local linear growth from equation 4.4 for waves traveling
at = 15° from +Z. Rows (top to bottom): A =2 m, A = 3 m, and
A = 8 m. Columns (left to right): Ey, = 6 mV/m, Ey, = 9 mV/m,
and FEy, = 12 mV/m.

that w;(A =2 m) > w;(A = 3 m) > w;(A = 8 m) > 0 along the positive gradient.
Again, the prediction made by the fluid growth rate is consistent with wave growth
along the positive density gradient but does not predict meter-scale FB turbulence
in the central trough. The reader may benefit from comparing Figure 4-9 to the

supplemental movies of relative perturbed density for each simulation run.

4.6 Conclusion

This chapter presents a novel parallelized hybrid quasi-neutral plasma simulation de-
signed to simulate E-region turbulence. The numerical model treats ions as particles
via a PIC method while treating electrons as an inertialess thermal fluid, which pre-
cludes the need for an artificially large electron-to-ion mass ratio. The model does
not keep track of a distribution of electrons. Therefore, it cannot capture kinetic

effects of electron wave-particle coupling but does not need to resolve the Debye
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length or the inverse plasma frequency. It does not currently include electron ther-
mal physics, but future versions will. The chief advantage of this simulation is that
it is well suited to studying meter- and decameter-scale turbulence in the presence of
hundred-meter- to kilometer-scale density waves. The results of this work represent
the first simulations of the coupled Farley-Buneman/gradient-drift instability in the
equatorial E-region ionosphere. While the simulations presented here span only 512
m X 256 m, they attempt to reproduce VHF radar observations of backscatter from
meter-scale density irregularities in the presence of background waves that span a
few kilometers. This work also introduces an electrostatic potential solver that uses
algebraic multigrid to precondition an iterative method capable of handling the large
off-diagonal elements caused by electron magnetization.

The main results are:

1. Simulations with zeroth-order vertical electric fields of 6 mV/m, 9 mV/m, and
12 mV/m produce gradient-drift turbulence in regions that satisfy the linear

condition for instability.

2. The total electric field in the density minimum is large enough to drive Farley-
Buneman turbulence even when the zeroth-order vertical field is below the

turbulent threshold.

3. Waves develop in all runs and travel westward along the background positive

density gradient with phase velocities below the plasma acoustic speed.

4. Wave power spectra of 2-m, 3-m, and 8-m waves show characteristics of Type-I1

irregularities in all runs.

5. When the background electric field is 12 mV/m, wave spectra at 15° from
E( x By show a distinct Type-I population at 2 m and a secondary Type-I-like

population at 3 m.
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6. The Type-I population has roughly constant phase velocity over a 30° range in

LoS angle and the mean phase velocity peaks at the plasma acoustic speed.

The results of this hybrid simulation can be used to interpret radar observations of
meter-scale density irregularities propagating with a vertical component and an east-
west asymmetry. The east-west asymmetry arises as a combination of the density
gradients introduced by the background density wave and the electron-drift effects
caused by the total electric field and ambient magnetic field in the background density
minima, embodied in the quasi-neutral electrostatic potential equation. The presence
of density crests and troughs produces a polarization electric field that adds to the

background and ambipolar electric fields, driving FB turbulence.
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Chapter 5

Secondary Farley-Buneman Instability
Driven by a Kilometer-Scale Primary
Wave: Anomalous Transport and

Formation of Flat-Topped Electric Fields.

5.1 Introduction

Chapter 4 and Young et al. (2017) presented numerical simulation results showing the
coupled growth of FBI and GDI in a plasma characteristic of the equatorial E-region
at 100 km altitude during daytime. Those results demonstrate the interplay between
both instabilities in the presence of ionization gradients and a background electric
field, as well as how a large-scale density perturbation can create a polarization
electric field that drives the total electric field above the threshold for FBI.
Although Young et al. (2017) showed that the same zeroth-order plasma at-
tributes (e.g., large-scale wave, background fields, and charged-neutral collision fre-
quencies) can produce spectra exhibiting both types of irregularities defined by early
researchers, it did not fully explain observations of meter-scale irregularities presum-
ably produced by secondary FBI in the presence of kilometer-scale primary GDI
waves (Hysell et al., 2007). Sudan et al. (1973) proposed a theoretical mechanism for
generating meter-scale waves from kilometer-scale GDI waves, via excitation of sec-
ondary GDI and FBI in the frame of the primary wave. Kudeki et al. (1982) demon-

strated the clear presence in Jicamarca data of kilometer-scale structures despite
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the fact that the Jicamarca 50-MHz radar observes only 3-m waves. Those authors
showed that it is not unreasonable to observe east-west drift velocities much smaller
than the ion acoustic velocity while simultaneously observing vertically propagating
type I echoes. They also discussed how the linear theory differs for long wavelength
waves.

Rocket observations by Pfaff et al. (1987b) showed density irregularities around
103-106 km in altitude consistent with vertically propagating 2- to 3-m FBI waves
driven by a large-scale wave electric field. They found that their in situ observations
were consistent with both the Sudan et al. (1973) theory and concurrent ground-
based observations with the Jicamarca 50-MHz radar. Kinetic simulations and a
simplified fluid simulation by Oppenheim (1997) demonstrated how wave-driven cur-
rents from the FBI can modify large-scale GDI and reproduce the in-situ electric
fields measured by Pfaff et al. (1987b). Two-fluid simulations by Ronchi et al. (1991)
produced evidence that the electric fields in kilometer-scale waves dominates meter-
scale dynamics so that the 3-m waves observed in radar backscatter experiments
essentially trace out the kilometer-scale dynamics.

This chapter presents results from a numerical simulation of E-region plasma
in which a primary 1024-m wave, meant to mimic a single GDI wave, gives rise
to secondary FBI waves with wavelengths of a few meters. The meter-scale waves
drive a non-linear plasma transport that significantly reduces the large-scale wave
electric field. The presentation proceeds as follows: Section 5.2 outlines the linear
local theory relevant to the FBI and GDI, Section 5.3 describes the numerical model
underlying the simulations, Section 5.4 shows results from the simulations, Section
5.5 discusses the physical implications of the simulation results and their connections

to observations, and Section 5.6 concludes the chapter.
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5.2 Theory

The FBI and GDI are collisional electrostatic plasma instabilities that propagate
nearly perpendicular to the background magnetic field. The FBI, also called the
modified two-stream instability, derives its free energy from the increased ion inertia
that results when electrons stream through ion density perturbations faster than the
local plasma acoustic speed. At subsonic electron drift speeds, ion thermal pressure
smooths out any localized density perturbations; above a critical threshold drift
speed, ion inertia imparted by the streaming electrons overcomes thermal pressure
and causes density perturbations to steepen. See Dimant and Sudan (1995¢) for a
more detailed description of the physical nature of the FBI.

The GDI derives its free energy from the presence of density gradients aligned with
the ambient electric field. In the frame of a naturally occurring density perturbation,
the polarization electric field, 0E, points parallel or antiparallel to the direction
of propagation, depending upon whether the relative perturbed density, dn/ng, is
positive or negative. The presence of the magnetic field, By, causes plasma in wave
crests to 0E x By drift into regions of lower background density while plasma in
wave troughs drifts into regions of higher background density. Both processes lead to
an increase in the magnitude of én/ng, producing the instability. See, for example,
Section 2 of Dimant and Sudan (1997) for a more detailed description of the physical
nature of the GDI.

These two instabilities arise in collisional E-region plasmas and their threshold
criteria — a supersonic electron drift for the FBI and a gradient parallel to the ambient
electric field for the GDI — can easily occur in the same plasma volume. The stan-
dard linear analysis of the combined FBI/GDI assumes a quasineutral, isothermal
plasma with inertialess, magnetized electrons and collisionally demagnetized ions. In

keeping with standard development of FBI/GDI theory, this work will employ the
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magnetization parameter for species j, k; = §;/v;, where Q; is the absolute value
of the cyclotron frequency and v; is the average frequency of collisions with neu-
tral particles. The assumptions on electron and ion magnetization in the E-region
ionosphere correspond to k. > 1 and k; < 1.

Linearizing the continuity and momentum equations for electrons and a single
species of ions, both subject to the above assumptions and in the presence of a
vertical density gradient with scale length L = ng(2) [dno(z)/dz]"", leads to the

following dispersion relation:

w—k-ud:% w (iw — v;) — ik*C?] (1—?;) (5.1)

where uy = ujp — ue is the zeroth-order plasma drift, with u; ) representing the

ion and electron drift velocities, ¥, = (/wie)_l is the anisotropy factor, and C =

\/ Kp (T; + T.) /m; is the plasma acoustic speed. Writing w = w, + iw; and assuming

|wi| < |w,| yields expressions for the phase frequency and growth rate:

k- Uq
r = 5.2
“ 1+, (5.2)
(0 Re 2 2 2 1
;= — —k — .2b
w; Tr o, w,,kL—l—(wr (Js) | (5.2b)

See Rogister and D’Angelo (1970) and Sudan et al. (1973) for more thorough
developments of similar expressions. Fejer et al. (1975b) developed a two-fluid dis-
persion relation that allows for plasma production and an arbitrary wave vector. Di-
mant and Oppenheim (2011b) derived a general fluid FB/GD dispersion relation for
arbitrarily magnetized plasmas (i.e., at arbitrary altitude), including arbitrary wave
vector, gradients, and production and recombination. Makarevich (2016) developed a
similar dispersion relation as that derived in Appendix A of Dimant and Oppenheim

(2011b) without assuming the same long-wavelength, low-frequency limit. However,
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a two-fluid dispersion relation becomes inappropriate as the wavelength approaches
the ion mean-free-path, where ion Landau damping becomes significant.

Dimant and Sudan (1995a,b, 1997) also predicted an electron thermal instability
(ETI) using a fully kinetic approach and Dimant and Oppenheim (2004) extended
that theory to explain ion thermal instability (ITI) effects in simulations by Op-
penheim and Dimant (2004). The ETI produces waves with wavelengths of tens of
meters in the upper D/lower E region (cf Blix et al. (1996)), where the plasma does
not favor FBI and GDI growth. The ITI, on the other hand, produces waves with
wavelengths of a few meters in the same regime as the FBI, leading to interaction
between the two. The most notable effect of the combined FBI/ITI instabilities is
in waves turning away from the Eqg x Bq direction, which is the most favorable for
pure FBI growth.

Equations 5.2a and 5.2b provide a sufficient starting point for analysis of the
present work because the present work ignores production and recombination, as-
sumes a vertical background density gradient, and, to first order, comprises two
essentially one-dimensional systems at right angles to each other. This work also as-
sumes isothermal fluid electrons and does not produce significant zeroth-order heating
in the (kinetic) ions. The absence of thermal effects in equations 5.2a and 5.2b only

fails to capture small corrections to ion dynamics, mostly related to wave turning.

5.3 Numerical Model

The simulations presented in this chapter employed a hybrid version of the Electro-
static Parallel Particle in Cell (EPPIC) code described in Oppenheim and Dimant
(2004); Oppenheim et al. (2008), using the parallel potential solver described in
Young et al. (2017). The hybrid version of EPPIC improves on the simulation code

described in that work by taking full advantage of EPPIC’s domain decomposition
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scheme. The model assumes quasineutrality between inertialess electrons and one
species of ions. In the absence of sources and sinks, the quasineutrality assumption
implies that the current, J, must be divergence free (V -J = 0). For singly ionized
ions, this simplifies to V- (I'; — I'.) = 0, where I'; . are the ion and electron. In other
words, the flux divergences of the two species balance, leading to an equation for the

electrostatic potential:

T, Y
n

V- [neve] =V - {ne (Eo + > + (1+#2) mz”eri}, (5.3)

where k. is the electron magnetization and € is a tensor that captures the effect of
electron magnetization on the plasma drift:

Q. —
ke = — and ez(l "ie)

Ve Ke 1

The numerical model discretizes Equation 5.3 using finite differences and solves
it on a Cartesian grid subject to periodic boundary conditions. The current ver-
sion of hybrid EPPIC employs the MUItifrontal Massively Parallel Solver (MUMPS)
(Amestoy et al., 2001, 2006) within the Portable Extensible Toolkit for Scientific
Computing (PETSc) (Balay et al., 2015, 1997) to solve the resultant linear system.

Table 5.1 gives the values of relevant parameters used in this work. The simu-
lation treats both ion-neutral and electron-neutral collisions elastically. The former
acts approximately as a Maxwell molecule interaction, with the relevant collision
frequency, v;, from Equation 4.146 (and Table 4.4) in Schunk and Nagy (2004). The
latter contributes to the RHS of Equation 5.3 as a constant fluid parameter, with
the relevant collision frequency, v,, from Table 4.6 in Schunk and Nagy (2004). The
dimensionless parameter v , which affects both phase speed and growth rate, varies
with altitude primarily due to the dependence of v, and v; on neutral density (Dimant

and Oppenheim, 2004).
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The simulation runs presented here span roughly 1 km by 250 m in the plane
perpendicular to By at the magnetic equator. They have an initial density in the
form n(z, z) = ng [l + Acos (2mz/L,)], where ng is the ambient plasma density and
A is an amplitude relative to ng. In other words, density is uniform in the vertical
direction (2) and sinusoidal in the zonal direction (), representative of a single period
of a large-scale wave typical of the linear-stage GDI.

The work by Kudeki et al. (1982) determined the dominant wavelength of km-
scale waves to be in the range 2-6 km, based on measurement of the east-west drift
velocity, combined with the observed period of oscillation. The roughly 1-km primary
waves used in this work represent the current spatial limit of our simulations, which
required 15 hours on 1024 cores for each run. Since the perturbed electric field of the
primary wave depends predominantly on the amplitude of perturbed density, using a
1-km primary wave suffices to elucidate the cross-scale coupling at the heart of this
analysis, despite falling short of the range of observed wavelengths.

This work presents ten runs at five effective altitudes. At each altitude, one
run had a primary-wave amplitude of five percent of the background plasma density
(collectively, “the five-percent runs”) and the other had a primary-wave amplitude of
ten percent of the background plasma density (collectively, “the ten-percent runs”).
The simulated 1, parameter determines the effective altitude of each pair of runs
(Dimant and Oppenheim, 2004). Formally, the value of ¢, depends on collision and
cyclotron frequencies of all plasma species in the system of interest (cf. Madsen et al.
(2014)); in these runs, all relevant parameters except the ion collision frequency, v;,
are constant. This work uses a set of five baseline simulation runs with no density
gradients and an ambient electric field of 6 mV/m — too low to drive the FBI —
to determine the effective ion collision frequency from ion Pedersen and Hall drifts.

The psuedo-randomness inherent in the PIC collision algorithm results in a simulated
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Table 5.1: Simulation Parameters for Chapter 5

Symbol Value Unit Name

m; 5.0 x 107%° kg ion mass

Me 9.1 x 1073 kg electron mass

My, 4.6 x 10726 kg neutral mass

T; 220 K ion temperature

T, 220 K electron neutral temperature

T, 220 K neutral temperature

ngo 1010 m~3 plasma density

Vi 5900, 5100, 4200, 3400, 2500 571 ion-neutral coll. freq.
Ve 6.0,5.0,4.0,3.0,2.0 x 10* st electron-neutral coll. freq.
h 96,98,100,102,104 km effective altitude

By —25x107° T magnetic field

E. 9.0 mV/m vertical electric field
. ~ 1 km zonal box length

dx 0.5 m zonal cell size

L, ~ 0.25 km vertical box length

dz 0.5 m vertical cell size

L, ~ 0.3 S real-time span

dt 10~° s time step

value of v; is not necessarily equal to the input value for a given run. This work reports
the simulated values of v;, and the resultant simulated values of v, , because they
better represent the physical system of interest. The simulated 1, values for the five
sub-threshold runs are approximately 1.01, 0.72, 0.48, 0.29, 0.14. Following Figure
2 of Dimant and Oppenheim (2004), these values of ¥, set the effective altitudes of
each pair of runs at 96 km, 98 km, 100 km, 102 km, and 104 km, respectively.
Figure 5-1 shows the initial plasma density configuration for all runs. The simula-
tion uses a particle rejection method to distribute ions so that their initial condition
mimics one period of a kilometer-scale wave. This kilometer-scale primary wave rep-
resents a simplified version of GDI growth in the daytime E-region plasma gradient.
The quasineutral model assumes n, ~ n; = n and thus treats the ion density as the
total density. The white square demarcates a 128 m x 128 m box in the primary-
wave trough. Figures 5-6 and 5-7 will refer to these boxes. The simulation outputs
density as relative perturbed density, dn/ng = [ni(x, z,t) — ng] /ng, where nq(x, z, t)

is the dynamic density that the simulation PIC method calculates at each time step
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Figure 5-1: Initial plasma density configuration for all runs. Density
is a sine about ny = 10 m™2 in the east-west direction, with an
amplitude of 5% or +10%. This configuration mimics a single period
of a large-scale GDI wave. The white box represents a 128-m x 128-m
patch shown in Figures 5-6 and 5-7.

and ng is a fixed input value. The FBI growth does not depend on the total density,
provided the density satisfies the condition wy;/v; > 1 (Rosenberg and Chow, 1998).

The background electric field, £, = 9 mV/m, is vertical and the background
magnetic field, B,y = 2.5 x 107° T, points out of the page. The zonal direction
points from east on the left to west on the right. Linear theory predicts that a
polarization electrostatic field, JE will develop in phase with the perturbed density.
Given the initial density configuration shown in Figure 5-1, this means there will
be an eastward J0F, in the central large-scale trough and an westward dF, in the
corresponding crests.

Figure 5-2 shows the initial magnitude of the total electric field, |E;| = (E%, + 5E§)1/ 2,
and its angle from due west, 6 (E;) = tan~! (E,o/dE,), after smoothing density vari-
ations smaller than 10 m and averaging vertically. Smoothing brings out the large-
scale structure of the initial field components. The vertical average is an appropriate
representation of the 2-D initial configuration because the only variation is due to
the large-scale density wave. For the purpose of this work, “initial” means the state

of the simulation after approximately one collisional time, 7; = 1/v;. The quasineu-
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Figure 5-2: Total electric field at ¢ ~ 1/y; for all runs. The solid
traces correspond to ten-percent runs; the dashed lines correspond to
five percent runs. For both amplitudes, red represents 96 km, black
represents 98 km, green represents 100 km, blue represents 102 km,
and magenta represents 104 km. Panel a: The magnitude of the total
electric field, |E;| = \/E% + dE2. Panel b: The angle from due west of
the total field, 0 (E;) = tan™! (E,q/dF,). In case the reader is unable
to distinguish colors: the text labels in panel b indicate the order of
lines in both panels. In panel a, the 96-km trace nearly covers the
98-km trace; in the panel b, they are indistinguishable.
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tral hybrid model starts the simulation with artificially high potential unless input
parameters are precisely tuned, so showing dynamic quantities after ¢ ~ 7; ensures
that the potential has relaxed into a more physically realistic state.

In both panels, the solid lines represent the ten-percent runs and the dashed lines
represent the five-percent runs. Color corresponds to altitude, with red at 96 km,
black at 98 km, green at 100 km, blue at 102 km, and magenta at 104 km. Both panels
indicate that the polarization field dominates the total field and that its overall shape
is broadly consistent with zeroth order. Panel a shows that |E|; peaks in the crest and
trough, and drops to E,q in between. Note that the location of |E|; = E.,o does not
align precisely with the midpoint between crest and trough, where n = ng, due to the
small ambipolar electric field corresponding to each density gradient. Kudeki et al.
(1985) argued that the polarization electric field of the primary wave should develop
a natural asymmetry, with higher values in the trough, that counteracts the GDI-
induced downward transport of electrons. Since E.q in this work is homogeneous,
the primary-wave polarization field accounts for the asymmetry in Figure 5-2 and is
therefore consistent with the results of Kudeki et al. (1985).

The threshold electric field at which FBI turns on is Ey, = ByCs(1 + ). Using
simulation values for By, T;, T,, and m;, the value of Fy, is approximately 18.0 mV /m
at 96 km, 15.0 mV/m at 98 km, 13.0 mV/m at 100 km, 12.0 mV/m at 102 km, and
10.0 mV/m at 104 km. Horizontal dotted lines, color-coded in the same manner
as the |E|; traces, show each threshold value. It is clear that |E|; > Ey, at least
somewhere in the simulation domain for all runs.

Panel b shows that the direction of E; in all runs varies continuously from vertical
of due west, in the crest, to vertical of due east, in the trough. The peak angle in ten-
percent runs varies from roughly 90 4+ 75° at the lowest altitudes to roughly 90 4+ 68°

at 104 km. The angle in five-percent runs varies from roughly 90 + 60° at the lowest
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altitudes to roughly 90 4 53° at 104 km. The crest-trough asymmetry is also present
in this panel, though it is not as obvious as in panel a.

The wave polarization electric field gives rise to a perturbed drift, du, = dE x By,
pointed upward along the trough and downward along the crests. The background
vertical electric field, F.q, is too low to drive the FBI at most altitudes considered
here and if it were large enough, it would drive westward waves, not vertical waves.
The primary-wave polarization field, dF,, can be large enough to drive FBI and
the waves would propagate vertically — upward in the troughs and downward in the
crests. Figure 5-2 shows that the combination of E,y and dFE, is responsible for
driving FBI at an intermediate angle when their total magnitude is above the local

threshold value.

5.4 Results

This section presents results from eight of the ten simulation runs. Both runs at 104
km failed due to what appears to have been energy in the perturbed electric field
increasing without bound, causing particles to jump across the entire simulation do-
main in one time step. Figure 5-3b, which section 7?7 describes in detail, shows the
perturbed electric field growing very rapidly at the start of the run at 104 km. This
is an unfortunate drawback of the quasi-neutral hybrid model with isothermal, iner-
tialess electrons — as k. grows with altitude, the linear system representing Equation
5.3 becomes more difficult to solve. Improvements to the code designed to overcome
or mitigate this drawback are topics of current and future work. The ten-percent
run at 104 km failed just after 1600 time steps and provides information only during
early wave growth, to be discussed below. The corresponding five-percent run, on
the other hand, failed just before 25000 time steps and therefore provides informa-

tion on wave growth comparable to the eight successful runs. Due to the inability to
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compare the runs at 104 km on the same level as the other eight runs, this report

will exclude them from analysis beyond Section 5.4.1.

5.4.1 Meter-scale irregularity amplitudes

Figure 5-3 shows the development of 2-m to 6-m density (panel a) and electric-field
(panel b) perturbations in each run. The FBI growth rate, w;, peaks at a few meters,
with local plasma parameters controlling the specific peak wavelength, so the chosen
wavelength range should capture the relevant instability growth in all simulations.
Figure 5-3 therefore represents a proxy for meter-scale irregularity development in
each run.

The slope of the traces in Figure 5-3 gives a measure of the normalized growth
rate, 7. Panel a indicates that w; and the normalized saturated amplitude of density
perturbations increases monotonically with altitude in both five- and ten-percent
runs. The value of w; among ten-percent runs is approximately 3, 6, and 9 times
greater at 98 km, 100 km, and 102 km, relative to its value at 96 km. The growth
rate at 104 km appears to be nearly equal to the growth rate at 102 km but the
paucity of time steps makes for a tenuous comparison. The saturated amplitude of
the four complete ten-percent runs is approximately 3, 4, 5, and 6 times their initial
values

In the case of five-percent runs, the small, negative initial value of w; in the
runs at 96 km and 98 km, indicated by the fact that amplitude drops below 1,
makes comparison with those runs unhelpful. This negative growth rate, which
turns positive for the run at 98 km but remains negative for the run at 96 km, is
likely a result of initial particle noise seeding the system with artificial spectral power
that fades as the runs progresses. In all but the five-percent run at 96 km, the signal
from meter-scale irregularities overcomes this particle noise. Comparing the three

five-percent runs above 98 km, w; is approximately 4 and 6 times greater at 102 km
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Figure 5-3: Spectral power in 2-m to 6-m density (top) and electric-
field (bottom) perturbations propagating within 30° < 6 < 50° west
of zenith, normalized to the ¢ ~ 1/v; value in each run. Colors and
line styles are the same as in Figure 5-2. Dashed vertical lines mark
three fiducial times for later analysis: The first (20.48 ms) corresponds
to growth in ten-percent runs, the second (40.96 ms) corresponds to
growth in five-percent runs, and the third (245.76 ms) corresponds to
a saturated state in all runs.
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and 104 km, compared to at 100 km. The “saturated” amplitude of the five-percent
run at 96 km is meaningless and the amplitude at 98 km does not grow appreciably
above unity. The runs at 100, 102, and 104 km grow to approximately 2, 3, and 3.5
times their initial values, with amplitude in the runs at 102 km and 104 km consistent
with that in the ten-percent run at 96 km.

Panel b shows many of the same trends as panel a, but there are notable ex-
ceptions. First, w; is much more similar among the ten-percent runs, differing by
approximately 3 between 96 km and 102 km. Second, the saturated amplitude of
ten-percent runs converges to approximately 3 times the initial value in all four com-
plete runs. Third, the amplitude of the five-percent run at 96 km is consistent with
unity because the electric-field spectrum does not suffer from the particle-placement
noise that the density spectrum does. Fourth, amplitude in the five-percent runs
at 102 km and 104 km, before the latter failed, is nearly identical. Fifth, saturated
amplitude of the five-percent runs at 100 km and 102 km converge to approximately
2 times their initial values.

Both panels show vertical dashed lines at 20.48 ms, 40.96 ms, and 245.76 ms.
These dashed lines demarcate fiducial time steps for the images of density and electric
field shown in the following sections. The line at 20.48 ms represents the growth stage
of ten-percent runs. The line at 40.96 ms represents the growth stage of five-percent
runs. The line at 245.76 ms represents the saturated stage in all runs. The rest of

this work will focus on the eight successful runs.

5.4.2 Average zonal electric field

The most striking result of these simulations is that the polarization electric field
of the wave develops a flat-topped nature as meter-scale turbulence develops. This
indicates a turbulent mechanism for shorting out the wave electric field and explains

rocket observations of large-scale electric field saturation in the equatorial electrojet.
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Figure 5-4: Vertical average of the zonal electric field at three mo-
ments during each ten-percent run: the initial step (solid), during
growth (dotted), and in saturation (dashed).

Figure 5-4 shows the vertically averaged zonal (east-to-west) electric field, (0E,),
during the ten-percent runs. The panels progress from left to right in order of de-
scending altitude. In each panel, the solid trace corresponds to the initial time step,
the dotted trace corresponds to the growth-stage time step, and the dashed line cor-
responds to the saturated time step. The initial trace is nearly identical in all runs,
save for an amplitude increase of a few mV/m from 102 km to 96 km, because the
primary-wave amplitude largely determines the initial shape of (§E,). The growth-
stage shows the greatest variation across altitudes: On one end of the spectrum,
(0E,) at 102 km develops a roughly flat top, with an amplitude reduced more than
10 mV/m from its initial value. On the other end, (0E,) at 96 km deviates very little
from the initial trace. The growth-rate traces of (§E,) at the intervening altitudes
provide intermediate cases. By the saturated time step, the field amplitude develops
a relatively flat top in all runs. The saturated amplitude again increases from 102 km
to 96 km but the difference is approximately 10 mV/m, meaning that the amplitude
reduction due to density irregularities becomes increasingly more drastic from 96 km
to 102 km. Finally, the offset between initial and saturated traces indicates that the

primary wave drifts westward at a few hundred meters per second.
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Figure 5-5: Vertical average of the zonal electric field at three mo-
ments during each five-percent run: the initial step (solid), during
growth (dotted), and in saturation (dashed).

Figure 5-5 shows (0 £, ) during the five-percent runs, in the same manner as Figure
5-4. The initial trace is again similar in all runs, with an amplitude increase of a few
mV/m from 102 km to 96 km. The evolution from initial to saturated (JE,) is far
less pronounced that for the ten-percent runs: Only the growth-stage trace at 102
km deviates appreciably from the its initial value, and only the saturated traces at
102 km and 100 km develop flat tops. The saturated trace at 98 km has a slightly
reduced amplitude from its initial value while the amplitude of the saturated trace at
96 km is essentially unchanged. Again, the primary wave appears to drift westward

at a few hundred meters per second.

5.4.3 Relative perturbed density

Images of perturbed density provide insight into irregularity growth and development.
This work presents perturbed densities relative to the background plasma density,
on/ng = (ny —ng)/ng, so that a value of 0 represents no deviation from background.
Figure 5-6 shows dn/ny during ten-percent runs, alongside corresponding self-
normalized spatial spectra. The data-analysis routines filtered out wavelengths greater
than 100 m in the density panels to effectively de-trend the meter-scale irregularities
that are the focus of these snapshots. The amplitude of most perturbations is less

than 10% of ng, which is consistent with predictions of linear theory for wavelengths
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Figure 5-6: Snapshots of relative perturbed density, 0n/ng, and self-
normalized spectral power, P, during ten-percent runs. Each density
panel represents the 128 m x 128 m box outlined in white in Figure
5-1 after filtering out wavelengths greater than 100 m. Each spectrum
covers (ky,k.) € [0,47] x [-7,4+n]. White circles show values from
k = 27/2 m™! (largest) to k = 27/7 m~! (smallest) and white radii
show values of 6 from —90° (bottom) to +90° (top).
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of roughly half a meter and larger.
Meter-scale irregularity growth is evident at all altitudes, though the wavelength
of peak power differs slightly among altitudes and evolves over each run. The peak

I circle but moves closer

in the 102-km growth spectrum sits on the k¥ = 27/2.0 m~
to the & = 27/3 m~? circle at lower altitudes. Growth-stage power is diffuse at 96
km but a cluster of red pixels between k = 27/2 m™! and k = 27/3 m™!, at 6 ~ 55°,
corresponds to the weak density irregularities. As each run evolves, the initial clump
of power moves toward the center (i.e., to longer wavelengths), and decameter-scale
power increases relative to meter-scale power. At 102 km, the meter-scale power
remains fairly isolated from the decameter power whereas the space between those
two spectral regimes fills in more uniformly as altitude decreases.

The angle of propagation shows in which direction a radar will observe coherent
echoes. During irregularity growth at 102 km, waves propagate upward (k, > 0) at
0 ~ 50° and downward (k, < 0) at a 6 ~ 55°. Moving down in altitude, a trend
toward # = +90° accompanies the aforementioned trend toward longer wavelengths.
At 102 km, 100 km, and 98 km, the propagation angle has a spread of roughly
10° during growth; at 96 km, the spectrum appears more diffuse, but the reason
may be related to low signal-to-noise ratio rather than a change in physics. In the
transition from growth to saturation, the mean propagation angle tends to move
approximately 10° toward horizontal at all altitudes. The approximately five-degree
asymmetry between up-going and down-going waves mentioned for 102 km exists at
all altitudes and persists from growth to saturation.

Figure 5-7 shows dn/ng and corresponding spatial spectra during the five-percent
runs, in the same fashion as Figure 5-6. Note that the perturbed density scale now
ranges from -5% to +5% of ng. Many of the characteristics of density perturbation

growth and saturation described for the ten-percent runs apply to the five-percent
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Figure 5-7: Same as Figure 5-7, but for five-percent runs.
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runs. Wave amplitudes are generally lower in the five-percent runs than in the ten-
percent runs, which is consistent with Figure 5-3. The lower amplitude of meter-scale
growth at a given altitude is not necessarily obvious in the normalized spectra at 102
km and 100 km, but it should be clear by inspection of én/ng, with the knowledge
that most density perturbations are less than 5% of ng. The lower amplitude of
meter-scale growth is evident at 98 km, where waves barely peak out of the noise in

the saturated stage, and at 96 km, where both dn/ng and spectra show noise.

5.4.4 Density irregularity spectra

Radars measure coherent echoes from density irregularities with wavelengths equal
to half the radar wavelength. The mean Doppler shift and spectral width of observed
echoes distinguish type-I irregularities from type-II irregularities. Simulated radar
spectra can thus connect observed irregularity types to the instabilities that create
them.

Figure 5-8 shows Fourier spectral power in 3-m, 5-m, and 10-m waves as a function
of angle from zenith (¢) and phase velocity (V,;, = w,/k) during the second half of
each ten-percent run. The sign convention for ¥ is such that positive values denote
westward angles and negative values denote eastward angles. Note that ¢ = 90° — 0,
where 6 is the angle shown by white radii in Figures 5-6 and 5-7. The sign convention
for V,, follows the standard Doppler convention: positive values denote scatterers
moving toward the radar and negative values denote scatterers moving away from
the radar. Dotted white lines show V,, = +C,. As in Figures 5-6 and 5-7, the
spectra are normalized to the maximum value in each panel. The purpose is to
draw attention to mean frequency and spectral width but this normalization scheme
naturally precludes power comparison among frames.

The regions of high power at A = 3 m near ¥ = —40° and ¥ = +45° correspond to

the spectral features at § = 50° and 6 = —45° in Figure 5-6. These primary spectral
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Figure 5-8: Spectral power as a function of zenith angle and phase
velocity during the second half of all ten-percent runs. Columns, from
left to right, correspond to the runs at 102 km, 100 km, 98 km, and
96 km. Rows, from top to bottom, show power in 3-m, 5-m, and 10-m
waves. The color scale runs from 0 dB to -30 dB. White dotted lines
mark +C.




124

features exhibit many characteristics of type-I radar spectra. The peaks in 3-m power,
where P > —10 dB, are well isolated in angle and their phase velocities deviate from
Cs by less than 50 m/s. Their widths are in the range 50 m/s < Aw, < 100 m/s at 102
km and decrease to Aw, < 50 m/s at 96 km. At 102 km, a secondary spectral feature
below |V,;| = 300 m/s accompanies the peak near C; but fades into the background
as altitude decreases. The wave frequency of these secondary features appears to
have an angular dependence whereas the brighter features do not. Both the lower
frequency and angular dependence of these features are reminiscent of type-II radar
spectra.

Type-I features are again apparent at A = 5 m. Similarly to 3-m waves, their
width narrows with decreasing altitude; however, their mean frequency stays rela-
tively constant at a value just above Cy, unlike 3-m waves. At 102 km, the spectral
power in type-II features competes with the spectral power in type-I features and
they exhibit a more obvious angular dependence. The clear angular dependence per-
sists at all altitudes but, as with 3-m waves, the power in type-II features relative to
type-I features falls off with altitude.

Slow, type-II features dominate the spectrum of 10-m waves. At 102 km, most
of the power propagates with V,;, < Cj; there are slight increases in power around
Von = Cs near the angles most favorable for the shorter wavelengths (i.e., 45° < |J| <
50°), but those features never dominate the spectrum at 10 m. The prevalence of
type-II features persists down to 96 km, unlike at shorter wavelengths. Type-1 peaks
may exist at all altitudes but they become difficult to distinguish below 100 km.

Figure 5-9 shows Fourier spectral power in 3-m, 5-m, and 10-m waves for five-
percent runs in the same manner as Figure 5-8. Many features of Figure 5-9 are
similar to Figure 5-8. At 3 m, distinct type-I peaks appear near v = —40° and

¥ = +45° with V,;, = C, at 102 km. There are again weak type-1I features. The
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Figure 5-9: Same as Figure 5-8 but for five-percent runs.
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type-I spectra are narrower in the five-percent runs than in the ten-percent runs
and their mean V), value decreases more quickly with altitude. A major distinction
between 3-m ten-percent waves and 3-m five-percent waves is that type-I features
seem to blend with type-II features as altitude decreases in Figure 5-9.

The spectrum of 5-m waves exhibits both type-I and type-II features, but the
peak in spectral power at 102 km shifts from type-II to type-I and back as ¥ sweeps
past the type-I peak. This trade-off is not apparent in the ten-percent runs. At 100
km, both types still exist and there is again a cut-out in type-1I power around the
angle of peak type-I power, but type-II power is consistently 10 dB lower than type-I
power. Type-I mean V,;, decreases slightly with altitude, dropping below C, only at
96 km, and both spectral types blend together below 100 km.

Type-II features again dominate the 10-m spectrum, as in the ten-percent runs.
At 10 m, the type-II power cut-out near ¥ = —40° and ¥ = +45° is very clear
but the corresponding type-I contribution is weak, opposite to the 5-m case. The
10-m spectrum becomes more homogenous in angle as altitude decreases and there
is a relatively large amount of power in waves propagating horizontally westward
(Vor < 0 at ¥ = +90 and V,, > 0 at J = —90).

Cut-outs in type-II power are similar to results described in Young et al. (2017),
which described the co-evolution of type-I and type-II irregularities. In that work,
images of spectral power as a function of zenith angle and phase velocity showed
type-I1 power decreasing where type-I increased. The reason is the the same physical
processes govern both types of spectrum, so the competing criteria for FBI and GDI

determine the relative power in broad and narrow spectra at meter scales.

5.5 Discussion

Pfaff et al. (1987a,b) reported flat-topped electric fields during a rocket flight through
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large-scale waves in the equatorial, daytime E region. They noted that flat-top
morphology was not the result of instrumental limitations, and interpreted it instead
as evidence that some geophysical process had caused electric-field saturation. The
results shown here suggest that electric-field flattening occurs in the presence of FBI
turbulence in the crests and troughs of large-scale waves. FBI develops in the regions
of the large-scale wave where the plasma drift exceeds the threshold value: |uy| =
luc—u;| > Cs (1 + ). In general, both the zeroth-order and ambipolar electric fields
may contribute both Pedersen and Hall components to the ion and electron drift.
For the physical situation corresponding to this work, u, is effectively the electron
Hall drift due to both the background electric field and the wave polarization electric
field.

When secondary FBI waves develop in nature, they are subject to the same elec-
trostatic polarization mechanism as is the primary wave. That means that nonlinear
E x By drifts develop in the frame of the meter-scale waves, analogously to the
E x By drift that initiated the meter-scale FBI growth (Oppenheim, 1997). How-
ever, the FBI growth rate quickly becomes negative for wavelengths below about
a meter, so there is no tertiary set of FBI waves propagating perpendicular to the
secondary FBI waves. Instead, the meter-scale E x Bj increases plasma mobility
perpendicular to the magnetic field, along meter-scale wave fronts. The increased
mobility across the magnetic field represents and anomalous transport. Since there
is more plasma in density crests than in density troughs, this anomalous transport
produces a nonlinear current (Dimant and Oppenheim, 2011a). It is this nonlinear
current that shorts out the primary-wave polarization field and reduces its amplitude
to just above the FBI threshold.

The saturated mean polarization electric field in the ten-percent runs noticeably

increases with decreasing altitude, saturating at a value that sets the total electric
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field just above the threshold for FBI. The same is true for the five-percent runs at
102 km and 100 km, though the difference between initial and saturated values is
not as stark. In the five-percent run at 98 km the saturated field is barely above the
threshold value, so that FBI turbulence does not have time to grow before diffusion
reduces the field. At 96 km, the absence of flat-topped saturated fields results from
the fact that the initial electric field is simply below the threshold value.

Figures 5-4 and 5-5 also demonstrate that the nonlinear saturation (anomalous
transport) mechanism reduces the polarization field to approximately the same value
regardless of whether the primary-scale wave amplitude starts at ten or five percent
of the background density. This lends credence to the notion that FBI turbulence
arises as a way for the primary wave to get rid of the free energy in its polarization
field. In nature, of course, the primary wave does not instantaneously appear but,
rather, grows in amplitude self-consistently with its driving process (mostly likely
the GDI). Thus it should initiate the FBI as it develops, and the actual feedback
processes between large-scale growth and meter-scale saturation will necessarily be
more complex than the model results presented here. To view the five-percent cases
at 98 km and 96 km in this light, the primary wave simply did not need to resort to
the FBI to get rid of the free energy in its polarization electric field.

As the primary-wave polarization field decreases, not only does the total-field
magnitude decrease but its angle rotates toward vertical. In the crest, the angle
rotates away from westward; in the trough, the angle rotates from eastward. This
means that the direction of E x B rotates westward in both cases. The linear theory
of §5.2 predicts that FBI waves will travel parallel to the relative electron-ion drift,
which in these simulations is effectively the E x B direction, so a westward-rotating
E x By direction explains the shift in RMS power toward ¢ = 0 between growth and

saturation shown at all altitudes in Figure 5-6 and at the two highest altitudes in
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Figure 5-7. By the same token, the weak waves that grow in the five-percent run at
98 km propagate closer to vertical in the saturated panel than do waves at higher
altitudes because the total electric field driving them has not saturated.

The spectra shown in Figures 5-8 and 5-9 represent idealized radar observations at
50 MHz for A = 3 m, 30 MHz for A =5 m, and 15 MHz for A = 10 m. They predict
that a 50-MHz radar should observe type-I echoes propagating with speeds near
the plasma acoustic speed, C, at intermediate elevation angles between horizontal
and zenith, and that the spectrum should broaden slightly for higher total electric
field. The latter result is simply a consequence of more strongly driven turbulence.
The simulated spectra further predict that type-II echoes should be stronger in 30-
MHz data than in 50-MHz data; more generally, they predict that type-II power
will compete with or overwhelm type-I power at wavelengths slightly longer than
the wavelength of peak growth, except at the optimum flow angle for the strongest
growing waves. At 15 MHz, these spectra predict a broad angular distribution of
type-II echoes with possible type-I signatures at the optimum flow angle. Finally,
most of the panels in Figure 5-8, as well as the 102-km and 100-km panels in Figure
5-9, imply that the primary wave drives meter-scale irregularities that propagate in
multiple distinct eigenmodes. Only at lower altitudes, for lower total electric field,
and at longer wavelength do the individual modes blend into a broad spectrum.

Propagation speeds near C are a well-known feature of type-I echoes in the
equatorial electrojet, despite the fact that linear theory (cf. Equation 5.2a) predicts
propagation speeds near the relative electron drift speed, |ug|. However, the most
robust prediction of linear theory has been that the FBI will develop when |ug| >
Cs (141, ) — after that, the waves become turbulence and linear theory no longer
applies. These simulation results suggest that FBI turbulence reduces the electric

field to just above the threshold value, at which point the threshold wave propagation
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velocity is roughly C. Therefore, the observation that type-I echoes propagate near
Cy appears to go hand-in-hand with electric-field saturation.

The simulations presented here are subject to a number of assumptions and short-
comings. First, they are two dimensional in the plane perpendicular to By. The
parallel direction provides a path for electrons to short out instabilities which is
missing from these simulations. However, observations have established that the
FBI is highly aspect sensitive, with kj < [k.|, and 2-D simulations still capture
much of the crucial instability development.

Second, the constant electric field neither varies with altitude nor responds to
the vertical flow. Rocket measurements reported by Pfaff et al. (1997) showed both
the zonal and vertical electric fields varying with altitude at the magnetic equator
and Kudeki et al. (1985) showed that asymmetric vertical currents develop to reduce
the vertical electric field in the equatorial electrojet, thereby enforcing zero flux
divergence. However, the fixed-field simulations presented in this paper provide a
comparison point for future, more complex simulations.

Third, background plasma density does not vary with altitude, as it does in
nature. However, the background plasma density does not factor into the FBI growth
rate and therefore should not affect the conclusions significantly.

Fourth, this model assumes isothermal electrons. Anomalous electron heating
produces anomalous conductivities which reduce the driving electric field at high
latitude, during geomagnetically active conditions (Oppenheim and Dimant, 2013).
The missing electron thermal equation is a significant drawback of the current model
and will be the subject of future research. Anomalous electron heating would likely
affect only the runs with the strongest total electric fields, and only then if the
primary waves grow quickly enough to overcome shorting out due to the turbulent

transport mechanism shown in these results.
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Fifth, the simulation employs periodic boundary conditions. Periodic boundary
conditions on the large-scale wave potential may produce non-physical effects by
preventing the polarization field from vanishing outside the wave. However, as the
GDI develops in nature, there will be many individual waves that are bounded by
similar waves on all sides, mimicking the simulated situation. Development of non-
periodic boundary conditions will be another subject of future work.

Finally, the sinusoidal initial density distribution, while designed to approximate
a single period of a large-scale wave, is nonetheless an idealized case. It does not
grow directly due to the GDI but is an imposed initial condition. In nature, the
actual feedback processes between large-scale growth and meter-scale saturation will
necessarily be more complex than the model results presented here. As km-scale
waves grow out of the GDI, they may reach an amplitude that triggers the FBI
in a particular region, initiating the negative feedback process illustrated by these
simulations. An electrojet developing GDI will be a turbulent mix with a range of
wavelengths, each producing polarization electric fields of varying magnitude and
direction. The lack of periodic boundary conditions, as described above, preclude
simulations with a zeroth-order density gradient, thereby precluding the fully self-
consistent development of km-scale GDI waves. This work simply provides another

piece to a complex puzzle.

5.6 Conclusion

This chapter presents the first hybrid plasma simulations of meter-scale secondary
wave growth driven by a kilometer-scale primary wave. They assume inertialess,
isothermal, fluid electrons in quasineutrality with particle ions at four different alti-
tudes in the lower equatorial electrojet. The simulations impose the primary wave

as an initial condition but evolve self-consistently thereafter, without recourse to pa-



132

rameterized turbulent effects. The background electric field is not large enough to
drive meter-scale turbulence via the Farley-Buneman instability (FBI), but the total
electric field, including the polarization electric field of the primary wave, exceeds the
FBI threshold. The FBI produces turbulent density and electric field structures that
propagate at an intermediate angle between horizontal and vertical, the direction of
which is largely determined by the direction of Hall drift in the total electric field. As
density turbulence develops, nonlinear currents transport plasma along meter-scale
wave fronts. This anomalous transport shorts out the primary-wave polarization
electric field, leading to flat-top fields with average magnitude just above the FBI
threshold value. The reduced electric field causes meter-scale waves to propagate
near the plasma acoustic speed, corresponding to the near-threshold condition and
matching observations of equatorial type-I radar spectra. The results presented here
may also have applications to auroral density structures produced by convection, au-
roral precipitation, and ionospheric cavitation (Zettergren et al., 2015; Mrak et al.,

2018).
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Chapter 6

Variation of the Farley-Buneman
Spectrum with Altitude

6.1 Introduction

Observations of coherent, spectrally narrow echoes at high latitudes, where they often
get the name “radar aurora”, predate the large body of equatorial type-I and type-I1
observations. Haldoupis et al. (1984) used the bi-static Scandinavian Twin Auroral
Radar Experiment (STARE) to make observations of a common volume in the high-
latitude E-region. The bi-static setup allowed that author to derive the electron drift
direction from the mean Doppler shift in both radars, and to make measurements of
irregularity propagation at a range of angles from the electron drift. The angle that
the radar LOS makes with the electron drift is the “flow angle”. Haldoupis et al.
(1984) observed narrow and broad Doppler spectra in the same volume, with narrow
spectra coming from flow angles within —60° to 0° and broad spectra coming from
flow angles within —90° to —65°.

Uspensky et al. (2003) reported a study of joint STARE and European Incoherent
Scatter (EISCAT) radar data from a single event during a moderate geomagnetic
disturbance. That work emphasized the importance of accounting for non-negligible
ion drifts, and the resultant deflection of the phase velocity from Ey x By by 5°-15°,

in VHF observations.
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Oppenheim and Dimant (2004) presented results of 2-D PIC simulations that
appeared to show the effects of an ion thermal instability, as theoretically explained
by Dimant and Oppenheim (2004). The effective altitude of those simulations was
103 km in the high-latitude ionosphere. One important aspect of their simulations,
which they attributed to ion thermal effects, was the tendency for ion waves to turn
clockwise away from Eq x Bg. They observed elevated ion temperatures, especially in
regions of reduced density, and suggested that such thermal effects could explain wave
turning in earlier simulations by Janhunen (1994b) and Oppenheim et al. (1996).
However, they noted that excluding a simulation component parallel to By, may
over-emphasize thermal effects.

Oppenheim et al. (2008) presented results from 2-D PIC simulations with im-
proved resolution that allowed those authors to make much more precise statements
about the spectral characteristics of ion perturbations than in previous simulations.
They claimed that elevated electron and ion temperatures explained the phase ve-
locity of simulated perturbations in terms of an elevated ion acoustic speed. Hysell
et al. (2008) presented radar and rocket observations showing that the Doppler shift
and spectral width of ion perturbations are related in a relatively simple way to the
flow angle, in qualitative agreement with the simulations presented by Oppenheim
et al. (2008).

Hysell et al. (2012) reported results from VHF coherent-scatter radar observations
during a geomagnetic substorm over Alaska, with an emphasis on aspects of the radar
aurora revealed through VHF radar imaging. One goal of that work was to establish a
relationship between coherent backscatter from FAI — ultimately caused by the FBI —
and F-region incoherent scatter from ion Eqy x By drifts, so that future research could
use the former to predict the latter. In order to compare E-region coherent-scatter

measurements to F-region incoherent-scatter measurements, they first assumed that
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the F-region electric field maps perfectly down magnetic field lines into the E region.
They also assumed that the coherent-scatter Doppler velocity and spectral width
followed empirical formulas involving the electron drift speed, the ion acoustic speed,
the LOS E-region ion drift speed, the LOS flow angle, and an angular correction
for wave turning. The final parameter accounts for wave turning effects as seen in
Oppenheim and Dimant (2004); Oppenheim et al. (2008). Hysell et al. (2012) set the
angular correction to 10° for their analysis and assumed that the observed coherent

echoes came from 110 km.

6.2 Simulation Methods and Limitations

This chapter follows radar convention by defining flow angle as the angle between
zeroth-order electron drift and LOS. Since electrons drift predominantly in the Ej x
B, direction and radars can only observe Doppler shift from echoes propagating
parallel or anti-parallel to their LOS, the flow angle is equivalently the angle between
Eq x By and the direction of wave propagation. Where the sign of flow angle is
unspecified, the reader may assume that it is negative in a couner-clockwise sense —
in terms of physical quantities, it points in a direction between Ey x By and —Ej.
Chapters 4 and 5 described the interaction of meter-scale waves with what many
in the aeronomy community would call meso-scale and large-scale waves. This chap-
ter focuses only on the dynamics of meter-scale waves driven by a constant electric
field in a small patch of plasma. Whereas Chapters 4 and 5 assumed that thermal
effects did not play an appreciable role in meter-scale irregularity development, this
chapter allows thermal effects to alter the dynamics of meter-scale waves. To carry
out this small-scale, non-isothermal analysis, the simulations described in this chap-
ter used the pure-PIC version of EPPIC in both 2D (perpendicular to By) and 3D.

See Oppenheim and Dimant (2004) for a description of the advantages and disad-
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Figure 6-1: Figure 2 from Dimant and Oppenheim (2004), show-
ing theoretical altitudinal profiles of 1) and k; at equatorial and high
magnetic latitudes.

vantages of the pure-PIC version of the code. See Oppenheim et al. (2008) for a
description of an improvement in parallelizing the 2-D version, and see Oppenheim
and Dimant (2013) for a description of the 3-D version.

One major goal of the research presented in this chapter was to determine the
change in FBI spectrum with altitude. Neutral density is a good proxy for altitude in
the atmosphere, but EPPIC does not use neutral density as a simulation parameter,
so the ion and electron collision frequencies, v; and v,, specify the equivalent altitude.
As Oppenheim and Dimant (2013) explain, the effective collision frequency during
a simulation run differs, in general, from the input value. Selecting an input value
that will produce an appropriate simulated value requires some care.

Figure 2 in Dimant and Oppenheim (2004), reproduced here in Figure 6-1, pro-

vides a way to select collision frequencies corresponding to a desired altitude. The
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first step is to identify an appropriate value of v, .4, for the desired altitude. Next,
we identify the corresponding value of Ki.sim = €i/Vi.sim from which we calculate

Vi.sim- We then use the definition ¢ = v.1;/Q.;, to calculate a value for ve.sm:

o QiQe:sim
Ve:sim = wl:sim -
Vi:sim

7 6B2
i (qq—o>

miMe:simVi:sim

Often, Ve.sim & Vj.sim, Whereas v, =~ 10v; in the real E region. With these candidate
values for v;.4, and ve.q,, in hand, we run two types of simulations with sub-threshold
electric fields to validate their values.

The process for validating v;.,, consists of running the simulator with a sub-
threshold driving electric field, E,o, and calculating the effective ion collision fre-
quency from the ion Pedersen drift, u;p, via the zeroth-order drift relation v;.4, =
¢iEyo/miu;p. The process for validating ve.s, consists of running the simulator
with a small parallel electric field, E), and calculating the effective electron col-
lision frequency from the electron parallel drift, we: Vesim = |ge|Ejo/mette). The
resulting collision frequencies are v; = 1022 s~ and v, = 965 s~!, corresponding to
107 km; v; = 610 s7! and v, = 671 s~!, corresponding to 110 km; v; = 369 s1
and v, = 491 s7!, corresponding to 113 km. Many observations of FBI associated
with the visible aurora — often called the “radar aurora” — assume that the echoes
originate in a volume centered on 110 km. The effectively altitudes of the simula-
tions presented here encompass that altitude to facilitate comparison to observations.
Note that this chapter differs from Chapters 4 and 5, which used a constant value
of v, for the electron fluid approximation in hybrid EPPIC. Table 6.1 lists the other
parameters used in these simulations.

The ratio of ion mass to electron mass was artificially small for these simulation

runs — a common practice in PIC simulations (cf. Chapter 3). Oppenheim and
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Table 6.1: Simulation Parameters for Chapter 6

Symbol Value Unit Name
m; 5.0 x 107%° kg ion mass
m;/me 1250 mass ratio

My, 4.6 x 10726 kg neutral mass

T; 600 K initial ion temperature

T, 1200 K initial electron temperature
T, 300 K neutral temperature

no 2 x 108 m~3 plasma density

2 1022, 611, 369 571 ion-neutral coll. freq.

Ve 965, 671, 491 st electron-neutral coll. freq.
Py 0.030, 0.013, 5.6 x 1073 anisotropy factor

h 107,110,113 km effective altitude
By 5.0 x 1075 T magnetic field
E.o 50.0 mV,/m vertical electric field

L, 40.96 m box length in X direction
dx 0.04, 0.08 m 2D, 3D cell size in X direction
L, 40.96 m box length in Y direction
dy 0.04, 0.08 m 2D, 3D cell size in Y direction
Ly ~ 460, ~ 115 ms 2D, 3D time span

dt 1.75 x 107%, 3.0 x 107° s 2D, 3D time step

Dimant (2004) noted that the simulation can use an artificially inflated electron mass
as long as it maintains the electron and ion Hall and Pedersen drift rates, and the
collision and thermalization rates. It must also keep the electron collision frequency
large compared to the ion collision frequency, so that electron Landau damping does

not become important.

6.3 Irregularity growth at meter and decameter scales

The simulations presented in this Chapter have no background density gradients,
meaning G = 0 in Equation 2.7, and they occur high enough in the E region for ions
to have a non-negligible Hall drift, so k,u.o — k - up in Equation 2.6 (cf. Chapter
2). Finally, they cover both 2-D and 3-D cases, so the following equations for the

real frequency and growth rate apply with the caveat that k, = 0 and ¢ — ¢, in
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Figure 6-2: Comparison of amplitude in meter-scale density pertur-
bations (solid lines) to amplitude in decameter-scale density perturba-
tions (dashed lines), in both 2-D and 3-D runs. The meter-scale ampli-
tude comprises amplitude in all available modes with 1 m < A < 4 m.
The decameter-scale amplitude comprises amplitude in all available
modes with 10 m < A < 40.96 m. In both panels, the blue trace cor-
responds to the 107-km run, the green trace to the 110-km run, and
the red trace to the 113-km run. Note the difference in time ranges
between 2-D and 3-D runs.

2-D runs.
k-
W= g +u1Z (6.1a)
v w2 — k2C?

Figure 6-2 shows development of spatially averaged spectral amplitude in meter-
scale and decameter-scale density perturbations in the plane perpendicular to By.
The 3-D plot contains only strictly perpendicular modes because calculating the full
3-D FFT for all time steps proved prohibitively time-consuming. As such, it misses
power in oblique modes, which would cause the growth stage to start slightly earlier
than 20 ms.

The analysis routine first interpolated relative perturbed ion density, dn;/ng, from

the Cartesian simulation grid to a polar grid: on;(ky, ky,t) — 6n(k,0,t), where
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k = \/k2+ k2 and 6 = tan™' (k,/k;). Next, it calculates the RMS amplitude as

)|

where (---)p denotes an RMS over 6, k), is the wave number corresponding to the

shown in Figure 6-2 via the formula

ki
Amplitude = Z <

k:klo

on(k,0,t)

)

longest wavelength in the band, and ky; is the wave number corresponding to the
shortest wavelength in the band. For the meter-scale wave band, kj, = (27/4) m™!
and kp; = (27/1) m™'. For the decameter-scale wave band, ky, = (27/10) m~! and
kni = (27/40.96) m™'. All traces exhibit a growth stage, associated with linear
behavior, followed by a saturated stage, associated with nonlinear behavior. The
zeroth time step in all runs contains isotropic noise from randomly placed particles,
and is therefore a few orders of magnitude lower than the first simulation output
step; the initial jump does not correspond to instability growth.

In the 2-D runs, both meter-scale amplitude and decameter-scale amplitude be-
gin growing early. The growth rate of decameter-scale waves is about twice that of
meter-scale waves so that decameter-scale amplitude reaches saturation soon after
meter-scale amplitude despite starting lower. The growth trends in meter-scale and
decameter-scale amplitude are similar among altitudes — amplitude at 110 km grows
initially fastest, then amplitude at the other two altitudes catches up. In both wave-
length bands, amplitude at 107 km saturates at a slightly lower value than at the
other two altitudes. Both wave bands saturate at the same amplitude.

The 3-D runs exhibit an initial flat period, with no instability, that the 2-D runs
do not. This is not merely a sampling artifact due to the longer 2-D runs — images
of just the first twenty seconds (not shown) confirm the the 2-D instability growth
starts almost immediately. Meter-scale amplitude in 3-D runs begins growing around

10 ms at 107 km and 110 km, and around 15 ms at 113 km. The run at 110-km run
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peaks first, followed after about 5 ms by the run at 107 km, then after about 20 ms
by the run at 113 km. The peak meter-scale amplitude varies with altitude but the
difference between the highest and lower values is only a factor of two or three.
Decameter-scale amplitude in the 3-D runs begins its growth roughly ten sec-
onds after meter-scale amplitude and again grows faster than meter-scale amplitude,
though not as fast as in 2D. Decameter-scale amplitude saturates at approximately
the same time that meter-scale growth does, though the peak is not as drastic. Un-
like the 2-D case, decameter-scale amplitude saturates at a slightly lower value than

meter-scale amplitude.

6.4 Average Temperatures

Figure 6-3 shows spatially averaged electron temperature, 7., and ion temperature,
T;, in the Hall, Pedersen, and parallel directions, as functions of time. Temperature is
defined as the average kinetic energy of the particle distribution, which is proportional
to the second velocity moment of the distribution. This is appropriate for particles
with little to no internal energy.

All three components of T, during the 3-D runs remain nearly identical, indicat-
ing isotropic electron temperature. The 2-D runs show increased T, anisotropy with
increasing altitude, but the difference is only a few degrees in the parallel component
at 113 km. The relative isotropy in 7T is due to the fact that, though many collisions
between electrons and neutrals can cause a significant change to an individual elec-
tron’s momentum, that net scattering in velocity space occurs much more quickly
than the change in kinetic energy. That effect does not change with the values of
electric field considered here. The 3-D T, recovers after initially cooling, then heats
during the growth phase of meter-scale perturbations shown in Figure 6-2. The ini-

tial drop in 7T, is a non-physical artifact produced by starting the simulation with
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Figure 6-3: Average electron and ion temperatures, computed as
functions of time from the respective velocity distributions, for each
run. Rows correspond to altitude, from 107 km (bottom) to 113 km
(top). The left column shows temperatures in 2-D runs and the right
column shows temperatures in 3-D runs. In each panel, the solid traces
correspond to electron temperature and the dotted traces correspond
to ion temperature. For each species, the blue trace gives the Hall
temperature (aligned with Eq X By), the green trace gives the parallel
temperature (aligned with By) and the red trace gives the Pedersen
temperature (aligned with Eg). As in Figure 6-2, the time ranges
significantly differ between 2-D and 3-D runs.
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a relatively hot electron population. The collision routines used in this work check
the ratio of the particle velocity to a reference velocity against a normalized random
number to calculate the probability of collision. The reference velocity depends on
the species’ initial thermal velocity, so starting a population with relatively high tem-
perature ensures that the collision model behaves more accurately as the population
heats up.

The 2-D T, shows a looser correlation to meter-scale perturbation growth but
nonetheless undergoes a similar cooling-heating sequence. Both 2-D and 3-D T;
contain more anisotropy overall, with anisotropy clearly increasing with altitude. The
Hall component of T; increases abruptly around the time when meter-scale density
perturbations reach their peak amplitude and the Pedersen component experiences
a smaller temperature increase. These are due to the instability-enhanced Hall and
Pedersen mobilities. In 3-D, T, > T; always holds, whereas T, > T; only at 107 km
in 2-D. In the real (3-D) ionosphere, we should expect T, > T;. Both 2-D T; and
T, show more amplitude variation after saturation than do their 3-D counterparts,

especially at 110 km and 113 km.

6.5 Ion Density Perturbations

The FBI is an ion-scale instability. It grows on the ion collisional time scale and the
wavelength of peak growth is a few times the ion MFP. The following figures show
dn;/ng in a slice perpendicular to By at fiducial points throughout each simulation
run.

Figures 6-4, 6-5, and 6-6 show dn;/ng in the plane perpendicular to Bg at sixteen
equally spaced snapshots throughout the 2-D runs at 107 km, 110 km, and 113 km,
respectively. The first panel of each figure captures roughly the beginning of the

growth stage and the final panel comes from the final time step. Images from time
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107 km (2D

dn/n,

Figure 6-4: Relative perturbed ion density, dn;/ng, at sixteen time
steps throughout the 2-D run at 107 km. The time stamp of each
panel is in the upper left corner. Each panel spans 40.96 mx 40.96 m,
covering the entire physical area perpendicular to By. The color scale
for all panels ranges from —0.2 to +0.2, or —20% of ng to +20% of ng
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Figure 6-5: Relative perturbed ion density, dn;/ng, at sixteen time
steps throughout the 2-D run at 110 km. The layout is identical to
that of Figure 6-4.
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113 km (2D)
e

Figure 6-6: Relative perturbed ion density, dn;/ng, at sixteen time
steps throughout the 2-D run at 113 km. The layout is identical to
that of Figure 6-4.
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steps before the first panel show isotropic noise.

The thin, elongated structures that grow out of noise in the first four panels (up
to t = 114.69 ms) of Figures 6-4 and 6-5 are a good example of linearly growing
FBI waves. Spatial spectra, shown in later figures, indicate that these structures
have wavelengths between two and three meters. By the fifth panel (¢ = 143.36
ms) of those two figures, the linear-stage structures have begun to bend and mix
together, so that by the next panel (¢ = 172.03 ms), they have lost their thin,
roughly monochromatic form. Movies of density evolution show an inverse cascade —
the instability grows at a wavelength of a few meters, then those meter-scale waves
merge to form a range of longer wavelength waves. Figure 6-2 2D shows that meter-
scale perturbations saturate at approximately 140 ms at 107 km and at approximately
160 ms at 110 km, meaning that the fifth and sixth panels in Figures 6-4 and 6-5 show
the transition from the linear instability growth phase to the non-linear saturated
phase. Figure 6-6 contains similar linear-stage structures that transition to non-linear
structures but the transition comes around ¢ = 200.70 ms. Again, this transition
in the shape of density irregularities is consistent with the fact that meter-scale
perturbations peak around 180 ms in Figure 6-2 2D. By the final panel at each
altitude, dn;/ng is fully non-linear.

Figures 6-7, 6-8, and 6-9 show dn;/ng at sixteen equally spaced snapshots through-
out the 3-D runs at 107 km, 110 km, and 113 km, respectively. All 3-D runs show
the same linear growth followed by a saturated non-linear stage as the 2-D runs
showed, and the progression illustrated by Figures 6-7 through 6-9 again follows the
corresponding traces in Figure 6-2.

In Figures 6-4 through 6-9, dn;/ny displays a characteristic tilt that develops as
soon as perturbations rise above the noise level. The tilt is relatively consistent

during the linear growth stage of a given run but it varies among all runs. The most
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Figure 6-7: Relative perturbed ion density, dn;/ng, at sixteen time
steps throughout the 3-D run at 107 km. The layout is identical to
that of Figure 6-4 except that the time steps are different, since the
3-D runs cover a quarter as much time as do the 2-D runs.
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Figure 6-8: Relative perturbed ion density, dn;/ng, at sixteen time
steps throughout the 3-D run at 110 km. The layout is identical to
that of Figure 6-7.
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Figure 6-9: Relative perturbed ion density, dn;/ng, at sixteen time
steps throughout the 3-D run at 113 km. The layout is identical to
that of Figure 6-7.
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noticeable variation is between altitudes in either the 2-D or 3-D set, but there is also
some difference between the 2-D and 3-D runs at a given altitude. Naturally, this
linear-stage tilt is more difficult to define for non-linear waves — that is, for dn;/ng
after saturation. Section 6.6 will show that it exists and section 6.8 will quantify it
with respect to the directions of Eqg x By, relative drift, and the theoretical optimal

flow angle after accounting for ion thermal effects.

6.6 Perturbed Ion Density Spectra

Figures 6-10, 6-11, and 6-12 show dn;/ng squared spectral amplitude in the plane
perpendicular to B in 2-D runs, at the same sixteen snapshots as shown in Figure 6-4.
The analysis routine produced each panel by computing the Fast Fourier Transform
(FFT) of the d0n;/ny data shown in the corresponding panel in Figure 6-4, Figure 6-5,
or Figure 6-6, then normalizing that FFT image to its peak value.

Each run begins with two concentrations of power: One near k, = +m with k, < 0,
and the same feature reflected about the origin. Because density is a real quantity,
it should be symmetric with respect to a sign reversal in both £, and k,. In the first
panel, spectral noise surrounds the regions of relatively high power, consistent with
the presence of only very low-amplitude perturbations in the first panel of each of the
dn;/ng figures. The concentrations in spectral power move toward the origin slightly
as the signal-to-noise ratio (SNR) increases but remain near k values equivalent
to few-meter wavelengths. They are the spectral signatures of the thin, elongated
structures in images of dn;/ng during the linear growth stage.

As each run progresses, power spreads from the meter-scale peaks toward longer
wavelengths (lower k) and the isolated concentrations give way to a single structure.
The spreading of spectral power represents an inverse cascade during the transition

from linear growth to non-linear saturation as the linear modes described by Equa-
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P(n/n,) [dB]

Figure 6-10: Self-normalized log squared spectral amplitude in rel-
ative ion density perturbation, (n;/n¢)’, during the 2-D run at 107
km. Panel times correspond to the sixteen time steps shown in Figure
6-4. Each panel spans slightly more than —m to += in k, and k,. The
color scale for all panels ranges from -20 dB to 0 dB, or two orders of
magnitude in power.
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Figure 6-11: Self-normalized log squared spectral amplitude in rel-
ative ion density perturbation, (6n;/n¢)?, during the 2-D run at 110
km. The layout is identical to that of Figure 6-10.
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Figure 6-12: Self-normalized log squared spectral amplitude in rel-
ative ion density perturbation, (6n;/ng)?, during the 2-D run at 113
km. The layout is identical to that of Figure 6-10.




155

tions 6.1a and 6.1b couple energy into each other.

Figures 6-13, 6-14, and 6-15 show dn;/ng squared spectral amplitude in the plane
perpendicular to By in the 3-D runs, at the same sixteen snapshots as shown in
Figure 6-7. In 3D, oblique modes with a nonzero, albeit small, component parallel
to By dominate the FBI spectrum during growth whereas the saturated spectrum
is essentially isotropic in the plane perpendicular to By (see, for example, Oppen-
heim and Dimant (2013) Figure 9). In order the capture the important growth-stage
oblique modes, the FFT analysis procedure computed the mean value over five pix-
els in k. This range corresponds to an aspect angle of roughly 2°. The true FBI
grows at a much smaller aspect angle but the elevated electron mass in our simula-
tions artificially increases the angle of peak growth. Furthermore, limitations on 3-D
box size make the parallel resolution too poor to properly resolve aspect sensitivity.
The five-pixel mean captures all the growth-stage power in oblique modes without
unnecessarily introducing noise. It also increases the SNR of 3-D spectra.

Each 3-D run begins similar to its 2-D counterpart, with oblique modes con-
tributing to the growth-stage spectrum via the five-pixel mean. Images of purely
perpendicular modes (not shown) contain very little power in the meter-scale clumps
so evident in the first few frames in both 2D and 3D.

The tilt of dn;/ng structures during the linear stage of Figures 6-4 through 6-6 is
clear in Figures 6-13 through 6-15. In each panel of all spectral figures, a straight line
through the middle of relatively high power would extend from the (k, < 0, %, > 0)
quadrant to the (k, > 0,k, < 0), quadrant. This indicates a universal negative
angular deflection from Eq x By — in other words, a non-zero flow angle in all runs.
Moreover, the angular deflection after saturation is much clearer in dn;/ny spectra
than in the raw on;/ny images.

Before proceeding to a quantitative analysis of the flow-angle deflection of meter-
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107 km (3D)

(dn/n,)’ [dB]

Figure 6-13: Self-normalized log squared spectral amplitude in rel-
ative ion density perturbation, (n;/ng)°, during the 3-D run at 107
km. Panel times correspond to the sixteen time steps shown in Figure
6-7. The layout is otherwise identical to that of Figure 6-10.
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110 km (3D)

(dn/n,)’ [dB]

Figure 6-14: Self-normalized log squared spectral amplitude in rel-

ative ion density perturbation, (dn;/n¢)?, during the 3-D run at 110
km. The layout is identical to that of Figure 6-13.




158

(dn/n,)’ [dB]

Figure 6-15: Self-normalized log squared spectral amplitude in rel-

ative ion density perturbation, (dn;/ng)°, during the 3-D run at 113
km. The layout is identical to that of Figure 6-13.
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scale perturbations, §6.7 will describe effects introduced by a relatively recently pro-
posed instability due to non-isothermal ion perturbations. These thermal effects

likely contribute to observed wave turning under certain conditions.

6.7 Thermal Instability Effects

Dimant and Sudan (1995a,b,c) predicted, with a rigorous kinetic analysis, the exis-
tence of a theretofore unknown electron thermal instability (ETI) that should arise
in the upper-D/lower-E region ionosphere, and grow at wavelengths around ten me-
ters. Blix et al. (1996) presented evidence of the ETT in rocket data and Dimant
and Sudan (1997) presented a simplified physical model that connected the rocket
observations to their earlier kinetic analysis. Kagan and Kelley (2000) developed a
theory of ion thermal perturbations driven by ion-neutral frictional heating in the
electrostatic field produced by the dynamo effect of a neutral wind, which they used
to explain type-2 echoes at midlatitude. Similar to the Dimant and Sudan (1997)
electron thermal instability, it heats regions of relatively low plasma density and cools
regions of relatively high plasma density.

Dimant and Oppenheim (2004) extended the Dimant and Sudan (1997) theory of
the ETT to ions in 2D and discovered that an analogous ion thermal instability (ITT)
should exist in the electrojet, roughly coincident with the FBI. Furthermore, they
predicted that the ITI should grow at wavelengths of a few meters, similar to the
FBI, resulting in a combined instability. Both the ETI and ITI growth rates peak at
—45° from Eq x By. In the case of the combined FBI+ITI, this can cause an angular
deflection from the zeroth-order Hall direction in addition to that produced simply
by the deviation of uy.

This work will follow Dimant and Oppenheim (2004) in representing the angle

between the zeroth order drift and perturbation flow as x. At the altitudes of interest
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for this study, the optimal deviation of k£ from u, (toward —Eg) for the combined
instability, ngt, is only a few degrees, while the optimal angle between k and Eq x B
falls in the range —10 < 655, < —30. Due to the small predicted value of x§,, the
effects of the ITI can be difficult to isolate from the combined instability.

Both thermal instabilities arise due to J-0E heating of density depletions when JE
has a component parallel to —E, that results in a phase offset between temperature
and density perturbations. In an isothermal plasma with an electric field below the
FBI threshold, temperature perturbations in phase with density perturbations cause
the former to smooth out the later. For thermal instabilities, the tandem effects
of the background electric field, Eq, and the wave polarization electric field, JE,
produce temperature modulations via collisional friction. In the optimal case, the
temperature perturbations are 180° out of phase with density perturbations, reversing
the usual stabilizing effect. The destabilization comes about when regions of high
temperature are in phase with regions of low density, leading the pressure increase
from the relatively high temperature to drive additional plasma out of the already
depleted regions. Likewise, regions of low temperature in phase with high density
reduce the pressure locally, allowing additional plasma to flow into those regions and
increase the already high density.

Equation 40 in Dimant and Oppenheim (2004) gives an expression for the com-
plex ratio of Fourier-transformed perturbations in ion temperature, 7; = 6T /T, to
Fourier-transformed perturbations in ion density, 7; = dn;/ng, in the plane perpen-

dicular to Bg:
T 2K (ud/vi,th)Q sin x cos x — ikug cos x

73 v; — tkug cos
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The real and imaginary parts of this equation are

R |:TZ:| _ 2ny (uiud/vith)z sin x cos x + (kug cos x)?

n 3 v? + (kug cos X)2
3 [Q} _ gmkud cos Y [lﬁ (ud/vith)Q sin y cos x — 1}
U 3 v + (kug cos X)2

Defining p = 7;/n, the phase relationship between temperature and density pertur-

bations is

p(k, x) = tan™" [M]

- [Vik:ud Cos [ni (ud/vith)Q sin y cos y — 1}
= tan

K (Viud/vith)z sin x cos x + (kug cos x)?

This expression in terms of y becomes an expression in terms of # via the relation
x = 0 — 8, where [ is the angle that uy; makes with the Ey x By direction. The
expression in terms of tan p(k, ) is

vikug cos(6 — ) [/{i (ud/vith)Q sin(f — ) cos(0 — ) — 1]

ki (Vg vign)” sin(f — B) cos(0 — B) + [kug cos(8 — B)]?

l/ik?ud (OgCﬂ + SgSg) [lii (ud/vith)Q (SgCg - CgSﬁ) (CgCg + S@Sﬁ) - 1}
ki (Vittg/vin ) (SeCs — CpS3) (CoCl + SpS5) + (kug)® (CoCs + SpSs)°

tan p(k, 0) =

In the final line, Cy = cost, Cz = cos B, Sy = sinf, and Sy = sinf to make the
expression readable. One more step makes this expression amenable to graphical
representation: converting tan p(k,6) — tang(k,, k,) via the relations Cy = k,/k
and Sp = k,/k. Since [ is fixed for a given altitude, Cs3 and S are constant param-
eters. That yields

viug (koCp + kySg) [Ki (ua/kvan)” (k,Cs — ks Sg) (koCs + kySg) — 1]

tan@(kxaky) = 2 2 PR
K (Viud/kvith) (k'y05 — l{xS/j) (kxo,g + kySQ) + (Ud) (k‘xCﬁ + k’y55)

Figures 6-16, 6-17, and 6-18 show ¢(k, k) in the plane perpendicular to By in 2-

D runs, at the same sixteen snapshots as shown in Figure 6-4. All panels show broad
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Figure 6-16: Phase offset of relative ion temperature perturbations,
0T/ Tio, from relative ion density perturbations, dn;/ng, during the
2-D run at 107 km. Panel times correspond to the sixteen time steps
shown in Figure 6-4. Each panel spans slightly more than —m to +
in both k, and k,. The color scale for all panels is periodic and ranges
from —180° to +180°.
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Figure 6-17: Phase offset of relative ion temperature perturbations,
0T/ Tio, from relative ion density perturbations, dn;/ng, during the
2-D run at 110 km. The layout is identical to that of Figure 6-16.
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Figure 6-18: Phase offset of relative ion temperature perturbations,
0T/ Tio, from relative ion density perturbations, dn;/ng, during the

2-D run at 113 km. The layout is identical to that of Figure 6-16.
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regions of —180° < ¢ < 0 in the (k, > 0,k, < 0) quadrant, 0° < ¢ < +180 in the
(k; < 0,k, > 0) quadrant, and regions of ¢ ~ 0 in the other two quadrants. There
is a predominance of ¢ &~ £90° in the regions of significant ¢ > 0°, indicating that
ion thermal perturbations should enhance density perturbations in those regions, as
opposed to acting to suppress density perturbations in the regions where ¢ = 0°.

In the linear stage of each 2-D run, ¢ develops regions of ¢ &~ +45° colocated with
concentrations of (6n;/ng)” in Figures 6-10 through 6-12. Portions of these regions
overlap with the ¢ ~ £90° regions, meaning that the I'TI is less active in the linear-
stage concentrations of (6n;/ng)>. The ¢ ~ £45° regions are more prominent in the
first panel as altitude increases, suggesting that I'TI effects are less relevant as altitude
approaches the magnetization boundary, and they fade during the transition from
linear to non-linear instability, suggesting that ITI effects should be more important
to non-linear behavior. Note that the ¢ ~ +45° regions fade earlier in the run at 110
km, consistent with the earlier transition from linear to non-linear behavior seen in
Figures 6-2, 6-5, and 6-11.

Figures 6-19, 6-20, and 6-21 show ¢(k,, k,) in the plane perpendicular to By in
3-D runs, at the same sixteen snapshots as shown in Figure 6-7. The analysis routine
again used five-pixel averages of temperature and density spectra to compute 3-D
. The images have a structure similar to their 2-D counterparts, which is again
due to the inclusion of oblique modes, especially during instability growth. As with
Figures 6-13, 6-14, and 6-15, computing ¢ by using only perpendicular temperature
and density spectral modes dramatically changes the growth-stage images. The other
point of note regarding Figures 6-19 through 6-21 is that the regions of |p| &~ 90°
during growth are smaller and less clearly defined than in Figures 6-16 through 6-18,

suggesting that the I'TI plays a smaller role in 3D.
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Figure 6-19: Phase offset of relative ion temperature perturbations,
0T/ Tio, from relative ion density perturbations, dn;/ng, during the
3-D run at 107 km. Panel times correspond to the sixteen time steps
shown in Figure 6-7. The layout is otherwise identical to that of Figure
6-16.
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Figure 6-20: Phase offset of relative ion temperature perturbations,
0T/ Tio, from relative ion density perturbations, dn;/ng, during the
3-D run at 110 km. The layout is identical to that of Figure 6-19.
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Figure 6-21: Phase offset of relative ion temperature perturbations,
0T/ Tio, from relative ion density perturbations, dn;/ng, during the
3-D run at 113 km. The layout is identical to that of Figure 6-19.
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6.8 Instability Flow Angle

The following set of figures show spectra of ion density perturbations in the plane
perpendicular to By after computing the RMS over an appropriate time range. Each
panel includes color-coded lines which aid in answering two questions fundamental to
this chapter: 1) How does the flow angle of ion perturbations change with altitude?

2) Do thermal effects from the ITI significantly alter the flow angle beyond isothermal

FBI? All five lines represent angles with respect to Eg x By.

The first line, shown in magenta, gives the angle of relative drift velocity between
electrons and ions, uy = u, — u;. Theory predicts that the isothermal FBI growth
rate should peak at the drift-velocity angle. In the absence of pressure gradients and

inertia, assuming Eqg = FEyy and By = Bz, the electron and ion drift components

are
eFy
Hey = _Veme(l + K2)
B B KeeFy
Uey = —Relley = +—Veme(1 2
B ek
r;ely
Uiz = TRiljy = +

vim;(1+ K2)

The drift-velocity components are thus

Udy = Uex
= +€E0

Udy = Uey —
= —6E0

These components make

— Uy

Re K
| meve (1+K2)  miy; (14 K2) ]

uiy

1 1
| meve (1 + K2) + miv; (1 + K7) |

an angle f = tan!(ug,/uq;) with the Ey x By (i.e., Z)
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direction. Plugging in the above expressions yields

B =tan"! — (6.2)

where Oy = \/W as in Dimant and Oppenheim (2004). To be relevant
to a simulation run, ©y must use the simulated values of its parameters. The ion
mass, m;, is the physical ion mass but the electron mass, m., is inflated. Both ion
and electron collision frequencies are as described in section 6.1. We also set v, to
maintain the appropriate value of ¥ for a given altitude, accounting for the artificial
electron mass. At 107 km, § ~ —9°; at 110 km, § ~ —15° at 113 km, [ ~ —24°.
Plots of 8 made directly from gg:sim, Udy:sim, and Ugz:sim in the sub-threshold run
with E,y = 10 mV/m at each altitude (not shown) give these values directly.

The second line, shown in cyan, gives the predicted deflection of FBI+ITT per-
turbations. Equation 34 of Oppenheim and Dimant (2004) is

2K; (1 + w)

tan 2xopy = — ry—_—

Solving this equation for x,pt and using the relation ¢ = x + 3 yields an equation for

Oopt at a given altitude:

1

opt —

2 3—K?

|2
This angle represents the predicted angle of maximum growth of FBI+ITI perturba-
tions. The values are Oy, = —12° at 107 km, 0, = —20° at 110 km, and O,p = —32°
at 113 km. Note that, graphically, xopt is the difference between the magenta and
cyan lines.

The third line, shown in white, actually represents three lines: the centroid of

spectral power, with plus and minus one-o uncertainty. The centroid of a 2-D distri-

bution of points is a quantity familiar to most people. Calling it by its more colloquial
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name, the center of mass, evokes an intuitive sense of the point at which the surface
would balance on the head of a pin. Since spectral power is spread over a range of
angles, the angular deflection of the centroid of spectral power represents flow angle
between the wave vector, k, and Ey x By.

Consider a 2-D discrete distribution, f(x;,y;), with z; = iAx, y; = jAy and
(,j) € {0..N, —1} ® {0..N, — 1}. The coordinates of the center of mass, ((z), (y)),

are

Z] sz xlayJ _ =
<CL’> ; ZZ f(l'z,y] - szsz

>
> 2 Yif (i y)
S5 fonyy) MZZW”

(y) =

where fi; = f(x;,y;) and M = .37, fi; is the total mass. These are just the
components of the first moment of the distribution with respect to the radial co-
ordinate r = (x,y). The conversion from Cartesian to polar coordinates is simple:
(k) = \/{2)" + (y)” and () = tan™" ((y) / (2)).

In order to reduce the uncertainty in the centroid location, the analysis routine
calculated the centroid for each image in the RMS time frame, calculated () as the
mean centroid from that distribution, and calculated 6 (d) as the standard devia-
tion of that distribution. The standard deviation is so small in all cases as to be
imperceptible in the images.

It is worth noting that the centroid is a better measure of flow angle during
growth than in saturation. During the growth stage, spectral amplitude is relatively
isolated in both wavelength and angle, and the two peaks on either side of k, = 0
are distinct. This means that the centroid of one of the peaks — the k, > 0 peak in

the following — represents the peak (k,, k,) value of linear growth. After saturation,
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there is no longer a single peak wavelength that characterizes the instability. The
centroid algorithm can still find the spectral center of mass but its value as a measure
of flow angle is diminished. Nonetheless, it will serve as a visual guide.

Figure 6-22 shows RMS squared spectral amplitude in the plane perpendicular to
B during the growth stage and after saturation in 2-D runs. Each panel also shows
the drift angle, 3, the optimum FBI4+ITI flow angle, 0, and the flow-angle of the
centroid, (6).

The run at 107 km matches FBI+ITT theory well during growth: Despite the
fact that yopt is only a few degrees at this altitude, (f) is within a few degrees of
Oopt- After saturation, the flow-angle magnitude increases by 1° so that it sits clearly
below both 3 and 0,,,. This increase is probably associated with the presence, then
fading, of the ¢ ~ —45° region in Figure 6-16.

At 110 km, (6) value sits approximately equidistant from £ and 6o, indicating
the possibility of some thermal effects but less than predicted. The magnitude of ¢
during growth in Figure 6-17 at angles near (6) is smaller, which suggests that the
I'TT simply does not enhance the FBI as much as in the run at 107 km. The transition
from growth to saturation again carries an increase in flow-angle magnitude and the
deviation from 6 is more extreme. Similarly to the run at 107 km, thermal effects
appear to play a role in determining the saturated (f) value at 110 km. Unlike at
107 km, they increase the flow angle magnitude from less than 6, to greater than
Oopt .-

At 113 km, (f) is approximately equal to § during growth but increases toward
Oopt in saturation. Physically, this implies that ion density perturbations at 113 km
propagate at the angle from Ey x By predicted by isothermal FBI theory during the
growth stage but become non-isothermal during the transition to saturation.

Figure 6-23 shows RMS spectral power in the plane perpendicular to By during
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Figure 6-22: RMS squared spectral amplitude in dn;/ny during

growth and after saturation in 2-D runs. Each panel spans 0 to +27
in k, and —7 to + in k,. Rows correspond to altitude, from 107 km
(bottom) to 113 km (top). The left column shows the growth stage
and the right column shows the saturation stage. In each panel, a ma-
genta line indicates the drift angle, 3, a cyan line indicates the optimal
flow angle for the combined FBI+ITI, 6., and white lines indicate the
centroid angle, (), with 0 uncertainties. The top of each panel lists
the centroid angle. The color scale is identical to Figures 6-10 through

6-15.
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Figure 6-23: RMS squared spectral amplitude in dn;/ng during
growth and after saturation in 3-D runs. The figure layout is iden-
tical to that of Figure 6-22.
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the growth stage and after saturation in 3-D runs. Overall, thermal effects appear
to produce less deviation from S than in 2-D runs.

At 107 km, (0) sits between 5 and 6, during growth, suggesting some thermal
effects but not as much as in the 2-D case. The shallower growth-stage value of () in
3D, combined with a saturated-stage value closer to the 2-D value, suggest that the
modest thermal effects associated with the weaker ¢ regions in Figure 6-19 require
more time to build up. There is also appreciable spectral amplitude in the ranges
4m < A< 6mand —30° < 0§ < —20° that the centroid-finding algorithm does not
capture, as described above. This patch of relatively high amplitude likely represents
perturbations of the combined FBI+ITI.

At 110 km, (6) is closer to / while its value after saturation is very close to fopt.
In Figure 6-19, regions of —90° < ¢ < —60° are less prevalent than at 107 km and
are weaker diffuse than in 2D, consistent with the difference in (6).

At 113 km, (#) does not differ much from g during growth but is about 1° larger
after saturation. In both Figures 6-18 and 6-21 the regions of significant ¢ are aligned
with larger flow angles than the regions of high amplitude at 113 km, especially during
the linear phase, compared to runs at 107 km and 110 km. Thus it appears that the
I'TT has less effect on the runs at 113 km.

Figures 6-22 and 6-23 show that, over the range of altitudes that this chapter
considers, the ITI make a significant contribution to the flow angle at 107 km and
less contribution as altitude increases, to the point where the angle of relative drift
effectively determines the flow at 113 km, especially in the 3-D runs. In general, the
flow angle is shallower in 3-D runs, indicating that the presence of wave modes with
a component parallel to By reduces the ITI effect. The theoretical basis presented
in Dimant and Oppenheim (2004) for predicting ion thermal effects applies to 2-D

perturbations in the long-wavelength limit kuy < v; and does not account for kinetic
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effects. The shortest long-wavelength limit relevant to the simulations presented in
this chapter is 6 m, corresponding to 107 km (assuming |Eqg| = 50 mV/m). Therefore,
the formal theory does not strictly apply to any of the simulations presented in
this chapter. Development of a theory that describes the apparent thermal effects

presented here represents an intriguing avenue of research.

6.9 Conclusion

This chapter analyzes how the spectrum of meter-scale irregularities in the upper
auroral E region varies with altitude. The magnitude of the flow angle with respect
to Eg x By, (0), increases with increasing altitude in both 2-D and 3-D simulations.
In both 2-D and 3-D runs at 107 km and 110 km, the increase in flow angle results
in part from the thermal effects of the I'TI enhancing wave growth in a direction
offset from the direction predicted by isothermal theory. However, the change in
angle of relative drift velocity, ug, plays the dominant role in turning waves away
from Eq x By at upper-electrojet altitudes. In both 2-D and 3-D runs at 113 km, the
direction of uy largely determines the flow angle with less contribution from thermal
effects in 3D than in 2D. In all the cases presented in this chapter, the flow angle is
never smaller than the drift angle.

The magnitude of the background electric field, E,y = 50 mV /m represents the E-
region response to a modest geomagnetic storm. Simulations with a 30-mV /m driving
field failed to develop ion instabilities in the same time as their 2-D and 3-D 50-mV/m
counterparts. The threshold electric field at auroral latitudes is Fy, ~ 21 mV /m, so it
is likely that the 30-mV /m runs needed more time to develop turbulence. Simulations
with a 70-mV /m driving field developed ion instabilities that behaved very similarly
to the 50-mV/m case, though instability growth was faster for the higher electric

field, as expected. The 70-mV/m run at 107 km produced the largest flow angle of
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any run, consistent with a large region of —180° < ¢ < —90°. The ITT arises because
the total electric field due to the background field and wave polarization field drive
enhanced Joule heating, so it is no surprise that increasing F,, had an effect on
flow angle. The 70-mV/m results simply reinforce the conclusions drawn from the
50-mV /m case.

This chapter also identifies differences between 2-D and 3-D simulations of ion
instabilities in the upper auroral electrojet. All 3-D runs evolve more quickly than do
2-D runs because allowing a component not strictly perpendicular to By introduces
additional unstable modes. Figure 6-2 showed that 3-D runs display an initial noisy
period, roughly twenty seconds long, before instability growth starts, whereas 2-D
runs show instability growth almost immediately. The 3-D runs appear to complete
their initial growth phase much more quickly than 2-D runs — a span of roughly
twenty seconds in 3D compared to over 100 seconds in 2D — but the non-linear
amplitude of decameter-scale waves in 3D appears to be trending toward the meter-
scale amplitude at the end of each run. Considering that the 2-D runs ran for four
times as long, the asymptotic behavior in both 2D and 3D may be the same.

Figure 6-3 showed that average electron temperatures differ over the course of
a 2-D run compared to a 3-D run at a given altitude. All 2-D runs showed more
erratic T, than their 3-D counterparts — likely a result of the 3-D runs having many
more modes into which the FBI can couple energy. Overall, T, is much higher in 3-D
runs than in 2-D runs and the value of T, after instability saturation increases with
altitude. Although this chapter focused on the contribution of ion thermal effects to
the FBI, the difference in T, is notable. Average temperatures in the 70-mV/m runs
displayed similar trends, with saturated-state 7. values 300 to 400 K hotter at each
altitude than in the 50-mV/m runs. Similarly to the average amplitude of density

perturbations, 3-D average temperature dynamics evolve approximately four times
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more quickly than do 2-D temperature dynamics. However, average 3-D tempera-
tures do not appear to mimic the long-term behavior of average 2-D temperatures,
unlike the similar asymptotic behavior of average density amplitudes.

The structure of the phase offset between ion temperature and density pertur-
bations, ¢(ky, ky), is similar between 2-D and 3-D runs after accounting for oblique
wave modes. The slower instability evolution in 2-D runs means that Figures 6-16
through 6-18 do not sample the pre-growth stage as well as Figures 6-19 through 6-21
do. However, even the saturated stages of 2-D runs show larger values of || than
their 3-D counterparts, suggesting that thermal effects play a larger role in 2-D sim-
ulations. Despite the sampling difference, the 2-D and 3-D growth stages are clearly
different, especially at long wavelengths along the bisector between u,; and uy x By.

Finally, the difference in ¢(k,, k,) manifests as a difference in flow angle between
2-D and 3-D runs at all altitudes, but less so at 113 km than at 107 km and 110
km. The flow angle in 3-D runs is consistently a few degrees shallower in 3-D runs
than in 2-D runs, except during growth at 113 km, where it follows the relative drift.
The ITI appears to have a smaller effect on flow angle with increasing altitude, at
least for the simulations presented here. The growth stages of these simulations are
so short that a radar pulse would average over them and the saturate states would
dominate the return signal. In light of this fact, the saturation column in Figure 6-23
predicts that the flow angles at 107 km, 110 km, and 113 km should be —16°, —19°,
and —25°, respectively.

The influence of including wave modes with a component parallel to By on meter-
scale ion instabilities has noticeable effects beyond allowing them to propagate at a
small non-zero aspect angle. In addition to increasing the growth rates, suppress-
ing direct excitation of decameter-scale waves, and stabilizing average temperatures,

it may suppress the effects of the ion thermal instability, leading to less flow-angle
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deviation from Ey x By. Any future simulations that attempts to approximate the
naturally 3-D auroral electrojet as a 2-D phenomenon must account for these dis-

crepancies.
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Chapter 7

Conclusion

7.1 Summary of the Dissertation

The over-arching theme of this dissertation was the non-linear behavior of meter-scale
density irregularities as they evolve in the terrestrial E-region ionosphere. Chapter
1 provided an introduction to the ionosphere, a summary of research into E-region
plasma instabilities, and a primer on two relevant instabilities: the Farley-Buneman
instability (FBI) and the gradient-drift instability (GDI). Chapter 2 provided the the-
oretical background necessary for understanding plasma instability research. Chapter
3 provided a primer on numerical modeling as a tool in plasma instability research.

The main body of this dissertation presented my research into density irregular-
ities produced by the FBI in various ionospheric contexts: Chapter 4 described its
co-evolution with the GDI on small scales, Chapter 5 demonstrated how the GDI
on large scales drives the FBI on small scales, and Chapter 6 elucidated the effects
of the ion thermal instability (ITI) on FBI evolution. Short summaries of the three

research chapters follow.

7.1.1 Summary of Chapter 4

Chapter 4 presented the first results from a parallelized hybrid quasi-neutral plasma
simulation with particle ions and fluid electrons. Those simulations employed a nu-
merical model that is well suited to studying meter- and decameter-scale turbulence

in the presence of hundred-meter- to kilometer-scale density waves. The simula-
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tions modeled the development of meter-scale plasma instabilities in the presence of
ionization layers perturbed by an approximately half-kilometer wave. Density gra-
dients along the perturbed ionization layers drive broad-spectrum (Type-II) plasma
instabilities and the electric field between perturbed layers drives narrow-spectrum
(Type-1) plasma instabilities. The main results of Chapter 4 were: 1) Simulations
with zeroth-order vertical electric fields of varying strength produce gradient-drift
turbulence in regions that satisfy the GDI condition. 2) The total electric field in
the density minimum is large enough to drive the FBI even when the zeroth-order
vertical field is below the threshold. 3) Waves traveling below the plasma acoustic
speed develop in all runs. 4) Wave power spectra show characteristics of Type-II
irregularities in all runs. 5) Wave power spectra show a mix of Type-I and Type-II
irregularities when the background electric field is 12 mV/m. 6) Wave with Type-
I spectra travel at the plasma acoustic speed and are confined to a 30° range in

elevation.

7.1.2 Summary of Chapter 5

Chapter 5 presented the first hybrid plasma simulations of meter-scale secondary
wave growth driven by a kilometer-scale primary wave. This chapter directly ad-
dressed the problem of secondary FBI generation, originally considered by Bals-
ley and Farley (1973) and contemporaries, on a realistic spatial scale. The simula-
tions presented in Chapter 5 required significant code development, which Chapter
3 describes. These simulations imposed a one-kilometer wave, then evolved self-
consistently under the influence of background electric and magnetic fields, with
field strengths and plasma parameters typical of 100 km at the magnetic equator.
The large-scale wave developed a polarization electric field which produced FBI in the
crest and trough, aligning nicely with observations of vertically propagating meter-

scale density irregularities, such as those observed by Hysell et al. (2007). The FBI,
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in turn, transported plasma across the magnetic field and shorted out the wave po-
larization electric field in the regions of strongest wave growth. The shorting-out
effect produced flat-top electric fields that are similar to those observed by Pfaff
et al. (1987a,b), and represents a feedback mechanism that appears to explain why

the irregularities that produce Type-I spectra travel at the plasma acoustic speed.

7.1.3 Summary of Chapter 6

Chapter 6 presented pure particle-in-cell (PIC) simulations of FBI waves in the high-
latitude ionosphere, under conditions typical of a moderate geomagnetic storm. It
showed that the angle that ion perturbations make with Eq x By, called the flow
angle, increases with increasing altitude in both 2-D and 3-D simulations. It showed
that the flow angle is non-zero due to a combination of the FBI and the ITT at 107
km and 110 km, especially after instability saturation, but that the angle of relative
drift between electrons and ions determines the flow angle at 113 km. It also showed
that the magnitude of the flow angle is smaller in 3-D than in 2-D at 107 km and
110 km, indicating a difference in behavior of the I'TI in 2-D simulations versus 3-D
simulations. Spectra of ion perturbations at all altitudes also differ between 2-D and
3-D simulations in the growth of decameter-scale waves versus growth of meter-scale
waves, meaning that attempts to simulate the auroral electrojet as a 2-D system

must account for possibly non-physical wave growth at large scales.

7.2 Future Work

Development of the 2-D hybrid version of EPPIC was the cornerstone of my graduate
research. Despite the years I have spent developing hybrid EPPIC, not to mention
the time other members of out research group have spent developing other aspects

of EPPIC, there are many ways it can improve.
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One way is the development of a thermal equation for fluid electrons. The isother-
mal simulations presented in Chapters 4 and 5 are sufficient for simulating interacting
FBI and GDI in the equatorial ionosphere but Chapter 6 showed that thermal effects
may alter FBI evolution, especially at high latitudes. While the pure-PIC version of
EPPIC provided results for that chapter, the spectral resolution of ion modes was
poor because the need to resolve the Debye length forced the simulation box size
to be relatively small. The aeronomy community will benefit from simulations of
FBI+ITT dynamics driven by density gradients at high latitudes that provide pa-
rameterizations of sub-kilometer turbulent effects such as plasma heating, plasma
transport, and electric field saturation, which larger-scale models can incorporate
into their physics.

Another way to improve hybrid EPPIC is the extension to 3D. Again, the pure-
PIC simulations of Chapter 6 identify a short-coming in hybrid EPPIC by illustrating
differences between 2-D and 3-D instability evolution. In addition to substantial
electron heating, which Oppenheim and Dimant (2013) previously described, the
dimension parallel to By changes the nature of the combined FBI+ITT and affects the
flow angle. These effects will clearly matter at high latitudes, but even in equatorial
simulations, a change in flow angle would change the obliquity of secondary FBI
waves and may contribute to up-down/east-west asymmetries.

With these two improvements, hybrid EPPIC or a similar code developed from
scratch would be poised to self-consistently simulate the growth of GDI waves which
develop electric fields strong enough to drive the FBI, which in turn transports
plasma, leads to species-specific thermal effects, and shorts out the GDI-wave electric
field. Such a tool would not only contribute substantial insight into E-region plasma

processes but also plasma processes in the solar system and beyond.
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7.3 Final Remarks

This dissertation represents original scientific research into ionospheric plasma insta-
bilities that contributes substantially to the advancement of the field of aeronomy.
Chapter 1 asked three questions that guided the research presented in this disserta-

tion. Those questions, and their answers, are:

1. How do density irreqularities from co-evolving Farley-Buneman (FBI) and gra-
dient drift instabilities (GDI) relate to historical classifications of radar spectra?
Meter-scale Type-II spectra develop in the presence of a density gradient for a
range of electric fields, even in the absence of Type-I spectra. Type-I spectra
appear when the total electric field exceeds the FBI threshold, and a portion
of energy previously in Type-II spectra moves into Type-I spectra. Attempting
to classify radar echoes as one type or the other is less fruitful than studying
how echo amplitude, Doppler shift, and spectra width evolve over minutes or
hours, and using those quantities to infer the presence of gradients, strengths

of electric fields, and other plasma parameters.

2. How does a kilometer-scale wave give rise to vertically propagating meter-scale
waves and how do those meter-scale waves feed back to their kilometer-scale
driver?

A kilometer-scale wave, such as those produced by the GDI, develops a po-
larization electric field that points parallel to its propagation in the crest and
antiparallel in the trough. If the magnitude of that polarization electric field
and the ambient electric field exceeds the FBI threshold, meter-scale waves
will grow in the crest and trough, propagating with some vertical component.
As the meter-scale waves grow, they transport plasma through the crest and

trough, shorting out the polarization electric field to just above the FBI thresh-
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old.

3. How does the spectrum of F'BI turbulence change with altitude and how well do
2-D simulations model the 3-D dynamics?
FBI waves turn from the Eq x Bg direction for two reasons:1) their growth
peaks in the direction of relative electron-ion drift; 2) ion thermal effects further
tilt meter-scale waves toward —Ej. The major difference between 2-D and 3-D
spectra is that flow angles in 2D are almost always larger than in 3D, especially
after saturation, which is when radars are likely to observe meter-scale echoes.
Thermal effects appear to decrease significantly above 110 km and the addition
of wave modes parallel to By appear to partially suppress the ion thermal

instability (ITT).

This dissertation has answered some fundamental questions about plasma instabil-
ities in the E-region ionosphere, has placed those physical results in the context of
observations and broader processes, and has proposed additional avenues for future

research.
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