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ABSTRACT. This paper develops an abstract framework for the inverse
problem of parameter estimation in elliptic variational inequalities. Mo-
tivated by practical applications, in the variational inequality, the pa-
rameter appears at three different places, namely, in the primary opera-
tor, on the right-hand side, and in the functional. Besides employing the
commonly used output least-squares (OLS) approach, we propose and
use a new modified output least-squares (MOLS) method that minimizes
a parameter dependent energy norm. We provide existence results for
the considered optimization problems. Using penalization, we obtain
a new variational inequality defined on the whole space and consider
OLS/MOLS based optimization problems with the new variational in-
equality as the constraint. Using smoothing of the penalty map, we ex-
plore differentiability of the parameter-to-solution map for the smooth
penalized equation. We consider the two optimization problems with
the smooth penalized equation as the constraint and derive necessary
optimality conditions. As the penalty parameter diminishes, we recover
necessary optimality conditions for the original OLS/MOLS based op-
timization problems. We devise a finite element based computational
framework and present a numerical example showing the feasibility of
the proposed framework.

1. INTRODUCTION

In recent years, the theory of variational inequalities emerged as one of
the most promising branches of pure, applied, and industrial mathematics.
Variational inequalities provide us powerful mathematical tools for study-
ing a broad range of problems arising in diverse fields such as structural
mechanics, elasticity, economics, optimization, financial mathematics, and
others. See [2, 5, 11, 8, 9, 29, 32].

In this work, we study the inverse problem of identifying variable parame-
ters in an elliptic variational inequality when a measurement of a solution of
the variational inequality is available. Inverse problems have attracted lots
of attention in recent years. However, a bulk of the available literature has
only been devoted to identification in variational equations emerging from
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linear partial differential equations. The material dealing with the estima-
tion in variational inequalities is somewhat limited and even more so when
the emphasis is on the theory as well as the numerics. The tools for identifi-
cation in variational equations are quite well developed. For example, there
are existence theorems, results on the differentiability of the parameter-to-
solution map, stability aspects, error analysis, etc. On the other hand, most
of these issues have not been adequately addressed for the inverse problems
in variational inequalities. Furthermore, although there are different opti-
mization formulations for inverse problems in variational equations, the only
available optimization framework for variational inequalities is through the
well-known output least-squares objective.

Before discussing our main contribution, in the following, we briefly review
some of the related research. A significant inverse problem in variational in-
equalities appears in the elastohydrodynamic lubrication problem (EHL).
The EHL problem results in a variational inequality in which the unknown
is the pressure u, and the coefficient a is known. However, due to the major
theoretical and computational difficulties in solving the EHL problem, an
efficient two-step procedure is typically designed. In this process, the first
step comprised of an inverse problem of parameter identification in a varia-
tional inequality where the sought parameter is in the main operator and on
the right-hand side of the inequality, see [3]. Inspired by the EHL problem,
Hintermiiller [22] studied the inverse problem of parameter identification
for a certain variational inequality and besides a rigorous treatment of the
analytical aspects, also presented a detailed computational framework. In
the same vein, Gonzalez [15] explored the inverse problem of identifying
multiple parameters in an elliptic variational inequality and provided an
existence result. In an earlier work, Hasanov [20] presented useful results
for the boundary inverse problem for elliptic variational inequalities. In an-
other contribution [36], the authors gave a detailed numerical treatment of
the inverse elasticity problem with Signorini’s condition. In [35], the au-
thors focused on the theoretical aspects of the identification inverse problem
in a nonlinear variational inequality. Recently, Kupenko and Manzo [31] in-
vestigated the inverse problem of parameter identification for a variational
inequality with anisotropic p-Laplacian. We also note that K. H. Hoffmann
and J. Sprekels [23] were among the first ones to study parameter iden-
tification in variational inequalities. However, in [23], in contrast to the
most papers on inverse problems where an optimization framework is a pre-
ferred choice, the authors developed an iterative scheme that is based on
the construction of certain regularized time-dependent problems containing
the original problem as the asymptotic steady state. Finally, we note that
recently in [17], we studied identification in a quasi-variational inequality
and in a variational inequality which is a particular case of the variational
inequality studied here. There are many interesting articles on the optimal
control of variational inequalities which rely on similar techniques as used
in the inverse problem, see [1, 7, 6, 16, 18, 21, 30], and the cited references.
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Motivated by some of the gaps discussed above in the available literature,
in this work, we develop an abstract framework to identify variable param-
eters in variational inequalities. The main contributions of this research are
as follows:

(1) We consider a general variational inequality and develop an abstract
framework for identifying variable parameters appearing at three
different places, namely, in the primary operator, on the right-hand
side, and in the functional.

(2) Resorting to optimization formulations, we pose two optimization
problems. The first approach is based on using the classical output
least-squares (OLS) objective and another proposing a new energy
norm based modified output least-squares (MOLS); its analog for
variational equations have been studied extensively in recent years.

(3) We give existence results for the considered optimization problems.
We penalize the variational inequality to obtain a variational in-
equality which is defined on the whole space and consider analogs of
the two optimization problems with the new variational inequality
as the constraint. We introduce smoothing of the penalty map and
study differentiability of the parameter-to-smooth map for the pe-
nalized variational equation. We then consider the two optimization
problems with the smooth penalized equation as the constraint and
derive necessary optimality conditions depending on the penalty pa-
rameter. By a limit process sending the penalty parameter to zero,
we recover necessary optimality conditions for the original optimiza-
tion problems.

(4) Using a finite element based discretization approach, we devise a
computation framework and present a numerical example showing
the feasibility of the approach.

We organize this paper into seven sections. In Section 2, we introduce the
inverse problem and propose two optimization formulations to derive an
estimation of the solution. We also study the penalization of the variational
inequality. Smoothing of the penalty map and its consequences are given
in Section 3. We provide optimality conditions for the OLS approach in
Section 4 and optimality conditions for the MOLS approach in Section 5.
We give a numerical example in Section 6, and the paper concludes with
some remarks.

2. OPTIMIZATION FRAMEWORKS FOR THE INVERSE PROBLEM

Let B be a real Banach space, let S C B be an open set, let A C S be a
closed and convex set, and let £ : S — B, with ¢(S) C A, be a continuously
differentiable map which is bounded on A. To prove the existence of some
derivatives, we will also assume that A has a nonempty interior. Let V be a
real Hilbert space which we identify with its topological dual V*. We denote
the strong convergence and the weak convergence by — and —, respectively.
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By |||z, we denote the norm of space N. Let K C V be a closed and convex
set with 0 € K, and let m(a) := Ma + m, where M : B — V* is a linear
and continuous map and m € V*. Let ® : B x V — R be a nonnegative
functional which is linear and continuous in the first argument, and convex
and continuous in the second argument with ®(a,0) = 0, for each a € B.
Let T: Bx V xV — R be a trilinear form with 7'(-,u,v) symmetric in u,
v. Assume that there are constants a > 0 and 8 > 0 such that the following
continuity and coercivity conditions hold

(2.1) T(a,u,v) < Bllal gllullv|vlv, foral u,veV, ac B.
(2.2) T(a,u,u) > al|ull}, for allu €V, a € A.

Consider the variational inequality: Given a € A, find v = u(a) € K with
(2.3) T((a),u,v —u) > (m(a),v —u)y + ®(a,u) — ®(a,v), for all v € K.

Variational inequality (2.3), which is uniquely solvable by standard argu-
ments (see [33]), is the direct problem in this study. Our goal, however, is on
the identification of the parameter a from a measurement z of u(a). As typ-
ically done, to study this inverse problem, we will resort to an optimization
framework.

In some applications, in (2.3), it is advantages to have different parame-
ters in T, m, and ® which belong to different function spaces. Such mod-
ifications, however, require minor changes and for the sake of simplicity in
presentation, are not pursued.

It is well-known that inverse problems are ill-posed and a regularization
is needed. For this, let H be a real Hilbert space compactly embedded
in B with A C H. With this preparation, we consider the following two
regularized optimization problems:

Find a € A by the output least-squares (OLS) minimization problem

Lo~ 1 K
(24) min 7,(a) := 5llu(a) — 2I1% + S all}

Find a € A by the modified output least-squares (MOLS) minimizaing
problem

(2.5) min Ju(a) == ~T(a, u(a) — 2, u(a) — 2) + ~lall%.

acA 2 2
In the above optimization problems, x > 0 is the regularization parameter,
u(a) is the unique solution of (2.3), z is a measurement of u(a), and Z
is a Hilbert space with V' C Z. The OLS functional (2.4) attempts to
minimize the gap between the computed and the observed solution in the
norm of the observation space Z, whereas the MOLS functional (2.5) aims
to minimize the energy associated to the trilinear form. Evidently, (2.5)
requires that z € V. The MOLS objective has been used extensively in the
inverse problem of identifying variable parameters in variational equations,
see [12, 13, 14, 19, 25, 24, 24, 26].
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We have the following existence result for the regularized optimization
problems:

Theorem 2.1. Optimization problems (2.4) and (2.5) have nonempty so-
lution sets.

Proof. We will only prove the solvability of (2.5), and the solvability of
(2.4) can then be shown by analogous arguments. For every a € A, Ji(a)
is bounded from below, and hence there is a minimizing sequence {a,} in
A such that nhjgo Ji(ayn) = inf{Js(a)| a € A}. Due to the regularizer in the

definition of J, it follows that sequence {a,} is bounded in || - ||z, and due
to the compact embedding of H into B, {a,} has a strongly convergent
subsequence in B. Keeping the same notation for the subsequences as well,
let {a,} be the subsequence converging to some a € B. Since A is closed,
we have a € A. Let {u,} be the sequence of solutions of (2.3) for {a,}, that
is, up, = u(ay,). By the definition of u,, for all v € K, we have

(2.6)  T(l(an),un,v —up) > (m(an),v — un)v + (an, un) — ®(an,v).

We set v = 0 in the above inequality, use the positivity of ® and the fact that
®(an,0) = 0 to get alluyl|? < ||m(an)|lv+||unllv which confirms that {u,}
is bounded, and hence contains a weakly convergent subsequence. Using
the same notation for the subsequences as well, assume that {u,} is the
subsequence that converges weakly to some u € V. We claim that @ = u(a).
For this, we consider (2.6) (for the subsequence) and rearrange it as follows

T(l(a),v,v —up) + Tl an) —l(a),v,v — uy)
> Tlan), up — v, up —v) + (Mm(ay),v — up)v + P(an, up) — ®(an,v)
> (m(an),v — un)y + P(an, un) — P(an,v)

by using the ellipticity of 7. We pass the above inequality to the limit
n — oo to obtain

T(¢(a),v,v —u) > (m(a),v—u)y + ®(a,u) — ¢(a,v), forevery v e K.

We set v:=u+t(v—1u) € K, for t > 0, in the above and use the convexity
of ® to obtain

tT((a), a, v—a)+t>T(0(a), v—a,v—a) > t{m(a), v—a)y +t[®(a,a)—(a,v)|
which implies that
T((a),u,v—1u)+tT((a),v—u,v—1u) > (m(a),v—u)y + ®(a,u) — ®(a,v).
We now pass the above inequality to the limit £ — 0 to obtain

T((a),u,v —u) > (m(a),v —u)yy + ®(a,uw) — ®(a,v),

which, in view of the fact that v € K was chosen arbitrarily, confirms that «
solves (2.3). However, since variational inequality (2.3) is uniquely solvable,
we conclude that u = u(a).
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It turns out that indeed {u,} converges strongly to u. For this we note

that (2.6), taking v = u, yields
T(l(an), un, U — un) > (Mm(an), & — un)v + P(an, un) — ®(an, 1),
or equivalently
Tl(an), un — Uy up — ) < T(l(ay), t,u — up) — (M(an), & — Up)y
+ ®(an,u) — P(an, uy)

which, in view of the ellipticity of T, confirms that ||u, —al|y — 0 as n — oo.

To prove the continuity of the MOLS functional, let {a,,} and {u,} be the

sequences such that a, — a and u,, — @ = u(a). The following rearrange-
ment of terms
T(l(ap)up — z,up —2) = T(l(an), un — U, up — 2) + T(l(an), 0 — 2, up — @),
+T((an) —¥(a),us —z,u—z)+T{(a),u— zu—z),
due to the properties of T yields T'(¢(ay,), un—2,un—2) = T(l(a), u—z,u—=2)
and n — oo.
Consequently,

Je(a) = 5T((a),u - z,u—2) + S lalx

=inf{J.(a) | a € A},
which confirms that a is a solution of (2.5). The proof is complete. 0

We now replace the constraint (2.3) for the optimization problems (2.4)
and (2.5) by a variational inequality defined on the whole space V. This new
variational inequality, under some smoothness hypothesis on the data, will
then be converted to an operator equation to derive optimality conditions.
We define a penalty map P : V — V* which is bounded, hemi-continuous
and monotone map with

(2.7) K ={v e V| P(v) =0}.

A simple example is constituted by P = (I — Pkg), where I is the identity
map and Pk is the projection map defined from V onto K.

For a penalty parameter € > 0 and the penalty map P, we consider the
following penalized variational inequality: Given a € A, find u. = u.(a) € V
such that for every v € V, we have
(2.8)

T(Z(a),ug,v—usﬂ—é (P(ug),v —ue)y, > (m(a),v—us)v+P(a,u:) —P(a,v).
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In view of the ellipticity of 7' and monotonicity of P, for any a € A, varia-
tional inequality (2.8) has a unique solution u.(a).

We now consider analogues of (2.4) and (2.5) where the constraint vari-
ational inequality (2.3) has been replaced by variational inequality (2.8)
which is defined on the whole space.

Find a € A by solving the following penalized OLS based optimization
problem:

N 1 K
(2.9) min Jo(a) = 5 [|ue(a) —ZH2z+§||a||%r,

where x > 0 is the regularization parameter, ¢ > 0 is the penalization
parameter, and for a € A, the element u.(a) solves (2.8). Find a € A by
solving the following penalized MOLS based optimization problem:

. 1 K
(2.10) min J, (a) = T(¢(a),uc(a) — z,uc(a) — 2) + = ||al|%,
acA 2 2
where k > 0 is the regularization parameter, ¢ > 0 is the penalization
parameter, and for a € A, the element u.(a) solves (2.8).

We give the following existence and convergence result:

Theorem 2.2. For every e > 0, optimization problem (2.10) has a solution
as. Furthermore, there exists a sequence {(ae,uc)}, where u. = u.(az) is the
unique solution of penalized variational inequality (2.8), such that for e — 0,
we have a; — a in B, and u. — u in V, where a is a solution of (2.5) and
u = u(a) is the unique solution of (2.3).

Proof. For a fixed ¢ > 0, the solvability of optimization problem (2.10)
follows by repeating the arguments used in the proof of Theorem 2.1. Fur-
thermore, the sequence {a.} C A of solutions of (2.10) is uniformly bounded
in H. Therefore, due to the compact embedding, there is a subsequence, de-
noted by the same notation, that converges strongly to some a € A. Let u,
be the sequence of solutions of (2.8) corresponding to {a.}. By taking v =0
in (2.8), and using the coercivity, we notice that {u.} remains bounded as
well. Therefore, there is a subsequence {u.} (again keeping the same no-
tation), which converges weakly to some @ € V. We claim that u € K. It
follows from (2.8) that

<P(ue)7ue - 'U>V
<e[P(as,v) — P(ae, u:) + (m(ae), ue —vyy —T(l(ae), ue, us — v)],

which yields
lim sup (P(ue), ue — v)y, < 0.
e—0
Furthermore, by using the monotonicity of the penalty map P, for every
v € V, we have
0 < limsup(P(v) — P(ue),v — us)v < (P(v),v — W)y

e—0
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By setting v := @ + tz, where t > 0, and z € V is arbitrary, we get that
(P(u+tz), z)y > 0, and, by passing ¢t — 0, it follows from the hemicontinuity
of P that (P(u),z)y > 0. Since z € V is arbitrary, we have P(u) = 0 which
confirms that u € K.

From (2.8), for every v € K, we have

T(l(ae), ue,v — ug) + % (P(ue),v —ue)y, > (mlae),v —uq)v

+ ®(ae, us) — P(ae,v),

or equivalently,

T(E(ae) ey v — ) —  (P(0) = Pluc), v — ey + © (P0), v — )y
> (m(ae),v — us)y + Pae, us) — ®(ae,v),

and by using the monotonicity of P and the fact that P(v) = 0, for any
v € K, we deduce that for all v € K, we have

(2.11)  T(l(ae),ue,v —us) > (m(ae),v — ue)y + P(as, us) — ®(ag,v).
By using the ellipticity of T, it follows from (2.11) that
T(l(as), v, v —ue) = T(l(ac),v — ue,v — ue) + (mlae),v — ue)v
+ ®(ae, us) — P(ae,v)
> (m(ac),v — us)v + ®(ac, uc) — (e, v),
which further implies that
T(l(a),v,v —u:;) +T(l(as) — £(a),v,v —us) > (m(as),v — us)y
+ ®(ag, ue) — P(ae,v),
and by passing to the limit € — 0, we obtain
T({(a),v,v—1u)> (m(a),v —u)y + P(a,a) — (a,v),

and since v € K is arbitrary, the above inequality holds for every v € K.
To obtain (2.3) from this inequality, we set v = 4 + t(v — u) € K, where
t € (0,1] and obtain

T((a),u,v—1u)+tT({(a),v—1u,v—u) > (m(a),v—u)y +®(a,u) — ®(a,v),

and by taking t — 0, we get
(2.12)
T((a),u,v —u) > (m(a),v —u)yy + ®(a,u) — ®(a,v), foreveryve K,
verifying that u = u(a).
Let a € A be an arbitrary solution of (2.5) and let @ = wu(a) be the

corresponding unique solution of (2.3). For a, let 4. := u.(a) be the unique
solution of the variational inequality such that for each v € V, we have

T(l(a), Ue, v —Te) + é(P(ﬂe), v—"Ug)y > (m(a),v—1.)y +P(a,a:) —P(a,v).
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Note that, firstly, u. — @ as ¢ — 0, and secondly, (a,u.) is feasible for
(2.10). For the time being assume that @, — 4. Then, we have

_ N — _ K
Jo(@) = 5T((@), - 2,0 - 2) + S aly
1 e o B 2
< lim —T'(l(as),ue — z,us — z) + liminf —||a.||%
2 e—0 2

1
= liminf (2T(€(a€),u6 —2,us — 2) + g”asﬁn{)

1
< lim <2T(4(a),aa — 2,8l — 2) + ’;||a||%{> = J.(a),

and since a € A was chosen arbitrarily, we deduce that a € A solves (2.5).

By now we know that {u.} converges weakly to 4. We conclude this proof
by showing that {u.} converges strongly to @. Note that by the definition
of u., we have

T(l(ae),ue,u — us) + é (P(ue), @ — ue)y > (m(aes), % — ue)v

+ ®(ae, us) — ®(ae, u),

and because the above inequality can be written as follows
1
T(l(ag), ue, i — ue) + Z (P(ug) — P(@), 1 — ue)y > (mae), 4 — us)y

+ ®(az,us) — P(ag, a),
we obtain by the monotonicity of P and the ellipticity of T that
o ue — alf} < T(U(a) e — e — ) + £ (Pluiz) — P(i), e — i)y
< T(lac) — (@), u, u — ue) + T(U(@), 4, @ — uc) + (m(ac), ue — wv
+ ®(a.,u) — P(ae, ue),
and by passing the above inequality to limit € — 0 and using the properties of

the trilinear map 7', and the fact that u. — 4, we deduce that ||u:—ally — 0

and hence proving the desired strong convergence. The proof is complete.
O

3. SMOOTHNESS OF THE PARAMETER-TO-SOLUTION MAP

We now additionally assume that for every a € B, the map ®(a,-) : V —
R is second-order Fréchet differentiable and that the derivative
82(1)('7 U) 2
W = 6(a7u)¢)('77}) N B — V
exists and is linear and continuous.
Given a € A, we recast (2.8) as a variational equation of finding u. € V

such that
1
T((a),ue,v) + - (P(ue),v)y + (0u®(a,us),v)y, = (m(a),v)y, forallv e V.
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We now take the penalty map to be P(u) = (I — Pk ) (u) and approximate
it by a family of smooth penalty maps P. : V — V satisfying the following
conditions:

(1) For every ¢ > 0, the map P is bounded, monotone, and hemi-
continuous such that K = {v € V|P:(v) = 0}. Moreover, for any
v eV, P.(v) = P(v),as e — 0, and for any sequence {u.} converging
weakly to some u, the following inequality holds

(3.1) (P(u),v)y < lim 161f (P(ug),v)y,, foreveryvelV.
E—

(2) For each € > 0, P. has a derivative at each v € V such that
(3.2) (P(u)v,v),, >0, for every u,v € V.
(3.3) <Pa'*(u)v,PK(u)>V =0, foreveryu,veV.
The above conditions are motivated by Bayada and Talibi [3] where a con-

crete example can be found.

For a penalty parameter £ > 0 and a family of smooth penalty maps FPx,
we consider the smooth penalized variational equation: Given a € A, find
ue == us(a) € V such that for every v € V, we have

(3.4) T(l(a),us,v) + é (P(ue),v)y + (0uP(a,ue),v),, = (m(a),v)y.

Due the ellipticity of T" and the monotonicity of P. and 0, ®, for any € > 0,
the penalized variational equation (3.4) has a unique solution u.(a).

The next result sheds some light on the smoothness of the parameter-to-
solution map:

Theorem 3.1. For a fized ¢ > 0, the map a — uc(a) is differentiable
at any point a in the interior of A. For any direction da, the derivative
date := Dguc(a)(da) exists and is the unique solution of the variational
equation

1
T(4(a),dques,v) + z (PL(ue)bque, v>v + <8(2u’u)<1>(a, Ug ) Ue, U>V
= <M5a7 U>V - T(Df(a) (5&), Ue, U)
(3.5) - <8(2a7u)¢’(a,u5)5a,v>v, forallv e V.

Proof. For differentiability, we apply the implicit function theorem to the
map G: AxV — V given by

(aa u) - <T(€(a)7u) - m(a)v '>V + é <P€(u)7 '>V + 8u<I>(a,, u)v

where T'(¢(a),u) is viewed as the associated dual element given by the Riesz
representation theorem. The derivative D, G(a,u) : V — V is given by

D,G(a,u)(éu) = T(l(a),du,-) + é (PL(u)(bu), '>V + 0%, ®(a,u)du.

(u,u)
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By hypotheses (2.2), (3.2), and the convexity of ®(a,-), the map

T(E(a), ) + £ (P )y + 0y ®(a)()

is coercive. Therefore, for every w € V', the operator equation

1
T(e(a)v 5“7 ) + g <P£(u)(5u)a '>V + <a(2u7u)(1)(av u)(suv '>V = <w7 '>V
is uniquely solvable. The map D,G(a,-)(u) : V' — V is surjective and the
differentiability follows from the implicit function theorem. By differentiat-
ing (3.4) with respect to a, for every v € V, we get
1
T(4(a),0qus,v) + B <P€’(u5)(5au€, U>V + <82 )<I>(a,, us)éaua,v>v

(u,u
= (Méa,v)y — T(DH(a)(60), e, ) — (37, e us)da, )

by recalling that m(a) := Ma+m. From the convexity of @, 8(2u u)q)(a, ue) is

positive semi-definite, and as a consequence (3.5) is uniquely solvable. The
proof is complete. O

Remark 3.2. In the following, relying on perturbation arguments, we will
assume that the closed and convex set A of feasible parameters, remains
in the interior of the set on which the above differentiability result holds.

This will permit us to use a variational inequality as a necessary optimality
condition for optimizing OLS/MOLS.

4. OPTIMALITY CONDITIONS FOR THE OLS FORMULATION

We consider the following perturbed regularized optimization problem:
Find a. € A by solving

Lo~ 1 K
(4.1) min Jo(a) = 5 ||ue(a) —2H2z+§\|a||%-

where for a € A, the element u.(a) solves the smooth penalized variational
equation (3.4). Here x > 0 is the regularization parameter, ¢ > 0 is the
penalization as well as the smoothing parameter.

The following result gives an optimality condition for the above optimiza-
tion problem:

Theorem 4.1. For each ¢ > 0 and k > 0, (4.1) has a solution. Moreover,
for any solution a. € A of (4.1), there is an element p. € V, uniformly
bounded in V' with

(4.2)

1
T(l(ac),pe,v) + - <PE’(u5)*p5, U>v + <8(2u7u)q)(ae,us>psa U>V = (2 —us,v),,
T(D£<a5)(a - a€)7 uavpe) + <8(2a7u)(1)(a€7 ue)(a - a€)7p€>v

(43) +I€<(I€, a — CL5>H - <M*p€; a — aE>V Z 07
for every v € V, for every a € A.
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Proof. Let € > 0 be fixed. The existence of a solution a. of (4.1) follows by
the arguments used above. A necessary condition for the optimality of a. is
the variational inequality

(4.4) DJ.(a2)(a — az) + k (a — ae, az)y >0, foreverya € A,

where

~ 1
Je(a) == 5”“6(60 —2|%,
DJ.(a)(6a) = (Sque, us(a) — 2) 7,
date := Duc(ac)(da).
We now define the adjoint equation (associated to (4.1)): Find p. € V,

such that for every v € V, we have
(4.5)

1
T(l(as), pe,v) + R <P€'(u5)*p67 v>v + <8(2u’u)<1>(a5,ug)pa, U>V = (2 —u:,v),.

Evidently, (4.5) is uniquely solvable, and let p. € V' be its unique solution.
Then,

™ | =

<P€/(u5)*p67 6aus>v
B <a(2“’“)(1)(a5’ u5)p57 5aue>v

1
= —T(‘g(as)a 5aus,ps) - g <P£(u€)5au57ps>v

- <6(2u7u)<1>(a5, Us)5ausaps>v ;

<5au57 Ue — Z>Z = _T(e(a6)7p67 5(1“5) -

where we used properties of trilinear form 7', and the fact that (9(2u u)@(ag, Ue)
is symmetric, 62 )CIJ(aE, ue)* = 0?  ®(ac,u:). Using the derivative formula

(u,u (u,u)
(3.5), we have
DJ.(az)(a — a.) = T(Dl(as)(a — a.), ue, p:)

+ <a(2a,u)q)(a€’ te)(a —a:) — M(a— as)ap€>v )

and (4.3) follows by substituting this expression in (4.4).

We still need to show that {p.} is uniformly bounded. For this we take v =
pe in adjoint equation (4.2). Now, by ellipticity of T, (3.2) and positiviness
of 92 ®(ae,-), we obtain

(u,u)

1 *
« ||p5||%/ < T(g(aa)ﬂ)saps) + g <Pg,(us) ps,ps>v + <a(2u7u)q)(a57us)psaps>v

- <Z - u€7p€>Z
<ca ”ps”v |z — usHZﬂ

and hence ||p.||y, < ¢, where ¢, ¢; are constants. The proof is complete.  [J
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For the next result, we assume that the derivatives ('3(2u u)<I>(-,-), and

8(2a’u)q)(-, -) are continuous, that is, for every sequence {(an,v,)} C A XV

converging to some (a,v), we have

yuy®(an,vn) = 8, ) ®(a,0), (4.6a)
8(2a’u)<b(an,vn) — 8(2a’u)<1>(a,v). (4.6b)

We have the following optimality conditions:

Theorem 4.2. There ezist a solution a of (2.4) and elementsu € V,p €V,
A € V* such that for every a € A, we have

(u,u)

4.7 T(a),p,v) + <62 @(a,a)p,v>v FAW) = (z—a,v),, vVEV,

T(Df¢(a)(a —a),u,p) + <a(2a,u)®(a, u)(a — d),ﬁ>v + k(a,a —a)y

(4.8) > (M*p,a—a)v,
(4.9)

T((a),u,v —u) > (m(a),v —u)y + ®(a,u) — ®(a,v), veK,
(4.10) A(a) = 0.

Proof. For € > 0, let a. € A be a sequence of solutions (4.1), let u. be the
solutions of (3.4), and let p. be the solutions of (4.2). By the definition of
ue, for every v € K, we have

(4.11)  T(l(ae),us,v —us) > (mlae),v — ue)v + ®(ag, us) — ®(ag,v).

Using similar arguments as used in the proof of Theorem 2.2, we can show
that the sequence {a.} converges strongly to a, and the sequence {u.} con-
verges strongly to @ as € — 0. As before, passing (4.11) to limit € — 0, we
obtain

T(l(a),u,v —u) > (m(a),v — a)yy + ®(a,u) — ®(a,v), forevery v e K.

Furthermore, since the sequence {p-} C V is bounded, there exists a weakly
convergent subsequence. By keeping the same notation for subsequences as
well, let {p-} be a subsequence that converges weakly to some p € V. We
define two functionals A, A : V' — R by

(4.12) A (v) := §<P€'(us)*p€,v>v
= <Z - U€7U>Z - T(f(ag),ps,v) - <0(2u7u)<1>(a5,u5)p5,v>v,

(413) @) = (2 =), = T(K@),p.v) — (97, ) (@ D)p.v) .
Clearly, the above functionals are well defined, linear, and continuous, and
hence ., A € V*. Furthermore, due to the facts that a. — a and u. — u,
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we have

AL(v) = (2 —ue,v) , — T'(l(as), pe,v) — <8(2u’u)<1>(a5,u5)p5,v>v

5 {2 = ) — T(E@), p,0) — (02, (@ W0, v)
= \(v)

as ¢ — 0, where we applied properties of T" and (4.6).

Since this convergence holds for every v € V', we deduce that the sequence
{Ac} converges weakly to A. By taking v = Pk (u.) in (4.12) and using (3.3),
we get

Ae(Pic(ue)) = = (PL(ue)pes Prc(2), = 0.

By using the continuity of the projection map, we get 0 = A (Pg(us)) —
A(u) for e — 0, and consequently, A\(a) = 0. For (4.8), by using (4.3), we
have

T(Dl(as)(a — ac),us,p:) + <8(a,u)(1)(a£7 ue)(a — az), pe)v + K(as,a — as) g
> (M*pa7a - aa>V7

for every a € A. By using the properties of T, continuity of M, and property
(4.6) of ®, we can take limits ¢ — 0 to obtain

for every a € A. The proof is complete. ([

5. OPTIMALITY CONDITIONS FOR THE MOLS FUNCTIONAL

We consider the following MOLS-based regularized optimization problem:
Find a. € A by solving

(1) min(a) = %T(ﬁ(a),ue(a) ~ 2,ue(a) = 2) + 5 lall%,

where for a € A, the element u.(a) solves the penalized variational equation
(3.4). Here k > 0 is the regularization parameter, ¢ > 0 is the penalization
as well as the smoothing parameter.

For this case we have the following result:

Theorem 5.1. For each € > 0, optimization problem (5.1) has a solution.
Moreover, for any solution a. € A of (5.1), there ezists q- € V, uniformly
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bounded in V, such that for every a € A and for every v € V, we have
(5.2)
1 *
T(E(ae), QEa'U) + g <P5/(U€) QE7U>V + <8(2u7u)q)(asaue)qé:>U>V
=T((azs),z — ue,v).
1
§T(D€(a5)(a —ac),ue — z,ue — 2) + T(Dl(as)(a — az), ue, g )+

(5.3) <8(2a7u)(1>(a5, ue)(a — ac), qg>v + k(ae,a —az)g > (M qe,a — ag)y.

Proof. We shall follow the scheme of Theorem 4.1. For a fixed ¢ > 0, let
a: € A be a solution of (5.1), and u. be the corresponding solution of the
penalized equation. Then,

DJ(as)(a —ac) + k{(a —ac,ac)y >0, for every a € A,

where J(a) := 3T (¢(a), us(a) — 2, us(a) — 2).
Evidently, by using the notation d,u. := Dyuc(az)(a — ac), we have
(5.4)

DJ.(a:)(a—ac) = %T(D@(ag)(a —ag),ue —2z,ue — 2) + T (l(ae), dque, us — 2).

We consider the adjoint equation: Find g. € V such that for all v € V|
we have

1 *
T(0(az), @ey0) + = (PL(u) ge, )y + (07,0 @lac u)gev)
(5.5) =T(l(as),z — ug,v).
Clearly, (5.5) is uniquely solvable, and let g. be its unique solution. Then,
1
T(g(aa)v Ue — 2, 5aua) = —T(E(CLE), Ge, 5aua) - g <P£(U5)*Q5a 5au5>v
- <8(2u7u)(1)(a87 ua)Q& (5aua>v
1
= —T(l(ac), bqtic, qc) — - <P£(Us)5auaa qg>V
- <a(2u7u)q)(asa uz—:)‘]&a 5aue>v
=T(D{(ac)(a — ag), ue, g)
+ <a(2a,u)q)(aaa ue)(a - a6)7 Qa>v - <a — Qg, M*QE>V7
by using Theorem 3.1. Combining this with (5.4), we have
1
DJ.(a:)(a —ac) = iT(Dﬁ(aE)(a — ), Ue — Z,Us — 2)
+ T(Dla:)(a - az), e, ) + (02, ®(ac, u)(a — ac). gz )

- <CL — Qg, M*qa>V7

which when combined with (5.4), results in the desired inequality
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In order to prove that {¢.} is uniformly bounded, let us take v = ¢
in adjoint equation (5.2). Now, by ellipticity of T, (3.2) and positivity of
02®(a, -), we obtain

1
« H%H%/ < T(e(aa)v e, Qé‘) + - <P5/(aa)*Qaa Qa>v + <8(2u,u)q)(aeyua)%a%>v
— T(f(as)v Z — Ug, QE)
< e lgelly |z = uelly
< ez |y,

and therefore ||¢:||\, < ¢, where ¢, c1, co are positive constants. The proof is
complete. O

Finally, we have the following optimality conditions for (5.1):

Theorem 5.2. There exists a solution a of (2.5) andue€V,qgeV, e V*
with

(5.6) T(6(

S)

)?(777}) + <3(2u7u)<1>(d,@)cj, U>V + )\(’U)
= T(g(d)az - a7U)Z v (S V7

(5.7)  TW(a),u,v—1u) > (m(a),v —u)y + ®(a,u) — ®(a,v), VveK,

%T(Dﬁ(a)(a _a),ii— 2,1 — 2) + T(DU()(a — a), &, §)+
(5.8) <a§a,u)q>(a, @)(a — a), q>v Vrld,a—a)g > (M*Ga—ayy, ¥ ac A
(5.9) Au) =0,

Proof. The proof follows from the arguments used in the proof of Theo-
rem 4.2. O

6. A NUMERICAL EXAMPLE

We now test our theoretical results on the inverse problem of identifying
a in the variational inequality of finding u € K C V := H}(Q) such that

d
(6.1) / a*VuV (v —u) > / —a(v —u), foreveryve K,
Q o dxa
where ) C R? is a suitable domain and the constraint set
K :={uc H}(Q)| u(z) >0, a.c. in Q}.

We choose B = Ly (Q), H = H%(Q), and for given positive constants ag, a1,
define
A:={ac H* Q)| 0<ay<a<a ae. in N},

The variational inequality that we focus on in our numerical experiment,
emerges from the elastohydrodynamic lubrication problem, see [3, 4] for
more details. For the numerical experiment, we choose Q@ = [0,1] x [0, 1],
{(a) = a® and m(a) = ;%.
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The exact solution in this setting is given by
a(xi,x2) =1+ 0.5cos(2mza)

We use finite element discretization to numerically solve the discrete analogs
of the optimality systems for the OLS and the MOLS objectives. For sim-
plicity, we keep the iterates for a in the interior of the discrete analog of A,
and hence the corresponding inequality is replaced by an equation. The dis-
crete optimality system is solved by using a Damped Gauss-Newton iteration
with an Armijo rule line search (see [28]). We use a suitable complementar-
ity function and smoothing techniques for solving the nonsmooth equations
(see [10, 27, 34]).

Tables 1 and 2 show that the MOLS functional yields slightly better re-
construction than the OLS functional. Our general framework essentially
collapses to the optimality conditions given in [22] for variational inequality
for the OLS approach. However, in [22] an additional equation in the opti-
mality system was considered ap = 0. We note that the performance of the
OLS approach slightly improves, if we additionally impose this constraint
ap = 0. See the Table 3.

TABLE 1. Reconstruction Error for the MOLS.

e [Tl [T e | 17Tl | T T
Trall 12 ) HﬁhHLQm) rall oo () HﬂhHLw(Q)
0.0707107 0.012 0.009 0.026 0.020
0.0565685 0.011 0.009 0.023 0.017
0.0471405 0.009 0.006 0.021 0.011
0.0404061 0.009 0.006 0.019 0.010
0.0353553 0.008 0.005 0.018 0.008
TABLE 2. Reconstruction Error for the OLS.
h ||ah_{ha’HL2(S2) ”“h_ﬂhHL?(Q) Hah_{haHLoom) ”uh_ﬂhHLw(sz)
nall 2 o) HﬁhHLQ(Q) l1nall oo () ||11”HL00(Q)
0.0707107 0.050 0.147 0.106 0.203
0.0565685 0.062 0.180 0.113 0.220
0.0471405 0.051 0.150 0.096 0.189
0.0404061 0.047 0.139 0.092 0.177
0.0353553 0.042 0.124 0.089 0.172

7. CONCLUDING REMARKS

We employed two objective functionals to investigate the inverse problem
of parameter identification in an elliptic variational inequality. We provided
necessary optimality conditions and gave numerical results. We would like
to note that in most applications of variational inequalities, the functional
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TABLE 3. Reconstruction Error for the OLS with the Addi-
tional Constraint ap = 0.

h ||ah_Iha’HL2(SZ) ”“h_ﬂhnﬂ(sz) Hah_I’LaHLoo(n) ”uh_ﬂhHLw(sz)
[Thall 2 o) @™ 2 ) 1Tnall oo (o) 12"l oo @)
0.0707107 0.029 0.090 0.083 0.139
0.0565685 0.041 0.146 0.093 0.177
0.0471405 0.039 0.143 0.088 0.171
0.0404061 0.032 0.123 0.072 0.144
0.0353553 0.026 0.110 0.051 0.144

® is typically nonsmooth and the assumption on the smoothness of @ is a
simplification. However, the functional ® should be replaced by a sequence
of its sufficiently smooth approximations, just like the smoothing of the pro-
jection map. We plan to carry out this in a forthcoming work where we
intend to conduct detailed experiments.
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