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Ionosphere?
Witches did that.
So you have them to thank.
For the ionosphere.

Griffin McElroy
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ABSTRACT

The Sun ionizes a small fraction of Earth’s atmosphere above roughly 60 km, pro-

ducing the plasma that constitutes the ionosphere. Radio signals passing through the

ionosphere scatter off of plasma density structures created by the Farley-Buneman

instability (FBI). While numerous studies have characterized the FBI’s intrinsic na-

ture, its evolution within the broader context of the surrounding plasma remains

enigmatic. This dissertation answers two fundamental questions about the FBI: How

does it interact with density gradients? How does its non-linear evolution depend on

the background plasma?

The fourth chapter examines the combined development of the FBI and the gra-

dient drift instability (GDI) using a 2-D simulation of the equatorial ionosphere. A

half-kilometer wave perturbs a plasma layer perpendicular to the ambient magnetic

field, causing the perturbed layer to develop GDI waves along the gradient aligned

with the ambient electric field, as well as FBI waves in a region where the total

electric field exceeds a certain threshold. Early radar observations suggested that
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these two instabilities were distinct phenomena; the reported results illustrate their

coupled nature.

The fifth chapter presents 2-D simulations in which a one-kilometer plasma wave

develops an electric field large enough to trigger meter-scale waves. Such large-scale

waves arise via the GDI within the daytime ionospheric gradient around 100-110

km. Typical ionospheric radars only observe meter-scale irregularities but observa-

tions show meter-scale waves tracing out larger structures. Simulated meter-scale

FBI in the troughs and crests of kilometer-scale GDI matches radar observations of

the daytime equatorial ionosphere, answers a question about electric-field saturation

raised by rocket observations in the 1980s, and predicts an anomalous cross-field

conductivity important to magnetosphere-ionosphere (M-I) coupling.

The sixth chapter of this dissertation presents 3-D simulations of the FBI at a

range of altitudes and driving electric fields appropriate to the auroral ionosphere,

where it plays a role in M-I coupling. Research has thoroughly established the linear

theory of FBI but rigorous analysis of radar measurements requires an understanding

of the turbulent stage. These simulations explain the change in instability flow

direction with altitude, with regard to the direction of background plasma flow.
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Chapter 1

Introduction

1.1 Overview

This dissertation addresses the role of a particular type of density wave in the electri-

cally charged upper atmosphere of Earth. These waves, described in detail below, are

especially common around 100 km during the daytime, but have also been observed

at night. Many places in the solar system meet the conditions for their existence,

and recent theoretical research has even invoked them to explain heating in the solar

chromosphere (Fontenla, 2005; Fontenla et al., 2008; Madsen et al., 2014; Fletcher

et al., 2018). We know they exist in the Earth’s atmosphere because they strongly

scatter very high frequency (VHF) radio waves, which made them obvious to the first

radio operators as far back as the 1940s. We also know, through both theory and

observations, that they grow most readily at wavelengths of a few meters. What we

do not know is how they interact with larger-scale structures, including other types

of waves, and how their saturated, turbulent behavior changes with altitude.

1.2 The Ionospheric Canvas

Earth’s atmosphere above roughly 60 km is partially ionized during the day by solar

EUV and soft X-ray radiation. The resultant plasma is called the ionosphere and

comprises three main regions: the D region from 60 km to 90 km, the E region

from 100 km to 150 km, and the F region from 150 km to several thousands of km.
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Studying the motion of the plasma in the ionosphere, including plasma instabilities, is

crucial to knowing how electromagnetic (EM) energy passes through and couples into

the upper atmosphere. This dissertation focuses on plasma instabilities in the lower

to middle E-region, spanning roughly 90 km to 115 km. There, Earth’s magnetic field

(B0) and ambient electric fields (E0) dominate electron motion while collisions with

neutral particles dominate ion motion — in other words, electrons are magnetized and

ions are unmagnetized. In addition, ionization layers and the increasing background

plasma density provide medium- to large-scale density gradients.

Two instabilities that generate waves and, ultimately, turbulence in such a plasma

have garnered significant attention since the advent of radar: A two-stream instabil-

ity called the Farley-Buneman instability (FBI) that derives its free energy from ion

inertia when magnetized electrons stream supersonically through unmagnetized ions,

and the gradient drift instability (GDI), which derives its free energy from an ion-

ization gradient aligned with an electric field. The two instabilities are special cases

of one dispersion relation and may therefore occur in the same volume of plasma,

provided appropriate fields and gradients exist. Furthermore, large GDI waves can

create polarization electric fields high enough to trigger FBI waves in a parametric

instability.

The FBI and GDI produce waves at various wavelengths but the observations

that motivate their analysis come from radars that are sensitive to wavelengths of a

few meters or less. At the heart of this dissertation is a desire to understand how,

to adapt a phrase from Hysell et al. (2018), meter-scale waves produced by the FBI

and GDI paint the natural “canvas” of the E-region ionosphere.

1.3 Motivation

The following questions motivate the work presented in this dissertation:
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1. How do density irregularities from co-evolving Farley-Buneman (FBI) and gra-

dient drift instabilities (GDI) relate to historical classifications of radar spectra?

Chapter 4 addresses this question.

2. How does a kilometer-scale wave give rise to vertically propagating meter-scale

waves and how do those meter-scale waves feed back to their kilometer-scale

driver?

Chapter 5 addresses these questions.

3. How does the spectrum of FBI turbulence change with altitude and how well do

two-dimensional (2-D) simulations model the three-dimensional (3-D) dynam-

ics?

Chapter 6 addresses these questions.

1.4 Earth’s Global Ionosphere and Thermosphere

This section describes the global structure of Earth’s thermosphere and ionosphere,

filling in and expanding upon the picture sketched out in §1.2. The main goals are

to allow the reader to appreciate the body of previous research described in §1.5 and

to accept the body of new research described in Chapters 4, 5, and 6. The excellent

texts by Rishbeth and Garriott (1969); Schunk and Nagy (2004); Prölls (2004); Kelley

(2009) provide historical introductions to ionospheric research, instruction in the

relevant mathematical concepts, and explanations of the fundamental physical and

chemical processes in the upper atmosphere and ionosphere.

The ionosphere makes up a tiny fraction of the Earth’s atmosphere – composi-

tionally, it is a collection of trace species embedded in the neutral gas above roughly

60 km. Nonetheless, it supports strong currents and large-scale electric fields, it

interacts with the surrounding neutral species, and it affects EM waves that pass

through it.
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A London-based watchmaker named George Graham provided the first account

of daily fluctuations in Earth’s magnetic field as recorded by a compass needle, and

published his findings in the Royal Society of London’s Philosophical Transactions,

in 1724. In 1839, Friedrich Gauss proposed that currents in the upper atmosphere

caused such observed fluctuations of the geomagnetic field on the ground. In 1860,

Lord Kelvin echoed Gauss’s conclusion and Elias Loomis made the first connec-

tion between the aurora and Earth’s magnetic field. Balfour Stewart built on the

ideas of Gauss and Kelvin to further conjecture, in 1882, that tidal winds drive

a dynamo which produces the currents responsible for geomagnetic fluctuations.

Guglielmo Marconi made the first demonstration of transatlantic radio communi-

cation by bouncing an EM signal off of a conducting layer in the upper atmosphere

in 1901; while Marconi and his contemporaries did not understand the nature of that

conducting layer, those transmissions set the stage for modern ionospheric research.

The original physicists and radio operators who followed Marconi’s successful

transatlantic transmission called the reflecting layer the Kennelly-Heaviside (or sim-

ply Heaviside) layer, after Arthur Kennelly and Oliver Heaviside proposed in 1902

that free charges in the upper atmosphere were responsible for reflecting Marconi’s

radio waves. In the same year, Oliver Lodge put forth the pioneering physical theory

that the influence of solar radiation increases the conductivity of the air by produc-

ing free electrons. In 1924, two teams of researchers – Edward Appleton and Miles

Barnett in England, and Gregory Breit and Merl Tuve in the USA – made what the

aeronomy community generally accepts as the first measurements of height of Mar-

coni’s reflecting layer. In fact, Appleton originated the D/E/F nomenclature scheme

by marking the observed conducting layer with an E in his notes to signify that it

supports electric fields. Upon observing a second layer at higher altitude, he had the

presence of mind to mark that layer with an F, as well as to denote a conjectured
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lower layer with a D.

1.4.1 Fundamental concepts

Before delving into more detailed descriptions of ionospheric dynamics, it is impor-

tant to understand the ionosphere and the atmosphere that hosts it. First, a few

general definitions:

1. Debye length and Debye sphere

The Debye length is the fundamental length of plasma physics. It is essentially

the length at which the inward electrostatic pull of a charged particle on a

more mobile, oppositely charged particle balances the outward thermal motion

of the more mobile particle. Mathematically, its expression is

λDj ≡
√
ε0kBTj
njq2j

in meters,

where j stands for any charged species (e.g., j = e for electrons), ε0 is the

permittivity of free space, kB is Boltzmann’s constant, and Tj, nj, and qj are

the temperature, density, and charge of species j. On spatial scales much larger

than the Debye length, the lighter particles shield the charge of the heavier

particle. A Debye sphere is simply a sphere with radius λDj.

2. Plasma

A plasma is an ionized gas that is electrically neutral on large scales and that

behaves collectively. The first criterion means that, on average, particles in a

given region shield particles farther away from the electrostatic force of their

nearby neighbors. More concisely: there are many particles in a Debye sphere

(defined above). The second criterion means that when there is a charge im-

balance in a particular region, it has long-range EM effects for which there

are no parallels in a neutral gas. For example: In space, no one can hear you
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scream because the density of neutral particles is negligibly small, preclud-

ing the inter-particle collisions that comprise sound waves. However, moving

charged particles can create magnetic fields that stretch to infinity and beyond.

3. Weakly, partially, and fully ionized plasmas

All ionospheres comprise a plasma embedded in a neutral gas. The role of

collisions between two charged species versus collisions between charged and

neutral species determines whether a plasma is weakly, partially, or fully ion-

ized. In a weakly ionized plasma, the neutral density is many orders of mag-

nitude larger than the ionized density, so collisions between charged species

and neutral species dominate. The D and E regions of Earth’s ionosphere are

weakly ionized. In a partially ionized plasma, the neutral density is a few or-

ders of magnitude larger than the ionized density, so both charged-charged and

charged-neutral collisions are important. The F region of Earth’s ionosphere is

a partially ionized plasma. In a fully ionized plasma, neutral species may still

exist but collisions between charged species and neutral species are negligible.

The topside ionosphere is a fully ionized plasma.

4. Plasma frequency

The plasma frequency is the most fundamental oscillation in a plasma. Given

two oppositely charged species, one lighter than the other, any separation be-

tween the two will create a restorative electrostatic force. The lighter species

will respond to this force by moving toward the heavier species but its inertia

will cause it to overshoot and move away in the opposite direction. This oscil-

latory behavior will continue until some outside force, such as a collision, stops

it. The oscillation frequency is the plasma frequency.
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Figure 1·1: Altitude profiles of (a) MSIS neutral temperature from
0 to 300 km and (b) IRI electron density from 0 to 1000 km at the
magnetic equator. Solid lines correspond to daytime and dashed lines
correspond to nighttime.

1.4.2 Ionospheric structure and composition

Taking a cue from Kelley (2009), the altitudinal profiles of neutral temperature and

electron density in Figure 1·1 gives a cursory description of the neutral atmosphere

and the ionosphere, respectively. The temperature profile comes from the 2000 ver-

sion of the Naval Research Laboratory Mass Spectrometer Incoherent Scatter radar

model extending to the Exobase (NRLMSISE-00 or simply MSIS) (Picone et al.,

2002) and the electron density profile comes from the 2016 version of the Interna-

tional Reference Ionosphere (IRI2016, or simply IRI) (Bilitza et al., 2017). Moving

up from sea level, the daytime temperature in the troposphere drops exponentially

until it reaches the tropopause at h ≈ 10 km. Above the tropopause, ozone in the

stratosphere absorbs ultraviolet (UV) radiation and causes the temperature to in-

crease with altitude until the stratopause at h ≈ 50 km. The stratopause marks a

transition from UV heating to radiative cooling, and the temperature drops precipi-

tously through the mesosphere. The temperature hits its minimum at the mesopause,

around 90 km, at which point extreme ultraviolet (EUV) and soft X-ray photons heat
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the neutral gas from roughly 130 K to 1000 K or more over 100 km. This region of

intense heating is aptly called the thermosphere. The nighttime temperature profile

follows the daytime profile fairly closely at the magnetic equator; it only diverges by

a modest amount above h ≈ 150 km due to the lack of solar irradiation. Neither

daytime nor nighttime profile change much above 300 km.

The electron density profile serves as a measure of total ionization as a result of

the quasi-neutrality assumption. Note that even though the vertical axis extends to

sea level, appreciable ionization (and hence the ionosphere) starts at around 60 km.

From 60 km to 90 km, the daytime electron density climbs from effectively zero to

about 109 m−3. This is the D region ionosphere. It disappears at nighttime. The

electron density increases even more quickly until about 100 km, where it reaches

a local peak. Although the nighttime E-region density is more than an order of

magnitude lower, the peak is far more noticeable. The E-region peak exists because

of the specific neutral composition, which the following section will describe in more

detail. Above the E-region peak and corresponding “valley region”, the electron

density again increases, this time up to its maximum. The F region begins around

150 km – the distinction is again more obvious at night – and the F-region peak is

also the global ionization peak in the atmosphere.

Figure 1·2 shows the composition of charged and neutral species from IRI and

MSIS, respectively. Neutral density for N2, O2, and Ar in Figure 1·2a decrease

exponentially with altitude at about the same rate up to the turbopause around 100

km, where turbulent mixing stops. Above the turbopause, they separate out based on

masses, according to hydrostatic equilibrium. The profiles of atomic oxygen, atomic

nitrogen, and atomic hydrogen differ from the simple exponential fall-off because of

chemical interactions in the upper atmosphere. Most of the O is bound up in O2

below 100 km or so, but as altitude increases, there is more solar radiative flux, which
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Figure 1·2: Altitude profiles of density of (a) neutral species and (b)
charged species from 0 to 1000 km at the magnetic equator. Individ-
ual species names are placed as close as possible to the corresponding
profile. The neutral-species densities from from MSIS and the charge-
species densities come from IRI.

causes some O2 molecules to dissociate into O. Above the turbopause, the density

of O will naturally decrease more slowly than the density of O2 due to their different

scale heights.

The electron profile in Figure 1·2b is identical to the daytime profile in Figure

1·1b. Figure 1·2b shows that the E region consists mainly of NO+ and O+
2 ions, while

O+ gradually increases to provide most of the plasma in the F region. The difference

between molecular ions in the E region and atomic ions in the F region accounts for

the difference between daytimes and nighttime electron profiles in Figure 1·1b. At

E-region altitudes, N2, O, and O2 absorb photons with wavelengths less than 790 Å,

910 Å, and 1030 Å, respectively, to produce N+
2 , O+, and O+

2 . Although neither O

nor O+ constitute major species in the E region, both can act as a catalyst to form

NO+ from N+
2 , and even though the density of O is less than the densities of N2

and O2, it is still far greater than any of the ion densities. Likewise, the E region

nearly disappears at night because recombination works much more efficiently for
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molecular ions than for atomic ions and because the higher neutral density makes

collisions much more frequent.

There are also phenomenological distinctions between different regions in the iono-

sphere. The D region ionosphere is very weakly ionized and it supports more exotic

ions, including negatively-charged water-cluster ions, and charged dust. Throughout

most of the D region, ions and electrons collide so frequently with neutral species

that neutral dynamics significantly influence their behavior. The D region has collo-

quially developed the nickname “the ignorosphere” because its ionization is too low

to produce the density irregularities that radars typically observe and because it is

difficult to measure in situ. However, it can significantly impact radio-wave propa-

gation because of its high electron-neutral collision frequency, νe, since a plasma will

attenuate EM waves when the wave frequency is near νe. More precisely, the product

neνe is what matters for absorption, since the EM wave passes straight through the

neutral atmosphere. The neutral density, and therefore νe, is roughly constant at

D-region altitudes, so increasing ne leads to increased absorption. For that reason,

the daytime D region heavily attenuates short-wave radio signals in the 1-8 MHz

range, whereas those signals propagate with significantly reduced attenuation after

the D region disappears at night. X-ray flares can produce severe attenuation at HF

frequencies (3-30 MHz) by drastically increasing the electron density. Naturally, the

D region has recently garnered increase attention precisely because the aeronomy

community knows so little about it, not to mention the fact that the mesosphere

hosts interesting neutral phenomena which may have charged counterparts. New

observational techniques and the push to understand energy transfer throughout the

whole atmosphere-ionosphere system will almost certainly lead to increased interest

in the D region.

The E region was the first known ionosphere region because it reflects radio
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waves. It also supports appreciable electric fields and strong currents, the latter of

which deflect ground-based magnetometers and compasses. It is weakly ionized in

the sense of the definition above, but there is an important distinction between ions

and electrons. In the low to middle E region, ions typically collide with neutral par-

ticles more frequently than they complete a gyro-orbit in the Earth’s magnetic field,

meaning that they tend to follow neutral dynamics. Electrons, on the other hand,

respond to the magnetic field more than to the neutral dynamics. This dynamical

difference leads to the plasma instabilities that are at the heart of this dissertation,

which section 1.6 will describe in detail.

The equatorial and auroral E regions host strong currents called electrojets. The

equatorial electrojet arises because of tidal motions of the neutral atmosphere and

the auroral electrojet arises because of strong magnetospheric currents that flow

along field lines and close in the ionosphere. In the equatorial case, the energy in

solar radiation that does not go into ionizing neutral particles goes into heating the

neutral gas. This heating causes an upward (vertical) neutral wind that drags ions

across magnetic field lines. The primary neutral wind component is the migrating

diurnal tide – migrating meaning that the effect moves with the Sun and diurnal

meaning that the effect has a daily period. This wind produces an east-west (zonal)

dynamo electric field on the order of 1 mV/m (Schunk and Nagy, 2004). The zonal

electric field drives a small Pedersen current, Jzonal, but that current is not the

equatorial electrojet. Rather, the Jzonal × B0 force due to the zonal current moves

electrons upward and ions downward.

The plasma conductivity significantly drops off below 90 km, due to the decrease

in ionization, and again above 120 km, due to increased ion magnetization; the com-

bined effect produces a vertical electric field to cancel the charge polarization and

maintain quasi-neutrality. That vertical polarization electric field is larger than the
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zonal field by a factor of σH/σP ≈ 10, where σH and σP are the Hall and Ped-

ersen conductivities. The total zonal current is Jzonal = σHEvertical + σPEzonal =[
(σH/σP )2 + 1

]
σPEzonal = σcEzonal, where σc ≡ σ2

H/σP is called the Cowling con-

ductivity (Kelley, 2009). This total current comprises the equatorial electrojet. In

the auroral zone geomagnetic storms produce strong electric fields that map along

highly conducting magnetic field lines until they reach the E region, where they

drive Pedersen and Hall currents that close the field-aligned currents (FACs). The

resultant Hall current comprises the auroral electrojet.

Near the top of the E region, the ion collisions become less important than ion

motion in the Earth’s magnetic field and the F region consists of a partially ionized

plasma that responds mostly to EM forces. The electrostatic instabilities of the E

region give way to new instabilities, including huge plasma bubbles and plumes that

create the radar phenomenon known as equatorial spread F (ESF) and that cause

scintillation of global positioning satellite (GPS) signals. The F region extends up to

the exobase, where the mean free path (MFP) becomes larger than the scale height

(this applies in an average sense, since both quantities differ among species). At that

point, particles can escape the atmosphere before colliding with other particles, so

the exobase effectively represents the edge of space.

1.4.3 Ionospheric observation techniques

The aeronomy community observes the ionosphere using both remote sensing and

in situ observations. We perform remote sensing with radars across a wide range

of radio frequencies: Coherent scatter radars in the HF (3-30 MHz), VHF (30-300

MHz), and UHF (300-3000 MHz) bands reflect from ionospheric irregularities with

sizes ranging from a few centimeters to tens of meters, providing information about

plasma density irregularities; incoherent scatter radars (ISRs) typically operating

at hundreds of MHz reflect from a sea of thermal electrons, providing information
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about density, temperature, and composition. The term coherent scatter refers to

the coherent return signal that builds up after many partial reflections from wave

fronts spaced out at half the wavelength of the radar beam. The term incoherent

scatter refers to the reflection of the radar beam from many electrons in a common

volume, whose motions are not organized into coherent wave fronts. A special class

of ISRs, called phased-array radars, produce volumetric images of ionospheric state

parameters through sophisticated electronic steering and data-analysis software; and

active heating experiments perturb small patches of the ionosphere while measuring

the effect with other instruments. We also perform remote sensing with lidar. Lidar

instruments operate on principles similar to radars (in fact, the term “lidar” is an

extension of the term “radar”), except instead of reflecting or scattering off collections

of free electrons in the ionosphere, they can reflect off of ions, neutral atoms and

molecules, or more complex particles such as dust grains. All-sky images provide a

way to passively observe naturally occurring ionospheric processes that emit light,

including aurora and air glow – they are often very sensitive and may collect light

over a range of wavelengths or at one particular wavelength. Remote sensing was

once primarily a ground-based approach, but space craft now routinely fly radars,

lidars, and cameras as part of their instrument packages.

Of course, those same space craft also provide valuable in situ data. That data

may include measurements of ion and neutral species composition, ambient magnetic

and electric field strength and orientation, or electrostatic and electromagnetic waves.

Most standard satellite orbits have perigees no closer than a few hundred kilometers,

meaning they do not sample the E-region ionosphere on a regular basis, though some

satellites have taken data during their final descent. Small satellites (e.g., cubesats,

nanosatellites, etc.) may pass below a few hundred kilometers on dedicated missions,

but atmospheric drag limits the lifetime of any such orbit. Balloons provide in situ
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data of the lower atmosphere, but the loss of buoyancy as atmospheric density drops

exponentially with altitude limits their maximum height to around 40 km – too low

to probe the ionosphere directly.

Rockets have proven to be a reliable method for directly observing the ionosphere,

especially the E region, but they provide only one shot at getting a set of measure-

ments. Rocket payloads often carry instruments similar to those on satellite payloads

– instruments designed to measure electromagnetic fields, neutral and charged par-

ticles, and plasma waves. While rockets are likewise bound to follow laws of orbital

motion, a particular mission design may allow a rocket to spend more time at a target

altitude, or sample all altitudes up to apogee. A mission may even feature multiple

rockets with various trajectories. Finally, rockets can also modify the ionosphere

via chemical release. Explosive injection of a chemical such as barium produces an

isolated plasma which responds to local winds and electromagnetic fields, and whose

gradients can produce confined density irregularities.

Radar and rocket data provide the observational basis for the work presented

in this dissertation because radars have been measuring coherent scatter from the

E region since the 1930s, beginning with radar aurora, and rockets have been a

consistent vehicle for in situ measurement of the E region since around the same

time. The advent of small satellites provides an exciting new avenue for directly

probing the low ionosphere.

Numerical modeling has benefited immensely from recent (and on-going) revolu-

tions in computing technology and power. Thanks to Moore’s Law, along with the

increasing commercial market for computer scientists and IT specialists, numerical

modeling is widely accessible to the scientific community. Modern supercomputers

allow researchers to easily run simulations on tens of thousands of nodes.

Analytic theory produces rigorous explanations of observed and simulated data
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within the scope of physical laws. Even as computers grow more powerful and as

artificial intelligence becomes a more robust method for sussing out physical patterns,

mathematical theory provides rigorous insight and makes predictions that lead to

further research.

1.5 Review of relevant literature

Researchers have studied radio-frequency echoes from the E-region ionosphere since

at least the 1940s; as a result, the body of potentially “relevant” literature is substan-

tial. This section will provide adequate background on the general research related

to E-region instabilities, and chapters 4, 5, and 6 will fill in more specific information

as necessary. For excellent reviews, see Fejer (1979); Fejer and Kelley (1980); Forbes

(1981); Farley (1985, 2009). For the most part, this section progresses historically.

The characterization of E-region irregularities began in earnest in the early 1960s,

when research teams from the National Bureau of Standards, lead by Dr. Kenneth

Bowles, fixed their radars on the ionosphere above the magnetic equator (Bowles

et al., 1960, 1963). Earlier observations of “radar aurora”, beginning with an em-

ployee in the Research and Development Department of Marconi’s Wireless Telegraph

Co., Ltd. (Eckersley, 1937), showed that a sufficiently strong HF radio apparatus

could observe radar echoes associated with the visible aurora. A little less than two

decades later, Bowles (1954) used a 25.4 MHz radar to study the auroral echoes and

determine that the radar aurora is highly aspect sensitive – that is, it only reflects

radio-frequency waves when the transmitter and receiver are oriented close to per-

pendicular to the magnetic field. Two years later, Booker (1956) established that

auroral radar echoes come from field-aligned irregularities (FAI) in the electron den-

sity, with scale sizes on the order of a meter perpendicular to B0 and five to ten

meters parallel to B0.



16

These and other observations inspired the move to the geomagnetic equator,

where the relative quiescence of the ionosphere makes it an excellent natural plasma

laboratory. Those observational campaigns of the early 1960s at Jicamarca Radio

Observatory (JRO) included the work by Bowles et al. (1960, 1963). The first – a

two-and-a-half-page letter – took the crucial step of proposing that auroral and equa-

torial electrojet irregularities were not quite Booker’s field-aligned ellipsoidal density

structures, but rather plane waves propagating perpendicular to B0 with field-aligned

wave fronts. They also made the prescient assertion that these VHF echoes may re-

sult from longitudinal waves of electron density. Farley (1963b) responded with a

brief note of his own, outlining a theoretical description of the irregularities that

Bowles et al. (1960) had observed. In that note, he showed that by extending the

existing kinetic theory of two-stream plasma waves to include the effect of the back-

ground magnetic field and charge-neutral collisions, he could explain the electrojet

observations as long he used a collision term that only affects the charged species’

velocity distributions (not their distributions in space). In the same published vol-

ume, Buneman (1963) outlined a simplified fluid version of the modified two-stream

instability in the E-region ionosphere. As a result, the aeronomy community has

come to call this process the Farley-Buneman instability (FBI).

Shortly after Farley and Buneman published their theoretical outlines, Bowles

et al. (1963) expanded on the work of Bowles et al. (1960), summarizing the nature

of aspect-limited E-region echoes as distinct from other phenomena observed at VHF,

describing additional observations at the magnetic equator, and placing both obser-

vations and theory in the context of the equatorial and auroral electrojets. In the

same volume, Cohen and Bowles (1963) explain more thoroughly how the observed

irregularities are embedded in the electrojet, and demonstrate that irregularities only

occur when the electrojet exceeds a certain strength. Finally, Farley (1963a) pub-
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lished the detailed version of the kinetic theory he had outlined in Farley (1963b)

and showed that it explained the recent observations. In particular, he noted that

Buneman (1963) assumed that fluid theory sufficiently described electron and ion be-

havior in the modified two-stream instability, but that that assumption breaks down

for short enough wavelengths. The kinetic description is crucial to ion dynamics

when the wave oscillation frequency, ω, is on the order of the ion collision frequency,

νi – for the parameters he used, that occurs at wavelengths around 1.5 m. Farley’s

theory also explains that the previously observed threshold condition of electrojet

irregularities arises from the need for electrons to stream through ions faster than

the plasma acoustic speed. Some authors argue that this threshold criterion is the

only robust prediction that linear theory has to offer (e.g., (Hysell et al., 2012)).

Balsley (1965) performed two subsequent VHF experiments at JRO. The first ex-

periment showed that the E-region echoing layer is bifurcated before and after local

noon, but converges to a single layer slightly thicker than the sum of the two layers

around noon. The second experiment showed that there exist a class of echoes that

the two-stream plane-wave theory cannot explain. Notably, the unexplained echoes

traveled at speeds slower than the plasma acoustic speed. Cohen and Bowles (1967)

corroborated the observations of slower echoes with a more sensitive VHF system.

They also reported weak echoes in radar beams pointed vertically and obliquely, and

described a power asymmetry in vertical echoes. Dougherty and Farley (1967) at-

tempted to attribute the second class of echoes to the natural result of mode-coupling

of modified two-stream modes as part of a nonlinear inverse cascade. However, such

a model fails to account for the presence of such irregularities when the electrojet is

not strong enough to trigger the modified two-stream instability.

The end of 1967 saw the first self-consistent 2-D model of the dynamo theory

for the equatorial region, by Untiedt (1967), who constructed a meridional model
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of the electrojet which neglects local winds and local time variations but which

allows for vertical current flow. Additional observations by Balsley (1969) established

that there are, in fact, two distinct types of spectra in VHF observations of the

equatorial electrojet: type-I spectra produced by the modified two-stream instability,

and type-II spectra, produced by some other mechanism. In response, Rogister

and D’Angelo (1970) produced a fluid treatment of electrojet irregularities including

gradients with an emphasis on explaining type-II irregularities. After discarding a few

likely but ultimately insufficient instability candidates, they declared that the type-II

mechanism requires an ionization gradient. They identified a high-frequency version

of a gradient-driven instability first studied in the laboratory by Simon (1963) and

Hoh (1963), and applied to the ionospheric case by Maeda et al. (1963), as the culprit.

The aeronomy community now commonly knows this instability as the gradient-drift

instability (GDI). Although these pioneering researchers had not adopted the terms

FBI and GDI to describe the mechanisms behind type-I and type-II irregularities,

respectively, the remainder of this presentation will employ those terms. Figure 1·3
shows canonical type-I spectra from Cohen and Bowles (1967) and type-II spectra

from Balsley (1969). Both sets of observations are from JRO.

Rockets as a tool for ionospheric study matured in the late 1960s/early 1970s,

providing a new perspective to compliment radar spectra and suss out irregularity

mechanisms. Prakash et al. (1969) recorded irregularities in three altitude ranges:

97-106 km, 142-155 km, and around 170 km and reported that the spectral indices of

irregularities, which describe the change of irregularity amplitude with wavelength,

in the lower range suggested two distinct types of spectra. They also acknowledged

that electric fields, more than neutral turbulence, must play an important role. From

a second rocket flight, Prakash et al. (1970) reported density irregularities with scale

sizes in the ranges 1-15 m and 30-300 m. All irregularities occurred in regions where
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Fig. 2. Showing three type II spectra taken simultaneously at different antenna zenith 
angles. Mean Doppler shift shown by the dashed lines. The results of the complete analysis 
appear in the lower right-hand section and demonstrate that the irregularities are drifting 
horizontally at about 250 m/sec. The geometry of the experiment appears in the upper right- 
hand part of the figure. 

from concurrent magnetometer records) had 
diminished from its maximum midday level. Al- 
though both of these spectra show evidence of 
the two-stream echo, it is apparent that an 
appreciable portion of the power was returned 
from irregularities that were moving (relative 
to the observer) at velocities considerably less 
than the ion-acoustic velocity. 

The final spectrum of this series (Figure ld) 
was taken at a time when the magnetometer 
indicated that the electrojet current was quite 
weak. In this spectrum, there is no evidence of 
the two-stream echoes, but only a weaker echo 
whose frequency shifts are much less than those 
of the two-stream type. (The strength of the 
echo is not shown on these spectra since they 
have been plotted on a normalized format.) 

These last three spectra, then, show that, 
under some conditions, not all of the echoes are 
returned from the two-stream irregularities. 
This observation implies that at least one other 
type of irregularity must exist in the region, at 
least under some conditions. 

c. Definition o• irregularity types. For the 
sake of convenience, the electron concentration 
irregularities that are generated directly by the 
two-stream instability will be classified in this 

report as type I irregularities; echoes from 
these irregularities will be classified as type I 
echoes. Irregularities and echoes of the non-two- 
stream type will be classified as type II. 

2. Type H Irregularity Motion Deduced from 
Spectral Data 

a. Demonstration that the mean motion is 
horizontal. The spectra shown in Figure 2 were 
taken simultaneously at three separate antenna 
zenith angles by the methods outlined in the 
previous section. From these spectra, it is 
parent that the mean Doppler shift (defined 
by the dashed vertical line that separates the 
spectrum into two equal parts) is greater for 
signals returned at more oblique angles. 

A plot of the mean Doppler shift, in terms of 
an observed radial drift velocity Vobs, versus 
antenna zenith angle for ten such simultaneous 
spectra is shown in the same figure. The quan- 
tity ¾obs is defined by 

cA• m/sec (1) Vobs= 
where c is the velocity of light (in vacuo) ex- 
pressed in meters per second, f is the trans- 
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pulse-width transmitted, the antenna beam- 
width, and by range-gating of the received 
signal. Furthermore, the electrojet is of finite 
thickness, comparable to the 100-/•sec pulse 
width used in these experiments (a 100-/•see 
pulse corresponds to 15-kin radar range), and 
of considerable extent north and south. How- 
ever, the field-aligned electrojet irregularities 
restrict electrojet echoes to the nearly vertical 
east-west equatorial plane because of the phase- 
coherence or 'aspect-sensitivity' requirement. 
The mattress antemaas employed in the experi- 
ments described herein were mounted so as to 
rotate in the equatorial plane, and their half- 
power beamwidth in that plane was about 35 ø. 
Range-gating was employed to select echoes 
of delays appropriate to the height of the elee- 

trojet and corresponding to the nominal direc- 
tion of the antenna..As is apparent from the 
sketches of Figure 1, the range-gating tech- 
nique provides a considerable improvement 
over the spatial resolution otherwise obtainable 
with antenna beams this wide. 

Some of the figures presented in this paper 
indicate the variation of the power spectrum 
as a function of the eastward angle from the 
vertical fl. There is a tacit assumption in such 
experimentation somewhat analogous to an 
ergodic hypothesis, namely, that the essentially 
simultaneous study of various spatial regions of 
the electrojet from one vantage point and at 
various angles is equivalent to studying the 
same spatial region (with various radars) from 
several vantage points. Either procedure would 

•=4992 Mc• 

P(f) 
_ 

' fo-•00 ' fo-I'00 ' fo 

,,••LSE WIDTH 

'•.• 

fo+iO0 ' •+•00 tic/s) ' fo-2•0 fo-i00 

P(f) 
l-- 

fo ' fo.I})O ' fo+iO0- 
ANTENNA 70 ø WEST !1 h 40 m ANTENNA 70 ø EAST 12hl5 m 

••////•" ..... 
fo-2i)0 ' f o-160 ' fo fo+100 fo+200 

ANTENNA VERTICAL II h 58 m 
P(f) 

_ 

fo-•i>O ' fo-io0 ' fo ' fo+i00 ' fo+•00 f(c/s) 
ANTENNA 45" WEST II h 48 m 

fo-:,(•0 -w- fo-i00 

if) 

fo+100 fo+200 

ANTENNA.45 ø EAST 12 h 08 m 
Fig. 1. Composite of power spectra obtained near noon Jan. 3, 1964, for echoes from elec- 

trojet irregularities above Jicamarca, Peru, at angles of incidence /g, east of the vertical, of 
0, __45, and __70 ø. Local time is 75øW. These spectra correspond to a relatively strong 
electrojet. 

Type I Type II

Figure 1·3: Canonical type-I (left) and type-II spectra (right). The
left panel is from Cohen and Bowles (1967), showing a composition of
spectra taken near noon at Jicamarca, during relatively strong elec-
trojet. The top two panels show echoes from 70◦ west and east, the
middle panel shows echoes from vertical, and the bottom two panels
show echoes from 45◦ west and east. The right panel is from Balsley
(1969), showing simultaneous spectra taken near 18:00 at Jicamarca.
The top panel shows echoes at 11◦ west, the middle panel shows echoes
at 26◦ west, and the bottom panel shows echoes at 51◦ west.

the background density gradient was favorable to the GDI, but the GDI can only

account for the those in the 30-300 m range. The authors seem to consider that the

FBI may play a role in generating the small-scale instabilities but they suggested

further study.

Balsley and Farley (1971) investigated the wavelength dependence of the prop-

erties of type-I and type-II equatorial electrojet irregularities at three frequencies:

16.25 MHz, 49.92 MHz, and 146.25 MHz. They found that when type-I echoes are

present, they dominate the 50-MHz spectrum more than they dominate the 16-MHz

spectrum, and type-II echoes are always important at 16 MHz but are absent at 146
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MHz. They also noticed that type-I echoes show up more or less simultaneously

in all three frequencies, after the flow speed crosses the two-stream threshold while

smaller drift velocities produce type-II echoes only at lower frequencies. Overall, the

type-I mechanism appeared to efficiently generate irregularities over a wide range of

wavelengths, whereas the efficiency of the type-II mechanism dropped off rapidly as

wavelength decreases. The authors certainly understood the type-I mechanism but

the manifestation of gradient-driven turbulence in radar spectra remained unclear.

They suggested that the irregularities at 16 and 50 MHz arise from nonlinear inter-

actions between directly gradient-driven modes (i.e., a turbulent cascade) and that

those at 146 MHz were in the diffusive subrange. As the community wrestled with

type-II spectra, Rogister (1972) published a theoretical analysis of one-dimensional

gradient-driven turbulence in the equatorial electrojet, showing that linearly unstable

long-wavelength modes transfer energy to short-wavelength modes which are stabi-

lized by classical diffusion, supporting the conclusions of Balsley and Farley (1971).

Shortly thereafter, Sudan et al. (1973) published a 2-D model that accounts

for short-wavelength electrojet irregularities when the drift speed is below the FBI

threshold. Their 2-D model allows long-wavelength waves produced by the back-

ground plasma gradient to drive obliquely propagating meter-scale irregularities. A

companion paper by Farley and Balsley (1973) presented the observational evidence

for that proposed mode-coupling scheme and concluded, in part, that the electrojet

is highly turbulent over hundreds of meters, the local drift velocity within large-scale

structures controls production of small-scale structures, and the local drift velocity

may differ substantially from the mean drift velocity. They also offered the hypothesis

that type-I spectra saturate at the acoustic speed because the observations represent

waves that have had time to grow to relatively large amplitudes, and are traveling

at the threshold speed as they leave the unstable region.
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Later that year, Balsley and Farley (1973) published radar observations with im-

proved spatial and temporal resolution that gave strong support to the proposal that

large-scale irregularities generated by GDI produce small-scale GDI and FBI irregu-

larities. They believed that, while one-dimensional wave steepening and turbulence

may play some role in generating type-II spectra, its effect is weaker than that of

2-D coupling between large and small structures. Schmidt and Gary (1973) then

presented the first kinetic derivation of a linear dispersion relation for FBI including

gradients by deriving a solution to the kinetic equation in the E0×B0 frame, where

E0 disappears. They compared their kinetic treatment to the fluid theory of Rogister

and D’Angelo (1970) and showed that a fluid approximation is valid for electrons in

the region of interest. They also showed that a gradient increases the growth rate at

k � 10−2 m−1 and that ion fluid theory is valid for ω < νi/10.

A short theoretical work by Farley and Fejer (1975) lead those authors to suggest

that large-scale waves directly excite type-I irregularities when the local plasma meets

threshold conditions, which could explain the rocket observations by Prakash et al.

(1970). Fejer et al. (1975a,b) presented JRO observations of the E-region at oblique

angles, with roughly 1.1-km altitude resolution, during daytime and dusk. Fejer et al.

(1975a) observed type-I echoes only above about 105 km and noted that the width

of type-II echoes becomes large before type-I echoes appear. They saw no echoes

above the daytime type-I power peak at about 107 km and observed a peak in phase

velocity at about 104 km. Fejer et al. (1975b) presented observations during dusk

and noted that the observed switch in echoing regions was consistent with reversal of

electrojet, with its attendant reversal in direction of favorable gradient. Both works

provided strong evidence that the GDI produces type-II irregularities, as long as the

linear theory includes recombination.

Daytime JRO observations at vertical incidence by Fejer et al. (1976) contained
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no sign of type-I echoes above 108.25 km, with a peak in power at around 104 km.

Their most notable observation was an up/down asymmetry in the power of type-I

echoes despite the fact that the relative Doppler shift was the same. They found

that vertically propagating type-I irregularities could change direction in a matter of

seconds and they also observed that the asymmetry reversed at night. Knowing that

previous measurements had shown an east-west power asymmetry, they proposed

that the two asymmetries are related and that both arise from an asymmetry in

nonlinear limiting processes that depend on the direction of electrojet current. This

evidence, as well as the fact that type-II echoes dominated the spectra during longer

integration times, fortified the picture of a highly turbulent electrojet scattering

region. Similar nighttime observations by Farley et al. (1978) showed that type-I

power could dominate the spectrum at times and could occur over a wider range of

altitudes than during the day, with evidence of structures on the scales of kilometers

to tens of meters in addition to the meter-scale irregularities that the radar observed

directly.

Around this time period, a small group of researchers began publishing observa-

tions of irregularities in the equatorial electrojet above Africa, using an HF system

in Ethiopia. Hanuise and Crochet (1977) used measurements at 5, 7, and 10 m to

show that irregularities appear at longer wavelengths sooner than at smaller wave-

lengths and that type-II phase velocity is constant across frequencies whereas type-I

increases with frequency. The latter conclusion is consistent with theories that in-

clude a gradient in electron density, since the density gradient affects the threshold

phase velocity (Farley and Fejer, 1975). They also confirmed that the echoing laying

bifurcates during daytime at all frequencies. Crochet et al. (1979a,b) reported obser-

vations during counter-electrojet conditions, when the electrojet reverses direction.

Their observations that type-II echoes disappear during counter-electrojet were con-
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sistent with linear theory, since the electric field and plasma gradient were no longer

favorably aligned. They observed oblique type-I echoes above 105 km but noted

that the type-I Doppler shift followed a cosine law with zenith angle, unlike typical

type-I echoes. They also took advantage of HF refraction in the E region to observe

horizontally propagating echoes, which they call “type H” at 100-105 km.

A few years later, Crochet and Hanuise (1981) introduced a new multiple-scatter

technique to probe the k spectrum at multiple angles with a single radar, using

the F region and the ground as reflecting surfaces. A subsequent three-paper series

outlined important results of HF observations with the Ethiopia system: Hanuise and

Crochet (1981b) presented observations of backscatter from irregularities with phase

velocities below 200 m/s. The measured phase velocity of irregularities varied with

wavelength from 5 m to 50 m, and with elevation angle, and the spectral width was

on the order of the Doppler shift, indicating strong turbulence. Hanuise and Crochet

(1981c) presented observations of type-I irregularities at intermediate wavelengths

(tens of meters). The phase velocity was near the instability threshold value and was

constant with elevation angle. The spectral width increased with wave number, was

constant with elevation angle, and was on the order of the Doppler shift at the longest

wavelength observed. Hanuise and Crochet (1981a) presented observations during

counter-electrojet observations of two-stream spectra with phase velocities that follow

the linear-theory expression – that is, they have a cosine dependence on the angle

between the radar line-of-sight (LOS) and the background plasma convection. This

angle is important to radar observations and is called the “flow angle”. They called

these “type 0” irregularities to distinguish them from type-I irregularities observed

during normal electrojet times, since the later appear to have roughly constant phase

speed near the acoustic speed.

Computers became more useful in the 1960s and 1970s for calculating numerical
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solutions to some theoretical problems, though self-consistent computer simulations

of ionospheric phenomena still lagged radar, rocket, and laboratory observations as a

scientific tool. Newman and Ott (1981) produced the first numerical simulations of

nonlinear two-stream instability by using modeling electrons and a single species of

ions with the two-fluid equations. Their simulations had constant B0 and orthogonal

E0, collisions between charged and neutral particles, and a viscous term to mimic

the ion Landau damping that a fluid model lacks. The background plasma was

homogeneous and isothermal. They presented results from two models: Model A used

a constant-direction electric field source; Model B assumed the spatial average of the

vertical current density to be zero. Model A showed horizontal waves dominating the

spectrum whereas Model B showed a more isotropic distribution of phase velocities.

In Model B, phase velocity of the dominant modes tends to the acoustic velocity.

They found that Model A best explained the behavior of type I irregularities in

the absence of type II irregularities while Model B acted like a stable system that

had been hit by an impulsive force. Model B was less physical in that it required an

external field to vary as irregularities grew in a local region, but it exhibited a rotation

in angular spectrum with respect to the current density, indicating a stabilization

mechanism responsible for deactivating the two-stream instability.

ISR measurements by Schlegel and St.-Maurice (1981) showed anomalous electron

heating in the polar E region. Previous work had reported some cases of enhanced

electron temperatures but this is the first to identify it as a feature of the E region

that can not be due to classical heat sources. Comparison of temperature and drift

data led the authors to conclude that heating is due to plasma waves in a region of

large Hall currents and low collision frequencies – in other words, FBI waves. The

observed electron temperatures correlate well with the DC (direct current – that is,

constant) electric field. implications to the polar E region include increased chemical
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reaction rates and modified energy budget. The results also have implications for

ISR measurements, which typically assume equal electron and ion temperatures. A

companion paper by St.-Maurice et al. (1981) contained a theoretical analysis of

anomalous electron heating by plasma waves and produced theoretical temperature

profiles similar to observed profiles. They found that the single most important

factor is DC electric field strength, with electric fields below 45 mV/m producing

little heating. They concluded that the amount of wave heating may equal as much

as half of the Joule heating for electric fields above that threshold.

Kudeki et al. (1982) Showed existence of kilometer-scale, horizontally propagating

waves during type-I conditions with an interferometry technique at JRO. This work

also showed that the frequency and growth rate typically cited for meter-scale waves

do not apply to wavelengths on the order of a kilometer. A companion paper by Pfaff

et al. (1982) presented in-situ rocket observations of “intense electrostatic waves” on

the upward electron gradient during the day and downward electron gradient during

the night, at the magnetic equator. Their observations were consistent with the

gradient drift instability explanation of wave generation.

Sudan (1983) reviewed then-known characteristics of type-I and type-II echoes

before applying a theory of plasma turbulence, partially developed by the author, to

the equatorial electrojet. The theory predicted an irregularity power spectrum for

both the absolute magnitude and variation with k, without recourse to any empirical

laws. The author claimed that the theory predicts every feature of type-II irregular-

ities; he also provided a rational explanation of why type-I irregularities appear to

be isotropic in azimuthal angle and limited to phase velocities near Cs. He devel-

oped a nonlinear model of an isothermal, electrostatic, quasi-neutral plasma with the

heuristic assumption that the electron fluid contains the principle nonlinearity. This

approach included augmenting the electron collision frequency, νe → νe + ν∗, where
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the second term represents an electron collision frequency driven by wave-induced

electron diffusion. According to Sudan and Keskinen (1984), the theory predicted

the magnitude of the wave-power spectrum as a function of wavelength in terms of a

strength parameter similar to a Reynold’s number that defines the level of turbulence.

Fejer et al. (1984) developed a general theory for electrojet waves (e.g., FBI

and GDI) and waves observed at higher altitudes (e.g., ion-cyclotron and current

convective waves). Their theory neglects electron inertia, neutral winds, and electric

field shear effects and assumes quasi-neutrality and an isothermal plasma. It is valid

for wavelengths much larger than the ion MFP or the ion Larmour radius, whichever

is smaller. Depending on wavelength, the electron density gradients, electron-ion

collisions, and recombination can substantially affect the threshold drift velocity.

They derived a dispersion relation (their Equation 4) of which the typically cited

relations for the γ � ωr, kL� [κi (1 + ψ⊥)] limit, and the γ ∼ ωr, kL < [κi (1 + ψ⊥)]

limit are special cases. They note that the general instability criterion for gradient-

driven turbulence is that k · Vd and k · (∇n×B0) have the same sign, but they

consider only waves propagating parallel to k · (∇n×B0).

Kudeki et al. (1985) proposed, on theoretical grounds, that up–down asymmetry

is a result of nonlinear development of the primary GDI wave. Before developing

the theory, they discarded various previously suggested mechanisms including the

following: different up/down propagation at different altitudes (later observations

with higher resolution showed that up-going and down-going waves can exist at the

same altitude), nonlinear rotation of the angular spectrum due to effects of type-

I waves (the rotation angle is insufficient), the primary-scale waves simply are not

sinusoidal (the authors didn’t rule this out directly, but said there is no evidence of it

occurring in the E region), and the unequal effect on up-going and down-going type-I

threshold velocities due to density gradients in the primary-scale wave (the largest
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perturbations occur where primary-wave density gradients are small). They note

that a purely sinusoidal primary wave drives a net downward electron flux during

the daytime (upward during the nighttime) due to the basic GDI process, and assert

that if there were a balancing asymmetry in the vertical velocity waveform of the

primary wave, that asymmetry would have the correct sense to match observations.

The Condor rocket campaign in 1983 produced a host of publications, three of

which are especially relevant here. Kudeki et al. (1987) showed radar interferometer

observations at JRO of the unstable equatorial electrojet during the rocket flights.

Major results relevant to the daytime electrojet include simultaneous radar and rocket

observations of kilometer-scale plasma waves, a “remarkable consistency” between

radar/rocket observations of wave parameters and theory, identification of a top-

side pure two-stream layer above 108 km, and the implication that nonlinear mode

coupling could compete with the anomalous diffusion described in Sudan (1983) to

saturate two-stream waves in the topside layer.

Pfaff et al. (1987a) presented rocket data that showed three irregularity regions:

a two-stream region between 103 km and 111 km, a gradient-drift region between 90

km and 106.5 km, and an interaction region between 103 km and 106.5 km. They

also found that kilometer-scale waves dominated the in-situ spectrum despite the

fact that the linear growth rate predicted a large-scale peak at a few hundred me-

ters. Measurements of kilometer-scale δE and δn/n0 verified the predicted in-phase

relationship and amplitudes of the kilometer-scale waves were 10-15 mV/m – strong

enough to drive vertical two-stream secondary waves. Large-scale waveforms in the

vicinity of two-stream activity displayed remarkable steepening and theretofore un-

observed flat-top structures. Irregularity power showed a broad range of wavelengths

in the lower electrojet, with a peak near tens to hundreds of meters and a rapid decay

toward smaller scales.
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Pfaff et al. (1987b) focused on the two-stream waves, both in the interaction region

from 103 km to 106.5 km and in the top-side region above 106.5 km. The top-side

region coincides with the portion of observations where the large-scale gradient was

stabilizing (i.e., the gradient drift condition was zero or negative), and contained a

laminar, horizontal two-stream flow. The two-stream flow was strongest near 108 km,

coincident with the altitude of strongest electrojet current in previous observations.

Waves had phase velocities comparable to the electron drift velocity of 500 m/s, and

peak wavelengths of 2-3 m. The rocket also observed distinct vertically oriented waves

that the authors attribute to a mode-coupling process with waves that originated in

the interaction region. Two-stream waves appeared to have wavelengths as short as

50 cm.

St.-Maurice et al. (1989) reported the first observations of coherent backscatter

with the 440-MHz steerable radar at Millstone Hill. That radar frequency, which

is in the ultra high frequency (UHF) band, is sensitive to irregularities with a 34-

cm wavelength. They observed echoes within one half degree of perpendicular to

B0, at a mean height varying between 105 km and 115 km. The layer could be as

thin as 4-5 km at times, and that the scattering occasionally split into two layers.

They also observed that the Doppler shift of 34-cm irregularities corresponded to

the electron drift, up to a limiting value at the ion acoustic speed, and found the

strength of echoes to increase with ambient electric field strength. Note, however,

that Foster and Tetenbaum (1992) point to an error in the phase-velocity analysis

that St.-Maurice et al. (1989) used.

The work by St.-Maurice et al. (1989) leveraged the power of an ISR to observe

coherent scatter from irregularities probably produced by the FBI. They comment

that the Millstone Hill 440-MHz radar had much greater power and sensitivity in

comparison to other coherent scatter radars in operation at the time, was the only
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UHF radar with which to study coherent E-region echoes at aspect angles perpen-

dicular to B0, had excellent spatial resolution due to its narrow beam, could also

observe F-region incoherent scatter, and routinely observed the E region at lower

latitudes than similar radars. It continues to provide unique insight to sub-auroral

ionospheric processes.

Foster and Tetenbaum (1991) extended the work of St.-Maurice et al. (1989) by

using the Millstone Hill 440-MHz radar to provide observations at higher spatial and

temporal resolution. The higher resolution allowed them to address variability of

UHF echoes on spatial scales of 6-10 km and on temporal scales of 20-60 s. They

observed echoing events that lasted for around 30 minutes, during which backscatter

amplitude oscillated with the period of ultra low frequency geomagnetic micropulsa-

tions. Interspersed throughout these events were intense bursts of backscatter lasting

for a few minutes. Foster and Tetenbaum (1992) found that the phase speed of 34-cm

echoes increased with increasing backscatter amplitude, indicating no limit such as

the ion acoustic speed. On the other hand, their observations did suggest a direct re-

lation between changes in irregularity phase speeds and changes in ambient E-region

electric field.

In a seminal paper, Foster and Erickson (2000) showed that the phase speed of

34-cm irregularities is limited by the ion acoustic speed after accounting for the effect

of wave heating on electron temperature, Te, which in turn increases the ion acoustic

speed. Those observations were the result of an experimental setup in which the main

beam of the Millstone Hill 440-MHz radar measured E0 × B0 drift velocity from

the F region while side-lobe contamination yielded E-region irregularity strength.

Those combined measurements showed an excellent agreement between E0 and Te.

Erickson et al. (2002) used the linear relationship between backscattered power at

440 MHz and E0, along with a detailed model of the radar response to irregularities
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generated by the FBI, to provide insight into the fine-scale structure of a mid-latitude

polarization jet and sub-auroral ion drift (SAID) event – both signatures of sub-

auroral magnetosphere-ionosphere coupling.

Ronchi et al. (1989) performed a nonlocal linear analysis of the GDI in the daytime

equatorial electrojet. The main feature of their analysis was the inclusion of the

altitude dependence of ion-neutral and electron-neutral collisions. They numerically

integrated the nonlocal linear equations and interpreted the results via an eikonal

analysis of wave packets. They found that the major characteristics of the unstable

modes were not sensitive to the details of the equilibrium plasma density profile, but

rather to the average gradient value and to the profiles of the Pedersen and Hall

conductivity, which ultimately determine ion and electron mobilities.

Ronchi et al. (1991) presented two-fluid numerical simulations of the GDI in the

daytime equatorial electrojet. Their grid supported wavelengths from about 100 m to

10 km and incorporated the effects of smaller scales via anomalous electron diffusion

and mobility terms. They simulated both in-situ rocket and remote radar observa-

tions. In the former case, they were able to reproduce some power spectra similar to

observations, while in the latter case, they found that spectral features of 3-m type-

II echoes acted as tracers for large-scale dynamics. The authors make particular

note of the fact that a purely linear nonlocal analysis predicts that all kilometer-

scale perturbations will eventually be damped through velocity shear whereas the

non-linear effects present in their simulation, including energy coupling from inter-

mediate wavelengths back to long wavelengths, can overcome the linear damping and

maintain instability.

Ronchi et al. (1991) and similar work in the early 1990s mark the emergence of

numerical simulations as a mature tool for studying electrojet irregularities. Jan-

hunen (1994b) reported results from a particle-in-cell (PIC) simulation of FBI in the
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plane perpendicular to B0. He found that phase did not saturate at the acoustic

speed and he observed waves propagating at nonzero flow angle for E0 clearly above

the FBI threshold. He also reported no perpendicular wave heating, and concluded

that if waves heat electrons in the ionosphere, heating must be due to the parallel

component. Janhunen (1994a) used the results of Janhunen (1994b), which were

in press at the time, to develop a formalism for FBI saturation based on flow-angle

stabilization, rather than the anomalous collision theory that Sudan (1983) proposed.

Oppenheim et al. (1995) reported results from hybrid simulations in 2.5 dimen-

sions of FBI in the topside equatorial electrojet. They drew four principle conclusions

from their simulations: First, wave growth propagates at an angle offset from E0×B0

(i.e., at a nonzero flow angle) and the angle depends on the strength of the driving

electric field, E0. Second, primary FBI modes couple nonlinearly to modes that prop-

agate perpendicular to the local primary wavefronts. Third, waves propagate at or

above the acoustic speed but well below the speed predicted by linear theory. Fourth,

primary-wave phase velocities remain nearly constant when the authors scanned a

simulated radar over the simulation volume.

Oppenheim et al. (1996) added to these results the conclusion that nonlinear

δE × B0 motion dominates the behavior of saturated waves. Their analysis of this

nonlinear effect in FBI waves was similar to those of Sudan et al. (1973) and Kudeki

et al. (1985) for coupling large-scale GDI waves to small-scale FBI waves. Oppen-

heim and Otani (1996) published additional results from the simulations described

in Oppenheim et al. (1996), this time focused on the wave spectra of the saturated

state. They reported that 1) saturated two-stream waves produce type-I spectra

over a broad range of elevation angles, 2) the phase velocity of two-stream waves

is below that predicted by linear theory, 3) mode-coupling leads to type-II spectra

even in the absence of a density gradient, 4) mode-coupling also leads to long wave-
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lengths, and 5) the spectral power decreases at a rate of 0.3 dB/degree of elevation

angle. Oppenheim (1996) extended the argument of Kudeki et al. (1985) to show

that a large-scale wave-driven current arises from FBI waves and predicted that it

would also arise from GDI waves. The nonlinear δE × B0 drift of electrons in the

wave troughs and crests produces a net current because electrons drift at the same

speed in roughly opposite directions. Since there are more electrons in crests than in

troughs, the process produces a net current. The wave-driven current should reduce

the wave polarization electric field, which could limit the speed of irregularities to the

threshold speed – namely, the ion acoustic speed. This applies especially to oblique

FBI driven by large-scale GDI in the equatorial ionosphere.

Oppenheim (1997) applied the results of Oppenheim (1996) to a 1-D slab model

of the electrojet and showed that a parameterized nonlinear current that reproduces

the large-scale effects of nonlinear δE × B0 from saturated FBI waves reduces the

electrojet current closer to, but still greater than, the FBI threshold. That work also

reiterated the point from Oppenheim (1996) that nonlinear drift effects can create

flat-top waveforms in large-scale wave electric fields similar to those observed by Pfaff

et al. (1987a,b).

At the same time as the simulation work by Oppenheim and collaborators, Dimant

and Sudan (1995a) developed a kinetic theory for electron dynamics in low-frequency

E×B instabilities that carefully considered various effects related to electron-neutral

collisions. They first considered the asymptotic short-wavelength case and showed

how the new theory can significantly alter results in the lower ionosphere, then used

the new theory to derive the general dispersion relation for FBI in the whole wave-

length band in the low-frequency limit Dimant and Sudan (1995b).

Dimant and Sudan (1995c) applied the theory of Dimant and Sudan (1995a,b) to

low-frequency instabilities in ionosphere and showed that it predicts long-wavelength
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waves at low altitudes. The predicted waves travel along the bisector between the

E0 and E0 × B0 directions due to perturbations in the electron current as a result

of the modified Pedersen conductivity. They authors propose that waves with wave-

lengths around ten meters can be excited at altitudes too low for the standard FBI,

assuming the electric field is strong enough. Fortuitously, a rocket campaign in 1991

designed to study dynamics and chemistry of sodium and iron layers in the upper

mesosphere/lower thermosphere carried plasma instruments.

Blix et al. (1996) showed observations from the METAL rocket campaign of

plasma waves with characteristics that matched those predicted by Dimant and Su-

dan (1995c). Dimant and Sudan (1997) followed those rocket observations with a

simplified fluid analysis of the low-frequency, long-wavelength instability mechanism.

They explained that the new instability draws its free energy from Ohmic heat-

ing of electrons by a perturbed electric field and operates efficiently in the upper

D/lower E regions, where related instabilities like the FBI and GDI do not. The

low-altitude preference comes from the attendant increase in electron Pedersen con-

ductivity. The instability arises due to two mechanisms: The first is due to the

sign of plasma pressure perturbations being opposed to the density perturbations;

the second mechanism results from thermal perturbations of the electron Pedersen

conductivity, which increases monotonically with temperature via νen. The first

mechanism is stabilizing at positive flow angle (k ·E0 > 0) and destabilizing at neg-

ative flow angle (k · E0 < 0); the second mechanism is always destabilizing. The

pressure-perturbation (i.e. first) mechanism maximizes along the bisector between k

and −E0 because that is where the projection of E0 has the same sign as the per-

turbed electric field, δE. Strong enough drift velocities can also excite the instability

via the electron-Pedersen-conductivity (i.e. second) mechanism.
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1.6 Theory of E-region instabilities

The FBI and GDI both arise from a warm, weakly ionized plasma. They both re-

quire that electrons are magnetized while ions are demagnetized via collisions with

surrounding neutral particles. The magnetization parameter of a charged species

quantifies these requirements: κj ≡ Ωj/νj, where Ωj ≡ qjB0/mj is the gyrofrequency

(or cyclotron frequency) of species j with charge qj and mass mj in a magnetic field

of strength B0, and νj is that species’ collision frequency. The analysis in this section

will apply to a plasma consisting of electrons and one species of ions, denoted by

subscripts e and i, respectively. In plasmas that are more than weakly ionized (i.e.

partially or fully ionized), collisions between charged particles are important. How-

ever, “collisions” in this dissertation shall imply collisions between charged particles

and neutral particles unless otherwise specified. In the lower- to middle- E-region

ionosphere, κe � 1 and κi < 1; this is what it means for electrons to be magnetized

and ions to be (collisionally) demagnetized.

The difference between κe and κi is crucial to both the FBI and GDI because

it causes electrons to separate from ions in the frame of reference of natural per-

turbations. Figure 1·4 shows a cartoon of how electrostatic instabilities form in a

warm, collisional plasma. For the sake of specificity, suppose the background mag-

netic field, B0, points out from the page and that there is a vertical background

electric field, E0. We can define a right-handed coordinate system in which x̂ points

to the right, ŷ points up, and ẑ points out of the page, so that E0 = E0ŷ, B0 = B0ẑ,

and E0 ×B0 = E0B0x̂. In a frame of reference fixed to the neutral atmosphere, the

predominant electron motion is a Hall drift in the E0 × B0 direction whereas the

predominant ion motion is to follow the neutrals with which they frequently collide.

In the frame of reference of a small, naturally arising perturbation, that discrepancy

manifests as an electron drift in x̂ and an ion drift in −x̂. Since there are more
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electrons and ions in regions of high relative perturbed density, where δn/n0 > 0,

the adjacent regions of low relative perturbed density, δn/n0 < 0, cannot neutral-

ize the separation of electrons from ions. That separation produces a polarization

electric field, δEx/E0, whose sign is in phase with the sign of δn/n0. Another way

to think about this field is that it is the plasma’s attempt to get rid of any flux

divergence that would drive it away from quasi-neutrality. The polarization electric

field plays a role in both the Farley-Buneman and gradient drift instabilities, though

the roles are different. Sections 1.6.1 and 1.6.2 describe the physical nature of these

two instabilities.
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̂z,B0 ̂x,E0 × B0
Figure 1·4: Cartoon of electrostatic E-region instability formation.
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1.6.1 The Farley-Buneman instability (FBI)

The Farley-Buneman instability (FBI) arises when the electron drift speed exceeds

the plasma acoustic speed by a small factor of order unity, typically labeled ψ. Chap-

ter 2 describes the parameter ψ in greater detail – it suffices to say at this point that

ψ is a measure of how much more mobile electrons are when compared to ions. Figure

1·5 shows the physical setup leading to the FBI, with alternating bright (δn/n0 > 0)

and dark (δn/n0 < 0) regions representing the seed perturbation from Figure 1·4.

The supersonic electron drift imparts kinetic energy to the ions through the polar-

ization electric field. Since ions drift in the −x̂ direction in the wave frame, δEx/E0

tends to slow them down at wave crests and speed them up at wave troughs. Un-

der conditions of subsonic electron flow, the attendant increase in thermal pressure

would smooth out the resulting density gradients. As the electron drift speed ap-

proaches the threshold Cs (1 + ψ⊥), which is roughly equal to the plasma acoustic

speed, ion inertia overcomes plasma pressure and relative density perturbations grow,

leading to instability. The ion inertial represents a gradient in the ion kinetic en-

ergy. Under sub-threshold conditions, increased pressure in the regions of relatively

high perturbed density – where δn/n0 > 0 – smooths out density perturbations. In-

creasing the electric field causes electrons to stream more quickly through ions and

the electrostatic attraction forces ions to follow. In order to conserve flux, the ion

velocity is largest where δn/n0 is smallest; therefore, the kinetic energy they gain

from the electrostatic force is also largest where δn/n0 is smallest. When this new

energy overcomes the plasma pressure, ions move out of regions of δn/n0 < 0 and

into regions of δn/n0 > 0. These amplifications of |δn/n0| drive the FBI. See also

Dimant and Sudan (1995c).
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Figure 1·5: Cartoon of the Farley-Buneman instability mechanism.

1.6.2 The gradient drift instability (GDI)

The gradient drift instability arises from a perturbed Hall drift of both ions and

electrons in the seed-wave troughs and crests. Figure 1·6 shows the physical setup

leading to the GDI, with alternating bright (δn/n0 > 0) and dark (δn/n0 < 0)

regions again representing the seed perturbation. The difference is that now there is

an additional background density gradient, ∇n0. In the case of the GDI, the relative

drifts that lead to δEx/E0 are still important but a supersonic electron drift is no

longer necessary. Instead, the polarization field leads to a δE × B0 drift directed

parallel to ∇n0 in the troughs and anti-parallel in the crests. The fact that there

is relatively more plasma in the crests and less in the troughs (by definition) means

that a region of δn/n0 > 0 flows into a region where n0 is even smaller, so that

δn/n0 increases further. Likewise, regions of δn/n0 < 0 decrease further. These
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amplifications of |δn/n0| drive the GDI. See also Dimant and Sudan (1997).
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Figure 1·6: Cartoon of the gradient drift instability mechanism.
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Chapter 2

Theoretical Framework

Section 1.6 elucidated the physical mechanisms behind the FBI and GDI in a qualita-

tive manner. This chapter delves more deeply into the quantitative underpinnings of

both instabilities and demonstrates how they may arise simultaneously if the plasma

meets certain criteria. Section 2.1 begins the description by developing the fluid

theory relevant to a warm, electrostatic plasma. It proceeds through an introduction

to linear instability analysis, followed by a derivation of the general dispersion rela-

tion that captures both FBI and GDI. Finally, it identifies the short-comings of the

fluid approach, most notably in the case of FBI wave growth. Section 2.2 introduces

the fundamental concepts of kinetic plasma theory, then picks up where section 2.1

left off by showing how a kinetic approach overcomes the difficulty faced by a fluid

treatment of the FBI. The hybrid numerical simulations at the heart of much of this

dissertation treat electrons as a fluid and ions as particles (i.e., kinetically). Section

2.3 derives the electrostatic potential equation that ties the dynamics of those two

species together.

2.1 Linear Fluid Theory

On scales much larger than the Debye length and much slower than the plasma fre-

quency, the ionospheric plasma behaves as a quasi-neutral fluid comprising electrons,

multiple species of ions, and perhaps even charged dust or ice. Plasma fluid theory

in the context of the ionosphere seeks to understand the dynamics of those individ-
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ual species’ self-consistent evolution as they react to ambient electromagnetic and

gravitational fields and interact with the neutral gas in which they are embedded

while simultaneously gaining or losing constituent particles due to ionization and

recombination. The following analysis applies to any single plasma species treated

as a fluid, here denoted by subscript s.

The primary equation of interest in studying a plasma species’ dynamics is the

momentum equation:

∂us
∂t

+ (us · ∇)us =
qs
ms

(E + us ×B)− ∇ · Ps
nsms

− us (νsn − αs)− g, (2.1)

where us denotes the fluid velocity, qs denotes the charge, ms denotes the mass,

E and B are the total electric and magnetic fields, Ps is the pressure tensor, ns

denotes the number density, νsn represents the average frequency of collisions with

neutral particles, αs represents the rate at which various methods (sources and sinks)

produce or destroy particles of this species, and g is the acceleration due to gravity.

The second term on the left-hand side (LHS) describes changes in momentum due

to gradients in the fluid flow.

Equation 2.1 is essentially an application of Newton’s Second Law to a weakly

ionized gas. The first term on the right-hand side (RHS) is the Lorentz force. The

total electric and magnetic fields comprise background terms, E0 and B0, as well as

any fields that the plasma self-consistently generates. The second term, containing

the pressure tensor, captures the effects of density and temperature gradients. Section

2.2 will demonstrate the potential complexity of this term; for now, a convenient

form of P that applies to many ionospheric phenomena is Ps = nskbTsI, where I is

the identity tensor, kB is the Boltzmann constant, and Ts is the plasma temperature.

This form of the pressure tensor simplifies when the plasma is isothermal, so that

∇Ts = 0. The third RHS term contains the combined effects of collisions, particle
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production, and particle loss on altering the momentum of the overall fluid. In

the simplest sense, the effect of collisions with neutral particles is intuitive: more

collisions will slow the fluid. To understand the effect of production and loss in an

equivalently simple sense, consider what would happen if an ionization source were

to create a bunch of new species-s particles: the existing fields and gradients would

accelerate them in the same manner that those fields and gradients had accelerated

the existing species-s particles. Now, the fluid has more mass moving at the same

velocity, and thus greater momentum. The magnitude of the Lorentz force is roughly

ten-thousand times greater than that of the gravitational force for even modest E-

region parameters and, whereas gravity has a pronounced influence on the neutral

atmosphere and on large-scale, slowly evolving F-region instabilities, its effect on the

FBI and GDI is negligible. Therefore, the remainder of this analysis will ignore the

effect of gravity on ions and electrons.

A general treatment of Equation 2.1 requires Maxwell’s equations for E and B.

However, B is effectively constant in the E-region ionosphere, especially on time scales

appropriate to the FBI and GDI, so it will suffice to know E0, B0, and any electric

fields that develop due to plasma inhomogeneities. After specifying an appropriate

form for Ps and appropriate values for physical constants (e.g., qs and ms), all that

remains is to determine how ns evolves. The relevant equation is the continuity

equation:

∂ns
∂t

= −∇ · (nsus) + αs. (2.2)

Equation 2.2 states that two factors determine the time rate of change of species-s

number density: 1) the flux out of the volume of interest and 2) the creation or

destruction of species-s particles.

Equations 2.2 and 2.1 include terms related to the production and loss of particles

of a given species; the remainder of this analysis will neglect them. Though their
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effect is more relevant than, say, that of gravity, the simulations presented in chapters

4, 5, and 6 are concerned more with the evolution of an existing plasma on time scales

shorter than those of ionization and recombination in the E region.

The following linear fluid instability analysis of a plasma consisting of a electrons

and ions explains how even the relatively simple system embodied by equations 2.1

and 2.2, under the aforementioned assumptions, gives rise to both the FBI and GDI.

The first step is to identify the dynamic variables.

Linear analysis begins by assuming that all dynamic variables consist of a zeroth-

order background term and first-order perturbations that are small in magnitude

compared to the background term. In the case of density, for example, n (r, t) ≈
n0 + n1 (r, t) with n0 � n1. The next assumption is that all first-order quantities

vary as complex exponentials: n1 (r, t) = n′ exp [−i (ωt− k · r)]. The second as-

sumption effectively converts differential equations into algebraic equations, which

tremendously simplifies the math. Specifically, taking the time derivative of n1 (r, t)

is equivalent to multiplying by −iω and taking the spatial gradient is equivalent to

multiplying (in an appropriate way) by k. Symbolically,

∂

∂t
→ −iω ∇ → ik ∇· → ik · ∇× → ik× .

The goal of linear perturbation analysis is to derive a dispersion relation, which is a

function that expresses the frequency, ω, as a function of wave number, k.

Given the electrostatic nature of the FBI and GDI, there is only a background

magnetic field. On the other hand, the electric field consists of both zeroth- and first-

order quantities. The first-order quantities comprise the electrostatic perturbations

of interest, so E (r, t) = E0 − ∇φ (r, t). This linear analysis also explicitly assumes

Ps = nskBTs with ∇Ts ≡ 0 and it wraps kB into Ts so that temperature has units of

energy. This is partially a matter of convenience but it also reduces the likelihood of
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confusion between the Boltzmann constant, kB, and the wave number, k.

In general, vector quantities can have components in all three directions. Chap-

ters 4 and 5 present results from 2-D simulations while Chapter 6 presents results

from both 2-D and 3-D simulations. The following analysis applies to 3-D dynamics

but starts from the following additional assumptions for the sake of clarifying the

underlying physics: 1) B0 = B0 ẑ and E0 = E0 ŷ; 2) ions Pedersen predominantly

drift in the direction of +E0 but have a small component in the E0 × B0 at higher

altitudes, where νi is small; 3) electrons Hall predominantly drift in the E0 ×B0 di-

rection but have a small Pedersen component in the −E0 direction at lower altitudes,

where νe is large; 4) the background gradient, ∇n0, points parallel to E0; 5) waves

propagate orthogonal to ∇n0 (i.e. k = kxx̂ + kyŷ); 6) the background ion drift is

negligible; 7) the background electron drift is not negligible but it is divergence free

(i.e., ∇ · ue = 0). Figure 2·1 shows the relative directions of relevant quantities in

the plane perpendicular to B0.

The linearized inertialess electron momentum is

0 = − e

me

(−ikφ′ + u′e ×B0)−
iTe
me

k
n′e
n0

− νeu′e.

(x̂) 0 =
iekxφ

′

me

− Ωeu
′
ey −

ikxTen
′
e

men0

− νeu′ex

(ŷ) 0 = Ωeu
′
ex − νeu′ey

(ẑ) 0 =
iekzφ

′

me

− ikzTen
′
e

men0

− νeu′ez

Solving the ŷ equation for u′ey in terms of u′ex and plugging into the x̂ equation yields

0 =
iekxφ

′

me

− Ω2
e

νe
u′ex −

ikxTen
′
e

men0

− νeu′ex

u′ex =
ikx

meνe (1 + κ2e)

(
eφ′ − Ten

′
e

n0

)
.
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Solving the ẑ term for u′ez yields

u′ez =
ikz
meνe

(
eφ′ − Ten

′
e

n0

)
Note that u′ex contains all the effects of gyromotion in the κe and that u′ez > u′ex by

a factor of (kz/kx)(1 + κ2e). Even with kz/kx ∼ 0.01 typical of the FBI, the fact that

κe ∼ 100− 200 in the E region means that electron perturbations move much more

quickly along B0, as one should expect.

The linearized electron continuity equation is

ωn′e = ue0kxn
′
e + n0kxu

′
ex + n0kzu

′
ez − iu′ey

dne
dy

= ue0kxn
′
e + n0kxu

′
ex + n0kzu

′
ez − iκeu′ex

dne
dy

Solving for u′ex yields

u′ex = (kx − iκeG)−1
[
(ω − kxue0)

n′e
n0

− kzu′ez
]

= (kx − iκeG)−1
[
(ω − kxue0)

n′e
n0

− ik2z
νeme

(
eφ′ − Ten

′
e

n0

)]
where G ≡ n−10 dne/dy measures the gradient strength and the second line uses u′ez

from the momentum equation. The remainder of this analysis will assume that

G ≥ 0, which implies that u′ey · (dne/dy) ŷ > 0, corresponding to an electric field

parallel to the electron density gradient.

Plugging this expression back into the equation for electron momentum perpen-

dicular to B0 eliminates u′ex:

(kx − iκeG)−1
[
(ω − kxue0)

n′e
n0

− ik2z
νeme

(
eφ′ − Ten

′
e

n0

)]
=

ikx
meνe (1 + κ2e)

(
eφ′ − Ten

′
e

n0

)
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The linearized ion momentum equation is

−iωu′i = +
e

mi

(−ikφ′ + u′i ×B0)−
iTi
mi

k
n′i
n0

− νiu′i.

Ions are unmagnetized for much of the altitude range of interest to this dissertation.

At upper-electrojet altitudes, the ion drift component in the Hall direction grows

to an appreciable fraction of the electron Hall component but the present analysis

will still capture the interesting physics while assuming that ions are unmagnetized.

Under that assumption, the ion momentum equation has no component in the ŷ

direction.

−iωu′i = − iekφ
′

mi

− iTikn
′
i

min0

− νiu′i

u′i =
k

mi (ω + iνi)

(
eφ′ +

Tin
′
i

n0

)
The linearized ion continuity equation, under the assumption that ions are sta-

tionary in the neutral frame, yields an expression for k · u′i

k · u′i =
ωn′i
n0

.

Dotting k into the ion moment equation leads to

k · u′i =
ωn′i
n0

=
k2

mi (ω + iνi)

(
eφ′ +

Tin
′
i

n0

)
The next step is to couple the ion and electron momentum through the perturbed

potential, φ′. From the ion equation,

eφ′ =

[
miω (ω + iνi)

k2
− Ti

]
n′i
n0
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Inserting this into the electron equation and rearranging terms gives[
miω (ω + iνi)

k2
− Ti

]
n′i
n0

=
n′e
n0

[
meνe (1 + κ2e)

ik2x + κekxG+ ik2z (1 + κ2e)

]
×
{
ω − kxue0 +

iTe
meνe

[
ik2x + κekxG+ ik2z (1 + κ2e]

1 + κ2e

)}
This analysis has thus far used four equations – electron and ion momentum and

continuity – in five dynamical variables – the perturbed electron and ion densities,

the perturbed ion and electron velocities, and the perturbed potential. It requires an

additional equation to fully eliminate all perturbed quantities. The final necessary

assumption is that this plasma is quasi-neutral. That means that ni ≈ ne ≡ n, so

that the perturbed densities are equal. Under this assumption,

ω − kxue0 =

[
ik2x + κekxG+ ik2z (1 + κ2e)

k2νe (1 + κ2e)

]
mi

me

[
ω (ω + iνi)− k2C2

s

]
≈
(
ψ

νi
− iψ⊥κekxG

k2νi

)[
ω (iω − νi)− ik2C2

s

]
(2.3)

where

ψ⊥ ≡
νeνi
ΩeΩi

, ψ ≡ ψ⊥

[(
kx
k

)2

+

(
κekz
k

)2
]

and Cs ≡
√

(Ti + Tt) /mi is the isothermal sound speed. The final step in deriving

Equation 2.3 took advantage of the fact that κ2e � 1.

All that remains is to rearrange Equation 2.3 to get an expression for the complex

frequency, ω, in terms of the wavenumbers, (kx, kz). After carrying out some algebra,

ω2 + iωνi

(
1 +

ηk
δk

)
− ikxue0νi

(
ηk
δk

)
− k2C2

s ≈ 0, (2.4)

where

ηk ≡ k (kψ + iψ⊥κekxG/k) and δk ≡ (kψ)2 + (ψ⊥κekxG/k)2
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When there is no gradient, G = 0, ηk = 1/ψ, and Equation 2.4 reduces to

ω2 + iωνi

(
1 +

1

ψ

)
− ikxue0νi

ψ
− k2C2

s ≈ 0.

The roots of Equation 2.4 give the wave frequency as a function of wave number, as

required. These roots are complex in general. The usual analytic approach is to write

ω = ωr+iωi, where ωr is the real wave frequency and ωi is the growth or damping rate.

To understand these quantities in a physical sense, remember that this derivation be-

gan by assuming quantities vary as exp [−i (ωt− k · r)]. Plugging ω = ωr+iωi in gives

exp(ωi) exp [−i (ωrt− k · r)]. Clearly, if ωi < 0, perturbations will decay exponen-

tially whereas if ωi > 0, perturbations will grow exponentially. Next, we can factor

out the wave-number magnitude, k, from the argument of the complex exponential

and define the phase velocity, Vph ≡ ωr/k, to get exp(ωi) exp [−ik (Vpht− k · r/k)].

This form more makes the notion of plane waves more apparent.

The standard approach in the literature to determining ωr (or Vph) and ωi is to

assume |ωr| � |ωi|, which is to say that perturbations undergo many oscillations

in the time it takes their amplitude to increase by a factor of e ≈ 2.7. What this

approximation really comes down to is assuming ω2 ≈ ω2
r while ω ≈ ωr + iωi. With

these assumptions, Equation 2.4 becomes(
ω2
r − k2C2

s

νi

)
δk − ωi [δk + <(ηk)]−=(ηk) (ωr − kxue0)

= i {−ωr [δk + <(ηk)] + ωi=(ηk) + kxue0<(ηk)} (2.5)

The real and imaginary parts must each vanish independently. The imaginary part

of Equation 2.5 reads

ωr [δk + <(ηk)]− ωi=(ηk)− kxue0<(ηk) = 0
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We can assume that the term ∼ ωi is negligible compared to the other terms. For

wavelengths of a few meters and gradient scale lengths of a kilometer or more, δk �
<(ηk) and the imaginary-part equation yields an expression for the real frequency:

ωr =
kxue0
1 + ψ

(2.6)

In general, ions have some degree of magnetization and the phase velocity is not

parallel to the Hall direction. In that more general case, kxue0 → k · ud in Equation

2.6, where ud ≡ ue0 − ui0 is the relative drift velocity.

This equation predicts that the phase velocity during linear instability growth

should be proportional to the electron drift velocity but less than it by a factor slightly

greater than unity. However, much of the research cited in §1.5 has established that

FBI perturbations propagate with a phase speed close to the plasma acoustic speed,

Cs.

The real part of Equation 2.5 reads(
ω2
r − k2C2

s

νi

)
δk − ωi [δk + <(ηk)]−=(ηk) (ωr − kxue0) = 0

Again, assuming perturbation wavelengths of a few meters and a gradient scale length

of a kilometer or more, δk ≈ (kψ)2 and δk + <(ηk) ≈ k2ψ(1 + ψ). Taking advantage

of these approximations and Equation 2.6 yields an expression for the growth rate:

ωi =
ψ

1 + ψ

[
ω2
r − k2C2

s

νi
+ ωrG

(
κekx

k2x + κ2ek
2
z

)]
(2.7)

The term proportional to ω2
r describes the ion inertial energy that powers the FBI, as

described in §1.6.1. The term proportional to k2C2
s describes diffusive damping. The

term proportional to ωrG describes the additional ion inertia provided by the zeroth-

order electron density gradient. Instability growth occurs when ωi > 0. In order for

that to happen, both terms containing ωr must combine to overcome −k2C2
s . Note
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that if this analysis had not assumed G ≥ 0, a negative value would flip the sign of

the ωrG term and inhibit instability.

Both Equations 2.6 and 2.7 are equivalent to standard expressions for the real

frequency and growth rate as reported in the literature, after accounting to notational

differences. See, for example, Fejer and Kelley (1980). One important aspect of

Equation 2.7 is that it increases monotonically with kx. In physical terms, this

means that the growth rate increases without bound as the wavelength decreases

toward zero. Since an infinite growth rate is unphysical, there must be something

missing. What is missing is a kinetic effect called “ion Landau damping” in which

ions steal energy from waves with wavelengths shorter than a few ion MFPs. The

next section explains how kinetic plasma physical differs from fluid plasma physics.

2.2 Linear Kinetic Theory

At its root, plasma kinetic theory is a statistical description of the position and

velocity of a collection of particles over time. At a particular moment in time, a

distribution of particles – having three position coordinates and three velocity coor-

dinates, in general – exists in a six-dimensional space called “phase space”. Figure

2·2 shows phase space for one-dimensional motion. It depicts changes in particle

trajectories along one spatial axis (r) and the corresponding velocity axis (v). A

straight line parallel to the r axis, in the +v half-plane, represents a particle moving

with constant positive velocity in the +r direction. Likewise, a straight line parallel

to the r axis, in the −v half-plane, represents a particle moving with constant nega-

tive velocity in the −r direction. A closed circle in phase space represents a particle

trajectory that always returns to the same position and velocity after a fixed amount

of time – in other words, a periodic orbit. More complex trajectories may combine

elements of constant velocity and changing velocity (i.e., acceleration) as long as their
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changes in position are self-consistent, and a single phase-space plot like that shown

in Figure 2·2 may contain multiple trajectories, each corresponding to an individual

particle. Unfortunately, representing phase space in higher dimensions presents a

graphical challenge, since it requires at least four coordinate axes.

One cubic meter of E-region plasma contains tens of billions of particles, each with

their own six-dimensional phase-space trajectories, so the task of visualizing a plasma

at this fundamental level quickly becomes impossible. Instead of following every

particle in a plasma, it is convenient to consider all the particles in a small volume

of phase space bounded by (rx0, ry0, rz0, vx0, vy0, vz0) and (rx0 + drx, ry0 + dry, rz0 +

drz, vx0 + dvx, vy0 + dvy, vz0 + dvz), and written d3rd3v. The density of particles of

species s in this small volume is fs(r,v) = Ns(r,v)/d3rd3v; this phase-space density,

fs, is called the distribution function of species s. The task of understanding the

dynamics of species s now manifests as the task of deducing the time evolution of

fs through phase space. Since r = r(t) and v = v(t), the total time derivative of

fs(r,v) is

dfs(r,v)

dt
=
∂fs
∂t

+
dr

dt
· ∇rfs +

dv

dt
· ∇vfs,

where ∇r and ∇v are the total gradients in configuration and velocity space, respec-

tively. The analysis thus far has not considered any way to add or remove particles

from d3rd3v, so dfs/dt = 0 by Liouville’s Theorem. One major element missing is

the effect of collisions. Since collisions may change a particle’s position and velocity,

they simply alter that particle’s trajectory through phase space, thereby altering fs

in time. Therefore, a full treatment requires additional term that removes particles

from d3rd3v when it increases. This additional term, nominally representing colli-

sions, balances dfs/dt. In fact, even production and loss of plasma particles simply

add or subtract particles at a certain location in phase space, so they, too enter

into the (as yet unspecified) collision term. This final form is called the Boltzmann
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equation:

∂fs
∂t

+
dr

dt
· ∇rfs +

dv

dt
· ∇vfs =

[
δfs
δt

]
c

(2.8)

The simplest collision operator is [
δfs
δt

]
c

= −νifs

This exponentially damps out perturbations in fs with a time scale of ν−1i . The main

short-coming of this form is that the number of particles in phase space is conserved

on average but not locally; it exaggerates the collisional damping of longitudinal

waves (Farley, 1963a). A slightly more complex collision operator, known as the

BGK collision operator after Bhatnagar, Gross, and Krook (Bhatnagar et al., 1954),

has the form [
δfs
δt

]
c

= −νs
(
fs −

ns
n0

fs0

)
,

where fs0 is the zeroth-order distribution function, and ns and n0 are the number

densities corresponding to fs and f0. Farley (1963a) showed that this term is sufficient

to account for collisional processes in electrostatic turbulence.

Equation 2.8 for the ion distribution, with the BGK collision operator, and under

the influence of an ambient magnetic field, is

∂fi
∂t

+
dr

dt
· ∇rfi +

e

mi

(E + vi ×B0) · ∇vfi = −νi
(
fi −

ni
n0

fi0

)
To develop an expression similar to that describes FBI ion dynamics kinetically,

we can assume that the ion Hall drift is negligible (vi ×B0 → 0) and linearize:

−i (ω − k · v + iνi) fi1 +
e

mi

(E0 · ∇vfi1 + E1 · ∇vfi0) = νi
ni1
ni0

fi0

It is reasonable to assume that E0 only has a component in the Pedersen direction, so

that E0 ·∇vfi1 → 0. Conveniently, this also makes the problem analytically tractable.
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This analysis will also assume that k = kxx̂, in order to prevent the mathematical

development from obscuring the crucial physics, which occur in the Hall direction.

Assuming (ω − kxvx + iνi) 6= 0 almost everywhere, we can normalize by that term

and integrate over all velocities to get an expression that depends only on space and

time.

i

+∞∫
−∞

fi1 d
3v =

eE1

mi

+∞∫
−∞

1

ω − kxvx + iνi

∂fi0
∂vx

d3v − νini1
ni0

+∞∫
−∞

fi0
ω − kxvx + iνi

d3v

ini1 =
eE1

mi

+∞∫
−∞

∂fi0
∂vx

[
1

ω + iνi − kxviD − kx (vx − viD)

]
d3v

− νini1
ni0

+∞∫
−∞

fi0

[
1

ω + iνi − kxviD − kx (vx − viD)

]
d3v

=
eE1

mi

√
2kvith

+∞∫
−∞

∂fi0
∂vx

[
ω + iνi − kxviD√

2kvith
− kx (vx − viD)√

2kvith

]−1
d3v

− νini1

ni0
√

2kvith

+∞∫
−∞

fi0

[
ω + iνi − kxviD√

2kvith
− kx (vx − viD)√

2kvith

]−1
d3v

where vith ≡
√
Ti/mi is the ion thermal speed and viD = eE0/miνi is the ion drift

speed. At this point, it is helpful to define the following auxiliary variables

t ≡ kx (vx − viD)√
2kvith

ζ ≡ ω + iνi − kxviD√
2kvith

Note that the first definition implies dvx =
√

2vithdt. Substituting those auxiliary

variables gives

ini1 =
eE1

mi

√
2kvith

∫∫∫
∂fi0(t)

∂t

1

ζ − t dtdvydvz −
νini1
kni0

∫∫∫
fi0(t)

1

ζ − t dtdvydvz

The integrals imply integration over (−∞,+∞) in all three coordinates. Having

an equation for fi0 would help here. Having an equation for fi0 whose function
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and first derivative both have well-behaved integrals would really help. Fortunately,

assuming fi0 is a Maxwellian is pretty reasonable since we assume that these linear

perturbations grow out of thermal noise. In that case the first integral on the RHS

becomes ∫∫∫
∂fi0(t)

∂t

1

ζ − t dtdvydvz =
1

2
√
πvith

∫
∂e−t

2

∂t

1

ζ − t dt

and the second becomes∫∫∫
fi0(t)

1

ζ − t dtdvydvz =
1√
2π

∫
e−t

2 1

ζ − t dt

There is a special function in plasma physics called the plasma dispersion function.

Its definition is

Z(ζ) ≡ 1√
π

∫
e−t

2

t− ζ dt

Conveniently, we can write its first derivative as

Z ′(ζ) ≡ 1√
π

∫
∂e−t

2

∂t

1

t− ζ dt

These special functions, together with the integrated Maxwellians, allow us to write

the ion response in its final compact form:

ini1 =
ni0eE1

2mi

√
πkv2ith

(
−√π

)
Z ′(ζ) +

νini1ni0√
2πni1kvith

(
−√π

)
Z(ζ)

= − ni0eE1

2mikv2ith
Z ′(ζ) +

νini1√
2ni0kvith

Z(ζ)

n′i
ni0

=
e

mi

E ′Z ′(ζ)√
2νivithZ(ζ)− i2kv2ith

(2.9)

In the final line, primes again represent the amplitude of Fourier-transformed quan-

tities.

At this point, we need a way to relate n′i to E ′, so that the final expression does not

depend on perturbed quantities. The electric field couples ion behavior to electron
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behavior, so the natural next step is to relate Equation 2.9 to the electron response

due to E ′. Since the kinetic ion development neglected the component parallel to

B0, a2-D version of the electron response from §2.1 will suffice:

ω − kue0
k − iκeG

n′e
n0

=
ikνe

me (Ω2
e + ν2e )

(
eφ′ − Ten

′
e

n0

)
.

Recalling that E ′ = −ikφ′, we can solve this for the electron fluid response:

n′e
n0

= −eE ′
[(

ω − kue0
k − iκeG

)(
1 + κ2e

)
meνe + ikTe

]−1
(2.10)

After solving both Equations 2.9 and 2.10 for eE ′, invoking quasineutrality, equating

the resultant expressions, and rearranging terms, we get

ω − kue0 =
1

νe (1 + κ2e)

mi

me

[√
2νikvithZ(ζ)− i2k2v2ith

Z ′(ζ)
− ik2Te

mi

](
1− iκeG

k

)
(2.11)

This equation has a form similar to Equation 2.3. The difference is that the ion

contribution contains ω via ζ. The analytic approaches that transformed Equation

2.3 into Equations 2.6 and 2.7 are no longer available. Equation 2.11 requires a

sophisticated root solver to handle Z(ζ) and Z ′(ζ). Xie (2013) describes an example

of such a sophisticated algorithm.

2.3 Quasi-Neutral Potential Equation

The hybrid plasma model at the heart of much of the work in this dissertation treats

electrons as an inertialess fluid and ions as kinetic particles. Chapter 3 describes the

hybrid model in greater detail; this section is concerned with deriving the electrostatic

potential equation that couples electrons and ions. Despite the fact that this work

treats ions kinetically, a fluid description of ion dynamics will suffice to derive an

appropriate expression for the potential. The inertialess fluid treatment for electrons
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is predicated on the assumption that their relatively small mass lets them respond

essentially instantaneously to any accumulation of positive charge – NO+ is the

dominant ion species in the E-region ionosphere, so the ion to electron mass ratio is

mi/me ≈ 55, 000.

The inertialess electron momentum equation is

Dve
Dt
≈ 0 = − e

me

(E + ue ×B)− ∇ · Pe
neme

− νeue, (2.12)

where the LHS represents the full convective derivative of the electron fluid velocity,

and all other terms have the meaning of those in section 2.1 applied to electrons. A

modest amount of algebra transforms Equation 2.12 into

ue = −(1 + κ2e)
−1ε

(
eE

meνe
+
∇ · Pe
nemeνe

)
, (2.13)

where

ε ≡

 1 −κe 0
+κe 1 0

0 0 1 + κ2e

 κe ≡
|Ωe|
νe

Section 1.6 introduced the magnetization parameter of a plasma species, κs, defined

as the ratio of cyclotron frequency to collision frequency. Similarly, the ε tensor

captures the effects of electromagnetic Hall drift and collisions with neutrals on the

electron fluid momentum.

The continuity equation relates a species velocity to its density. For electrons,

using Equation 2.13 for ve gives

∂ne
∂t

= ∇ ·
[
(1 + κe)

−1ε

(
eneE

meνe
+
∇ · Pe
meνe

)]
+ Se

This dissertation considers electrostatic plasma processes that occur on time

scales for which ∂B/∂t ≈ 0. Faraday’s Law then states that ∇ × E ≈ 0. Be-

cause the curl of the gradient of a scalar function vanishes identically, the solution to
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∇×E = 0 for an arbitrary electric field is E = −∇φ. For the cases of interest here,

it is convenient to split the total electric field into a constant background component,

E0, and a spatiotemporally varying component, −∇φ(x, y, z, t). Since the magnetic

field does not vary, it is also convenient to write B = B0. Plugging these new field

expressions into the electron continuity equation and solving for φ yields

∇ · (neε∇φ) = ∇ ·
[
neε

(
E0 +

∇ · Pe
ene

)]
+ (1 + κ2e)

meνe
e

(
Se −

∂ne
∂t

)
Up to this point, this treatment has allowed electron and ion densities to differ.

However, the plasma processes of interest occur on temporal scales much slower

than the plasma frequency and on spatial scales much larger than the Debye length.

Therefore, the plasma is quasi-neutral and ne ≈ ni ≡ n. In light of quasi-neutrality,

the ion continuity equation reads

∂n

∂t
= −∇ · (nui) + Si

and since quasi-neutrality implies ∂ne/∂t = ∂n/∂t, the potential equation becomes

∇ · (nε∇φ) = ∇ ·
[
nε

(
E0 +

∇ · Pe
en

)]
+ (1 + κ2e)

meνe
e

[Se +∇ · (nui)− Si]

This equation suffices to describe the potential that couples inertialess electrons to

ions in a quasi-neutral plasma, given background electric and magnetic fields, a quasi-

neutral density, an expression for the electron pressure, an electron-neutral collision

frequency, and an expression for the ion (fluid) velocity. However, this dissertation

is concerned with the FBI and GDI in the absence of plasma production and loss, so

Se = 0 and Si = 0. Finally, writing the ion flux as nui ≡ Γi and collecting divergence

terms leads to the following flux-conserving form of the potential equation:

∇ · (nε∇φ) = ∇ ·
[
nε

(
E0 +

∇ · Pe
en

)
+
(
1 + κ2e

) meνe
e

Γi

]
. (2.14)



57

Ion dynamics only appear in the flux term, Γi. The first velocity moment of the ion

distribution gives the average flux:

〈nui〉 =

∫∫∫
vfi d

3v

and this quantity is easy to calculate in a PIC simulation. Therefore, despite the

foregoing fluid development, Equation 2.14 applies readily to hybrid simulations.
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̂y,E0,∇n0

̂z,B0
̂x,E0 × B0

ue

ui

ud ≡ ue − ui

k = kx ̂x + ky ̂y

Figure 2·1: The geometry that gives rise to the combined FBI and
GDI dispersion relation in the E region. The background electric field,
E0, and plasma-density gradient, ∇n0, point vertically. The back-
ground magnetic field, B0, points out of the page. The electron drift
velocity, ue, points predominantly in the E0 × B0 direction, the ion
drift velocity, ui, points predominantly in the +E0 direction, and
ud ≡ ue − ui is the relative drift velocity. The directions of ui, ue,
and ud have been exaggerated to show altitudinal range, and are not
necessarily consistent with k.
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r

v

Periodic orbit

Constant positive drift

Constant negative drift

Periodic orbit 
with drift

Speed up

Slow down

Figure 2·2: A plot of one-dimensional motion in phase space, with
examples of single-particle motions.
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Chapter 3

Numerical Framework

3.1 The Particle-In-Cell (PIC) Method

The Boltzmann equation introduced in Chapter 2 describes the time evolution of

a single particle species distribution. Ostensibly, one could simulate the evolution

of Equation 2.8 by approximating the second and third terms (i.e., the phase-space

derivatives) at each time step, prescribing a numerical form of the right-hand-side

collisional term, and using an appropriate time-stepping scheme to evolve the parti-

cle distribution. A popular alternative to following individual particles is to follow

“macro-particles” that each represent millions of physical particles. The macro-

particles have a prescribed shape that determines their charge density, which the

model weights to a grid at each time step. The model can then derive a self-consistent

electric field value at each grid point at each time step simply by knowing each parti-

cle’s position. The complexity of this approach increases in proportion to the number

of particles, N ; for contrast, the complexity of calculating the electric field by eval-

uating Coulomb’s Law for each pair of particles would increase in proportion to N2.

The method of calculating field quantities by extrapolating particle positions to a

grid is called the particle-in-cell (PIC) method (Birdsall and Langdon, 1991).

The Electrostatic Parallel PIC (EPPIC) code, designed by Professor Meers Op-

penheim, employs a PIC approach with additional collision routines to simulate the

sort of weakly ionized plasma found in the Earth’s E-region ionosphere. Developing

a hybrid extension of EPPIC, which treats electrons as an inertialess, isothermal
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fluid in quasi-neutrality with ions, has been a major component of this dissertation

research. A description of EPPIC, with an emphasis on the hybrid extension, follows.

EPPIC begins by initializing the particles based on a given distribution. A nat-

ural initial distribution is to have spatially homogeneous particle positions and a

Gaussian distribution of velocities. Such a simple initial condition can nonetheless

address many fundamental aspects of kinetic plasma physics. The simulations pre-

sented in Chapter 6 initialized particles homogeneously with special modifications

designed to reduce the noise inherent in approximating a continuous distribution on

a discrete grid. Should the physical model require a more complex initial distribution,

the user must chose an algorithm that defines particle positions and velocities in a

physically realistic way. One method for defining particle positions is the “transfor-

mation method”. The transformation method assigns particle positions based on the

inverse of the integral of the target distribution. It is efficient but it clearly requires

that the distribution have a finite, invertible integral. The simulations presented in

Chapter 4 initialized particles via the transformation method. Another method for

defining particle positions is called the “rejection method”. The rejection method is

not specific to the PIC method nor even to plasma models – it is a general technique

for generating random deviates from a known distribution function (Press et al.,

2007). The simulations presented in Chapter 5 initialized particles via the rejection

method.

Following the particle-initialization stage, as well as other setup tasks, EPPIC

proceeds to “gather” the particle positions into either quasi-neutral density, n(r),

and ion flux, Γi(r) = n(r)vi(r), or into charge density, ρc(x, y, z) =
∑

j qjnj(r),

where the qj are the species’ charges and the nj are the individual species’ densities.

In either case, r represents whatever positional coordinates are appropriate for mod-

eling the system of interest. The choice of n and Γi or ρc depends on whether the
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physical model assumes quasi-neutrality or not. Given gathered quantities, the gen-

eral PIC method would calculate the electric field, E(r), and magnetic field, B(r), on

the grid. For a fully electromagnetic system, it would use a gathered current density,

J(r), to derive E(r) and B(r) from Maxwell’s equations. However, the simulations

presented in this dissertation assume the plasma is electrostatic. Under the electro-

static assumption, magnetic perturbations are negligible and Faraday’s Law reads

∇× E = 0. General rules of vector calculus state that the curl of the gradient of a

scalar function is identically zero, meaning that the electrostatic statement of Fara-

day’s Law implies E = −∇φ; here, φ(r) is the electrostatic potential and the negative

sign ensures that ions and electrons move in the correct directions. The pure-PIC

version of EPPIC does not assume quasi-neutrality, and can therefore use Gauss’s

Law in the form of Poisson’s equation, ∇2φ = −ρc/ε0, to calculate the potential.

The scientific computing community has a wealth of experience solving Poisson’s

equation; the solution is particularly simple for simulations with periodic boundary

conditions. The results presented in Chapter 6 employed a fast spectral method for

solving Poisson’s equation with periodic boundary conditions. Quasi-neutrality, on

the other hand, assumes by definition that ρc ≈ 0. Such a model cannot take ad-

vantage of the the nice properties inherent in Poisson’s equation and must calculate

the potential by an alternative approach. The results presented in Chapters 4 and 5

employed the quasi-neutral hybrid version of EPPIC, which solves Equation 2.14 for

the potential via a finite difference method.

EPPIC uses a particle parallelization scheme in which multiple processors essen-

tially run independent PIC simulations that come together to compute the electric

field. Each processor updates particle velocities and positions independently, using

the existing electric field, then gathers the positions as described above. Next, EP-

PIC uses the Message Passing Interface (MPI) to calculate an average density (and
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ion flux, if applicable) across processors, which it passes to the field-solver routine.

This parallelization scheme allows EPPIC to run efficiently on up thousands to tens

of thousands of processors.

3.2 The Hybrid Approach

Given the success of PIC simulations in plasma physics, it is natural to ask: Why

bother with the hybrid approach? The more rigorous way to model electrons and

ions would be to treat them both as particles; even with the assumptions inherent

in the PIC scheme, this seems like the best approach. The FBI is an ion instability

and requires a kinetic treatment of ions but the fully kinetic code also accounts for

electrons heating effects that the hybrid code can not capture in its current state. It

also does not suffer from the same limitations as the quasi-neutral code because it

does not have to solve Equation 2.14 at each time step. One major limitation of the

quasi-neutral solver was its inability to handle electron magnetizations much larger

than κe = 150. Since magnetization increases with altitude, that makes altitudes in

the middle-to-upper electrojet inaccessible. The drawbacks to using the pure-PIC

version of EPPIC are that it must resolve the electron Debye length, λDe, in space

and (the inverse of) the electron plasma frequency, ωpe, in time.

The electron Debye length is the length beyond which electrons shield the positive

charge of ions, producing a quasi-neutral plasma. The pure-PIC version of EPPIC

typically sets and maintains an equal total number of electrons and ions but does

not assume quasi-neutrality. Therefore, it must resolve electron-ion separation on

scales smaller than the Debye length in order to calculate the electrostatic potential

via Poisson’s equation. The Debye length varies as
√
Te/n0, where Te is the electron

temperature and n0 is the background plasma density. That means that lowering n0

or raising Te would make it easier for the simulation to resolve λDe. The first option
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is feasible to a degree, but Rosenberg and Chow (1998) showed that a simulation

requires ωpi:sim/νi:sim > 1 for quasi-neutrality, where ωpi:sim and νi:sim are the simu-

lated values of ion plasma frequency and ion-neutral collision frequency, respectively.

Raising Te is a reasonable aid because the FBI typically heats electrons anyway. In

practice, we have used a combination of both approaches.

The electron plasma frequency – the fundamental oscillation that electrons make

in a neutralizing background of a positively charged species – depends on the electron

mass. In the E-region ionosphere, the positively charged species may be NO+ or O+
2 ,

both of which are more than 5× 104 times more massive than an electron. The code

can save some time by evolving electron dynamics on a time scale of 1/ωpe while

“subcycling” ions on a time scale of 1/ωpi. However, the FBI is an ion instability,

meaning that the code needs to ultimately resolve ion dynamics. In order to resolve

both electron dynamics and ion dynamics, the code needs to take
√
mi/me electron

time steps for each ion time step. For E-region ions, that means taking nearly 250

electron time steps for each ion time step. One common approach to this problem

is to artificially inflate the electron mass, thereby lowering
√
mi/me. This leads to

problems in defining other parameters that depend on the electron mass, notably the

electron-neutral collision frequency. EPPIC conserves momentum and energy during

electron-neutral collisions by artificially inflating the neutral mass specifically during

that collision process while using the true neutral mass during ion collisions. Note

that even though ωpe depends on n0 – a parameter that is arguably more flexible

than me – the challenge is in the ratio of time scales. Unlike the case of resolving

λDe, changing n0 does not help here. Furthermore, changing n0 in one direction for

either ωpe or λDe makes the problem worse for the other quantity. See Oppenheim

and Dimant (2004) for more details about the limitations of pure-PIC EPPIC.
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3.3 Finite-Difference Scheme for the Potential Equation

We can write electron pressure tensor on the RHS of Equation 2.14 as Pe = nkBTeI,

where I is the identity tensor. Assuming isothermal electrons, we get∇·Pe = kBTe∇n,

so the RHS depends only on quasi-neutral density, ion flux, and constant parameters.

Suppose we split the physical domain into a 2-D grid of discrete points. Each point

has an index, (i, j). We know the value of the RHS after gathering ions into density

and flux as described above. We want to know the potential at each point, so we need

to discretize the LHS. The centered finite-difference (FD) approach in 1 D computes

the difference between a function at neighboring half grid steps. For some arbitrary

function, f(x), first and second derivatives become

df

dx
≈ f (i+1/2) − f (1−1/2)

∆x
d2f

dx2
=

d

dx

(
df

dx

)
≈ f (i+1) − 2f (i) + f (i−1)

(∆x)2
,

where ∆x is the grid-step size and parenthetical superscripts denote grid locations.

Note that the half-cell locations do not actually exist on the computational grid – if

we were to halve the grid-cell size, we would have better resolution but we would still

label each point (i, j). The FD approach requires a method for evaluating functions

at half-cell points, but we will deal with that later. For the sake of clarity, we can

define the intermediate variable L ≡ nε∇φ.

∇ · L =
∂Lx
∂x

+
∂Ly
∂y
≈ L

(i+1/2,j)
x − L(i−1/2,j)

x

∆x
+
L
(1,j+1/2)
y − L(i,j−1/2)

y

∆y
(3.1)
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This contains four terms in L, each evaluated at a grid point neighboring (i, j).

Expanding the first Lx term yields

L(i+1/2,j)
x = n(i+1/2,j) (ε∇φ)(i+1/2,j)

x

= n(i+1/2,j)
[
∂xφ

(i+1/2,j) − κe∂yφ(i+1/2,j)
]

≈ n(i+1/2,j)

[
φ(i+1,j) − φ(i,j)

∆x
− κe

φ(i+1/2,j+1/2) − φ(i+1/2,j−1/2)

∆y

]
,

where ∂x and ∂y denote partial derivatives in x and y, respectively. The second-order

differential operator has taken care of the half-cell terms that behave like ∂xxφ and

∂yyφ, which is not surprising, given the FD expression for d2f/dx2 above. To deal

with n and the remaining φ terms at half-cell locations, we will assume that they

change smoothly from one cell to the next that a simple average will suffice:

n(i+1/2,j) =
n(i+1,j) + n(i,j)

2

φ(i+1/2,j+1/2) =
φ(i+1,j+1) + φ(i+1,j) + φ(i,j) + φ(i,j+1)

4

φ(i+1/2,j−1/2) =
φ(i+1,j) + φ(i+1,j−1) + φ(i,j−1) + φ(i,j)

4
.

Note that evaluating the φ terms at half-cell locations in both directions requires an

average of four neighboring points. Cancelling terms and dividing by ∆x leads to

L
(i+1/2,j)
x

∆x
≈ n(i+1,j) + n(i,j)

2

×
[
φ(i+1,j) − φ(i,j)

(∆x)2
− κe

φ(i+1,j+1) + φ(i,j+1) − φ(i+1,j−1) − φ(i,j−1)

4∆y∆x

]
.
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The process for expanding the three other L terms is identical and it yields

L
(i−1/2,j)
x

∆x
≈ n(i,j) + n(i−1,j)

2

×
[
φ(i,j) − φ(i−1,j)

(∆x)2
− κe

φ(i,j+1) + φ(i−1,j+1) − φ(i,j−1) − φ(i−1,j−1)

4∆y∆x

]
L
(i,j+1/2)
y

∆y
≈ n(i,j+1) + n(i,j)

2

×
[
κe
φ(i+1,j+1) + φ(i+1,j) − φ(i−1,j+1) − φ(i−1,j)

4∆x∆y
+
φ(i,j+1) − φ(i,j)

(∆y)2

]
L
(i,j−1/2)
y

∆y
≈ n(i,j) + n(i,j−1)

2

×
[
κe
φ(i+1,j) + φ(i+1,j−1) − φ(i−1,j) − φ(i−1,j−1)

4∆x∆y
+
φ(i,j) − φ(i,j−1)

(∆y)2

]
All that remains is to plug these expressions back into Equation 3.1 and rearrange in

terms of φ at the nine relevant grid points. After an appropriate amount of algebra,
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the FD expression for the LHS of Equation 2.14 is

∇ · (nε∇φ) ≈

φ(i,j)

{
−
[
n(i+1,j) + 2n(i,j) + n(i−1,j)

2 (∆x)2

]
−
[
n(i,j+1) + 2n(i,j) + n(i,j−1)

2 (∆y)2

]}
+ φ(i+1,j)

{
n(i+1,j) + n(i,j)

2 (∆x)2
+ κe

n(i,j+1) − n(i,j−1)

8∆x∆y

}
+ φ(i−1,j)

{
n(i,j) + n(i−1,j)

2 (∆x)2
+ κe

n(i,j−1) − n(i,j+1)

8∆x∆y

}
+ φ(i,j+1)

{
n(i,j+1) + n(i,j)

2 (∆y)2
+ κe

n(i−1,j) − n(i+1,j)

8∆x∆y

}
+ φ(i,j−1)

{
n(i,j) + n(i,j−1)

2 (∆y)2
+ κe

n(i+1,j) − n(i−1,j)

8∆x∆y

}
+ φ(i+1,j+1)

{
κe
n(i,j+1) − n(i+1,j)

8∆x∆y

}
+ φ(i−1,j+1)

{
κe
n(i−1,j) − n(i,j+1)

8∆x∆y

}
+ φ(i+1,j−1)

{
κe
n(i+1,j) − n(i,j−1)

8∆x∆y

}
+ φ(i−1,j−1)

{
κe
n(i,j−1) − n(i−1,j)

8∆x∆y

}
. (3.2)



69

Note that κe → 0 reduces Equation 3.2 to

∇ · (n∇φ) ≈

φ(i,j)

{
−
[
n(i+1,j) + 2n(i,j) + n(i−1,j)

2 (∆x)2

]
−
[
n(i,j+1) + 2n(i,j) + n(i,j−1)

2 (∆y)2

]}
+ φ(i+1,j)

{
n(i+1,j) + n(i,j)

2 (∆x)2

}
+ φ(i−1,j)

{
n(i,j) + n(i−1,j)

2 (∆x)2

}
+ φ(i,j+1)

{
n(i,j+1) + n(i,j)

2 (∆y)2

}
+ φ(i,j−1)

{
n(i,j) + n(i,j−1)

2 (∆y)2

}
,

which is diagonally dominant and is therefore relatively simple to solve numerically.

The physical significance of this limit is that, as electrons become unmagnetized,

they Pedersen drift with the ions and there is no Hall contribution to the potential.

In the further limit of homogeneous density, Equation 3.2 becomes

n∇2φ ≈

n

[
φ(i+1,j) − 2φ(i,j) − φ(i−1,j)

(∆x)2
+
φ(i,j+1) − 2φ(i,j) − φ(i,j+1)

(∆y)2

]
This is just Poisson’s equation and is, as mentioned above, very computationally

friendly.

The immediate advantage of writing Equation 3.2 in the form given is that it

allows for easy translation it into a matrix system of the form Aφ = ρ. At each grid

point, Equation 3.2 provides represents the product Aφ and the RHS of Equation

2.14, evaluated at the grid point of interest, provides a single numerical value for ρ.

The numerical challenge to invert the matrix equation to provide φ = A−1ρ.
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It may be tempting to first expand the divergence operator in Equation 3.2 as

∇ · (nε∇φ) = ∇ · [n (∂xφ− κe∂yφ) x̂+ n (κe∂xφ+ ∂yφ) ŷ]

= n∇2φ+∇n · ∇φ+ κe (∇n×∇φ) · ẑ

and apply centered FD expressions directly to ∇n, ∇φ, and ∇2φ. However, this

approach yields incorrect results when density perturbations grow large. The reason

is that the matrix A is singular, since adding any constant to φ is also a solution to

∇ · (nε∇φ) = f . The iterative-inversion approach to solving the potential equation

in EPPIC projects out the nullspace of A in order to eliminate the singularity; the

direct-inversion approach applies a method originally described in Oppenheim et al.

(1996) which implicitely sets the DC component of φ and solves a reduced linear

system with one fewer row and one fewer column. The latter approach retains the

advantages of a centered FD scheme to accurately capture the divergence-free nature

of Equation 2.14.

3.4 Matrix Inversion Methods

The hybrid EPPIC results presented in Chapter 4 used an iterative-inversion ap-

proach that combined Hypre’s algebraic multigrid (AMG) method, BoomerAMG

(Falgout and Yang, 2002), with the generalized minimal residual (GMRES) method

(Saad and Schultz, 1986). Algebraic multigrid is an extension of geometric multi-

grid. Geometric multigrid approximates a numerical problem on coarser and coarser

meshes, finds a solution (usually via a direct-inversion method) to the simplified

problem on the coarsest grid, then interpolates that solution back to the fine grid.

Algebraic multigrid arose as a response to problems without a well-defined grid. It

takes advantage of algebraic connections between matrix elements rather than spatial

proximity on a physical grid (Briggs et al., 2000).
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The hybrid EPPIC results presented in Chapter 5 used a direct-inversion numer-

ical library called MUltifrontal Massively Parallel Solver (MUMPS) (Amestoy et al.,

2001, 2006). Frontal solvers, in general, use a variant of Gaussian elimination that

avoids having to handle many terms that equal zero. A multifrontal method is simple

an extension of the frontal method that can run efficiently on parallel systems. The

general multifrontal method (Liu, 1992) performs a Cholesky matrix decomposition

(A = LL∗) but Cholesky decomposition only applies to symmetric matrices. The

quasi-neutral potential equation produces an unsymmetric matrix, so MUMPS must

perform a Gaussian decomposition (A = LU). superLU DIST(Li et al., 1999) is an

alternative numerical library for directly inverting large parallel matrices. The work

presented in Chapter 5 used MUMPS because it employs very efficient memory usage

and because MUMPS ran faster than superLU DIST in identical EPPIC test runs.

3.5 Hybrid EPPIC Development

This section describes significant contributions to EPPIC that I implemented while

developing the hybrid version, but which are not immediately relevant to the presen-

tations in Chapters 4, 5, and 6.

3.5.1 Electron distribution

EPPIC allows the user to declare what type of distributions they want to simu-

late. The most common and well-supported option is to simulate multiple particle

distributions (i.e., the pure-PIC version of EPPIC) but routines exist to handle var-

ious types of fluid distributions. The isothermal, quasi-neutral, inertialess hybrid

approach evolves a particle distribution of ions but it need not actually follow a

distribution of electrons. The work presented in Chapters 4 and 5 focuses on ion

dynamics, with electrons providing a quasi-neutralizing background that couples to
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ions via the potential equation. That fact allowed me to streamline hybrid EPPIC

by creating a new type of distribution, which is simply a set of constant parameters.

Using that method for hybrid electrons, EPPIC simply reads in electron parameters

(e.g., mass, charge, collision frequency) from an input file and passes them to the

potential equation. Doing so precludes the need to set up a dynamic distribution

that the rest of the code will never use.

3.5.2 One-step hybrid gather

The standard PIC approach only gathers particle positions into charge density but

Equation 2.14 requires number density and ion flux. I extended the pure-PIC gather

routine to compute both number density and flux components in one pass. Num-

ber density is trivial: It simply involves interpolating particle positions to the grid

without weighting each distribution by its respective charge. The extension to flux

components is also natural, since the routine will have already calculated the in-

terpolation factors – all that remains is to multiply each particle by its velocity in

each direction to compute each flux component. This approach requires storing an

additional array for each dimension of the physical system, but it requires only one

pass through each particle distribution. Memory is inexpensive and computational

efficiency is of primary concern for EPPIC. Each particle distribution can consist of

millions of PIC particles on each processor, so favoring algorithmic efficiency over

memory efficiency makes sense.

3.5.3 Using PETSc for potential

Hybrid EPPIC leverages the Portable, Extensible Toolkit for Scientific Computation

(PETSc) (Balay et al., 2018, 2015, 1997) to switch between solution methods for

the linear system given by Aφ = ρ. PETSc provides data structures and algorithms

for the scalable parallel solution of PDEs, exposing an effective “algebra of composi-
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tion” that lets the easily user experiment with different iterative and direct methods.

Adding PETSc functionality to the existing version of EPPIC was a fundamental

component of the research presented in this dissertation and will allow future users

to test other methods for solving Equation 2.14

3.5.4 Efficient PETSc setup

I initially put all the PETSc code into the potential-solver routine, which EPPIC

calls at each time step. That meant that EPPIC asked PETSc to create and de-

stroy data structures at each time step. That was fine for an iterative method such

as BoomerAMG+GMRES but it made direct methods such as MUMPS seem pro-

hibitively slow. Removing the routines that create and destroy data structures and

placing them in EPPIC’s main procedure allowed PETSc to reuse existing struc-

tures. This is crucial to efficient use of a direct method because the setup processes,

in which the algorithm factors the matrix, is often the most time consuming. Mov-

ing the data-structure creation to the main procedure meant that MUMPS could

perform that factorization once and reuse it, making direct solution of Aφ = ρ much

more efficient over multiple time steps.

3.5.5 Running PETSc on a subset of communicators

EPPIC exhibits nearly perfect weak scaling with respect to particle-related routines.

Weak scaling measures the ability of a parallel numerical algorithm to complete a

large version of a given problem in the same time as it would take to compute a smaller

version, provided it can use more parallel processors. Weak scaling differs from strong

scaling in that the later measures how much an algorithm speeds up when it can use

more processors. EPPIC’s nearly perfect weak scaling for particles arises from the

previously described particle parallelization scheme in which each process handles its

own PIC distribution. A global operation like the potential solver should exhibit at
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least good strong scaling if it is to be useful. The biggest pitfall is inter-processor

communication – the user must look for a sweet spot between providing enough

processors to divide the problem into manageable chunks but not so many that

inter-processor communication dominates the algorithm. For the research presented

in Chapter 5, the efficiency of MUMPS appeared to decrease for processor counts

larger than 256. However, keeping the processor count at or below 256 meant either

assigning more particles to each processor than it could fit in memory, or settling

for low particle counts. The first option is clearly unfeasible and the second option

resulted in systems with too much particle noise to discern the relevant physics. The

solution was to implement the ability to run PETSc on a subset of the total number

of processors. This allowed me to rerun the simulations presented in Chapter 5 with

much lower particle noise, and was fundamental to producing the results of that

chapter.
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Chapter 4

Coupled Growth and Evolution of

Farley-Buneman/Gradient Drift

Instabilities on Meter and Decameter

Scales in a Common Plasma Volume

4.1 Introduction

Type-I irregularities exhibit a narrow spectrum. The early observations by Cohen and

Bowles (1967) led researchers to conclude that Type-I irregularities have a Doppler

shift that is constant with zenith angle, but more recent work suggests that their

Doppler shift varies with the cosine of elevation angle (Woodman and Chau, 2002;

Hysell et al., 2007). They occur due to the Farley-Buneman instability (FBI) when

the total electric field rises above a threshold level and causes the relative E×B drift

speed to exceed the acoustic speed by a factor slightly larger than unity. The electrons

Hall drift through collisionally demagenitized ions, which are Pedersen drifting much

more slowly than the electron Hall drift, and pull ions in the E×B direction in the

presence of density perturbations. The influence of supersonic electron drift causes

ion inertia to overcome plasma thermal pressure, causing areas of relative density

enhancement (δn/n0 > 0) or depletion (δn/n0 < 0) to become respectively more

enhanced or depleted, leading to instability. The instability threshold criterion is

that the wave phase-speed component parallel to the background electron drift exceed

the plasma acoustic speed by the factor 1 + ψ⊥, where ψ⊥ is the ratio of electron
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to ion mobilities and is typically 0.2 to 0.3 in the lower equatorial E-region (Dimant

and Oppenheim, 2004). Since this instability develops in the absence of background

density gradients, the electron drift speed is |Ve0| = |E0×B0|/B2
0 and the instability

criterion is equivalently a criterion on the background electric field. Although theory

predicts that type-I irregularities should have a phase speed proportional to the

electron drift speed, observations show that they saturate at the ion acoustic speed,

Cs. A kinetic treatment shows that the FB instability has a maximum growth rate

at a wavelength of a few meters (Oppenheim et al., 1996).

Type-II irregularities exhibit a broad spectrum at small Doppler shifts that in-

crease with zenith angle. They do not have a threshold electric field predicted by

linear theory in the way that type-I irregularities do, but they do require that magne-

tized electrons drift through collisional ions fast enough to produce the polarization

electric field that drives electrostatic irregularities. Type-II irregularities occur in the

presence of background density gradients when E · ∇n0 > 0. A small perturbation

electric field (δE/E0 ∝ δn/n0) causes regions of δn/n0 < 0 to δE × B drift into

regions of higher background density and regions of δn/n0 > 0 to drift into regions

of lower background density.

Ronchi et al. (1991) asked what role large-scale waveforms play in the dynamics

of meter-scale irregularities and suggested that 3-m irregularities detected in radar

backscatter experiments may be passively advected with kilometer-scale waves. They

note “considerable experimental evidence that the characteristics of the short wave-

length two-stream irregularities depend upon the presence or absence of long wave-

length activity”. With the advent of improved radar technology at Jicamarca and

the new imaging techniques described in Hysell and Chau (2006), Hysell et al. (2007)

identified 3-m waves generated by, and advecting with, kilometer-scale gradient-drift

waves, consistent with the predictions of Ronchi et al. (1991). Hassan et al. (2015)



77

presented a fluid model of the E-region designed to reproduce Type-I and Type-II

irregularities, but their simulation box extended only 100 m × 100 m, and did not

show the effect of large-scale waves on the generation of meter-scale irregularities.

The work presented in this chapter and the next shows numerical simulation

results that support the conclusions of Ronchi et al. (1991) and observations of Hysell

et al. (2007), and provide a connection between meter-scale density irregularities and

larger background wave perturbations. It shows that such large-scale density waves

must give rise to the meter-scale irregularities routinely observed by VHF radars in

the E-region equatorial ionosphere, even when the measured ambient electric field is

too small to drive pure two-stream turbulence.

This chapter is organized as follows: Section 4.2 provides background on the

theory of coupled FBI/GDI, section 4.3 describes the numerical model and simulation

methods, section 4.4 describes the simulation results, section 4.5 discusses the results

within the context of observations and theory, and section 4.6 concludes the chapter.

4.2 Theory

The production of meter-scale irregularities from large-scale perturbations can be

understood from linear theory. Consider a quasi-neutral, electrostatic, isothermal

plasma with inertialess electrons propagating perpendicular to the background mag-

netic field. In the E-region, around 100 km, electrons are magnetized while ions are

collisionally demagnetized. In terms of the gyrofrequency, Ωj ≡ |qj|B/mj, and colli-

sion frequency, νj, of electrons (j = e) and ions (j = i), that means κe ≡ Ωe/νe � 1

while κi ≡ Ωi/νi < 1. This work assumes geomagnetically quiet conditions with a

static vertical background electric field, E0 = E0ẑ, and meridional magnetic field,

B0 = −B0ŷ. All dynamics occur in the plane perpendicular to B0. Linearizing the

fluid equations for electrons and a single ion species in the rest frame of the ions and in
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the presence of a simple vertical density gradient with scale length L = n0 (dn0/dz)−1

leads to the dispersion relation

ω − k ·Ve0 =
ψ⊥
νi

[
ω (iω − νi)− ik2C2

s

](
1− iΩe

νekL

)
, (4.1)

where Ve0 is the total electron drift velocity and C2
s = Kb(Ti+γeTe)/mi is the plasma

acoustic speed. Writing ω(k) = ωr(k) + iωi(k) and assuming |ωi(k)| � |ωr(k)|, the

oscillation frequency and linear growth rate are given by

ωr(k) =
k ·Ve0

1 + ψ⊥
(4.2a)

ωi(k) =
ψ⊥

1 + ψ⊥

[
Ωe

νe

ωr
kL

+
(
ω2
r − k2C2

s

) 1

νi

]
, (4.2b)

where ψ⊥ ≡ νeνi/ΩeΩi (Sudan et al., 1973; Rogister and D’Angelo, 1970). The

system will be unstable when ωi(k) > 0.

Table 4.1 gives the parameter values used in this work, which presents three

simulations of the equatorial E-region ionosphere at 100 km altitude. All runs used

a constant horizontal magnetic field B0 = −2.5 × 10−5ŷ T. The threshold electric

field magnitude for pure-FB instability in the absence of gradients is Ec = B0Cs(1 +

ψ⊥) ≈ 11.2 mV/m. Pfaff et al. (1997) measured vertical DC electric field values of

approximately 9 mV/m in situ during a sounding rocket campaign and Moro et al.

(2016) inferred vertical DC electric field values in the range 0.51 to 20.67 mV/m,

with a mean diurnal value of 8.12±1.51 mV/m, from radar data. One goal of the

hybrid simulations was to examine the effects of the vertical background electric field,

so the three runs presented here are sorted by background vertical electric field. One

run used E0z = 9 mV/m, consistent with the Pfaff et al. (1997) measurement around

100 km and the average value inferred by Moro et al. (2016); a second run used

E0z = 12 mV/m, just above the threshold for FB instability; and a third run used

E0z = 6 mV/m, a value far too low to trigger FB turbulence but still reasonable for
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the equatorial E region. This work ignores the zonal electric field, which is typically

an order of magnitude smaller than the vertical field. The geometry causes the

zeroth-order electron E0 × B0 drift to point from east to west (in the x̂ direction).

All runs were seeded by the same initial density wave, as described in §4.4.1. The

initial density wave has a more complex structure than that which equation 4.1

assumes; §4.5.2 will address the more complex density gradient structure. The NRL

MSIS Atmosphere Model (Picone et al., 2002) provides neutral temperatures and

densities, and the following formulas from Schunk and Nagy (2004) provide the ion

and electron collision frequencies:

νi = 4.34× 10−10nN2

νe = 2.33× 10−11nN2

(
1− 1.21× 10−4Te

)
Te,

where nN2 is the N2 density in cm−3 and the constants have appropriate units to

make the units of νi and νe both s−1. Because this work does not attempt to sim-

ulate a particular event, it uses parameters from 01 January 2000, 12:00 UT as a

representative case.

4.3 Numerical Model

This work employs a numerical code similar to the Electrostatic Parallel Particle-

In-Cell (EPPIC) code described in Oppenheim et al. (2008) and Oppenheim and

Dimant (2004). It incorporates a novel parallelized electrostatic potential solver

based on theory described in Oppenheim et al. (1996). This section first describes the

evolution of the collisional ion distribution, then describes the electrostatic potential

equation that arises due to quasi-neutrality with inertialess electrons.

For ion dynamics, this code follows the standard particle-in-cell (PIC) approach

(Birdsall and Langdon, 1991), solving the collisional ion momentum equation in two
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stages: Particles first move under the influence of the electric and magnetic fields,

using a standard Boris mover. They then collide with neutral particles, using the

statistical characteristics of a given neutral distribution with a prescribed collisional

algorithm to change the ion momentum. The simulation runs presented here used

a single ion species, NO+, and a single neutral species, N2, since those are the

dominant species in the E-region ionosphere. Unlike the pure-PIC version of EPPIC,

the quasi-neutral version does not use an artificially inflated electron mass to relax the

time-step constraints set by the ion-to-electron mass ratio. It also takes ion dynamics

to be representative of overall plasma dynamics since ni ≈ ne ≡ n, but requires a new

approach to calculating the perturbed electric field via the electrostatic potential. A

description of that approach follows.

The hybrid PIC code treats electrons as an inertialess thermal fluid with temper-

ature Te and either an isothermal or linearly adiabatic equation of state. Treating

electrons as inertialess relaxes the pure-PIC requirement of resolving electron dynam-

ics on a time scale ∼ 1/fpe and on spatial scales ∼ λDe, and allows the simulation to

use the true value of the electron mass as a parameter. The assumption of inertialess

fluid electrons, coupled with the quasi-neutral condition (∇ · J = 0), leads to an

equation for the electrostatic potential in terms of density, n, ion flux, Γi = nvi, and

parameters of the electron fluid (e.g. νe and me):

∇ · [nε∇φ] = ∇ ·
[
nε

(
E0 +

kbTe
e

∇n
n

)
+
(
1 + κ2e

) meνe
e

Γi

]
, (4.3)

where

ε ≡
(

1 −κe
κe 1

)
and κe ≡

Ωe

νe

The hybrid model casts equation 4.3 as a linear system of centered finite-difference

equations which can be converted to a matrix equation of the form Aφ = f(n,Γi).

The simulation solves the matrix equation for φ at each time step using routines from
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Table 4.1: Simulation Parameters for Chapter 4

Symbol Value
mi 5.0× 10−26 [kg]
me 9.1× 10−31 [kg]
mn 4.6× 10−26 [kg]

Ti = Te = Tn 220 [K]
νi 3.0× 103 [s−1]
νe 3.0× 104 [s−1]
By0 −2.5× 10−5 [T]
Ez0 6.0, 9.0, 12.0 [mV/m]
n0 1010 [m−3]
Nx 2048 [cells]
dx 0.25 [m]
Nz 1024 [cells]
dz 0.25 [m]
Nt 8192 [steps]
dt 5× 10−5 [s]

the Portable Extensible Toolkit for Scientific Computing (PETSc) (Balay et al., 2015,

1997). The specific numerical approach involves preconditioning the linear system

with hypre’s BoomerAMG algebraic multigrid method (Falgout and Yang, 2002),

then performing the actual solve with the restarted generalized minimal residual

(GMRES) method (Saad and Schultz, 1986).

Table 4.1 lists the cell width in each direction, dx and dz, the number of cells,

Nx and Nz, the the time step, dt, and the number of time steps, Nt. The simulation

spans 512 m in zonal (east-west) distance, 256 m in vertical distance, and 409.6 ms in

real time. The simulation used periodic boundary conditions. The following section

describes the initial density condition.

4.4 Results

This section presents the results of the three simulation runs, with background ver-

tical electric fields E0z = 6 mV/m, 9 mV/m, and 12 mV/m. It first describes the

initial imposed density configuration and resultant potential, then shows snapshots

of the perturbed density and total electric field at the end of each run. Following
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those results, it describes the spectral power as a function of line-of-sight (LoS) angle

and phase velocity for 2-m, 3-m, and 8-m waves.

4.4.1 Density and electric field

Figure 4·1 shows the initial relative perturbed density (δn/n0) in color with electro-

static potential (φ) contours for all runs. The initial density consists of a Gaussian

bump with a full width at half maximum (FWHM) of 146 m, ranging from 8 × 109

m−3 to 1.2 × 1010 m−3. The bump is uniformly perturbed by a single period of the

function z(x) = −z0 sin (2πx/Lx), where z0 = 32 m and Lx = 512 m. This serves

to mimic a large-scale wave seeding the system. The results presented here show

density and electrostatic potential shifted vertically by Nz/2 because the interest-

ing dynamics develop along the positive vertical density gradient and in the density

trough. The electrostatic potential results from solving equation 4.3; its shape is

determined by density gradients (second term in the RHS of equation 4.3), and the

relative drifts of electrons and ions (first and third terms in the RHS of equation 4.3).

The density gradients lead to ambipolar electric fields that add to or subtract from

the vertical polarization electric field. The shape of the large-scale seed wave creates

a zonal polarization that modifies ion and electron drifts to enforce ∇ · J = 0. The

precise shape of φ for each run depends on E0z, but for the early stages of each run

(i.e. before turbulence develops), all the runs appear similar.

Figure 4·2 shows the final δn/n0 for each run. In all panels, waves with wave-

lengths on the order of ten meters grow along the positive vertical density gradient.

This result is consistent with local linear theory, which predicts that gradient-drift

waves will grow when E0 · ∇n > 0. The most obvious difference among these three

figures is the increasing growth of small-scale density perturbations in the central

density trough with increasing E0z. Here, “small-scale” implies perturbations on the

order of a few meters as opposed to both the ubiquitous tens-of-meter gradient-drift
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Figure 4·1: Initial configurations of relative perturbed density
(δn/n0; color) and electrostatic potential (φ; contours). The initial
density consists of a Gaussian bump centered at z = 128 m and mod-
ulated by a 512-m wave. The electrostatic potential is the result of
solving equation 4.3 at the first time step.
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waves that grow along the positive vertical density gradient and the 512-m seed

wave. Movies included as supplemental information show the evolution of relative

perturbed density for each simulation run.

Figure 4·3 shows the final total electric-field magnitude (ET = |E0 − ∇φ|) in

grayscale for each run, with contours of electrostatic potential (φ) overlaid in color.

The grayscale range is the same for all plots and spans 0 to twice Ec ≈ 11.2 mV/m.

The color contours span ±max(|φ|), with the + max(|φ|) in red and −max(|φ|) in

blue; the actual values are max(|φ|) = 0.28 V for E0z = 6 mV/m, max(|φ|) = 0.45

V for E0z = 9 mV/m, and max(|φ|) = 0.54 V for E0z = 12 mV/m. In all three runs,

the electric field peaks near the center of the simulation domain, within the density

trough, coincident with small-scale wave growth in the E0z = 9 mV/m and 12 mV/m

runs. Although the peak value of ET changes with different values of E0z, the shape

of φ determines the location of the peak. The exact values of φ depend on E0 via

the ion and electron drifts, so the overall shape differs among runs, but the location

of the peak in −∇φ lies in roughly the same place for all three runs. This suggests

that the large-scale density configuration plays a more important role in determining

the peak location than do the relative drifts.

When FB irregularities develop for E0z = 9 mV/m and 12 mV/m, they develop

in the center of the simulation, in the density trough at the western edge of the upper

large-scale density wave. In this region, −∇φ has its greatest magnitude and points

from lower-right to upper-left. Note that, due to periodic boundary conditions, the

right edge of the simulation box wraps around to the left edge. Shifting the domain

zonally (x direction) by 256 m would represent a reversal of the perturbing sine wave

that effectively places the density trough at the eastern edge of center. In that way,

these runs also account for the case in which the large-scale density wave is reversed.

Figure 4·4 shows the average total electric field within a 64 m × 64 m box in the
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Figure 4·2: Final relative perturbed density for each run: (a) E0z = 6
mV/m, (b) E0z = 9 mV/m, (c) E0z = 12 mV/m. In all runs, gradient-
drift instability develops along the positive vertical gradient. For E0z =
9 mV/m and 12 mV/m, Farley-Buneman instability develops in the
central density trough, with faster growth for E0z = 12 mV/m.
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Figure 4·3: Final total electric field (grayscale) and potential (color
contours) for each run: (a) E0z = 6 mV/m, (b) E0z = 9 mV/m,
(c) E0z = 12 mV/m. The grayscale bar shows values in multiples of
the threshold electric field for Farley-Buneman instability, Ec ≈ 11.2
mV/m. In all runs, the total electric field peaks in the central density
trough. For E0z = 9 mV/m and 12 mV/m, the total electric field
is well above Ec. The contours span ±max(|φ|), red to blue, where
max(|φ|) is (a) 0.28 V, (b) 0.45 V, (c) 0.54 V.
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center of the simulation domain as a function of time for the first 25.6 ms of each run.

This box captures the area where |∇φ|, and thus ET , is greatest during the beginning

of each run. The initial drop in average electric field is an artifact of start-up. The

plot shows that ET < Ec for the E0z = 6 mV/m run whereas ET > Ec for both the

E0z = 9 mV/m and E0z = 12 mV/m runs. Note that ET is still growing at 25.6 ms

in the E0z = 12 mV/m run whereas it levels off almost immediately in the other two

runs. The direction of ET for each run, which is given by the counterclockwise angle

from +x̂ (i.e. tan−1(Ey/Ex)) and is nearly constant over the time span of Figure 4·4,

is 101◦ (6 mV/m), 107◦ (9 mV/m), and 107◦ (12 mV/m). Thus a super-threshold

total electric field arises very quickly in the density trough along the rising edge of

the density wave for E0z > 9 mV/m, causing electrons in that region to E × B0

drift at super-threshold speeds at approximately 17◦ from purely westward, thereby

triggering FB turbulence in the density trough.

4.4.2 Spectra

This section presents results from a spectral analysis of each run, at three wave-

lengths: 3, 8, and 2 m. The first wavelength corresponds to what the 50-MHz radar

at Jicamarca should observe via coherent back scatter. The second wavelength repre-

sents Type-II irregularities driven directly by the 512-m initial density perturbation

and is near the wavelength observed by Patra et al. (2005) with the 18-MHz radar

at Trivandrum, India. The third wavelength corresponds to peak growth of Type-I

turbulence due to pure FB instability in the 9-mV/m and 12-mV/m runs. Although

this wavelength does not lend itself immediately to comparison with observations

(the authors are not aware of a 75-MHz E-region radar), it is an interesting case be-

cause it represents the combined growth of Type-I and Type-II irregularities. Though

all simulations show characteristics of Type-II irregularities at all wavelengths, the

12-mV/m run develops a primary high-speed population of Type-I irregularities at
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and green traces).
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2 m and a secondary high-speed population at 3 m. The end of this section briefly

discusses these high-speed populations.

Figure 4·5 shows the normalized spectral power as a function of LoS angle, θ,

(counterclockwise from +x̂) and phase velocity, Vph = ω/k, for 3-m waves. The color

in panel (a) shows the spectral power normalized to the peak value at each angle

for the E0z = 6 mV/m run and the white line indicates the mean phase velocity,

〈Vph〉. Panel (d) shows spectral width, ∆Vph (i.e. FWHM), for the same run. Panels

(b) and (e) show the same quantities for the E0z = 9 mV/m run, and panels (c)

and (f) show those quantities for the E0z = 12 mV/m run. In all runs, the mean

phase velocity varies approximately as 〈Vph〉 ∼ −E0z cos θ. For E0z = 6 mV/m,

−0.5Cs . 〈Vph〉 . 0.5Cs; for E0z = 9 mV/m, −0.7Cs . 〈Vph〉 . 0.7Cs; and for

E0z = 12 mV/m, −0.9Cs . 〈Vph〉 . 0.9Cs. The spectral width approximately equals

〈Vph〉 near θ = 0◦ and θ = 180◦, and increases as θ approaches 90◦.

Figure 4·6 shows the normalized spectral power as a function of angle for 8-

m waves, with panels corresponding to the same quantities as in Figure 4·5. The

trends are similar to those of 3-m waves: 〈Vph〉 ∼ −E0z cos θ, ∆Vph ≈ 〈Vph〉 near

θ = 0◦ and θ = 180◦, and ∆Vph increases as θ approaches 90◦. For E0z = 6 mV/m,

−0.4Cs . 〈Vph〉 . 0.4Cs; for E0z = 9 mV/m, −0.5Cs . 〈Vph〉 . 0.6Cs; and for

E0z = 12 mV/m, −0.8Cs . 〈Vph〉 . 0.7Cs.

The fact that 〈Vph〉 < Ve0/(1 +ψ⊥) when θ = 0◦ in Figures 4·5 and 4·6 represents

a departure from linear theory (equation 4.2a). A likely explanation for the relatively

low mean phase velocities is that the simulated observer with LoS at θ sees a mix of

linearly growing waves and nonlinear turbulence, including mode coupling and wave

broadening effects. A full description of the turbulent state of combined FBI/GDI is

beyond the scope of this chapter; instead, the authors refer the reader to St.-Maurice

and Hamza (2001), Drexler et al. (2002), and references therein. Regardless of the
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Figure 4·5: Spectral power and width at 3 m as a function of phase
velocity (Vph) and angle from +x̂, (i.e. E0 × B0): (a) & (d) E0z = 6
mV/m, (b) & (e) E0z = 9 mV/m, (c) & (f) E0z = 12 mV/m. The white
line in (a)-(c) shows the mean phase velocity and the sign convention
is such that negative velocities imply waves traveling away from an
observer with line-of-sight θ.
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Figure 4·6: Spectral power and width at 8 m as a function of phase
velocity (Vph) and angle from +x̂. See description of Figure 4·5 for
individual panels.
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nonlinear mechanisms at work, turbulent perturbations should not travel significantly

faster than the linear phase velocity predicted by equation 4.2a, so any contributions

from nonlinear effects only act to decrease the mean value.

The fact that 〈Vph〉 differs in magnitude between 3-m and 8-m waves represents

an additional departure from linear theory, which predicts a phase velocity indepen-

dent of wavelength. This is not surprising, since Figure 4·2 clearly shows a turbulent

system. The trend toward lower peak 〈Vph〉 continues to longer wavelengths (not

shown), suggesting that as waves grow to the scale size of the gradient, they interact

directly with the slowly moving large-scale wave rather than propagating perpendic-

ular to the local gradient. This non-local interaction slows waves as a function of

wavelength.

Figure 4·7 shows the normalized spectral power as a function of angle for 2-m

waves, again in the style of Figure 4·5. These waves differ substantially from 3-m

and 8-m waves in that, for E0z = 12 mV/m, the spectral-power distribution in panel

(c) skews toward Vph ≈ −425 m/s for θ ∈ [0◦, 30◦]. Beyond θ = 30◦, 〈Vph〉 increases

linearly until θ ≈ 150◦, at which point it is nearly constant over θ ∈ [150◦, 180◦].

Likewise, panel (f) shows that ∆Vph is not symmetric about θ = 90◦, with the

steeper slope for 0 < θ < 90 caused by the fact that the spectral-power distribution

skews toward the narrow high-speed component up to θ ≈ 30◦. The next paragraph

further discusses the asymmetric behavior of 2-m waves in this simulation.

Figure 4·8 illustrates the asymmetry in Figure 4·7: Panel (a) shows the spectral

power in 2-m waves for each run, at θ = 15◦, averaged over a 2-degree beam. The

angle θ = 15◦ corresponds to roughly the direction of E×B0 in the central density

trough, where E is the total electric field (cf. the discussion of Figure 4·4 in §4.4.1).

Each curve was normalized to the peak power of the 12-mV/m curve. Note that

the horizontal axis is not symmetric about Vph = 0 m/s. The relative amplitudes
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Figure 4·7: Spectral power and width at 2 m as a function of phase
velocity (Vph) and angle from +x̂. See description of Figure 4·5 for
individual panels.
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of 2-m waves in the 6-mV/m and 9-mV/m runs are less than 10% of the 12-mV/m

run and the skewed shape of the 12-mV/m run is clear. Unlike the broad spectra

in the 6-mV/m and 9-mV/m runs, the 12-mV/m run generates a broad component

centered near -300 m/s and a narrow component centered near -425 m/s. Panel

(b) shows the spectral power of 2-m, 3-m, and 8-m waves for the 12-mV/m run.

The 8-m curve is broad and nearly symmetric, but the 2-m and 3-m curves show an

asymmetry that is not clear in Figure 4·5, namely, an inflection point near 400 m/s.

This suggests a second distribution with higher negative velocity. The high-speed 3-

m population may result from the locally enhanced electric field or it may result from

mode coupling. Such mode coupling probably takes the form of an inverse cascade

process (Oppenheim et al., 2008) in the region where the pure FB instability creates

2-m waves, but may also include contributions from a forward cascade process related

to the gradient-drift instability. The growth of 2-m Type-I irregularities represents a

parametric instability in which the large-scale seed wave drives meter-scale turbulence

by enhancing the electric field. In a larger simulation (beyond the capabilities of the

present simulator), we expect that a similar parametric instability could generate

3-m waves, as observed as Type-I echoes (Hysell et al., 2007).

4.5 Discussion

This section first describes similarities between simulation results and observations

of coherent echoes reported in the literature, then connects results to a more general

theory of coupled FBI/GDI growth than that presented in §4.2.

4.5.1 Connection with observations

This work not only represents the first kinetic simulations of coupled FBI/GDI but

also lends insight to observations of E-region plasma irregularities observed by radars.
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Figure 4·8: Phase-velocity spectra at θ = 15◦: (a) Power in 2-m waves
normalized to the spectrum of the 12-mV/m run; (b) Self-normalized
power in 2-m, 3-m, and 8-m waves for the 12-mV/m run.
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Patra et al. (2005) reported east-west asymmetries in Type II irregularities observed

with an 18-MHz radar located near the magnetic equator, and attributed the asym-

metry to the tilt in kilometer-scale primary waves at E-region altitudes. Hysell

et al. (2007) connected east-west asymmetries with up-down Type I asymmetries

observed with a 50-MHz radar and noted that the depleted phases (i.e. troughs) of

kilometer-scale primary waves should have larger electric fields than the correspond-

ing enhanced phases (i.e. crests), leading to observations of larger line-of-sight drifts

and preponderance of Type I echoes in westward-aligned beams. The density results

presented in Figure 4·2, while not directly comparable to kilometer-scale processes,

are consistent with those observations and the total electric field results presented

in Figure 4·3 account for the development of Type-I irregularities within the de-

pleted region westward of a large-scale wave. In that region, the positions of density

troughs and crests modifies the electrostatic potential in a manner that enhances the

polarization electric field. This adds to the background and ambipolar electric fields

within the density trough between the two large-scale density crests. These results

also support the conclusion by Ronchi et al. (1991) that long wavelength activity

affects the characteristics of short wavelength two-stream irregularities. In the work

presented here, long wavelength activity creates the electrostatic potential field that

drives short-wavelength two-stream irregularities within the density trough between

long wavelength waves Sudan et al. (1973). It is worth noting again that Figure

4·7c shows a thin band of relatively high normalized power near Vph ≈ −425 m/s

for 0◦ < θ < 30◦, suggesting that two-stream irregularities have a constant Vph over

this range. This result is consistent with early claims that the phase speed of Type-I

irregularities is constant with zenith angle (Cohen and Bowles, 1967). Furthermore,

〈Vph〉 (the white line) never exceeds ±Cs ≈ 350 m/s, suggesting that the mean phase

speed saturates at Cs. This claim is also consistent with observations (Sudan, 1983).
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4.5.2 Dispersion relation

An analysis of instability growth in these simulations must account for magnetized

electrons and unmagnetized ions with arbitrary wavevector in the presence of a 2-D

background gradient. Sudan et al. (1973) derived the two-fluid dispersion relation

for an isothermal, electrostatic, quasi-neutral plasma with a strictly vertical back-

ground gradient and static horizontal background magnetic field. The appendix of

Fejer et al. (1975b) shows the derivation of a similar two-fluid dispersion relation, al-

lowing for plasma production and an arbitrary wavevector. Sudan (1983) developed

a nonlinear theory of Type II irregularities from which he obtained a linear disper-

sion relation similar to that given by Sudan et al. (1973). Dimant and Oppenheim

(2011b) derived a fluid dispersion relation for the combined FBI/GDI with arbitrary

magnetization, gradients, and wavevector, including production and recombination

effects. Makarevich (2016) presents a general dispersion relation for E- and F-region

instabilities that makes no assumptions about altitude, wavevector, or background

density gradient.

Equation A29 with equations A34 and A35 in Dimant and Oppenheim (2011b),

under the additional assumptions k‖ = 0 and κi � 1, yield a local linear growth rate

appropriate to the present work:

ωi(k) =
ψ⊥

1 + ψ⊥

 1

νi

(
ω2
r − k2C2

s

)
−

Ωe

(
k× b̂

)
·G

νek2⊥
ωr

 , (4.4)

The symbols ψ⊥, νi, νe, Ωe, ωr, and Cs have the same meanings as in equations 4.2;

b̂ is a unit vector parallel to the magnetic field (−ŷ in the present geometry) and

G ≡ n−10 ∇n0. Note that some of the notation used here differs from that used in

Dimant and Oppenheim (2011b) for the sake of consistency.

Figure 4·9 shows ωi(k) from equation 4.4 evaluated numerically for 2-m, 3-m,
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and 8-m waves propagating at θ = 15◦, given the initial density and total electric

field in each run. In the calculation of ωr(k) for ωi(k), Ve0 includes the Hall drift

and the diamagnetic drift. Panels (a), (b), & (c) show that ωi(k) is non-positive

everywhere for 2-m waves when E0z = 6 mV/m, and becomes increasingly positive

with increasing E0z, as expected. The location of ωi(k) > 0 is not exactly cospatial

with the peak in FB irregularities in Figure 4·2c, which coincide with a more localized

region centered on the peak in ET . The reason is two-fold: First, 2-m waves develop

quickly along the entire positive vertical density gradient of the background wave

and are less severely damped near the central trough than longer-wavelength waves.

Nonlinear wave interaction along the density gradient produces cascading features

composed of a range of wavelengths from a few to tens of meters, effectively washing

out the 2-m waves. Second, the preceding fluid analysis does not capture the fact

that the kinetic FB growth rate peaks at a few meters. In the region of enhanced

electric field, the true growth rate (i.e. including kinetic effects) will be higher for

waves with wavelengths of a few meters.

There are also trends for fixed E0z and varying wavelength. Panels (a), (d), &

(g) show that, in the run with E0z = 6 mV/m, ωi(λ = 8 m) > ωi(λ = 3 m) >

ωi(λ = 2 m) with ωi(λ = 2 m) ≤ 0. This is consistent with Figure 4·2a, in which

long-wavelength gradient-drift turbulence grows along the positive vertical density

gradient of the background wave. For E0z = 9 mV/m, panels (b), (e), & (h) show

that ωi(λ = 8 m) ≈ ωi(λ = 3 m) ≈ ωi(λ = 2 m) > 0 along the positive gradient

near the central region but ωi(λ = 8 m) > ωi(λ = 3 m) > ωi(λ = 2 m) ≈ 0 away

from the center. This is consistent with the increased growth of meter-scale waves

in the central region and the predominance of longer wavelengths near the edges,

but does not exactly predict the smallest-scale wave growth in the central trough

for the reasons described above. For E0z = 12 mV/m, panels (c), (f), & (i) show
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Figure 4·9: Local linear growth from equation 4.4 for waves traveling
at θ = 15◦ from +x̂. Rows (top to bottom): λ = 2 m, λ = 3 m, and
λ = 8 m. Columns (left to right): E0z = 6 mV/m, E0z = 9 mV/m,
and E0z = 12 mV/m.

that ωi(λ = 2 m) > ωi(λ = 3 m) > ωi(λ = 8 m) > 0 along the positive gradient.

Again, the prediction made by the fluid growth rate is consistent with wave growth

along the positive density gradient but does not predict meter-scale FB turbulence

in the central trough. The reader may benefit from comparing Figure 4·9 to the

supplemental movies of relative perturbed density for each simulation run.

4.6 Conclusion

This chapter presents a novel parallelized hybrid quasi-neutral plasma simulation de-

signed to simulate E-region turbulence. The numerical model treats ions as particles

via a PIC method while treating electrons as an inertialess thermal fluid, which pre-

cludes the need for an artificially large electron-to-ion mass ratio. The model does

not keep track of a distribution of electrons. Therefore, it cannot capture kinetic

effects of electron wave-particle coupling but does not need to resolve the Debye
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length or the inverse plasma frequency. It does not currently include electron ther-

mal physics, but future versions will. The chief advantage of this simulation is that

it is well suited to studying meter- and decameter-scale turbulence in the presence of

hundred-meter- to kilometer-scale density waves. The results of this work represent

the first simulations of the coupled Farley-Buneman/gradient-drift instability in the

equatorial E-region ionosphere. While the simulations presented here span only 512

m × 256 m, they attempt to reproduce VHF radar observations of backscatter from

meter-scale density irregularities in the presence of background waves that span a

few kilometers. This work also introduces an electrostatic potential solver that uses

algebraic multigrid to precondition an iterative method capable of handling the large

off-diagonal elements caused by electron magnetization.

The main results are:

1. Simulations with zeroth-order vertical electric fields of 6 mV/m, 9 mV/m, and

12 mV/m produce gradient-drift turbulence in regions that satisfy the linear

condition for instability.

2. The total electric field in the density minimum is large enough to drive Farley-

Buneman turbulence even when the zeroth-order vertical field is below the

turbulent threshold.

3. Waves develop in all runs and travel westward along the background positive

density gradient with phase velocities below the plasma acoustic speed.

4. Wave power spectra of 2-m, 3-m, and 8-m waves show characteristics of Type-II

irregularities in all runs.

5. When the background electric field is 12 mV/m, wave spectra at 15◦ from

E0×B0 show a distinct Type-I population at 2 m and a secondary Type-I-like

population at 3 m.
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6. The Type-I population has roughly constant phase velocity over a 30◦ range in

LoS angle and the mean phase velocity peaks at the plasma acoustic speed.

The results of this hybrid simulation can be used to interpret radar observations of

meter-scale density irregularities propagating with a vertical component and an east-

west asymmetry. The east-west asymmetry arises as a combination of the density

gradients introduced by the background density wave and the electron-drift effects

caused by the total electric field and ambient magnetic field in the background density

minima, embodied in the quasi-neutral electrostatic potential equation. The presence

of density crests and troughs produces a polarization electric field that adds to the

background and ambipolar electric fields, driving FB turbulence.
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Chapter 5

Secondary Farley-Buneman Instability

Driven by a Kilometer-Scale Primary

Wave: Anomalous Transport and

Formation of Flat-Topped Electric Fields.

5.1 Introduction

Chapter 4 and Young et al. (2017) presented numerical simulation results showing the

coupled growth of FBI and GDI in a plasma characteristic of the equatorial E-region

at 100 km altitude during daytime. Those results demonstrate the interplay between

both instabilities in the presence of ionization gradients and a background electric

field, as well as how a large-scale density perturbation can create a polarization

electric field that drives the total electric field above the threshold for FBI.

Although Young et al. (2017) showed that the same zeroth-order plasma at-

tributes (e.g., large-scale wave, background fields, and charged-neutral collision fre-

quencies) can produce spectra exhibiting both types of irregularities defined by early

researchers, it did not fully explain observations of meter-scale irregularities presum-

ably produced by secondary FBI in the presence of kilometer-scale primary GDI

waves (Hysell et al., 2007). Sudan et al. (1973) proposed a theoretical mechanism for

generating meter-scale waves from kilometer-scale GDI waves, via excitation of sec-

ondary GDI and FBI in the frame of the primary wave. Kudeki et al. (1982) demon-

strated the clear presence in Jicamarca data of kilometer-scale structures despite
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the fact that the Jicamarca 50-MHz radar observes only 3-m waves. Those authors

showed that it is not unreasonable to observe east-west drift velocities much smaller

than the ion acoustic velocity while simultaneously observing vertically propagating

type I echoes. They also discussed how the linear theory differs for long wavelength

waves.

Rocket observations by Pfaff et al. (1987b) showed density irregularities around

103-106 km in altitude consistent with vertically propagating 2- to 3-m FBI waves

driven by a large-scale wave electric field. They found that their in situ observations

were consistent with both the Sudan et al. (1973) theory and concurrent ground-

based observations with the Jicamarca 50-MHz radar. Kinetic simulations and a

simplified fluid simulation by Oppenheim (1997) demonstrated how wave-driven cur-

rents from the FBI can modify large-scale GDI and reproduce the in-situ electric

fields measured by Pfaff et al. (1987b). Two-fluid simulations by Ronchi et al. (1991)

produced evidence that the electric fields in kilometer-scale waves dominates meter-

scale dynamics so that the 3-m waves observed in radar backscatter experiments

essentially trace out the kilometer-scale dynamics.

This chapter presents results from a numerical simulation of E-region plasma

in which a primary 1024-m wave, meant to mimic a single GDI wave, gives rise

to secondary FBI waves with wavelengths of a few meters. The meter-scale waves

drive a non-linear plasma transport that significantly reduces the large-scale wave

electric field. The presentation proceeds as follows: Section 5.2 outlines the linear

local theory relevant to the FBI and GDI, Section 5.3 describes the numerical model

underlying the simulations, Section 5.4 shows results from the simulations, Section

5.5 discusses the physical implications of the simulation results and their connections

to observations, and Section 5.6 concludes the chapter.
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5.2 Theory

The FBI and GDI are collisional electrostatic plasma instabilities that propagate

nearly perpendicular to the background magnetic field. The FBI, also called the

modified two-stream instability, derives its free energy from the increased ion inertia

that results when electrons stream through ion density perturbations faster than the

local plasma acoustic speed. At subsonic electron drift speeds, ion thermal pressure

smooths out any localized density perturbations; above a critical threshold drift

speed, ion inertia imparted by the streaming electrons overcomes thermal pressure

and causes density perturbations to steepen. See Dimant and Sudan (1995c) for a

more detailed description of the physical nature of the FBI.

The GDI derives its free energy from the presence of density gradients aligned with

the ambient electric field. In the frame of a naturally occurring density perturbation,

the polarization electric field, δE, points parallel or antiparallel to the direction

of propagation, depending upon whether the relative perturbed density, δn/n0, is

positive or negative. The presence of the magnetic field, B0, causes plasma in wave

crests to δE × B0 drift into regions of lower background density while plasma in

wave troughs drifts into regions of higher background density. Both processes lead to

an increase in the magnitude of δn/n0, producing the instability. See, for example,

Section 2 of Dimant and Sudan (1997) for a more detailed description of the physical

nature of the GDI.

These two instabilities arise in collisional E-region plasmas and their threshold

criteria – a supersonic electron drift for the FBI and a gradient parallel to the ambient

electric field for the GDI – can easily occur in the same plasma volume. The stan-

dard linear analysis of the combined FBI/GDI assumes a quasineutral, isothermal

plasma with inertialess, magnetized electrons and collisionally demagnetized ions. In

keeping with standard development of FBI/GDI theory, this work will employ the
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magnetization parameter for species j, κj ≡ Ωj/νj, where Ωj is the absolute value

of the cyclotron frequency and νj is the average frequency of collisions with neu-

tral particles. The assumptions on electron and ion magnetization in the E-region

ionosphere correspond to κe � 1 and κi < 1.

Linearizing the continuity and momentum equations for electrons and a single

species of ions, both subject to the above assumptions and in the presence of a

vertical density gradient with scale length L ≡ n0(z) [dn0(z)/dz]−1, leads to the

following dispersion relation:

ω − k · ud =
ψ⊥
νi

[
ω (iω − νi)− ik2C2

s

](
1− iκe

kL

)
(5.1)

where ud = ui0 − ue0 is the zeroth-order plasma drift, with u(i,e)0 representing the

ion and electron drift velocities, ψ⊥ ≡ (κiκe)
−1 is the anisotropy factor, and Cs ≡√

KB (Ti + Te) /mi is the plasma acoustic speed. Writing ω = ωr + iωi and assuming

|ωi| � |ωr| yields expressions for the phase frequency and growth rate:

ωr =
k · ud

1 + ψ⊥
(5.2a)

ωi =
ψ⊥

1 + ψ⊥

[
ωr
κe
kL

+
(
ω2
r − k2C2

s

) 1

νi

]
, (5.2b)

See Rogister and D’Angelo (1970) and Sudan et al. (1973) for more thorough

developments of similar expressions. Fejer et al. (1975b) developed a two-fluid dis-

persion relation that allows for plasma production and an arbitrary wave vector. Di-

mant and Oppenheim (2011b) derived a general fluid FB/GD dispersion relation for

arbitrarily magnetized plasmas (i.e., at arbitrary altitude), including arbitrary wave

vector, gradients, and production and recombination. Makarevich (2016) developed a

similar dispersion relation as that derived in Appendix A of Dimant and Oppenheim

(2011b) without assuming the same long-wavelength, low-frequency limit. However,
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a two-fluid dispersion relation becomes inappropriate as the wavelength approaches

the ion mean-free-path, where ion Landau damping becomes significant.

Dimant and Sudan (1995a,b, 1997) also predicted an electron thermal instability

(ETI) using a fully kinetic approach and Dimant and Oppenheim (2004) extended

that theory to explain ion thermal instability (ITI) effects in simulations by Op-

penheim and Dimant (2004). The ETI produces waves with wavelengths of tens of

meters in the upper D/lower E region (cf Blix et al. (1996)), where the plasma does

not favor FBI and GDI growth. The ITI, on the other hand, produces waves with

wavelengths of a few meters in the same regime as the FBI, leading to interaction

between the two. The most notable effect of the combined FBI/ITI instabilities is

in waves turning away from the E0 × B0 direction, which is the most favorable for

pure FBI growth.

Equations 5.2a and 5.2b provide a sufficient starting point for analysis of the

present work because the present work ignores production and recombination, as-

sumes a vertical background density gradient, and, to first order, comprises two

essentially one-dimensional systems at right angles to each other. This work also as-

sumes isothermal fluid electrons and does not produce significant zeroth-order heating

in the (kinetic) ions. The absence of thermal effects in equations 5.2a and 5.2b only

fails to capture small corrections to ion dynamics, mostly related to wave turning.

5.3 Numerical Model

The simulations presented in this chapter employed a hybrid version of the Electro-

static Parallel Particle in Cell (EPPIC) code described in Oppenheim and Dimant

(2004); Oppenheim et al. (2008), using the parallel potential solver described in

Young et al. (2017). The hybrid version of EPPIC improves on the simulation code

described in that work by taking full advantage of EPPIC’s domain decomposition
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scheme. The model assumes quasineutrality between inertialess electrons and one

species of ions. In the absence of sources and sinks, the quasineutrality assumption

implies that the current, J, must be divergence free (∇ · J = 0). For singly ionized

ions, this simplifies to ∇· (Γi − Γe) = 0, where Γi,e are the ion and electron. In other

words, the flux divergences of the two species balance, leading to an equation for the

electrostatic potential:

∇ · [nε∇φ] = ∇ ·
[
nε

(
E0 +

kbTe
e

∇n
n

)
+
(
1 + κ2e

) meνe
e

Γi

]
, (5.3)

where κe is the electron magnetization and ε is a tensor that captures the effect of

electron magnetization on the plasma drift:

κe ≡
Ωe

νe
and ε ≡

(
1 −κe
κe 1

)
The numerical model discretizes Equation 5.3 using finite differences and solves

it on a Cartesian grid subject to periodic boundary conditions. The current ver-

sion of hybrid EPPIC employs the MUltifrontal Massively Parallel Solver (MUMPS)

(Amestoy et al., 2001, 2006) within the Portable Extensible Toolkit for Scientific

Computing (PETSc) (Balay et al., 2015, 1997) to solve the resultant linear system.

Table 5.1 gives the values of relevant parameters used in this work. The simu-

lation treats both ion-neutral and electron-neutral collisions elastically. The former

acts approximately as a Maxwell molecule interaction, with the relevant collision

frequency, νi, from Equation 4.146 (and Table 4.4) in Schunk and Nagy (2004). The

latter contributes to the RHS of Equation 5.3 as a constant fluid parameter, with

the relevant collision frequency, νe, from Table 4.6 in Schunk and Nagy (2004). The

dimensionless parameter ψ⊥, which affects both phase speed and growth rate, varies

with altitude primarily due to the dependence of νe and νi on neutral density (Dimant

and Oppenheim, 2004).
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The simulation runs presented here span roughly 1 km by 250 m in the plane

perpendicular to B0 at the magnetic equator. They have an initial density in the

form n(x, z) = n0 [1 + A cos (2πx/Lx)], where n0 is the ambient plasma density and

A is an amplitude relative to n0. In other words, density is uniform in the vertical

direction (ẑ) and sinusoidal in the zonal direction (x̂), representative of a single period

of a large-scale wave typical of the linear-stage GDI.

The work by Kudeki et al. (1982) determined the dominant wavelength of km-

scale waves to be in the range 2-6 km, based on measurement of the east-west drift

velocity, combined with the observed period of oscillation. The roughly 1-km primary

waves used in this work represent the current spatial limit of our simulations, which

required 15 hours on 1024 cores for each run. Since the perturbed electric field of the

primary wave depends predominantly on the amplitude of perturbed density, using a

1-km primary wave suffices to elucidate the cross-scale coupling at the heart of this

analysis, despite falling short of the range of observed wavelengths.

This work presents ten runs at five effective altitudes. At each altitude, one

run had a primary-wave amplitude of five percent of the background plasma density

(collectively, “the five-percent runs”) and the other had a primary-wave amplitude of

ten percent of the background plasma density (collectively, “the ten-percent runs”).

The simulated ψ⊥ parameter determines the effective altitude of each pair of runs

(Dimant and Oppenheim, 2004). Formally, the value of ψ⊥ depends on collision and

cyclotron frequencies of all plasma species in the system of interest (cf. Madsen et al.

(2014)); in these runs, all relevant parameters except the ion collision frequency, νi,

are constant. This work uses a set of five baseline simulation runs with no density

gradients and an ambient electric field of 6 mV/m – too low to drive the FBI –

to determine the effective ion collision frequency from ion Pedersen and Hall drifts.

The psuedo-randomness inherent in the PIC collision algorithm results in a simulated
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Table 5.1: Simulation Parameters for Chapter 5

Symbol Value Unit Name
mi 5.0× 10−26 kg ion mass
me 9.1× 10−31 kg electron mass
mn 4.6× 10−26 kg neutral mass
Ti 220 K ion temperature
Te 220 K electron neutral temperature
Tn 220 K neutral temperature
n0 1010 m−3 plasma density
νi 5900, 5100, 4200, 3400, 2500 s−1 ion-neutral coll. freq.
νe 6.0, 5.0, 4.0, 3.0, 2.0× 104 s−1 electron-neutral coll. freq.
h 96,98,100,102,104 km effective altitude
By0 −2.5× 10−5 T magnetic field
Ez0 9.0 mV/m vertical electric field
Lx ≈ 1 km zonal box length
dx 0.5 m zonal cell size
Lz ≈ 0.25 km vertical box length
dz 0.5 m vertical cell size
Lt ≈ 0.3 s real-time span
dt 10−5 s time step

value of νi is not necessarily equal to the input value for a given run. This work reports

the simulated values of νi, and the resultant simulated values of ψ⊥, because they

better represent the physical system of interest. The simulated ψ⊥ values for the five

sub-threshold runs are approximately 1.01, 0.72, 0.48, 0.29, 0.14. Following Figure

2 of Dimant and Oppenheim (2004), these values of ψ⊥ set the effective altitudes of

each pair of runs at 96 km, 98 km, 100 km, 102 km, and 104 km, respectively.

Figure 5·1 shows the initial plasma density configuration for all runs. The simula-

tion uses a particle rejection method to distribute ions so that their initial condition

mimics one period of a kilometer-scale wave. This kilometer-scale primary wave rep-

resents a simplified version of GDI growth in the daytime E-region plasma gradient.

The quasineutral model assumes ne ≈ ni ≡ n and thus treats the ion density as the

total density. The white square demarcates a 128 m × 128 m box in the primary-

wave trough. Figures 5·6 and 5·7 will refer to these boxes. The simulation outputs

density as relative perturbed density, δn/n0 ≡ [n1(x, z, t)− n0] /n0, where n1(x, z, t)

is the dynamic density that the simulation PIC method calculates at each time step
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Figure 5·1: Initial plasma density configuration for all runs. Density
is a sine about n0 = 1010 m−3 in the east-west direction, with an
amplitude of ±5% or ±10%. This configuration mimics a single period
of a large-scale GDI wave. The white box represents a 128-m × 128-m
patch shown in Figures 5·6 and 5·7.

and n0 is a fixed input value. The FBI growth does not depend on the total density,

provided the density satisfies the condition ωpi/νi > 1 (Rosenberg and Chow, 1998).

The background electric field, Ez0 = 9 mV/m, is vertical and the background

magnetic field, By0 = 2.5 × 10−5 T, points out of the page. The zonal direction

points from east on the left to west on the right. Linear theory predicts that a

polarization electrostatic field, δE will develop in phase with the perturbed density.

Given the initial density configuration shown in Figure 5·1, this means there will

be an eastward δEx in the central large-scale trough and an westward δEx in the

corresponding crests.

Figure 5·2 shows the initial magnitude of the total electric field, |EI | = (E2
z0 + δE2

x)
1/2

,

and its angle from due west, θ (EI) = tan−1 (Ez0/δEx), after smoothing density vari-

ations smaller than 10 m and averaging vertically. Smoothing brings out the large-

scale structure of the initial field components. The vertical average is an appropriate

representation of the 2-D initial configuration because the only variation is due to

the large-scale density wave. For the purpose of this work, “initial” means the state

of the simulation after approximately one collisional time, τi ≡ 1/νi. The quasineu-
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Figure 5·2: Total electric field at t ≈ 1/νi for all runs. The solid
traces correspond to ten-percent runs; the dashed lines correspond to
five percent runs. For both amplitudes, red represents 96 km, black
represents 98 km, green represents 100 km, blue represents 102 km,
and magenta represents 104 km. Panel a: The magnitude of the total
electric field, |EI | =

√
E2
z0 + δE2

x. Panel b: The angle from due west of
the total field, θ (EI) = tan−1 (Ez0/δEx). In case the reader is unable
to distinguish colors: the text labels in panel b indicate the order of
lines in both panels. In panel a, the 96-km trace nearly covers the
98-km trace; in the panel b, they are indistinguishable.
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tral hybrid model starts the simulation with artificially high potential unless input

parameters are precisely tuned, so showing dynamic quantities after t ≈ τi ensures

that the potential has relaxed into a more physically realistic state.

In both panels, the solid lines represent the ten-percent runs and the dashed lines

represent the five-percent runs. Color corresponds to altitude, with red at 96 km,

black at 98 km, green at 100 km, blue at 102 km, and magenta at 104 km. Both panels

indicate that the polarization field dominates the total field and that its overall shape

is broadly consistent with zeroth order. Panel a shows that |E|I peaks in the crest and

trough, and drops to Ez0 in between. Note that the location of |E|I = Ez0 does not

align precisely with the midpoint between crest and trough, where n = n0, due to the

small ambipolar electric field corresponding to each density gradient. Kudeki et al.

(1985) argued that the polarization electric field of the primary wave should develop

a natural asymmetry, with higher values in the trough, that counteracts the GDI-

induced downward transport of electrons. Since Ez0 in this work is homogeneous,

the primary-wave polarization field accounts for the asymmetry in Figure 5·2 and is

therefore consistent with the results of Kudeki et al. (1985).

The threshold electric field at which FBI turns on is Eth = B0Cs(1 + ψ⊥). Using

simulation values for B0, Ti, Te, and mi, the value of Eth is approximately 18.0 mV/m

at 96 km, 15.0 mV/m at 98 km, 13.0 mV/m at 100 km, 12.0 mV/m at 102 km, and

10.0 mV/m at 104 km. Horizontal dotted lines, color-coded in the same manner

as the |E|I traces, show each threshold value. It is clear that |E|I > Eth at least

somewhere in the simulation domain for all runs.

Panel b shows that the direction of EI in all runs varies continuously from vertical

of due west, in the crest, to vertical of due east, in the trough. The peak angle in ten-

percent runs varies from roughly 90± 75◦ at the lowest altitudes to roughly 90± 68◦

at 104 km. The angle in five-percent runs varies from roughly 90± 60◦ at the lowest
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altitudes to roughly 90± 53◦ at 104 km. The crest-trough asymmetry is also present

in this panel, though it is not as obvious as in panel a.

The wave polarization electric field gives rise to a perturbed drift, δue = δE×B0,

pointed upward along the trough and downward along the crests. The background

vertical electric field, Ez0, is too low to drive the FBI at most altitudes considered

here and if it were large enough, it would drive westward waves, not vertical waves.

The primary-wave polarization field, δEx, can be large enough to drive FBI and

the waves would propagate vertically – upward in the troughs and downward in the

crests. Figure 5·2 shows that the combination of Ez0 and δEx is responsible for

driving FBI at an intermediate angle when their total magnitude is above the local

threshold value.

5.4 Results

This section presents results from eight of the ten simulation runs. Both runs at 104

km failed due to what appears to have been energy in the perturbed electric field

increasing without bound, causing particles to jump across the entire simulation do-

main in one time step. Figure 5·3b, which section ?? describes in detail, shows the

perturbed electric field growing very rapidly at the start of the run at 104 km. This

is an unfortunate drawback of the quasi-neutral hybrid model with isothermal, iner-

tialess electrons – as κe grows with altitude, the linear system representing Equation

5.3 becomes more difficult to solve. Improvements to the code designed to overcome

or mitigate this drawback are topics of current and future work. The ten-percent

run at 104 km failed just after 1600 time steps and provides information only during

early wave growth, to be discussed below. The corresponding five-percent run, on

the other hand, failed just before 25000 time steps and therefore provides informa-

tion on wave growth comparable to the eight successful runs. Due to the inability to
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compare the runs at 104 km on the same level as the other eight runs, this report

will exclude them from analysis beyond Section 5.4.1.

5.4.1 Meter-scale irregularity amplitudes

Figure 5·3 shows the development of 2-m to 6-m density (panel a) and electric-field

(panel b) perturbations in each run. The FBI growth rate, ωi, peaks at a few meters,

with local plasma parameters controlling the specific peak wavelength, so the chosen

wavelength range should capture the relevant instability growth in all simulations.

Figure 5·3 therefore represents a proxy for meter-scale irregularity development in

each run.

The slope of the traces in Figure 5·3 gives a measure of the normalized growth

rate, γ̄. Panel a indicates that ω̄i and the normalized saturated amplitude of density

perturbations increases monotonically with altitude in both five- and ten-percent

runs. The value of ω̄i among ten-percent runs is approximately 3, 6, and 9 times

greater at 98 km, 100 km, and 102 km, relative to its value at 96 km. The growth

rate at 104 km appears to be nearly equal to the growth rate at 102 km but the

paucity of time steps makes for a tenuous comparison. The saturated amplitude of

the four complete ten-percent runs is approximately 3, 4, 5, and 6 times their initial

values

In the case of five-percent runs, the small, negative initial value of ω̄i in the

runs at 96 km and 98 km, indicated by the fact that amplitude drops below 1,

makes comparison with those runs unhelpful. This negative growth rate, which

turns positive for the run at 98 km but remains negative for the run at 96 km, is

likely a result of initial particle noise seeding the system with artificial spectral power

that fades as the runs progresses. In all but the five-percent run at 96 km, the signal

from meter-scale irregularities overcomes this particle noise. Comparing the three

five-percent runs above 98 km, ω̄i is approximately 4 and 6 times greater at 102 km
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Figure 5·3: Spectral power in 2-m to 6-m density (top) and electric-
field (bottom) perturbations propagating within 30◦ ≤ θ ≤ 50◦ west
of zenith, normalized to the t ≈ 1/νi value in each run. Colors and
line styles are the same as in Figure 5·2. Dashed vertical lines mark
three fiducial times for later analysis: The first (20.48 ms) corresponds
to growth in ten-percent runs, the second (40.96 ms) corresponds to
growth in five-percent runs, and the third (245.76 ms) corresponds to
a saturated state in all runs.
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and 104 km, compared to at 100 km. The “saturated” amplitude of the five-percent

run at 96 km is meaningless and the amplitude at 98 km does not grow appreciably

above unity. The runs at 100, 102, and 104 km grow to approximately 2, 3, and 3.5

times their initial values, with amplitude in the runs at 102 km and 104 km consistent

with that in the ten-percent run at 96 km.

Panel b shows many of the same trends as panel a, but there are notable ex-

ceptions. First, ω̄i is much more similar among the ten-percent runs, differing by

approximately 3 between 96 km and 102 km. Second, the saturated amplitude of

ten-percent runs converges to approximately 3 times the initial value in all four com-

plete runs. Third, the amplitude of the five-percent run at 96 km is consistent with

unity because the electric-field spectrum does not suffer from the particle-placement

noise that the density spectrum does. Fourth, amplitude in the five-percent runs

at 102 km and 104 km, before the latter failed, is nearly identical. Fifth, saturated

amplitude of the five-percent runs at 100 km and 102 km converge to approximately

2 times their initial values.

Both panels show vertical dashed lines at 20.48 ms, 40.96 ms, and 245.76 ms.

These dashed lines demarcate fiducial time steps for the images of density and electric

field shown in the following sections. The line at 20.48 ms represents the growth stage

of ten-percent runs. The line at 40.96 ms represents the growth stage of five-percent

runs. The line at 245.76 ms represents the saturated stage in all runs. The rest of

this work will focus on the eight successful runs.

5.4.2 Average zonal electric field

The most striking result of these simulations is that the polarization electric field

of the wave develops a flat-topped nature as meter-scale turbulence develops. This

indicates a turbulent mechanism for shorting out the wave electric field and explains

rocket observations of large-scale electric field saturation in the equatorial electrojet.
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Figure 5·4: Vertical average of the zonal electric field at three mo-
ments during each ten-percent run: the initial step (solid), during
growth (dotted), and in saturation (dashed).

Figure 5·4 shows the vertically averaged zonal (east-to-west) electric field, 〈δEx〉,
during the ten-percent runs. The panels progress from left to right in order of de-

scending altitude. In each panel, the solid trace corresponds to the initial time step,

the dotted trace corresponds to the growth-stage time step, and the dashed line cor-

responds to the saturated time step. The initial trace is nearly identical in all runs,

save for an amplitude increase of a few mV/m from 102 km to 96 km, because the

primary-wave amplitude largely determines the initial shape of 〈δEx〉. The growth-

stage shows the greatest variation across altitudes: On one end of the spectrum,

〈δEx〉 at 102 km develops a roughly flat top, with an amplitude reduced more than

10 mV/m from its initial value. On the other end, 〈δEx〉 at 96 km deviates very little

from the initial trace. The growth-rate traces of 〈δEx〉 at the intervening altitudes

provide intermediate cases. By the saturated time step, the field amplitude develops

a relatively flat top in all runs. The saturated amplitude again increases from 102 km

to 96 km but the difference is approximately 10 mV/m, meaning that the amplitude

reduction due to density irregularities becomes increasingly more drastic from 96 km

to 102 km. Finally, the offset between initial and saturated traces indicates that the

primary wave drifts westward at a few hundred meters per second.
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Figure 5·5: Vertical average of the zonal electric field at three mo-
ments during each five-percent run: the initial step (solid), during
growth (dotted), and in saturation (dashed).

Figure 5·5 shows 〈δEx〉 during the five-percent runs, in the same manner as Figure

5·4. The initial trace is again similar in all runs, with an amplitude increase of a few

mV/m from 102 km to 96 km. The evolution from initial to saturated 〈δEx〉 is far

less pronounced that for the ten-percent runs: Only the growth-stage trace at 102

km deviates appreciably from the its initial value, and only the saturated traces at

102 km and 100 km develop flat tops. The saturated trace at 98 km has a slightly

reduced amplitude from its initial value while the amplitude of the saturated trace at

96 km is essentially unchanged. Again, the primary wave appears to drift westward

at a few hundred meters per second.

5.4.3 Relative perturbed density

Images of perturbed density provide insight into irregularity growth and development.

This work presents perturbed densities relative to the background plasma density,

δn/n0 = (n1− n0)/n0, so that a value of 0 represents no deviation from background.

Figure 5·6 shows δn/n0 during ten-percent runs, alongside corresponding self-

normalized spatial spectra. The data-analysis routines filtered out wavelengths greater

than 100 m in the density panels to effectively de-trend the meter-scale irregularities

that are the focus of these snapshots. The amplitude of most perturbations is less

than 10% of n0, which is consistent with predictions of linear theory for wavelengths
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Figure 5·6: Snapshots of relative perturbed density, δn/n0, and self-
normalized spectral power, P , during ten-percent runs. Each density
panel represents the 128 m × 128 m box outlined in white in Figure
5·1 after filtering out wavelengths greater than 100 m. Each spectrum
covers (kx, kz) ∈ [0,+π] × [−π,+π]. White circles show values from
k = 2π/2 m−1 (largest) to k = 2π/7 m−1 (smallest) and white radii
show values of θ from −90◦ (bottom) to +90◦ (top).



120

of roughly half a meter and larger.

Meter-scale irregularity growth is evident at all altitudes, though the wavelength

of peak power differs slightly among altitudes and evolves over each run. The peak

in the 102-km growth spectrum sits on the k = 2π/2.0 m−1 circle but moves closer

to the k = 2π/3 m−1 circle at lower altitudes. Growth-stage power is diffuse at 96

km but a cluster of red pixels between k = 2π/2 m−1 and k = 2π/3 m−1, at θ ≈ 55◦,

corresponds to the weak density irregularities. As each run evolves, the initial clump

of power moves toward the center (i.e., to longer wavelengths), and decameter-scale

power increases relative to meter-scale power. At 102 km, the meter-scale power

remains fairly isolated from the decameter power whereas the space between those

two spectral regimes fills in more uniformly as altitude decreases.

The angle of propagation shows in which direction a radar will observe coherent

echoes. During irregularity growth at 102 km, waves propagate upward (kz > 0) at

θ ≈ 50◦ and downward (kz < 0) at a θ ≈ 55◦. Moving down in altitude, a trend

toward θ = ±90◦ accompanies the aforementioned trend toward longer wavelengths.

At 102 km, 100 km, and 98 km, the propagation angle has a spread of roughly

10◦ during growth; at 96 km, the spectrum appears more diffuse, but the reason

may be related to low signal-to-noise ratio rather than a change in physics. In the

transition from growth to saturation, the mean propagation angle tends to move

approximately 10◦ toward horizontal at all altitudes. The approximately five-degree

asymmetry between up-going and down-going waves mentioned for 102 km exists at

all altitudes and persists from growth to saturation.

Figure 5·7 shows δn/n0 and corresponding spatial spectra during the five-percent

runs, in the same fashion as Figure 5·6. Note that the perturbed density scale now

ranges from -5% to +5% of n0. Many of the characteristics of density perturbation

growth and saturation described for the ten-percent runs apply to the five-percent
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Figure 5·7: Same as Figure 5·7, but for five-percent runs.
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runs. Wave amplitudes are generally lower in the five-percent runs than in the ten-

percent runs, which is consistent with Figure 5·3. The lower amplitude of meter-scale

growth at a given altitude is not necessarily obvious in the normalized spectra at 102

km and 100 km, but it should be clear by inspection of δn/n0, with the knowledge

that most density perturbations are less than 5% of n0. The lower amplitude of

meter-scale growth is evident at 98 km, where waves barely peak out of the noise in

the saturated stage, and at 96 km, where both δn/n0 and spectra show noise.

5.4.4 Density irregularity spectra

Radars measure coherent echoes from density irregularities with wavelengths equal

to half the radar wavelength. The mean Doppler shift and spectral width of observed

echoes distinguish type-I irregularities from type-II irregularities. Simulated radar

spectra can thus connect observed irregularity types to the instabilities that create

them.

Figure 5·8 shows Fourier spectral power in 3-m, 5-m, and 10-m waves as a function

of angle from zenith (ϑ) and phase velocity (Vph = ωr/k) during the second half of

each ten-percent run. The sign convention for ϑ is such that positive values denote

westward angles and negative values denote eastward angles. Note that ϑ = 90◦− θ,
where θ is the angle shown by white radii in Figures 5·6 and 5·7. The sign convention

for Vph follows the standard Doppler convention: positive values denote scatterers

moving toward the radar and negative values denote scatterers moving away from

the radar. Dotted white lines show Vph = ±Cs. As in Figures 5·6 and 5·7, the

spectra are normalized to the maximum value in each panel. The purpose is to

draw attention to mean frequency and spectral width but this normalization scheme

naturally precludes power comparison among frames.

The regions of high power at λ = 3 m near ϑ = −40◦ and ϑ = +45◦ correspond to

the spectral features at θ = 50◦ and θ = −45◦ in Figure 5·6. These primary spectral
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Figure 5·8: Spectral power as a function of zenith angle and phase
velocity during the second half of all ten-percent runs. Columns, from
left to right, correspond to the runs at 102 km, 100 km, 98 km, and
96 km. Rows, from top to bottom, show power in 3-m, 5-m, and 10-m
waves. The color scale runs from 0 dB to -30 dB. White dotted lines
mark ±Cs.
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features exhibit many characteristics of type-I radar spectra. The peaks in 3-m power,

where P > −10 dB, are well isolated in angle and their phase velocities deviate from

Cs by less than 50 m/s. Their widths are in the range 50 m/s < ∆ωr < 100 m/s at 102

km and decrease to ∆ωr < 50 m/s at 96 km. At 102 km, a secondary spectral feature

below |Vph| = 300 m/s accompanies the peak near Cs but fades into the background

as altitude decreases. The wave frequency of these secondary features appears to

have an angular dependence whereas the brighter features do not. Both the lower

frequency and angular dependence of these features are reminiscent of type-II radar

spectra.

Type-I features are again apparent at λ = 5 m. Similarly to 3-m waves, their

width narrows with decreasing altitude; however, their mean frequency stays rela-

tively constant at a value just above Cs, unlike 3-m waves. At 102 km, the spectral

power in type-II features competes with the spectral power in type-I features and

they exhibit a more obvious angular dependence. The clear angular dependence per-

sists at all altitudes but, as with 3-m waves, the power in type-II features relative to

type-I features falls off with altitude.

Slow, type-II features dominate the spectrum of 10-m waves. At 102 km, most

of the power propagates with Vph < Cs; there are slight increases in power around

Vph = Cs near the angles most favorable for the shorter wavelengths (i.e., 45◦ < |ϑ| <
50◦), but those features never dominate the spectrum at 10 m. The prevalence of

type-II features persists down to 96 km, unlike at shorter wavelengths. Type-I peaks

may exist at all altitudes but they become difficult to distinguish below 100 km.

Figure 5·9 shows Fourier spectral power in 3-m, 5-m, and 10-m waves for five-

percent runs in the same manner as Figure 5·8. Many features of Figure 5·9 are

similar to Figure 5·8. At 3 m, distinct type-I peaks appear near ϑ = −40◦ and

ϑ = +45◦ with Vph ≈ Cs at 102 km. There are again weak type-II features. The
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Figure 5·9: Same as Figure 5·8 but for five-percent runs.
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type-I spectra are narrower in the five-percent runs than in the ten-percent runs

and their mean Vph value decreases more quickly with altitude. A major distinction

between 3-m ten-percent waves and 3-m five-percent waves is that type-I features

seem to blend with type-II features as altitude decreases in Figure 5·9.

The spectrum of 5-m waves exhibits both type-I and type-II features, but the

peak in spectral power at 102 km shifts from type-II to type-I and back as ϑ sweeps

past the type-I peak. This trade-off is not apparent in the ten-percent runs. At 100

km, both types still exist and there is again a cut-out in type-II power around the

angle of peak type-I power, but type-II power is consistently 10 dB lower than type-I

power. Type-I mean Vph decreases slightly with altitude, dropping below Cs only at

96 km, and both spectral types blend together below 100 km.

Type-II features again dominate the 10-m spectrum, as in the ten-percent runs.

At 10 m, the type-II power cut-out near ϑ = −40◦ and ϑ = +45◦ is very clear

but the corresponding type-I contribution is weak, opposite to the 5-m case. The

10-m spectrum becomes more homogenous in angle as altitude decreases and there

is a relatively large amount of power in waves propagating horizontally westward

(Vph < 0 at ϑ = +90 and Vph > 0 at ϑ = −90).

Cut-outs in type-II power are similar to results described in Young et al. (2017),

which described the co-evolution of type-I and type-II irregularities. In that work,

images of spectral power as a function of zenith angle and phase velocity showed

type-II power decreasing where type-I increased. The reason is the the same physical

processes govern both types of spectrum, so the competing criteria for FBI and GDI

determine the relative power in broad and narrow spectra at meter scales.

5.5 Discussion

Pfaff et al. (1987a,b) reported flat-topped electric fields during a rocket flight through
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large-scale waves in the equatorial, daytime E region. They noted that flat-top

morphology was not the result of instrumental limitations, and interpreted it instead

as evidence that some geophysical process had caused electric-field saturation. The

results shown here suggest that electric-field flattening occurs in the presence of FBI

turbulence in the crests and troughs of large-scale waves. FBI develops in the regions

of the large-scale wave where the plasma drift exceeds the threshold value: |ud| ≡
|ue−ui| > Cs (1 + ψ⊥). In general, both the zeroth-order and ambipolar electric fields

may contribute both Pedersen and Hall components to the ion and electron drift.

For the physical situation corresponding to this work, ud is effectively the electron

Hall drift due to both the background electric field and the wave polarization electric

field.

When secondary FBI waves develop in nature, they are subject to the same elec-

trostatic polarization mechanism as is the primary wave. That means that nonlinear

E × B0 drifts develop in the frame of the meter-scale waves, analogously to the

E × B0 drift that initiated the meter-scale FBI growth (Oppenheim, 1997). How-

ever, the FBI growth rate quickly becomes negative for wavelengths below about

a meter, so there is no tertiary set of FBI waves propagating perpendicular to the

secondary FBI waves. Instead, the meter-scale E × B0 increases plasma mobility

perpendicular to the magnetic field, along meter-scale wave fronts. The increased

mobility across the magnetic field represents and anomalous transport. Since there

is more plasma in density crests than in density troughs, this anomalous transport

produces a nonlinear current (Dimant and Oppenheim, 2011a). It is this nonlinear

current that shorts out the primary-wave polarization field and reduces its amplitude

to just above the FBI threshold.

The saturated mean polarization electric field in the ten-percent runs noticeably

increases with decreasing altitude, saturating at a value that sets the total electric
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field just above the threshold for FBI. The same is true for the five-percent runs at

102 km and 100 km, though the difference between initial and saturated values is

not as stark. In the five-percent run at 98 km the saturated field is barely above the

threshold value, so that FBI turbulence does not have time to grow before diffusion

reduces the field. At 96 km, the absence of flat-topped saturated fields results from

the fact that the initial electric field is simply below the threshold value.

Figures 5·4 and 5·5 also demonstrate that the nonlinear saturation (anomalous

transport) mechanism reduces the polarization field to approximately the same value

regardless of whether the primary-scale wave amplitude starts at ten or five percent

of the background density. This lends credence to the notion that FBI turbulence

arises as a way for the primary wave to get rid of the free energy in its polarization

field. In nature, of course, the primary wave does not instantaneously appear but,

rather, grows in amplitude self-consistently with its driving process (mostly likely

the GDI). Thus it should initiate the FBI as it develops, and the actual feedback

processes between large-scale growth and meter-scale saturation will necessarily be

more complex than the model results presented here. To view the five-percent cases

at 98 km and 96 km in this light, the primary wave simply did not need to resort to

the FBI to get rid of the free energy in its polarization electric field.

As the primary-wave polarization field decreases, not only does the total-field

magnitude decrease but its angle rotates toward vertical. In the crest, the angle

rotates away from westward; in the trough, the angle rotates from eastward. This

means that the direction of E×B0 rotates westward in both cases. The linear theory

of §5.2 predicts that FBI waves will travel parallel to the relative electron-ion drift,

which in these simulations is effectively the E×B0 direction, so a westward-rotating

E×B0 direction explains the shift in RMS power toward θ = 0 between growth and

saturation shown at all altitudes in Figure 5·6 and at the two highest altitudes in
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Figure 5·7. By the same token, the weak waves that grow in the five-percent run at

98 km propagate closer to vertical in the saturated panel than do waves at higher

altitudes because the total electric field driving them has not saturated.

The spectra shown in Figures 5·8 and 5·9 represent idealized radar observations at

50 MHz for λ = 3 m, 30 MHz for λ = 5 m, and 15 MHz for λ = 10 m. They predict

that a 50-MHz radar should observe type-I echoes propagating with speeds near

the plasma acoustic speed, Cs, at intermediate elevation angles between horizontal

and zenith, and that the spectrum should broaden slightly for higher total electric

field. The latter result is simply a consequence of more strongly driven turbulence.

The simulated spectra further predict that type-II echoes should be stronger in 30-

MHz data than in 50-MHz data; more generally, they predict that type-II power

will compete with or overwhelm type-I power at wavelengths slightly longer than

the wavelength of peak growth, except at the optimum flow angle for the strongest

growing waves. At 15 MHz, these spectra predict a broad angular distribution of

type-II echoes with possible type-I signatures at the optimum flow angle. Finally,

most of the panels in Figure 5·8, as well as the 102-km and 100-km panels in Figure

5·9, imply that the primary wave drives meter-scale irregularities that propagate in

multiple distinct eigenmodes. Only at lower altitudes, for lower total electric field,

and at longer wavelength do the individual modes blend into a broad spectrum.

Propagation speeds near Cs are a well-known feature of type-I echoes in the

equatorial electrojet, despite the fact that linear theory (cf. Equation 5.2a) predicts

propagation speeds near the relative electron drift speed, |ud|. However, the most

robust prediction of linear theory has been that the FBI will develop when |ud| >
Cs (1 + ψ⊥) – after that, the waves become turbulence and linear theory no longer

applies. These simulation results suggest that FBI turbulence reduces the electric

field to just above the threshold value, at which point the threshold wave propagation
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velocity is roughly Cs. Therefore, the observation that type-I echoes propagate near

Cs appears to go hand-in-hand with electric-field saturation.

The simulations presented here are subject to a number of assumptions and short-

comings. First, they are two dimensional in the plane perpendicular to B0. The

parallel direction provides a path for electrons to short out instabilities which is

missing from these simulations. However, observations have established that the

FBI is highly aspect sensitive, with k‖ � |k⊥|, and 2-D simulations still capture

much of the crucial instability development.

Second, the constant electric field neither varies with altitude nor responds to

the vertical flow. Rocket measurements reported by Pfaff et al. (1997) showed both

the zonal and vertical electric fields varying with altitude at the magnetic equator

and Kudeki et al. (1985) showed that asymmetric vertical currents develop to reduce

the vertical electric field in the equatorial electrojet, thereby enforcing zero flux

divergence. However, the fixed-field simulations presented in this paper provide a

comparison point for future, more complex simulations.

Third, background plasma density does not vary with altitude, as it does in

nature. However, the background plasma density does not factor into the FBI growth

rate and therefore should not affect the conclusions significantly.

Fourth, this model assumes isothermal electrons. Anomalous electron heating

produces anomalous conductivities which reduce the driving electric field at high

latitude, during geomagnetically active conditions (Oppenheim and Dimant, 2013).

The missing electron thermal equation is a significant drawback of the current model

and will be the subject of future research. Anomalous electron heating would likely

affect only the runs with the strongest total electric fields, and only then if the

primary waves grow quickly enough to overcome shorting out due to the turbulent

transport mechanism shown in these results.
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Fifth, the simulation employs periodic boundary conditions. Periodic boundary

conditions on the large-scale wave potential may produce non-physical effects by

preventing the polarization field from vanishing outside the wave. However, as the

GDI develops in nature, there will be many individual waves that are bounded by

similar waves on all sides, mimicking the simulated situation. Development of non-

periodic boundary conditions will be another subject of future work.

Finally, the sinusoidal initial density distribution, while designed to approximate

a single period of a large-scale wave, is nonetheless an idealized case. It does not

grow directly due to the GDI but is an imposed initial condition. In nature, the

actual feedback processes between large-scale growth and meter-scale saturation will

necessarily be more complex than the model results presented here. As km-scale

waves grow out of the GDI, they may reach an amplitude that triggers the FBI

in a particular region, initiating the negative feedback process illustrated by these

simulations. An electrojet developing GDI will be a turbulent mix with a range of

wavelengths, each producing polarization electric fields of varying magnitude and

direction. The lack of periodic boundary conditions, as described above, preclude

simulations with a zeroth-order density gradient, thereby precluding the fully self-

consistent development of km-scale GDI waves. This work simply provides another

piece to a complex puzzle.

5.6 Conclusion

This chapter presents the first hybrid plasma simulations of meter-scale secondary

wave growth driven by a kilometer-scale primary wave. They assume inertialess,

isothermal, fluid electrons in quasineutrality with particle ions at four different alti-

tudes in the lower equatorial electrojet. The simulations impose the primary wave

as an initial condition but evolve self-consistently thereafter, without recourse to pa-
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rameterized turbulent effects. The background electric field is not large enough to

drive meter-scale turbulence via the Farley-Buneman instability (FBI), but the total

electric field, including the polarization electric field of the primary wave, exceeds the

FBI threshold. The FBI produces turbulent density and electric field structures that

propagate at an intermediate angle between horizontal and vertical, the direction of

which is largely determined by the direction of Hall drift in the total electric field. As

density turbulence develops, nonlinear currents transport plasma along meter-scale

wave fronts. This anomalous transport shorts out the primary-wave polarization

electric field, leading to flat-top fields with average magnitude just above the FBI

threshold value. The reduced electric field causes meter-scale waves to propagate

near the plasma acoustic speed, corresponding to the near-threshold condition and

matching observations of equatorial type-I radar spectra. The results presented here

may also have applications to auroral density structures produced by convection, au-

roral precipitation, and ionospheric cavitation (Zettergren et al., 2015; Mrak et al.,

2018).
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Chapter 6

Variation of the Farley-Buneman

Spectrum with Altitude

6.1 Introduction

Observations of coherent, spectrally narrow echoes at high latitudes, where they often

get the name “radar aurora”, predate the large body of equatorial type-I and type-II

observations. Haldoupis et al. (1984) used the bi-static Scandinavian Twin Auroral

Radar Experiment (STARE) to make observations of a common volume in the high-

latitude E-region. The bi-static setup allowed that author to derive the electron drift

direction from the mean Doppler shift in both radars, and to make measurements of

irregularity propagation at a range of angles from the electron drift. The angle that

the radar LOS makes with the electron drift is the “flow angle”. Haldoupis et al.

(1984) observed narrow and broad Doppler spectra in the same volume, with narrow

spectra coming from flow angles within −60◦ to 0◦ and broad spectra coming from

flow angles within −90◦ to −65◦.

Uspensky et al. (2003) reported a study of joint STARE and European Incoherent

Scatter (EISCAT) radar data from a single event during a moderate geomagnetic

disturbance. That work emphasized the importance of accounting for non-negligible

ion drifts, and the resultant deflection of the phase velocity from E0×B0 by 5◦-15◦,

in VHF observations.
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Oppenheim and Dimant (2004) presented results of 2-D PIC simulations that

appeared to show the effects of an ion thermal instability, as theoretically explained

by Dimant and Oppenheim (2004). The effective altitude of those simulations was

103 km in the high-latitude ionosphere. One important aspect of their simulations,

which they attributed to ion thermal effects, was the tendency for ion waves to turn

clockwise away from E0×B0. They observed elevated ion temperatures, especially in

regions of reduced density, and suggested that such thermal effects could explain wave

turning in earlier simulations by Janhunen (1994b) and Oppenheim et al. (1996).

However, they noted that excluding a simulation component parallel to B0 may

over-emphasize thermal effects.

Oppenheim et al. (2008) presented results from 2-D PIC simulations with im-

proved resolution that allowed those authors to make much more precise statements

about the spectral characteristics of ion perturbations than in previous simulations.

They claimed that elevated electron and ion temperatures explained the phase ve-

locity of simulated perturbations in terms of an elevated ion acoustic speed. Hysell

et al. (2008) presented radar and rocket observations showing that the Doppler shift

and spectral width of ion perturbations are related in a relatively simple way to the

flow angle, in qualitative agreement with the simulations presented by Oppenheim

et al. (2008).

Hysell et al. (2012) reported results from VHF coherent-scatter radar observations

during a geomagnetic substorm over Alaska, with an emphasis on aspects of the radar

aurora revealed through VHF radar imaging. One goal of that work was to establish a

relationship between coherent backscatter from FAI – ultimately caused by the FBI –

and F-region incoherent scatter from ion E0×B0 drifts, so that future research could

use the former to predict the latter. In order to compare E-region coherent-scatter

measurements to F-region incoherent-scatter measurements, they first assumed that
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the F-region electric field maps perfectly down magnetic field lines into the E region.

They also assumed that the coherent-scatter Doppler velocity and spectral width

followed empirical formulas involving the electron drift speed, the ion acoustic speed,

the LOS E-region ion drift speed, the LOS flow angle, and an angular correction

for wave turning. The final parameter accounts for wave turning effects as seen in

Oppenheim and Dimant (2004); Oppenheim et al. (2008). Hysell et al. (2012) set the

angular correction to 10◦ for their analysis and assumed that the observed coherent

echoes came from 110 km.

6.2 Simulation Methods and Limitations

This chapter follows radar convention by defining flow angle as the angle between

zeroth-order electron drift and LOS. Since electrons drift predominantly in the E0×
B0 direction and radars can only observe Doppler shift from echoes propagating

parallel or anti-parallel to their LOS, the flow angle is equivalently the angle between

E0 × B0 and the direction of wave propagation. Where the sign of flow angle is

unspecified, the reader may assume that it is negative in a couner-clockwise sense –

in terms of physical quantities, it points in a direction between E0 ×B0 and −E0.

Chapters 4 and 5 described the interaction of meter-scale waves with what many

in the aeronomy community would call meso-scale and large-scale waves. This chap-

ter focuses only on the dynamics of meter-scale waves driven by a constant electric

field in a small patch of plasma. Whereas Chapters 4 and 5 assumed that thermal

effects did not play an appreciable role in meter-scale irregularity development, this

chapter allows thermal effects to alter the dynamics of meter-scale waves. To carry

out this small-scale, non-isothermal analysis, the simulations described in this chap-

ter used the pure-PIC version of EPPIC in both 2D (perpendicular to B0) and 3D.

See Oppenheim and Dimant (2004) for a description of the advantages and disad-
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the equatorial and high-latitude conditions with the
same typical altitudinal profile of the neutral atmosphere
taken from the MSIS-E-90 model available on Web
(http://nssdc.gsfc.nasa.gov/space/model/models/
msis.html). The collision frequencies were calculated by
using model formulas from Schunk and Nagy (2000).
Note that the neutral density and composition have
latitudinal, seasonal, etc. variabilities roughly within
20%. Furthermore, some radar observations (Davies et
al., 1997; St.-Maurice et al., 1999) suggest that the model
results may to some extent overestimate the real neutral
density. Thus the curves shown in Fig. 2 should serve
just for orientation purposes and they do not describe
actual ionospheric conditions at any given time and
location.
Note that from Eq. (6b) we see that the wave phase

velocity is always smaller than the ~E0 ! ~B0 drift velocity.
This confirms the above assumption that electrons travel
ahead of the wave (see Fig. 1), although at high altitudes
where c " 1 and y is small the difference between ~VPh

and ~V0 may be small.

3.3. Question 2: what drives the instabilities?

Here we address the above Question 2: what may
cause the wave amplitude to grow, i.e., drive the
instability? We will discuss physical driving mechanisms
firstly for the Farley–Buneman instability and then for
thermal instabilities.

3.3.1. What drives the FB instability?
In the long-wavelength limit, kV0 " nin, to first-order

accuracy with respect to the small parameter kV0=nin,
Eqs. (6) are common for all E-region instabilities. To

second-order accuracy, we should take into account
wave pressure gradients, rdP ¼ rdðnT e þ nT iÞ, and the
ion inertia. They result in a slow temporal evolution of
the considered quasi-stationary wave. Exponential
growth of the density perturbations with time means
linear instability. For isothermal or adiabatic plasma
with no ion inertia (or large-scale gradients of the
undisturbed background plasma density), the wave
pressure gradients, rdP ¼ ðgeT e þ giT iÞrdn, where
ge;i ¼ 1 for isothermal particles and ge;i ¼ 5

3 for adiabatic
particles, via ambipolar diffusion lead to damping of the
initial density perturbations, dn (i.e. intrinsically there is
no instability).
A small ion inertia, however, can drastically change

the situation. In the wave frame, the ion inertia
manifests itself via the convective term mið~V i ' rÞ~V i in
the ion momentum Eq. (1b) and represents an additional
kinetic ‘pressure’. Because ions speed up at the local
density wells and slow down at the density hills (see
Fig. 1) this additional ‘pressure’ is in anti-phase to the
regular pressure and may reverse the sign of the total
pressure gradients. This results in the Farley–Buneman
(FB) instability.

3.3.2. What drives thermal instabilities?
The driving force for thermal instabilities is different.

It is the polarization wave electric field, d~E, that plays a
crucial role. Combined with the ambient electric field,
~E0, the wave electric field, d~E, forms a wave-modulated
total electric field which, via collisional friction, heats up
electrons and ions. The average field ~E0 alone leads to
the average frictional heating, while d~E combined with
~E0 lead to temperature modulations.
Fig. 3 shows two examples of the wavevector

orientation. If the wavevector, ~k, is pointing between
the directions of (~E0 and ~V0 (bottom part of Fig. 3),
modulations of the frictional heating (proportional to
~E0 ' d~E) are in anti-phase to the density perturbations
and may reverse the sign of the pressure perturbations,
dP ’ ðT i þ T eÞdnþ n0ðdT i þ dT eÞ, driving the instabil-
ity. If, however, ~k is pointing between the directions ~E0

and ~V0 (see the top part of Fig. 3), modulations of the
frictional heating are in phase to the density perturba-
tions, so that the induced temperature modulations can
only amplify the density gradients resulting in faster
relaxation of initial density perturbations (i.e., increased
damping).
Pressure reversal is the major driving mechanism of

both the ET and IT instabilities. It is anti-symmetric
with respect to the direction of the ~E0 ! ~B0 drift. Linear
thermal perturbations tend to zero as the wavevector ~k
approaches the directions parallel to either ~E0 (here
d~E ! 0) or ~V0 (here ~E0 ' d~E ! 0). The optimum flow
angle for the thermal instabilities which maximizes dT /
~E0 ' d~E lies in the bisector between the directions of (~E0

and ~V0 (y ¼ (45)) (see the bottom part of Fig. 3). This
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Figure 6·1: Figure 2 from Dimant and Oppenheim (2004), show-
ing theoretical altitudinal profiles of ψ and κi at equatorial and high
magnetic latitudes.

vantages of the pure-PIC version of the code. See Oppenheim et al. (2008) for a

description of an improvement in parallelizing the 2-D version, and see Oppenheim

and Dimant (2013) for a description of the 3-D version.

One major goal of the research presented in this chapter was to determine the

change in FBI spectrum with altitude. Neutral density is a good proxy for altitude in

the atmosphere, but EPPIC does not use neutral density as a simulation parameter,

so the ion and electron collision frequencies, νi and νe, specify the equivalent altitude.

As Oppenheim and Dimant (2013) explain, the effective collision frequency during

a simulation run differs, in general, from the input value. Selecting an input value

that will produce an appropriate simulated value requires some care.

Figure 2 in Dimant and Oppenheim (2004), reproduced here in Figure 6·1, pro-

vides a way to select collision frequencies corresponding to a desired altitude. The
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first step is to identify an appropriate value of ψ⊥:sim for the desired altitude. Next,

we identify the corresponding value of κi:sim = Ωi/νi:sim from which we calculate

νi:sim. We then use the definition ψ⊥ ≡ νeνi/ΩeΩi, to calculate a value for νe:sim:

νe:sim = ψ⊥:sim

(
ΩiΩe:sim

νi:sim

)
= ψ⊥:sim

(
qiqeB

2
0

mime:simνi:sim

)
Often, νe:sim ≈ νi:sim, whereas νe ≈ 10νi in the real E region. With these candidate

values for νi:sim and νe:sim in hand, we run two types of simulations with sub-threshold

electric fields to validate their values.

The process for validating νi:sim consists of running the simulator with a sub-

threshold driving electric field, Ey0, and calculating the effective ion collision fre-

quency from the ion Pedersen drift, uiP , via the zeroth-order drift relation νi:sim =

qiEy0/miuiP . The process for validating νe:sim consists of running the simulator

with a small parallel electric field, E‖0, and calculating the effective electron col-

lision frequency from the electron parallel drift, ue‖: νe:sim = |qe|E‖0/meue‖. The

resulting collision frequencies are νi = 1022 s−1 and νe = 965 s−1, corresponding to

107 km; νi = 610 s−1 and νe = 671 s−1, corresponding to 110 km; νi = 369 s−1

and νe = 491 s−1, corresponding to 113 km. Many observations of FBI associated

with the visible aurora – often called the “radar aurora” – assume that the echoes

originate in a volume centered on 110 km. The effectively altitudes of the simula-

tions presented here encompass that altitude to facilitate comparison to observations.

Note that this chapter differs from Chapters 4 and 5, which used a constant value

of νe for the electron fluid approximation in hybrid EPPIC. Table 6.1 lists the other

parameters used in these simulations.

The ratio of ion mass to electron mass was artificially small for these simulation

runs – a common practice in PIC simulations (cf. Chapter 3). Oppenheim and
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Table 6.1: Simulation Parameters for Chapter 6

Symbol Value Unit Name
mi 5.0× 10−26 kg ion mass

mi/me 1250 mass ratio
mn 4.6× 10−26 kg neutral mass
Ti 600 K initial ion temperature
Te 1200 K initial electron temperature
Tn 300 K neutral temperature
n0 2× 108 m−3 plasma density
νi 1022, 611, 369 s−1 ion-neutral coll. freq.
νe 965, 671, 491 s−1 electron-neutral coll. freq.
ψ⊥ 0.030, 0.013, 5.6× 10−3 anisotropy factor
h 107,110,113 km effective altitude
By0 5.0× 10−5 T magnetic field
Ez0 50.0 mV/m vertical electric field
Lx 40.96 m box length in X direction
dx 0.04, 0.08 m 2D, 3D cell size in X direction
Ly 40.96 m box length in Y direction
dy 0.04, 0.08 m 2D, 3D cell size in Y direction
Lt ≈ 460, ≈ 115 ms 2D, 3D time span
dt 1.75× 10−6, 3.0× 10−6 s 2D, 3D time step

Dimant (2004) noted that the simulation can use an artificially inflated electron mass

as long as it maintains the electron and ion Hall and Pedersen drift rates, and the

collision and thermalization rates. It must also keep the electron collision frequency

large compared to the ion collision frequency, so that electron Landau damping does

not become important.

6.3 Irregularity growth at meter and decameter scales

The simulations presented in this Chapter have no background density gradients,

meaning G = 0 in Equation 2.7, and they occur high enough in the E region for ions

to have a non-negligible Hall drift, so kxue0 → k · uD in Equation 2.6 (cf. Chapter

2). Finally, they cover both 2-D and 3-D cases, so the following equations for the

real frequency and growth rate apply with the caveat that kz = 0 and ψ → ψ⊥ in
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Figure 6·2: Comparison of amplitude in meter-scale density pertur-
bations (solid lines) to amplitude in decameter-scale density perturba-
tions (dashed lines), in both 2-D and 3-D runs. The meter-scale ampli-
tude comprises amplitude in all available modes with 1 m ≤ λ ≤ 4 m.
The decameter-scale amplitude comprises amplitude in all available
modes with 10 m ≤ λ ≤ 40.96 m. In both panels, the blue trace cor-
responds to the 107-km run, the green trace to the 110-km run, and
the red trace to the 113-km run. Note the difference in time ranges
between 2-D and 3-D runs.

2-D runs.

ωr =
k · ud
1 + ψ

(6.1a)

ωi =
ψ

1 + ψ

(
ω2
r − k2C2

s

νi

)
(6.1b)

Figure 6·2 shows development of spatially averaged spectral amplitude in meter-

scale and decameter-scale density perturbations in the plane perpendicular to B0.

The 3-D plot contains only strictly perpendicular modes because calculating the full

3-D FFT for all time steps proved prohibitively time-consuming. As such, it misses

power in oblique modes, which would cause the growth stage to start slightly earlier

than 20 ms.

The analysis routine first interpolated relative perturbed ion density, δni/n0, from

the Cartesian simulation grid to a polar grid: δni(kx, ky, t) → δni(k, θ, t), where
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k =
√
k2x + k2y and θ = tan−1 (ky/kx). Next, it calculates the RMS amplitude as

shown in Figure 6·2 via the formula

Amplitude =

khi∑
k=klo

〈∣∣∣∣δn(k, θ, t)

n0

∣∣∣∣〉
θ

,

where 〈· · · 〉θ denotes an RMS over θ, klo is the wave number corresponding to the

longest wavelength in the band, and khi is the wave number corresponding to the

shortest wavelength in the band. For the meter-scale wave band, klo = (2π/4) m−1

and khi = (2π/1) m−1. For the decameter-scale wave band, klo = (2π/10) m−1 and

khi = (2π/40.96) m−1. All traces exhibit a growth stage, associated with linear

behavior, followed by a saturated stage, associated with nonlinear behavior. The

zeroth time step in all runs contains isotropic noise from randomly placed particles,

and is therefore a few orders of magnitude lower than the first simulation output

step; the initial jump does not correspond to instability growth.

In the 2-D runs, both meter-scale amplitude and decameter-scale amplitude be-

gin growing early. The growth rate of decameter-scale waves is about twice that of

meter-scale waves so that decameter-scale amplitude reaches saturation soon after

meter-scale amplitude despite starting lower. The growth trends in meter-scale and

decameter-scale amplitude are similar among altitudes – amplitude at 110 km grows

initially fastest, then amplitude at the other two altitudes catches up. In both wave-

length bands, amplitude at 107 km saturates at a slightly lower value than at the

other two altitudes. Both wave bands saturate at the same amplitude.

The 3-D runs exhibit an initial flat period, with no instability, that the 2-D runs

do not. This is not merely a sampling artifact due to the longer 2-D runs – images

of just the first twenty seconds (not shown) confirm the the 2-D instability growth

starts almost immediately. Meter-scale amplitude in 3-D runs begins growing around

10 ms at 107 km and 110 km, and around 15 ms at 113 km. The run at 110-km run



141

peaks first, followed after about 5 ms by the run at 107 km, then after about 20 ms

by the run at 113 km. The peak meter-scale amplitude varies with altitude but the

difference between the highest and lower values is only a factor of two or three.

Decameter-scale amplitude in the 3-D runs begins its growth roughly ten sec-

onds after meter-scale amplitude and again grows faster than meter-scale amplitude,

though not as fast as in 2D. Decameter-scale amplitude saturates at approximately

the same time that meter-scale growth does, though the peak is not as drastic. Un-

like the 2-D case, decameter-scale amplitude saturates at a slightly lower value than

meter-scale amplitude.

6.4 Average Temperatures

Figure 6·3 shows spatially averaged electron temperature, Te, and ion temperature,

Ti, in the Hall, Pedersen, and parallel directions, as functions of time. Temperature is

defined as the average kinetic energy of the particle distribution, which is proportional

to the second velocity moment of the distribution. This is appropriate for particles

with little to no internal energy.

All three components of Te during the 3-D runs remain nearly identical, indicat-

ing isotropic electron temperature. The 2-D runs show increased Te anisotropy with

increasing altitude, but the difference is only a few degrees in the parallel component

at 113 km. The relative isotropy in Te is due to the fact that, though many collisions

between electrons and neutrals can cause a significant change to an individual elec-

tron’s momentum, that net scattering in velocity space occurs much more quickly

than the change in kinetic energy. That effect does not change with the values of

electric field considered here. The 3-D Te recovers after initially cooling, then heats

during the growth phase of meter-scale perturbations shown in Figure 6·2. The ini-

tial drop in Te is a non-physical artifact produced by starting the simulation with
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Figure 6·3: Average electron and ion temperatures, computed as
functions of time from the respective velocity distributions, for each
run. Rows correspond to altitude, from 107 km (bottom) to 113 km
(top). The left column shows temperatures in 2-D runs and the right
column shows temperatures in 3-D runs. In each panel, the solid traces
correspond to electron temperature and the dotted traces correspond
to ion temperature. For each species, the blue trace gives the Hall
temperature (aligned with E0×B0), the green trace gives the parallel
temperature (aligned with B0) and the red trace gives the Pedersen
temperature (aligned with E0). As in Figure 6·2, the time ranges
significantly differ between 2-D and 3-D runs.
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a relatively hot electron population. The collision routines used in this work check

the ratio of the particle velocity to a reference velocity against a normalized random

number to calculate the probability of collision. The reference velocity depends on

the species’ initial thermal velocity, so starting a population with relatively high tem-

perature ensures that the collision model behaves more accurately as the population

heats up.

The 2-D Te shows a looser correlation to meter-scale perturbation growth but

nonetheless undergoes a similar cooling-heating sequence. Both 2-D and 3-D Ti

contain more anisotropy overall, with anisotropy clearly increasing with altitude. The

Hall component of Ti increases abruptly around the time when meter-scale density

perturbations reach their peak amplitude and the Pedersen component experiences

a smaller temperature increase. These are due to the instability-enhanced Hall and

Pedersen mobilities. In 3-D, Te > Ti always holds, whereas Te > Ti only at 107 km

in 2-D. In the real (3-D) ionosphere, we should expect Te > Ti. Both 2-D Ti and

Te show more amplitude variation after saturation than do their 3-D counterparts,

especially at 110 km and 113 km.

6.5 Ion Density Perturbations

The FBI is an ion-scale instability. It grows on the ion collisional time scale and the

wavelength of peak growth is a few times the ion MFP. The following figures show

δni/n0 in a slice perpendicular to B0 at fiducial points throughout each simulation

run.

Figures 6·4, 6·5, and 6·6 show δni/n0 in the plane perpendicular to B0 at sixteen

equally spaced snapshots throughout the 2-D runs at 107 km, 110 km, and 113 km,

respectively. The first panel of each figure captures roughly the beginning of the

growth stage and the final panel comes from the final time step. Images from time
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Figure 6·4: Relative perturbed ion density, δni/n0, at sixteen time
steps throughout the 2-D run at 107 km. The time stamp of each
panel is in the upper left corner. Each panel spans 40.96 m× 40.96 m,
covering the entire physical area perpendicular to B0. The color scale
for all panels ranges from −0.2 to +0.2, or −20% of n0 to +20% of n0
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Figure 6·5: Relative perturbed ion density, δni/n0, at sixteen time
steps throughout the 2-D run at 110 km. The layout is identical to
that of Figure 6·4.
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Figure 6·6: Relative perturbed ion density, δni/n0, at sixteen time
steps throughout the 2-D run at 113 km. The layout is identical to
that of Figure 6·4.



147

steps before the first panel show isotropic noise.

The thin, elongated structures that grow out of noise in the first four panels (up

to t = 114.69 ms) of Figures 6·4 and 6·5 are a good example of linearly growing

FBI waves. Spatial spectra, shown in later figures, indicate that these structures

have wavelengths between two and three meters. By the fifth panel (t = 143.36

ms) of those two figures, the linear-stage structures have begun to bend and mix

together, so that by the next panel (t = 172.03 ms), they have lost their thin,

roughly monochromatic form. Movies of density evolution show an inverse cascade –

the instability grows at a wavelength of a few meters, then those meter-scale waves

merge to form a range of longer wavelength waves. Figure 6·2 2D shows that meter-

scale perturbations saturate at approximately 140 ms at 107 km and at approximately

160 ms at 110 km, meaning that the fifth and sixth panels in Figures 6·4 and 6·5 show

the transition from the linear instability growth phase to the non-linear saturated

phase. Figure 6·6 contains similar linear-stage structures that transition to non-linear

structures but the transition comes around t = 200.70 ms. Again, this transition

in the shape of density irregularities is consistent with the fact that meter-scale

perturbations peak around 180 ms in Figure 6·2 2D. By the final panel at each

altitude, δni/n0 is fully non-linear.

Figures 6·7, 6·8, and 6·9 show δni/n0 at sixteen equally spaced snapshots through-

out the 3-D runs at 107 km, 110 km, and 113 km, respectively. All 3-D runs show

the same linear growth followed by a saturated non-linear stage as the 2-D runs

showed, and the progression illustrated by Figures 6·7 through 6·9 again follows the

corresponding traces in Figure 6·2.

In Figures 6·4 through 6·9, δni/n0 displays a characteristic tilt that develops as

soon as perturbations rise above the noise level. The tilt is relatively consistent

during the linear growth stage of a given run but it varies among all runs. The most
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Figure 6·7: Relative perturbed ion density, δni/n0, at sixteen time
steps throughout the 3-D run at 107 km. The layout is identical to
that of Figure 6·4 except that the time steps are different, since the
3-D runs cover a quarter as much time as do the 2-D runs.



149

u: 570

l: 520

r: 400

d: 330

110 km (3D)
7.17 ms

Ly/2

Ly 14.34 ms 21.50 ms 28.67 ms

35.84 ms

Ly/2

Ly 43.01 ms 50.18 ms 57.34 ms

64.51 ms

Ly/2

Ly 71.68 ms 78.85 ms 86.02 ms

93.18 ms

Lx/2 Lx

Ly/2

Ly 100.35 ms

Lx/2 Lx

107.52 ms

Lx/2 Lx

114.69 ms

Lx/2 Lx

-0.2

-0.1

0.0

0.1

0.2

δn
i/n

0

h = 110 km E0 = 50 mV/m (3D)

Figure 6·8: Relative perturbed ion density, δni/n0, at sixteen time
steps throughout the 3-D run at 110 km. The layout is identical to
that of Figure 6·7.
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Figure 6·9: Relative perturbed ion density, δni/n0, at sixteen time
steps throughout the 3-D run at 113 km. The layout is identical to
that of Figure 6·7.
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noticeable variation is between altitudes in either the 2-D or 3-D set, but there is also

some difference between the 2-D and 3-D runs at a given altitude. Naturally, this

linear-stage tilt is more difficult to define for non-linear waves – that is, for δni/n0

after saturation. Section 6.6 will show that it exists and section 6.8 will quantify it

with respect to the directions of E0 ×B0, relative drift, and the theoretical optimal

flow angle after accounting for ion thermal effects.

6.6 Perturbed Ion Density Spectra

Figures 6·10, 6·11, and 6·12 show δni/n0 squared spectral amplitude in the plane

perpendicular to B0 in 2-D runs, at the same sixteen snapshots as shown in Figure 6·4.

The analysis routine produced each panel by computing the Fast Fourier Transform

(FFT) of the δni/n0 data shown in the corresponding panel in Figure 6·4, Figure 6·5,

or Figure 6·6, then normalizing that FFT image to its peak value.

Each run begins with two concentrations of power: One near kx = +π with ky < 0,

and the same feature reflected about the origin. Because density is a real quantity,

it should be symmetric with respect to a sign reversal in both kx and ky. In the first

panel, spectral noise surrounds the regions of relatively high power, consistent with

the presence of only very low-amplitude perturbations in the first panel of each of the

δni/n0 figures. The concentrations in spectral power move toward the origin slightly

as the signal-to-noise ratio (SNR) increases but remain near k values equivalent

to few-meter wavelengths. They are the spectral signatures of the thin, elongated

structures in images of δni/n0 during the linear growth stage.

As each run progresses, power spreads from the meter-scale peaks toward longer

wavelengths (lower k) and the isolated concentrations give way to a single structure.

The spreading of spectral power represents an inverse cascade during the transition

from linear growth to non-linear saturation as the linear modes described by Equa-
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Figure 6·10: Self-normalized log squared spectral amplitude in rel-
ative ion density perturbation, 〈δni/n0〉2, during the 2-D run at 107
km. Panel times correspond to the sixteen time steps shown in Figure
6·4. Each panel spans slightly more than −π to +π in kx and ky. The
color scale for all panels ranges from -20 dB to 0 dB, or two orders of
magnitude in power.



153

110 km (2D)

-20

-15

-10

-5

0

P(
δn

i/n
I) 

[d
B]

h = 110 km E0 = 50 mV/m (2D)

u: 570

l: 520

r: 400

d: 330

+π

−π

0

−π

0

−π

0

−π

0

−π 0 −π 0 −π 0 −π 0 +π
Figure 6·11: Self-normalized log squared spectral amplitude in rel-
ative ion density perturbation, 〈δni/n0〉2, during the 2-D run at 110
km. The layout is identical to that of Figure 6·10.



154

113 km (2D)

-20

-15

-10

-5

0

P(
δn

i/n
I) 

[d
B]

h = 113 km E0 = 50 mV/m (2D)

u: 570

l: 520

r: 400

d: 330

+π

−π

0

−π

0

−π

0

−π

0

−π 0 −π 0 −π 0 −π 0 +π
Figure 6·12: Self-normalized log squared spectral amplitude in rel-
ative ion density perturbation, 〈δni/n0〉2, during the 2-D run at 113
km. The layout is identical to that of Figure 6·10.
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tions 6.1a and 6.1b couple energy into each other.

Figures 6·13, 6·14, and 6·15 show δni/n0 squared spectral amplitude in the plane

perpendicular to B0 in the 3-D runs, at the same sixteen snapshots as shown in

Figure 6·7. In 3D, oblique modes with a nonzero, albeit small, component parallel

to B0 dominate the FBI spectrum during growth whereas the saturated spectrum

is essentially isotropic in the plane perpendicular to B0 (see, for example, Oppen-

heim and Dimant (2013) Figure 9). In order the capture the important growth-stage

oblique modes, the FFT analysis procedure computed the mean value over five pix-

els in k‖. This range corresponds to an aspect angle of roughly 2◦. The true FBI

grows at a much smaller aspect angle but the elevated electron mass in our simula-

tions artificially increases the angle of peak growth. Furthermore, limitations on 3-D

box size make the parallel resolution too poor to properly resolve aspect sensitivity.

The five-pixel mean captures all the growth-stage power in oblique modes without

unnecessarily introducing noise. It also increases the SNR of 3-D spectra.

Each 3-D run begins similar to its 2-D counterpart, with oblique modes con-

tributing to the growth-stage spectrum via the five-pixel mean. Images of purely

perpendicular modes (not shown) contain very little power in the meter-scale clumps

so evident in the first few frames in both 2D and 3D.

The tilt of δni/n0 structures during the linear stage of Figures 6·4 through 6·6 is

clear in Figures 6·13 through 6·15. In each panel of all spectral figures, a straight line

through the middle of relatively high power would extend from the (kx < 0, ky > 0)

quadrant to the (kx > 0, ky < 0), quadrant. This indicates a universal negative

angular deflection from E0 ×B0 – in other words, a non-zero flow angle in all runs.

Moreover, the angular deflection after saturation is much clearer in δni/n0 spectra

than in the raw δni/n0 images.

Before proceeding to a quantitative analysis of the flow-angle deflection of meter-
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Figure 6·13: Self-normalized log squared spectral amplitude in rel-
ative ion density perturbation, 〈δni/n0〉2, during the 3-D run at 107
km. Panel times correspond to the sixteen time steps shown in Figure
6·7. The layout is otherwise identical to that of Figure 6·10.
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Figure 6·14: Self-normalized log squared spectral amplitude in rel-
ative ion density perturbation, 〈δni/n0〉2, during the 3-D run at 110
km. The layout is identical to that of Figure 6·13.



158

113 km (3D)+π

−π

0

−π

0

−π

0

−π

0

−π 0 −π 0 −π 0 −π 0 +π

− π

0

+ π

− π

0

+ π

− π

0

+ π

− π 0 + π
− π

0

+ π

− π 0 + π− π 0 + π− π 0 + π

-20

-15

-10

-5

0

〈δ
n/

n 0〉
2  [d

B]

/scratch/02994/may/fb_flow_angle/3D-new_coll/h2-Ey0_050/

u: 553

l: 517

r: 368

d: 312

Figure 6·15: Self-normalized log squared spectral amplitude in rel-
ative ion density perturbation, 〈δni/n0〉2, during the 3-D run at 113
km. The layout is identical to that of Figure 6·13.
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scale perturbations, §6.7 will describe effects introduced by a relatively recently pro-

posed instability due to non-isothermal ion perturbations. These thermal effects

likely contribute to observed wave turning under certain conditions.

6.7 Thermal Instability Effects

Dimant and Sudan (1995a,b,c) predicted, with a rigorous kinetic analysis, the exis-

tence of a theretofore unknown electron thermal instability (ETI) that should arise

in the upper-D/lower-E region ionosphere, and grow at wavelengths around ten me-

ters. Blix et al. (1996) presented evidence of the ETI in rocket data and Dimant

and Sudan (1997) presented a simplified physical model that connected the rocket

observations to their earlier kinetic analysis. Kagan and Kelley (2000) developed a

theory of ion thermal perturbations driven by ion-neutral frictional heating in the

electrostatic field produced by the dynamo effect of a neutral wind, which they used

to explain type-2 echoes at midlatitude. Similar to the Dimant and Sudan (1997)

electron thermal instability, it heats regions of relatively low plasma density and cools

regions of relatively high plasma density.

Dimant and Oppenheim (2004) extended the Dimant and Sudan (1997) theory of

the ETI to ions in 2D and discovered that an analogous ion thermal instability (ITI)

should exist in the electrojet, roughly coincident with the FBI. Furthermore, they

predicted that the ITI should grow at wavelengths of a few meters, similar to the

FBI, resulting in a combined instability. Both the ETI and ITI growth rates peak at

−45◦ from E0×B0. In the case of the combined FBI+ITI, this can cause an angular

deflection from the zeroth-order Hall direction in addition to that produced simply

by the deviation of ud.

This work will follow Dimant and Oppenheim (2004) in representing the angle

between the zeroth order drift and perturbation flow as χ. At the altitudes of interest
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for this study, the optimal deviation of k from ud (toward −E0) for the combined

instability, χCI
opt, is only a few degrees, while the optimal angle between k and E0×B0

falls in the range −10 ≤ θCI
opt ≤ −30. Due to the small predicted value of χCI

opt, the

effects of the ITI can be difficult to isolate from the combined instability.

Both thermal instabilities arise due to J·δE heating of density depletions when δE

has a component parallel to −E0 that results in a phase offset between temperature

and density perturbations. In an isothermal plasma with an electric field below the

FBI threshold, temperature perturbations in phase with density perturbations cause

the former to smooth out the later. For thermal instabilities, the tandem effects

of the background electric field, E0, and the wave polarization electric field, δE,

produce temperature modulations via collisional friction. In the optimal case, the

temperature perturbations are 180◦ out of phase with density perturbations, reversing

the usual stabilizing effect. The destabilization comes about when regions of high

temperature are in phase with regions of low density, leading the pressure increase

from the relatively high temperature to drive additional plasma out of the already

depleted regions. Likewise, regions of low temperature in phase with high density

reduce the pressure locally, allowing additional plasma to flow into those regions and

increase the already high density.

Equation 40 in Dimant and Oppenheim (2004) gives an expression for the com-

plex ratio of Fourier-transformed perturbations in ion temperature, τi ≡ δTik/Ti0, to

Fourier-transformed perturbations in ion density, ηi ≡ δni/n0, in the plane perpen-

dicular to B0:

τi
ηi

=
2

3

κiνi (ud/vi,th)
2 sinχ cosχ− ikud cosχ

νi − ikud cosχ
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The real and imaginary parts of this equation are

<
[
τi
η

]
=

2

3

κi (νiud/vith)
2 sinχ cosχ+ (kud cosχ)2

ν2i + (kud cosχ)2

=
[
τi
η

]
=

2

3

νikud cosχ
[
κi (ud/vith)

2 sinχ cosχ− 1
]

ν2i + (kud cosχ)2

Defining ρ ≡ τi/η, the phase relationship between temperature and density pertur-

bations is

ϕ(k, χ) = tan−1
[=(ρ)

<(ρ)

]
= tan−1

[
νikud cosχ

[
κi (ud/vith)

2 sinχ cosχ− 1
]

κi (νiud/vith)
2 sinχ cosχ+ (kud cosχ)2

]

This expression in terms of χ becomes an expression in terms of θ via the relation

χ = θ − β, where β is the angle that ud makes with the E0 × B0 direction. The

expression in terms of tanϕ(k, θ) is

tanϕ(k, θ) =
νikud cos(θ − β)

[
κi (ud/vith)

2 sin(θ − β) cos(θ − β)− 1
]

κi (νiud/vith)
2 sin(θ − β) cos(θ − β) + [kud cos(θ − β)]2

=
νikud (CθCβ + SθSβ)

[
κi (ud/vith)

2 (SθCβ − CθSβ) (CθCβ + SθSβ)− 1
]

κi (νiud/vith)
2 (SθCβ − CθSβ) (CθCβ + SθSβ) + (kud)

2 (CθCβ + SθSβ)2

In the final line, Cθ ≡ cos θ, Cβ ≡ cos β, Sθ ≡ sin θ, and Sθ ≡ sin θ to make the

expression readable. One more step makes this expression amenable to graphical

representation: converting tanϕ(k, θ) → tanϕ(kx, ky) via the relations Cθ = kx/k

and Sθ = ky/k. Since β is fixed for a given altitude, Cβ and Sβ are constant param-

eters. That yields

tanϕ(kx, ky) =
νiud (kxCβ + kySβ)

[
κi (ud/kvith)

2 (kyCβ − kxSβ) (kxCβ + kySβ)− 1
]

κi (νiud/kvith)
2 (kyCβ − kxSβ) (kxCβ + kySβ) + (ud)

2 (kxCβ + kySβ)2
.

Figures 6·16, 6·17, and 6·18 show ϕ(kx, ky) in the plane perpendicular to B0 in 2-

D runs, at the same sixteen snapshots as shown in Figure 6·4. All panels show broad
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Figure 6·16: Phase offset of relative ion temperature perturbations,
δTik/Ti0, from relative ion density perturbations, δni/n0, during the
2-D run at 107 km. Panel times correspond to the sixteen time steps
shown in Figure 6·4. Each panel spans slightly more than −π to +π
in both kx and ky. The color scale for all panels is periodic and ranges
from −180◦ to +180◦.
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Figure 6·17: Phase offset of relative ion temperature perturbations,
δTik/Ti0, from relative ion density perturbations, δni/n0, during the
2-D run at 110 km. The layout is identical to that of Figure 6·16.
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Figure 6·18: Phase offset of relative ion temperature perturbations,
δTik/Ti0, from relative ion density perturbations, δni/n0, during the
2-D run at 113 km. The layout is identical to that of Figure 6·16.
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regions of −180◦ < ϕ < 0 in the (kx > 0, ky < 0) quadrant, 0◦ < ϕ < +180 in the

(kx < 0, ky > 0) quadrant, and regions of ϕ ≈ 0 in the other two quadrants. There

is a predominance of ϕ ≈ ±90◦ in the regions of significant ϕ > 0◦, indicating that

ion thermal perturbations should enhance density perturbations in those regions, as

opposed to acting to suppress density perturbations in the regions where ϕ ≈ 0◦.

In the linear stage of each 2-D run, ϕ develops regions of ϕ ≈ ±45◦ colocated with

concentrations of 〈δni/n0〉2 in Figures 6·10 through 6·12. Portions of these regions

overlap with the ϕ ≈ ±90◦ regions, meaning that the ITI is less active in the linear-

stage concentrations of 〈δni/n0〉2. The ϕ ≈ ±45◦ regions are more prominent in the

first panel as altitude increases, suggesting that ITI effects are less relevant as altitude

approaches the magnetization boundary, and they fade during the transition from

linear to non-linear instability, suggesting that ITI effects should be more important

to non-linear behavior. Note that the ϕ ≈ ±45◦ regions fade earlier in the run at 110

km, consistent with the earlier transition from linear to non-linear behavior seen in

Figures 6·2, 6·5, and 6·11.

Figures 6·19, 6·20, and 6·21 show ϕ(kx, ky) in the plane perpendicular to B0 in

3-D runs, at the same sixteen snapshots as shown in Figure 6·7. The analysis routine

again used five-pixel averages of temperature and density spectra to compute 3-D

ϕ. The images have a structure similar to their 2-D counterparts, which is again

due to the inclusion of oblique modes, especially during instability growth. As with

Figures 6·13, 6·14, and 6·15, computing ϕ by using only perpendicular temperature

and density spectral modes dramatically changes the growth-stage images. The other

point of note regarding Figures 6·19 through 6·21 is that the regions of |ϕ| ≈ 90◦

during growth are smaller and less clearly defined than in Figures 6·16 through 6·18,

suggesting that the ITI plays a smaller role in 3D.
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Figure 6·19: Phase offset of relative ion temperature perturbations,
δTik/Ti0, from relative ion density perturbations, δni/n0, during the
3-D run at 107 km. Panel times correspond to the sixteen time steps
shown in Figure 6·7. The layout is otherwise identical to that of Figure
6·16.
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Figure 6·20: Phase offset of relative ion temperature perturbations,
δTik/Ti0, from relative ion density perturbations, δni/n0, during the
3-D run at 110 km. The layout is identical to that of Figure 6·19.
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Figure 6·21: Phase offset of relative ion temperature perturbations,
δTik/Ti0, from relative ion density perturbations, δni/n0, during the
3-D run at 113 km. The layout is identical to that of Figure 6·19.
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6.8 Instability Flow Angle

The following set of figures show spectra of ion density perturbations in the plane

perpendicular to B0 after computing the RMS over an appropriate time range. Each

panel includes color-coded lines which aid in answering two questions fundamental to

this chapter: 1) How does the flow angle of ion perturbations change with altitude?

2) Do thermal effects from the ITI significantly alter the flow angle beyond isothermal

FBI? All five lines represent angles with respect to E0 ×B0.

The first line, shown in magenta, gives the angle of relative drift velocity between

electrons and ions, ud = ue − ui. Theory predicts that the isothermal FBI growth

rate should peak at the drift-velocity angle. In the absence of pressure gradients and

inertia, assuming E0 = E0ŷ and B0 = B0ẑ, the electron and ion drift components

are

uey = − eE0

νeme(1 + κ2e)

uex = −κeuey = +
κeeE0

νeme(1 + κ2e)

uiy = +
eE0

νimi(1 + κ2i )

uix = +κiuiy = +
κieE0

νimi(1 + κ2i )

The drift-velocity components are thus

udx = uex − uix

= +eE0

[
κe

meνe (1 + κ2e)
− κi
miνi (1 + κ2i )

]
udy = uey − uiy

= −eE0

[
1

meνe (1 + κ2e)
+

1

miνi (1 + κ2i )

]
These components make an angle β = tan−1(udy/udx) with the E0 × B0 (i.e., x̂)
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direction. Plugging in the above expressions yields

β = tan−1
[
− (1 + κ2i ) + Θ2

0(1 + κ2e)

κe(1 + κ2i )−Θ2
0(1 + κ2e)κi

]
(6.2)

where Θ0 ≡
√
meνe/miνi as in Dimant and Oppenheim (2004). To be relevant

to a simulation run, Θ0 must use the simulated values of its parameters. The ion

mass, mi, is the physical ion mass but the electron mass, me, is inflated. Both ion

and electron collision frequencies are as described in section 6.1. We also set νe to

maintain the appropriate value of ψ for a given altitude, accounting for the artificial

electron mass. At 107 km, β ≈ −9◦; at 110 km, β ≈ −15◦; at 113 km, β ≈ −24◦.

Plots of β made directly from udx:sim, udy:sim, and udz:sim in the sub-threshold run

with Ey0 = 10 mV/m at each altitude (not shown) give these values directly.

The second line, shown in cyan, gives the predicted deflection of FBI+ITI per-

turbations. Equation 34 of Oppenheim and Dimant (2004) is

tan 2χopt = −2κi (1 + ψ)

3− κ2i

Solving this equation for χopt and using the relation θ = χ+β yields an equation for

θopt at a given altitude:

θopt =
1

2
tan−1

[
−2κi (1 + ψ)

3− κ2i

]
+ β

This angle represents the predicted angle of maximum growth of FBI+ITI perturba-

tions. The values are θopt = −12◦ at 107 km, θopt = −20◦ at 110 km, and θopt = −32◦

at 113 km. Note that, graphically, χopt is the difference between the magenta and

cyan lines.

The third line, shown in white, actually represents three lines: the centroid of

spectral power, with plus and minus one-σ uncertainty. The centroid of a 2-D distri-

bution of points is a quantity familiar to most people. Calling it by its more colloquial
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name, the center of mass, evokes an intuitive sense of the point at which the surface

would balance on the head of a pin. Since spectral power is spread over a range of

angles, the angular deflection of the centroid of spectral power represents flow angle

between the wave vector, k, and E0 ×B0.

Consider a 2-D discrete distribution, f(xi, yj), with xi = i∆x, yj = j∆y and

(i, j) ∈ {0..Nx − 1} ⊗ {0..Ny − 1}. The coordinates of the center of mass, (〈x〉 , 〈y〉),
are

〈x〉 =

∑
j

∑
i xif(xi, yj)∑

j

∑
i f(xi, yj)

=
1

M

∑
j

∑
i

xifij

〈y〉 =

∑
i

∑
j yjf(xi, yj)∑

i

∑
j f(xi, yj)

=
1

M

∑
i

∑
j

yjfij

where fij ≡ f(xi, yj) and M ≡ ∑
j

∑
i fij is the total mass. These are just the

components of the first moment of the distribution with respect to the radial co-

ordinate r ≡ (x, y). The conversion from Cartesian to polar coordinates is simple:

〈k〉 =
√
〈x〉2 + 〈y〉2 and 〈θ〉 = tan−1 (〈y〉 / 〈x〉).

In order to reduce the uncertainty in the centroid location, the analysis routine

calculated the centroid for each image in the RMS time frame, calculated 〈θ〉 as the

mean centroid from that distribution, and calculated δ 〈θ〉 as the standard devia-

tion of that distribution. The standard deviation is so small in all cases as to be

imperceptible in the images.

It is worth noting that the centroid is a better measure of flow angle during

growth than in saturation. During the growth stage, spectral amplitude is relatively

isolated in both wavelength and angle, and the two peaks on either side of kx = 0

are distinct. This means that the centroid of one of the peaks – the kx > 0 peak in

the following – represents the peak (kx, ky) value of linear growth. After saturation,
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there is no longer a single peak wavelength that characterizes the instability. The

centroid algorithm can still find the spectral center of mass but its value as a measure

of flow angle is diminished. Nonetheless, it will serve as a visual guide.

Figure 6·22 shows RMS squared spectral amplitude in the plane perpendicular to

B0 during the growth stage and after saturation in 2-D runs. Each panel also shows

the drift angle, β, the optimum FBI+ITI flow angle, θopt, and the flow-angle of the

centroid, 〈θ〉.
The run at 107 km matches FBI+ITI theory well during growth: Despite the

fact that χopt is only a few degrees at this altitude, 〈θ〉 is within a few degrees of

θopt. After saturation, the flow-angle magnitude increases by 1◦ so that it sits clearly

below both β and θopt. This increase is probably associated with the presence, then

fading, of the ϕ ≈ −45◦ region in Figure 6·16.

At 110 km, 〈θ〉 value sits approximately equidistant from β and θopt, indicating

the possibility of some thermal effects but less than predicted. The magnitude of ϕ

during growth in Figure 6·17 at angles near 〈θ〉 is smaller, which suggests that the

ITI simply does not enhance the FBI as much as in the run at 107 km. The transition

from growth to saturation again carries an increase in flow-angle magnitude and the

deviation from θopt is more extreme. Similarly to the run at 107 km, thermal effects

appear to play a role in determining the saturated 〈θ〉 value at 110 km. Unlike at

107 km, they increase the flow angle magnitude from less than θopt to greater than

θopt.

At 113 km, 〈θ〉 is approximately equal to β during growth but increases toward

θopt in saturation. Physically, this implies that ion density perturbations at 113 km

propagate at the angle from E0×B0 predicted by isothermal FBI theory during the

growth stage but become non-isothermal during the transition to saturation.

Figure 6·23 shows RMS spectral power in the plane perpendicular to B0 during
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Figure 6·22: RMS squared spectral amplitude in δni/n0 during
growth and after saturation in 2-D runs. Each panel spans 0 to +2π
in kx and −π to +π in ky. Rows correspond to altitude, from 107 km
(bottom) to 113 km (top). The left column shows the growth stage
and the right column shows the saturation stage. In each panel, a ma-
genta line indicates the drift angle, β, a cyan line indicates the optimal
flow angle for the combined FBI+ITI, θopt, and white lines indicate the
centroid angle, 〈θ〉, with ±σ uncertainties. The top of each panel lists
the centroid angle. The color scale is identical to Figures 6·10 through
6·15.
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Figure 6·23: RMS squared spectral amplitude in δni/n0 during
growth and after saturation in 3-D runs. The figure layout is iden-
tical to that of Figure 6·22.
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the growth stage and after saturation in 3-D runs. Overall, thermal effects appear

to produce less deviation from β than in 2-D runs.

At 107 km, 〈θ〉 sits between β and θopt during growth, suggesting some thermal

effects but not as much as in the 2-D case. The shallower growth-stage value of 〈θ〉 in

3D, combined with a saturated-stage value closer to the 2-D value, suggest that the

modest thermal effects associated with the weaker ϕ regions in Figure 6·19 require

more time to build up. There is also appreciable spectral amplitude in the ranges

4 m < λ < 6 m and −30◦ < θ < −20◦ that the centroid-finding algorithm does not

capture, as described above. This patch of relatively high amplitude likely represents

perturbations of the combined FBI+ITI.

At 110 km, 〈θ〉 is closer to β while its value after saturation is very close to θopt.

In Figure 6·19, regions of −90◦ < ϕ < −60◦ are less prevalent than at 107 km and

are weaker diffuse than in 2D, consistent with the difference in 〈θ〉.
At 113 km, 〈θ〉 does not differ much from β during growth but is about 1◦ larger

after saturation. In both Figures 6·18 and 6·21 the regions of significant ϕ are aligned

with larger flow angles than the regions of high amplitude at 113 km, especially during

the linear phase, compared to runs at 107 km and 110 km. Thus it appears that the

ITI has less effect on the runs at 113 km.

Figures 6·22 and 6·23 show that, over the range of altitudes that this chapter

considers, the ITI make a significant contribution to the flow angle at 107 km and

less contribution as altitude increases, to the point where the angle of relative drift

effectively determines the flow at 113 km, especially in the 3-D runs. In general, the

flow angle is shallower in 3-D runs, indicating that the presence of wave modes with

a component parallel to B0 reduces the ITI effect. The theoretical basis presented

in Dimant and Oppenheim (2004) for predicting ion thermal effects applies to 2-D

perturbations in the long-wavelength limit kud � νi and does not account for kinetic
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effects. The shortest long-wavelength limit relevant to the simulations presented in

this chapter is 6 m, corresponding to 107 km (assuming |E0| = 50 mV/m). Therefore,

the formal theory does not strictly apply to any of the simulations presented in

this chapter. Development of a theory that describes the apparent thermal effects

presented here represents an intriguing avenue of research.

6.9 Conclusion

This chapter analyzes how the spectrum of meter-scale irregularities in the upper

auroral E region varies with altitude. The magnitude of the flow angle with respect

to E0 ×B0, 〈θ〉, increases with increasing altitude in both 2-D and 3-D simulations.

In both 2-D and 3-D runs at 107 km and 110 km, the increase in flow angle results

in part from the thermal effects of the ITI enhancing wave growth in a direction

offset from the direction predicted by isothermal theory. However, the change in

angle of relative drift velocity, ud, plays the dominant role in turning waves away

from E0×B0 at upper-electrojet altitudes. In both 2-D and 3-D runs at 113 km, the

direction of ud largely determines the flow angle with less contribution from thermal

effects in 3D than in 2D. In all the cases presented in this chapter, the flow angle is

never smaller than the drift angle.

The magnitude of the background electric field, Ey0 = 50 mV/m represents the E-

region response to a modest geomagnetic storm. Simulations with a 30-mV/m driving

field failed to develop ion instabilities in the same time as their 2-D and 3-D 50-mV/m

counterparts. The threshold electric field at auroral latitudes is Eth ≈ 21 mV/m, so it

is likely that the 30-mV/m runs needed more time to develop turbulence. Simulations

with a 70-mV/m driving field developed ion instabilities that behaved very similarly

to the 50-mV/m case, though instability growth was faster for the higher electric

field, as expected. The 70-mV/m run at 107 km produced the largest flow angle of
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any run, consistent with a large region of −180◦ < ϕ < −90◦. The ITI arises because

the total electric field due to the background field and wave polarization field drive

enhanced Joule heating, so it is no surprise that increasing Ey0 had an effect on

flow angle. The 70-mV/m results simply reinforce the conclusions drawn from the

50-mV/m case.

This chapter also identifies differences between 2-D and 3-D simulations of ion

instabilities in the upper auroral electrojet. All 3-D runs evolve more quickly than do

2-D runs because allowing a component not strictly perpendicular to B0 introduces

additional unstable modes. Figure 6·2 showed that 3-D runs display an initial noisy

period, roughly twenty seconds long, before instability growth starts, whereas 2-D

runs show instability growth almost immediately. The 3-D runs appear to complete

their initial growth phase much more quickly than 2-D runs – a span of roughly

twenty seconds in 3D compared to over 100 seconds in 2D – but the non-linear

amplitude of decameter-scale waves in 3D appears to be trending toward the meter-

scale amplitude at the end of each run. Considering that the 2-D runs ran for four

times as long, the asymptotic behavior in both 2D and 3D may be the same.

Figure 6·3 showed that average electron temperatures differ over the course of

a 2-D run compared to a 3-D run at a given altitude. All 2-D runs showed more

erratic Te than their 3-D counterparts – likely a result of the 3-D runs having many

more modes into which the FBI can couple energy. Overall, Te is much higher in 3-D

runs than in 2-D runs and the value of Te after instability saturation increases with

altitude. Although this chapter focused on the contribution of ion thermal effects to

the FBI, the difference in Te is notable. Average temperatures in the 70-mV/m runs

displayed similar trends, with saturated-state Te values 300 to 400 K hotter at each

altitude than in the 50-mV/m runs. Similarly to the average amplitude of density

perturbations, 3-D average temperature dynamics evolve approximately four times
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more quickly than do 2-D temperature dynamics. However, average 3-D tempera-

tures do not appear to mimic the long-term behavior of average 2-D temperatures,

unlike the similar asymptotic behavior of average density amplitudes.

The structure of the phase offset between ion temperature and density pertur-

bations, ϕ(kx, ky), is similar between 2-D and 3-D runs after accounting for oblique

wave modes. The slower instability evolution in 2-D runs means that Figures 6·16

through 6·18 do not sample the pre-growth stage as well as Figures 6·19 through 6·21

do. However, even the saturated stages of 2-D runs show larger values of |ϕ| than

their 3-D counterparts, suggesting that thermal effects play a larger role in 2-D sim-

ulations. Despite the sampling difference, the 2-D and 3-D growth stages are clearly

different, especially at long wavelengths along the bisector between ud and ud ×B0.

Finally, the difference in ϕ(kx, ky) manifests as a difference in flow angle between

2-D and 3-D runs at all altitudes, but less so at 113 km than at 107 km and 110

km. The flow angle in 3-D runs is consistently a few degrees shallower in 3-D runs

than in 2-D runs, except during growth at 113 km, where it follows the relative drift.

The ITI appears to have a smaller effect on flow angle with increasing altitude, at

least for the simulations presented here. The growth stages of these simulations are

so short that a radar pulse would average over them and the saturate states would

dominate the return signal. In light of this fact, the saturation column in Figure 6·23

predicts that the flow angles at 107 km, 110 km, and 113 km should be −16◦, −19◦,

and −25◦, respectively.

The influence of including wave modes with a component parallel to B0 on meter-

scale ion instabilities has noticeable effects beyond allowing them to propagate at a

small non-zero aspect angle. In addition to increasing the growth rates, suppress-

ing direct excitation of decameter-scale waves, and stabilizing average temperatures,

it may suppress the effects of the ion thermal instability, leading to less flow-angle
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deviation from E0 × B0. Any future simulations that attempts to approximate the

naturally 3-D auroral electrojet as a 2-D phenomenon must account for these dis-

crepancies.
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Chapter 7

Conclusion

7.1 Summary of the Dissertation

The over-arching theme of this dissertation was the non-linear behavior of meter-scale

density irregularities as they evolve in the terrestrial E-region ionosphere. Chapter

1 provided an introduction to the ionosphere, a summary of research into E-region

plasma instabilities, and a primer on two relevant instabilities: the Farley-Buneman

instability (FBI) and the gradient-drift instability (GDI). Chapter 2 provided the the-

oretical background necessary for understanding plasma instability research. Chapter

3 provided a primer on numerical modeling as a tool in plasma instability research.

The main body of this dissertation presented my research into density irregular-

ities produced by the FBI in various ionospheric contexts: Chapter 4 described its

co-evolution with the GDI on small scales, Chapter 5 demonstrated how the GDI

on large scales drives the FBI on small scales, and Chapter 6 elucidated the effects

of the ion thermal instability (ITI) on FBI evolution. Short summaries of the three

research chapters follow.

7.1.1 Summary of Chapter 4

Chapter 4 presented the first results from a parallelized hybrid quasi-neutral plasma

simulation with particle ions and fluid electrons. Those simulations employed a nu-

merical model that is well suited to studying meter- and decameter-scale turbulence

in the presence of hundred-meter- to kilometer-scale density waves. The simula-
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tions modeled the development of meter-scale plasma instabilities in the presence of

ionization layers perturbed by an approximately half-kilometer wave. Density gra-

dients along the perturbed ionization layers drive broad-spectrum (Type-II) plasma

instabilities and the electric field between perturbed layers drives narrow-spectrum

(Type-I) plasma instabilities. The main results of Chapter 4 were: 1) Simulations

with zeroth-order vertical electric fields of varying strength produce gradient-drift

turbulence in regions that satisfy the GDI condition. 2) The total electric field in

the density minimum is large enough to drive the FBI even when the zeroth-order

vertical field is below the threshold. 3) Waves traveling below the plasma acoustic

speed develop in all runs. 4) Wave power spectra show characteristics of Type-II

irregularities in all runs. 5) Wave power spectra show a mix of Type-I and Type-II

irregularities when the background electric field is 12 mV/m. 6) Wave with Type-

I spectra travel at the plasma acoustic speed and are confined to a 30◦ range in

elevation.

7.1.2 Summary of Chapter 5

Chapter 5 presented the first hybrid plasma simulations of meter-scale secondary

wave growth driven by a kilometer-scale primary wave. This chapter directly ad-

dressed the problem of secondary FBI generation, originally considered by Bals-

ley and Farley (1973) and contemporaries, on a realistic spatial scale. The simula-

tions presented in Chapter 5 required significant code development, which Chapter

3 describes. These simulations imposed a one-kilometer wave, then evolved self-

consistently under the influence of background electric and magnetic fields, with

field strengths and plasma parameters typical of 100 km at the magnetic equator.

The large-scale wave developed a polarization electric field which produced FBI in the

crest and trough, aligning nicely with observations of vertically propagating meter-

scale density irregularities, such as those observed by Hysell et al. (2007). The FBI,
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in turn, transported plasma across the magnetic field and shorted out the wave po-

larization electric field in the regions of strongest wave growth. The shorting-out

effect produced flat-top electric fields that are similar to those observed by Pfaff

et al. (1987a,b), and represents a feedback mechanism that appears to explain why

the irregularities that produce Type-I spectra travel at the plasma acoustic speed.

7.1.3 Summary of Chapter 6

Chapter 6 presented pure particle-in-cell (PIC) simulations of FBI waves in the high-

latitude ionosphere, under conditions typical of a moderate geomagnetic storm. It

showed that the angle that ion perturbations make with E0 × B0, called the flow

angle, increases with increasing altitude in both 2-D and 3-D simulations. It showed

that the flow angle is non-zero due to a combination of the FBI and the ITI at 107

km and 110 km, especially after instability saturation, but that the angle of relative

drift between electrons and ions determines the flow angle at 113 km. It also showed

that the magnitude of the flow angle is smaller in 3-D than in 2-D at 107 km and

110 km, indicating a difference in behavior of the ITI in 2-D simulations versus 3-D

simulations. Spectra of ion perturbations at all altitudes also differ between 2-D and

3-D simulations in the growth of decameter-scale waves versus growth of meter-scale

waves, meaning that attempts to simulate the auroral electrojet as a 2-D system

must account for possibly non-physical wave growth at large scales.

7.2 Future Work

Development of the 2-D hybrid version of EPPIC was the cornerstone of my graduate

research. Despite the years I have spent developing hybrid EPPIC, not to mention

the time other members of out research group have spent developing other aspects

of EPPIC, there are many ways it can improve.
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One way is the development of a thermal equation for fluid electrons. The isother-

mal simulations presented in Chapters 4 and 5 are sufficient for simulating interacting

FBI and GDI in the equatorial ionosphere but Chapter 6 showed that thermal effects

may alter FBI evolution, especially at high latitudes. While the pure-PIC version of

EPPIC provided results for that chapter, the spectral resolution of ion modes was

poor because the need to resolve the Debye length forced the simulation box size

to be relatively small. The aeronomy community will benefit from simulations of

FBI+ITI dynamics driven by density gradients at high latitudes that provide pa-

rameterizations of sub-kilometer turbulent effects such as plasma heating, plasma

transport, and electric field saturation, which larger-scale models can incorporate

into their physics.

Another way to improve hybrid EPPIC is the extension to 3D. Again, the pure-

PIC simulations of Chapter 6 identify a short-coming in hybrid EPPIC by illustrating

differences between 2-D and 3-D instability evolution. In addition to substantial

electron heating, which Oppenheim and Dimant (2013) previously described, the

dimension parallel to B0 changes the nature of the combined FBI+ITI and affects the

flow angle. These effects will clearly matter at high latitudes, but even in equatorial

simulations, a change in flow angle would change the obliquity of secondary FBI

waves and may contribute to up-down/east-west asymmetries.

With these two improvements, hybrid EPPIC or a similar code developed from

scratch would be poised to self-consistently simulate the growth of GDI waves which

develop electric fields strong enough to drive the FBI, which in turn transports

plasma, leads to species-specific thermal effects, and shorts out the GDI-wave electric

field. Such a tool would not only contribute substantial insight into E-region plasma

processes but also plasma processes in the solar system and beyond.
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7.3 Final Remarks

This dissertation represents original scientific research into ionospheric plasma insta-

bilities that contributes substantially to the advancement of the field of aeronomy.

Chapter 1 asked three questions that guided the research presented in this disserta-

tion. Those questions, and their answers, are:

1. How do density irregularities from co-evolving Farley-Buneman (FBI) and gra-

dient drift instabilities (GDI) relate to historical classifications of radar spectra?

Meter-scale Type-II spectra develop in the presence of a density gradient for a

range of electric fields, even in the absence of Type-I spectra. Type-I spectra

appear when the total electric field exceeds the FBI threshold, and a portion

of energy previously in Type-II spectra moves into Type-I spectra. Attempting

to classify radar echoes as one type or the other is less fruitful than studying

how echo amplitude, Doppler shift, and spectra width evolve over minutes or

hours, and using those quantities to infer the presence of gradients, strengths

of electric fields, and other plasma parameters.

2. How does a kilometer-scale wave give rise to vertically propagating meter-scale

waves and how do those meter-scale waves feed back to their kilometer-scale

driver?

A kilometer-scale wave, such as those produced by the GDI, develops a po-

larization electric field that points parallel to its propagation in the crest and

antiparallel in the trough. If the magnitude of that polarization electric field

and the ambient electric field exceeds the FBI threshold, meter-scale waves

will grow in the crest and trough, propagating with some vertical component.

As the meter-scale waves grow, they transport plasma through the crest and

trough, shorting out the polarization electric field to just above the FBI thresh-
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old.

3. How does the spectrum of FBI turbulence change with altitude and how well do

2-D simulations model the 3-D dynamics?

FBI waves turn from the E0 × B0 direction for two reasons:1) their growth

peaks in the direction of relative electron-ion drift; 2) ion thermal effects further

tilt meter-scale waves toward −E0. The major difference between 2-D and 3-D

spectra is that flow angles in 2D are almost always larger than in 3D, especially

after saturation, which is when radars are likely to observe meter-scale echoes.

Thermal effects appear to decrease significantly above 110 km and the addition

of wave modes parallel to B0 appear to partially suppress the ion thermal

instability (ITI).

This dissertation has answered some fundamental questions about plasma instabil-

ities in the E-region ionosphere, has placed those physical results in the context of

observations and broader processes, and has proposed additional avenues for future

research.
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