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Abstract

How do people use human-made objects (artifacts) to learn
about the people and actions that created them? We test the
richness of people’s reasoning in this domain, focusing on the
task of judging whether social transmission has occurred (i.e.
whether one person copied another). We develop a formal
model of this reasoning process as a form of rational inverse
planning, which predicts that rather than solely focusing on
artifacts’ similarity to judge whether copying occurred, people
should also take into account availability constraints (the
materials available), and functional constraints (which
materials work). Using an artifact-building task where two
characters build tools to solve a puzzle box, we find that this
inverse planning model predicts trial-by-trial judgments,
whereas simpler models that do not consider availability or
functional constraints do not. This suggests people use a
process like inverse planning to make flexible inferences from
artifacts’ features about the source of design ideas.

Keywords: social cognition; Bayesian inference; explanation;
social transmission; imitation; artifact; design; inverse
planning

Introduction

We live surrounded by human-made objects, or artifacts.
These artifacts are crucial to our lives not only as tools, but
also as an omnipresent source of social information. Based
on the objects a person owns, people make quick and accurate
judgments about a person’s traits, interests, and social
affiliations (Gosling, 2008; Richins, 1994). The artifacts a
person creates - like novel tools, art, music, or text - provide
particularly rich information about the person and actions that
created them (Gosling, 2008).

How do people reason about other individuals from the
artifacts they create? Here we explore the nature of this
reasoning, a form of intuitive archeology. In the same sense
that archeologists use objects to make inferences about the
people and cultures that created them, we propose that people
also infer complex social-causal information from the design
of artifacts, by integrating their mental theories of the
physical-mechanical world with their theories of the social
world (e.g. Battaglia, Hamrick & Tenenbaum, 2013; Gopnik,
2012; Baker, Saxe & Tenenbaum, 2009) to infer the most
probable explanation for an objects’ features.

Intuitive Archeology as Inverse Planning

Previous work in the domain of action understanding has
proposed that people make inferences about the goals of
others’ actions based on a process of ‘inverse planning’

(Baker, Saxe, & Tenenbaum, 2009; Liu, Ullman, Tenenbaum
& Spelke, 2018). The idea of inverse planning is that people
have knowledge of the generative process behind actions
from planning their own — and this planning process allows
them to know what a rational agent would do, given the same
goals and environmental constraints. Therefore, when
reasoning about others’ actions, people invert this generative
process to infer the goals of another agent from its observed
behaviors. Here we propose that a fundamentally similar
inverse planning processing explains how we reason about
the artifacts people create: People use their own generative
model of how they would construct an artifact under a given
set of constraints to infer the goals and decisions that led
another person to create this artifact and its features. Such a
reasoning process would allow people to flexibly infer a
variety of social-causal information about others from the
physical features of artifacts they create.

We focus on a foundational inference in this
domain: Inferring whether social transmission of ideas has
occurred (i.e. imitation, copying), or whether a particular
aspect of a design was generated independently by an
individual. The interaction of these two basic processes,
termed imitation and innovation, account for -cultural
evolution of artifacts’ designs over human history (Henrich,
2015; Tomasello, 1999; Legare & Neilsen, 2015). This
inference also has real-world applications for understanding
plagiarism detection — and what can be reasonably expected
of jurors in plagiarism cases as they consider two designs and
determine the likelihood that copying has occurred. Lastly,
this inference is foundational to understanding how people
infer social-causal information from artifacts, since designs
that were created independently license different inferences
than those that were copied. For example, a highly functional,
complex design that was independently generated may tell
you about the intelligence or creativity of a designer
(Gosling, 2008), whereas a design that was copied may
instead be informative about the designer’s social history and
cultural group (their source of shared knowledge; e.g.
Schachner et al., 2018; Soley & Spelke, 2016). Thus, in the
current work, we model and test how people infer whether or
not copying (social transmission) occurred in the design of an
artifact.

Inverse Planning, Or a Simpler Cognitive Process?

A natural alternative theory exists to the rich and structured
explanation-based reasoning process proposed by inverse
planning models. People may infer that copying occurred
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using a simple heuristic based on perceptual similarity: If two
things are more perceptually similar, then copying is more
likely to have occurred. Notably, past work on detection of
copying in music has relied on this type of simple similarity
metric in formal models, to predict jury decisions in music
plagiarism cases (Savage, Cronin, Miillensiefen, & Atkinson,
2018).

In contrast to these straightforward similarity-based
models, other work has provided initial evidence that people
detect copying via a more complex process of inverse
planning or explanation- based reasoning (Schachner et al.,
2018). In particular, this work found that people expect others
to have a preference for efficiency, and factor this in when
making inferences about copying. Thus, when two characters
create identical train track designs that are also highly
efficient ways to achieve the intended goal, observers use
efficiency to ‘explain away’ the similarity — and thus judge
copying less likely for identical efficient tracks than they
would otherwise.

While this work is suggestive of a system of inverse
planning, it is possible (and even plausible) that
understanding of efficiency is unique and privileged in
people’s reasoning. Reasoning about efficiency, and
expecting others to act rationally by moving efficiently
toward their goals, is thought to be foundational to cognition:
It develops early in infancy (Gergely, Nadasdy, Csibra, &
Bir6, 1995, Skerry, Carey & Spelke, 2013), is shared with
other species (Hauser & Wood, 2010), and is a foundation for
the entire domain of action understanding (Dennett, 1987;
Baker et al. 2009). Thus, rather than showing a rich and
flexible process of reasoning that takes into account a wide
variety of alternative explanations (as proposed by inverse
planning models), the evidence thus far is consistent with a
much simpler system, in which similarity metrics are
selectively overridden by privileged efficiency-based
explanations.

The Current Work

In the current work, we test whether people use a rich and
flexible process of inverse planning that takes into account
alternative explanations that go beyond efficiency. In
particular, we ask whether people rationally consider two
factors: the range of materials available to build with, which
we term the availability constraint; and whether each of the
available materials would function or fail to function to solve
the problem at hand, which we term the functional constraint.
Rationally speaking, if a larger set of materials are available
to choose from, similarity should be seen as stronger
evidence of copying than if there is a smaller set of materials
available to choose from (as the probability of selecting the
same item by chance is lower; similar to the suspicious
coincidence mechanism sometimes referred to as the ‘size
principle’; Tenenbaum & Griffiths, 2001). Similarly, if many
ofthese materials would solve the problem, similarity is more
indicative of copying than if only one or a few of the options
would solve the problem at hand — as clearly non-functional
materials are unlikely to be used. We first formalize these
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Figure 1: Left: Tool selection task with example handles
(which differ in color), and rods (which differ in shape and
therefore functionality). Right: Example of two identical
tools people might be shown on a particular trial.

constraints and then experimentally test their usage when
people make copying inferences.

An Inverse Planning Model of Copy Detection

To provide a clear test of the inverse planning account, and
tease it apart from simpler alternatives, we model and test a
simple artifact-building task which crucially involved both
availability and functional constraints. Consider a scenario
where one is asked to solve a puzzle: A button is out of reach
in a box, with the front covered by glass, so only the hole in
the top allows access. You must build a tool to reach the
button. To do so, you are given two sets of pieces: 10 handles,
which differ by color; and 10 rods, which differ by shape.
You can connect one handle to one rod to form a two-part
tool (see Figure 1).

You may be asked to solve one of two puzzle boxes, which
differ in one respect: How many of the rods would work to
solve them. In particular, for one box, all of the 10 rods would
fit through the box’s circular hole and solve the puzzle
(unconstrained; circle box). In the other case, only 1 of the
10 rods fits (only the star-shaped rod fits into the star-shaped
hole), and so only 1 of the 10 rods can be used to solve the
puzzle (constrained; star box). This box thus introduces a
functional constraint that applies selectively to rods, and not
handles (which would all function in both cases).

Now, you observe two tools that other people have made:
for example, two people built the same tool, choosing the
same star-shaped rod and the same red handle. How likely are
they to have copied each other? This task provides a simple
instantiation of relevant issues people confront when making
complex decisions about copying through inverse planning:
Reasoning about the range of materials available to the
builders; which pieces would work; and a multi-part decision
process (choose a handle, choose a rod).

Formally, we can think of this task as having the following
structure: You see a tool built by person 1, and a second tool
built by person 2, in order to solve a puzzle box. You wish to



infer whether person 2 copied the tool’s design from person
1, or independently created it.

Each tool consists of two pieces linked together — a rod, 7,
and a handle, /& — each of which was selected from the set of
available options. Formally, you are asked to make an
inference, where if ¢ indicates whether person 2 copied
person 1, you wish to infer the probability of copying

P(c|ry, hy, 12, hy), given the observed rod and handle of
person 1’s tool (rq,h;) and the observed rod and handle of
person 2’s tool (1, h,). Taking only the case of a rod being
copied, and assuming copying judgments depend only on the
rod and handle being identical or different (e.g., a binary
notion of similarity), the posterior on copying is:

P(c)) P(p==mnl0)

P(r; ==m)

This is the probability that copying has occurred, given
your prior likelihood on copying and the relative likelihoods
that such an overlapping design would be generated under
each ofthe possible mechanisms (copying, c, vs. independent
creation, —¢), where:

P(ry==r)=P(c,)P(rp==m|c)
+(1-P(cp) (rp==m11 | =c)

In the current task this depends not only on the rod but on
both the rod and handle, such that, when the rod is identical
but the handle is not identical, this posterior on copying
depends on P(ry,==nrlcmr), P(rp==r/]|-c),
P(hy, #h;|c), and P(hy, # h; | =c). This has the
structure of a Bayes net, including the key concept of
explaining away: A given aspect of the design can be
generated either via copying or independently, and evidence
for one provides evidence against the other. Thus, if two
people create identical tool designs, but this design is also
likely to be created independently (due to either availability
constraints or functional constraints), this provides weak
evidence of copying despite the identical tools.

To make this model concrete, we need to specify 5 things:

(1) P(c,),P(cy) - the a priori estimate of how likely
person 2 was to have copied either the rod or handle
(unconditional on the data; i.e. before we see either of the
built objects). This depends for example on how close or
distant the two people are from one another (Schachner et al.,
2018). We assume the chance of copying is identical and
independent for both rods and handles, e.g. P(c,) == P(cy),
and refer to this as P(c), the prior on copying.

(2) P(r, ==, | ¢) - the likelihood of the particular rod
being used by person 2 matching that of person 1, given that
person 2 was in fact copying from person 1’s object. We
formalize this as perfect copying plus a small error rate term,
e, to account for the rate at which an individual might intend
to copy but ultimately select a different rod: P(r, == |
¢) =1 — e. Therefore P(r,.1y [ ) = e.

(3) P(r, == 1, | =¢) - the likelihood of rod r, being the
same as 1y, given that person 2 was NOT copying from
person 1’s object, and independently generated the object
with no reliance on ;. When all pieces would function, this
is simply /R, where R is the total number of rod choices
available. However, functional constraints also affect this

P(clr,m) =

factor: When only a subset of pieces will function, this
effectively reduces the number of reasonable options.
Accordingly, in the context of a functional constraint, the
model treats only the functional pieces as options, reducing
the value of R to the number of functional options (if only
one rod functions, R=1).

4) P(hy, ==hy | ¢) - the likelihood of the particular
handle being generated by person 2, given that person 2 was
in fact copying from person 1’s object, and given h;. This
again is based on the same error rate e.

(5) P(hy, == hy | =c) - the likelihood of handle h,
being the same as h,, given that person 2 was NOT copying
from person 1’s object, and independently generated the
object with no reliance on h;. In contrast to the rods above,
the handles differ only in color rather than shape; thus, all
handles function equally well in both the unconstrained
(circle box) condition, and the functionally constrained (star
box) condition. This is therefore simply 1/H, where H is the
number of handle options.

Comparing to Simpler Alternatives

This model of inference as inverse planning posits that people
consider both the number of available options and the
functional constraint of the puzzle box when judging whether
copying occurred. To test whether each of these components
are needed to predict participants’ judgments, we compared
this model to three simpler models.

These models followed a 2x2 structure, either taking into
account or not taking into account the availability constraints
(+/- availability) or the functional constraints (+/-
functional). For example, the model that considers
availability constraints but ignores functional constraints
does not take into consideration the functional constraint of
the star box, e.g., assumes people choose among all rods even
in the star box condition. The model which ignored
availability constraints did not take into account the number
of pieces available in a flexible way. Instead, this model
posited that people had a fixed a-priori idea of the number of
pieces available to choose from, and that this number did not
change based on the situation presented. Thus, rather than
choose a rod with 1/R, where R is the number of options, a
parameter N quantified this fixed number of imagined
choices (e.g., regardless of how many were present). This
model did take into account the functional constraint of the
star box (assuming people only choose the star rod in this
case). A final simplified model ignored both functional and
availability constraints, and thus effectively instantiated a
simple perceptual similarity heuristic. This model only took
into account the extent to which the pieces were similar,
without taking into consideration either functional constraints
or availability constraints.

Testing the Models’ Predictions

These models make quantitative predictions about the
likelihood of copying for any given pair of tool designs, in a
wide range of contexts. We next aimed to test how well the
various models predict human behavior. The inverse



planning model predicts that for two identical tools, people
will infer that copying is more likely to have occurred when
(a) there were more pieces available as options to build with,
thus creating more of a suspicious coincidence that the same
piece was chosen twice; (b) there were no functional
constraints on which pieces would work or not work, thus
allowing all of the available pieces to serve as equally good
options. By contrast, the simplest perceptual similarity model
predicts that any identical objects will lead people to infer
copying. Thus, we focused our data collection on these and
other particularly informative trials.

Method

Full study design/analysis plan including model code was
preregistered on the Open Science Framework (OSF), and is
available at https://osf.io/y8u7t.

Participants

Using a pre-registered design, N=108 adults from the U.S.
(57 male, 50 female, 1 other gender identity; M age=37.9,
SD=10.9, range=20-72) were recruited through Amazon’s
Mechanical Turk. Sample size was preregistered and
determined from power analysis of a pilot dataset with a
slightly different design (N=20; tested a subset of the current
test trials; with each subject completing all trials). The R
“pwr” package was used to conduct a paired t-test power
calculation on participant-level BICs with the goal of 90%
power (Champely et al., 2018). Based on pre-registered
exclusion criteria, additional participants were excluded due
to: 1. Appearing to be non-native English speakers or a bot
(n=13; determined by 2 independent coders’ rating of free-
response text answers) 2. Incorrectly answering any memory
check question (n=49) 3. Incorrectly answering 50% or more
of the attention check questions (n=12). The number of
participants failing the preregistered memory check questions
was higher than expected, thus we reanalyzed the data with
these participants included, and found that our model results
and conclusions remain unchanged in this case (see Results).

Design

Participants were shown tools that two target individuals
designed, and were asked to judge whether or not one of those
individuals copied the other’s tool. Across trials
we manipulated (1) the number of rod options available (2
versus 10); (2) the number of handle options available (2
versus 10); (3) The presence or absence of a functional
constraint, i.e. whether they were trying to solve the circle or
star puzzle box; (4) The extent of similarity of the two tools
that were built (both rod and handle identical, one part
identical and one part different, or both rod and handle
different). As all designers were assumed to have
successfully solved the puzzle, we did not include trials in the
star box condition which had different rods, as this would
involve building a tool that would not function. Thus in total
there were 24 unique test trials. Because of the possibility of
demand characteristics if all participants saw the full design,
each participant completed only a randomly-selected subset

of'4 trials, resulting in 18 unique participants completing each
trial.

Procedure

Participants first received instructions regarding the puzzle-
box task, and that they would see pairs of tools that people
had built to reach the button. Instructions described an
ambiguous situation, where copying may or may not have
occurred (“While designing the tools the people were in the
same room, facing away from each other”). They were
instructed that different pairs of people had different numbers
of handles and rods to choose from (10 or 2), received either
the circle box or star box to solve, and that only one of the
rod pieces could fit into the star-shaped opening.

On each trial, participants saw (1) the two tools that the
two people had built; (2) which puzzle box the people were
trying to solve; (3) the materials they had available to build
with. Participants were asked to judge as a 2-alternative
forced choice: Do you think someone copied, or they made
them independently?

After each trial, an attention check question asked either
what puzzle box was present, the number of rod options, or
number of handle options. At the end of the task, memory
check questions asked participants to select which rods would
work, and which handles would work, to successfully solve
each of the two puzzle boxes. Lastly, participants were asked
to describe what they did in the experiment and guess the
point of the study in free-response format, and complete
demographics questions.

Analysis Plan

For each model, the best fitting parameters and likelihood of
our data given those parameters were assessed via maximum
likelihood estimation (MLE). We decided a priori that the
prior on copying (range: 0-1) and number of imagined
choices (for models that do not use the real number that
participants were presented with; range 0-infinity) should be
fully free to vary, while the copying error rate e was bounded
from 0 to a maximum of 0.1. For all models, using this a priori
specification, the MLE-derived value for the copying error
rate was at max (0.1). To make sure this boundedness was not
responsible for our findings, we also reran analyses letting the
error rate parameter vary (0-1), and found the same results for
comparative model fits in this case. To compare models, we
use BIC (Schwarz, 1978), which penalizes models for
complexity according to their number of parameters. We used
bootstrapping to calculate standard errors (SEs) for each BIC.

Results

We first checked that participants took into account the
perceptual similarity of designs in their assessments of
copying, as predicted by all four models. As expected,
participants inferred copying most often when the two tool
designs were identical (M=51.4%, SEM=9.8%), and least
often when the two tools were most different (M=5.6%,
SEM=2.3%; p<.01).
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Table 1: Maximum likelihood parameters for each model

Model Copying  Error  Imagined
Prior, p(c) Rate # Options
+Availability +Functional  0.09 0.10
+Availability -Functional ~ 0.06 0.10
-Availability +Functional ~ 0.09 0.10 5.31
-Availability -Functional ~ 0.11 0.10 2.76

We next compared the fit of the four alternative models.
The full model out-performed all competing models, with a
difference in BIC of 35 (+ SEM: 11-25) in comparison to the
next-best-fit model and >400 to the other models (Table 2).
Approximately the same results held when including
individuals who failed the memory check: difference in BIC
of 38 to next-best-fit model and >700 to the other models. In
addition, the full model provided a good overall fit to
participants’ responses across trials (R>= 0.75, Fig. 2A).

Note that while the model is relatively straightforward to
specify, the predictions it makes are quite nuanced: because
the model weighs and combines several factors, it predicts a
continuous gradient of how likely copying should be, rather
than simply saying people should never assume copying took
place if there is any alternative explanation. The model thus
goes well beyond verbal theories.

Use of Availability Constraints

Participants’ judgements showed sensitivity to availability
constraints (i.e. the number of pieces available to build with),
and the use of availability constraints as an alternative
explanation for similarity. For example, on trials where two
people made identical tools and no functional constraint was
present, participants judged copying more likely as the
number of available options increased (circle box condition:
2 rods; 2 handles: 33% judged copied; 2 rods, 10 handles:
72%; 10 rods, 2 handles: 72%; 10 rods, 10 handles: 83%).

Use of Functional Constraints

Participants also showed sensitivity to functional constraints,
and used functional constraints as an alternative explanation
for similarity. In particular, on trials where two people used
identical rods, participants judged copying less likely on
trials where they were solving the star box (which added a
functional constraint; Mean copied=21.5%), vs. when they
were solving the circle box (Mean copied=52.8%, p=0.02, 2
tailed t-test). In contrast, on trials where two people used
identical handles, participants’ judgements did not differ for
the star vs. circle box (Star box: Mean copied=36.8%, Circle
Box: Mean copied=37.5%; p=0.97, 2 tailed t-test), as
predicted since all handle pieces would function equally well
for both puzzle boxes. Although the model without functional
constraints did not perform that poorly as measured by BIC,
it did systematically miss this aspect of the data (see also
deviations of this model in Figure 2).
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Figure 2: Fit of models’ predictions to participants’ ratings
of whether copying occurred; each point represents one trial.
The full inverse planning model appears top left; other plots

show three simpler alternative models that do not consider

either the availability constraints (-availability) or the
functional constraints (-functional).

Table 2: Difference in BIC from best fitting model
(higher BIC indicates worse fit)

Model BIC A to + SEM
full model
+Availability -Functional 35 11-25
-Availability +Functional 467 422 - 490
-Availability -Functional 491 468 - 512

Participants’ judgments deviated slightly from the full
model’s predictions in one regard: Participants appeared to
under-weight the similarity of the handles, relative to the
rods. For instance, the largest deviations between
participants’ judgements and the full model’s predictions
came on trials when the tools had different rods, but the same
handle. To demonstrate this differential weighing of the rod
vs. handle, consider trials where there are an equal number of
rod and handle options, no functional constraint, and the built
tools had only one similar piece. On these trials, people were
considerably more likely to say the design was copied if the
rod was similar than if the handle was (2 options: 0% vs.17%;
10 options: 17% vs. 56%). Thus, participants seemed to
overweight evidence from the functionally-relevant
component of the tool, even when functional constraints were
not present.

Overall, however, the good fit of the inverse planning
model — and the continuous range of predictions it makes —



supports the idea that participants use an inverse planning
strategy in judging copying from artifacts.

Discussion

We find strong evidence that when reasoning about artifacts,
people use a rich, flexible system of explanation-based
reasoning to infer whether a design idea was copied or
generated independently. We formalized such reasoning in a
Bayesian model as a form of inverse planning. We compared
this model to three simpler alternatives in a task where
participants had to judge whether a pair of artifacts was
copied or designed independently, to test whether each
component of the full model was needed to predict
judgments.

We found that the full inverse planning model best
predicted participants’ judgments of whether copying had
occurred. In line with the model, we found that people
considered two broad classes of alternative explanations for
artifacts’ similarity: the range of materials available to build
with (availability constraints), and which of these materials
would work to solve the problem (functional constraints).
Both of these constraints ‘explained away’ similarity, making
similarity weaker evidence of copying. This pattern of
responses is the signature pattern of a Bayesian reasoner, in
which a design can have different alternative explanations,
and evidence for one provides evidence against the other
(e.g., Gopnik et al. 2004).

The success of this model suggests people use a process
of inverse planning to infer the source of design ideas from
artifacts’ features. In other words, people consider the
generative processes involved in building the artifacts,
including what the goal would be, what constraints they
would be subject to, and what (as a result) they would be
likely to build. By inverting this generative process, people
rationally infer the source of other people’s design ideas,
taking into account goals and multiple kinds of constraints.

These findings show that inferences about the source of
design ideas do not boil down to various simpler heuristics,
or more limited systems of reasoning. First, copying
judgments are not just based on the extent of perceptual
similarity of the two objects, but take into account rational
explanations for this similarity. This has implications for
understanding how laypeople detect plagiarism in court
cases, which has been previously formalized as a process of
simple similarity detection (Savage et al., 2018).

Second, we show that this system of reasoning goes
beyond efficiency: People can take into account multiple
types of constraints as explanations for similarity, and are not
limited only to reasoning about design efficiency as the only,
privileged type of alternative explanation. This simpler
efficiency-only account was consistent with previous
findings, and plausible given the foundational role of
efficiency in reasoning about intentional action (Schachner et
al., 2018). The current data falsify this simpler account,
showing that people flexibly take into account the materials
available and the functional constraints of the puzzle boxes,

which do not map to an efficiency metric (e.g. the length of a
train track from A to B, used in Schachner et al., 2018).

More broadly, we provide evidence for a novel theoretical
and formal framework for artifact cognition, as a form of
inverse planning. Previous work has shown that people use
inverse planning to understand the causal processes
underlying others’ actions (Baker et al., 2009; Liu et al.
2018). The current work extends this framework by
conceptualizing artifacts as the products of intentional action.
We suggest that people use fundamentally the same inverse
planning process to understand artifacts as they do to
understand actions themselves. Specifically, they rationally
take into account people’s goals and constraints not only
when observing actions, but also when observing artifacts
generated by these actions — even when the actions
themselves are not observed. This work thus links together
artifact cognition and theories of action understanding in a
new way, points to a deep connection between reasoning
about actions and artifacts, and provides a foundation for
formalizing the processes underlying a domain of ‘intuitive
archeology’ — social-causal reasoning about artifacts, as
products of intentional action.
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