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Abstract 
How do people use human-made objects (artifacts) to learn 
about the people and actions that created them? We test the 
richness of people’s reasoning in this domain, focusing on the 
task of judging whether social transmission has occurred (i.e. 
whether one person copied another). We develop a formal 
model of this reasoning process as a form of rational inverse 
planning, which predicts that rather than solely focusing on 
artifacts’ similarity to judge whether copying occurred, people 
should also take into account availability constraints (the 
materials available), and functional constraints (which 
materials work). Using an artifact-building task where two 
characters build tools to solve a puzzle box, we find that this 
inverse planning model predicts trial-by-trial judgments, 
whereas simpler models that do not consider availability or 
functional constraints do not.  This suggests people use a 
process like inverse planning to make flexible inferences from 
artifacts’ features about the source of design ideas.  

Keywords: social cognition; Bayesian inference; explanation; 
social transmission; imitation; artifact; design; inverse 
planning 

Introduction 
We live surrounded by human-made objects, or artifacts. 
These artifacts are crucial to our lives not only as tools, but 
also as an omnipresent source of social information. Based 
on the objects a person owns, people make quick and accurate 
judgments about a person’s traits, interests, and social 
affiliations (Gosling, 2008; Richins, 1994). The artifacts a 
person creates - like novel tools, art, music, or text - provide 
particularly rich information about the person and actions that 
created them (Gosling, 2008). 
    How do people reason about other individuals from the 
artifacts they create? Here we explore the nature of this 
reasoning, a form of intuitive archeology. In the same sense 
that archeologists use objects to make inferences about the 
people and cultures that created them, we propose that people 
also infer complex social-causal information from the design 
of artifacts, by integrating their mental theories of the 
physical-mechanical world with their theories of the social 
world (e.g. Battaglia, Hamrick & Tenenbaum, 2013; Gopnik, 
2012; Baker, Saxe & Tenenbaum, 2009) to infer the most 
probable explanation for an objects’ features. 

Intuitive Archeology as Inverse Planning 
Previous work in the domain of action understanding has 
proposed that people make inferences about the goals of 
others’ actions based on a process of ‘inverse planning’ 

(Baker, Saxe, & Tenenbaum, 2009; Liu, Ullman, Tenenbaum 
& Spelke, 2018). The idea of inverse planning is that people 
have knowledge of the generative process behind actions 
from planning their own – and this planning process allows 
them to know what a rational agent would do, given the same 
goals and environmental constraints. Therefore, when 
reasoning about others’ actions, people invert this generative 
process to infer the goals of another agent from its observed 
behaviors. Here we propose that a fundamentally similar 
inverse planning processing explains how we reason about 
the artifacts people create: People use their own generative 
model of how they would construct an artifact under a given 
set of constraints to infer the goals and decisions that led 
another person to create this artifact and its features. Such a 
reasoning process would allow people to flexibly infer a 
variety of social-causal information about others from the 
physical features of artifacts they create.  
    We focus on a foundational inference in this 
domain:  Inferring whether social transmission of ideas has 
occurred (i.e. imitation, copying), or whether a particular 
aspect of a design was generated independently by an 
individual. The interaction of these two basic processes, 
termed imitation and innovation, account for cultural 
evolution of artifacts’ designs over human history (Henrich, 
2015; Tomasello, 1999; Legare & Neilsen, 2015). This 
inference also has real-world applications for understanding 
plagiarism detection – and what can be reasonably expected 
of jurors in plagiarism cases as they consider two designs and 
determine the likelihood that copying has occurred. Lastly, 
this inference is foundational to understanding how people 
infer social-causal information from artifacts, since designs 
that were created independently license different inferences 
than those that were copied. For example, a highly functional, 
complex design that was independently generated may tell 
you about the intelligence or creativity of a designer 
(Gosling, 2008), whereas a design that was copied may 
instead be informative about the designer’s social history and 
cultural group (their source of shared knowledge; e.g. 
Schachner et al., 2018; Soley & Spelke, 2016). Thus, in the 
current work, we model and test how people infer whether or 
not copying (social transmission) occurred in the design of an 
artifact. 

Inverse Planning, Or a Simpler Cognitive Process?  
A natural alternative theory exists to the rich and structured 
explanation-based reasoning process proposed by inverse 
planning models. People may infer that copying occurred 
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using a simple heuristic based on perceptual similarity: If two 
things are more perceptually similar, then copying is more 
likely to have occurred. Notably, past work on detection of 
copying in music has relied on this type of simple similarity 
metric in formal models, to predict jury decisions in music 
plagiarism cases (Savage, Cronin, Müllensiefen, & Atkinson, 
2018). 
     In contrast to these straightforward similarity-based 
models, other work has provided initial evidence that people 
detect copying via a more complex process of inverse 
planning or explanation- based reasoning (Schachner et al., 
2018). In particular, this work found that people expect others 
to have a preference for efficiency, and factor this in when 
making inferences about copying. Thus, when two characters 
create identical train track designs that are also highly 
efficient ways to achieve the intended goal, observers use 
efficiency to ‘explain away’ the similarity – and thus judge 
copying less likely for identical efficient tracks than they 
would otherwise. 
     While this work is suggestive of a system of inverse 
planning, it is possible (and even plausible) that 
understanding of efficiency is unique and privileged in 
people’s reasoning. Reasoning about efficiency, and 
expecting others to act rationally by moving efficiently 
toward their goals, is thought to be foundational to cognition: 
It develops early in infancy (Gergely, Nádasdy, Csibra, & 
Bíró, 1995, Skerry, Carey & Spelke, 2013), is shared with 
other species (Hauser & Wood, 2010), and is a foundation for 
the entire domain of action understanding (Dennett, 1987; 
Baker et al. 2009). Thus, rather than showing a rich and 
flexible process of reasoning that takes into account a wide 
variety of alternative explanations (as proposed by inverse 
planning models), the evidence thus far is consistent with a 
much simpler system, in which similarity metrics are 
selectively overridden by privileged efficiency-based 
explanations. 

The Current Work  
In the current work, we test whether people use a rich and 
flexible process of inverse planning that takes into account 
alternative explanations that go beyond efficiency. In 
particular, we ask whether people rationally consider two 
factors: the range of materials available to build with, which 
we term the availability constraint; and whether each of the 
available materials would function or fail to function to solve 
the problem at hand, which we term the functional constraint. 
Rationally speaking, if a larger set of materials are available 
to choose from, similarity should be seen as stronger 
evidence of copying than if there is a smaller set of materials 
available to choose from (as the probability of selecting the 
same item by chance is lower; similar to the suspicious 
coincidence mechanism sometimes referred to as the ‘size  
principle’; Tenenbaum & Griffiths, 2001). Similarly, if many 
of these materials would solve the problem, similarity is more 
indicative of copying than if only one or a few of the options 
would solve the problem at hand – as clearly non-functional 
materials are unlikely to be used. We first formalize these  

 

    
Figure 1: Left: Tool selection task with example handles 

(which differ in color), and rods (which differ in shape and 
therefore functionality). Right: Example of two identical 

tools people might be shown on a particular trial. 
 

constraints and then experimentally test their usage when 
people make copying inferences.  

An Inverse Planning Model of Copy Detection 
To provide a clear test of the inverse planning account, and 
tease it apart from simpler alternatives, we model and test a 
simple artifact-building task which crucially involved both 
availability and functional constraints. Consider a scenario 
where one is asked to solve a puzzle: A button is out of reach 
in a box, with the front covered by glass, so only the hole in 
the top allows access. You must build a tool to reach the 
button. To do so, you are given two sets of pieces: 10 handles, 
which differ by color; and 10 rods, which differ by shape. 
You can connect one handle to one rod to form a two-part 
tool (see Figure 1). 
     You may be asked to solve one of two puzzle boxes, which 
differ in one respect: How many of the rods would work to 
solve them. In particular, for one box, all of the 10 rods would 
fit through the box’s circular hole and solve the puzzle 
(unconstrained; circle box). In the other case, only 1 of the 
10 rods fits (only the star-shaped rod fits into the star-shaped 
hole), and so only 1 of the 10 rods can be used to solve the 
puzzle (constrained; star box). This box thus introduces a 
functional constraint that applies selectively to rods, and not 
handles (which would all function in both cases). 
     Now, you observe two tools that other people have made: 
for example, two people built the same tool, choosing the 
same star-shaped rod and the same red handle. How likely are 
they to have copied each other? This task provides a simple 
instantiation of relevant issues people confront when making 
complex decisions about copying through inverse planning: 
Reasoning about the range of materials available to the 
builders; which pieces would work; and a multi-part decision 
process (choose a handle, choose a rod). 
     Formally, we can think of this task as having the following 
structure: You see a tool built by person 1, and a second tool 
built by person 2, in order to solve a puzzle box. You wish to 



infer whether person 2 copied the tool’s design from person 
1, or independently created it. 
     Each tool consists of two pieces linked together – a rod, r, 
and a handle, h – each of which was selected from the set of 
available options. Formally, you are asked to make an 
inference, where if c indicates whether person 2 copied 
person 1, you wish to infer the probability of copying 
 𝑃(𝑐|𝑟1, ℎ1, 𝑟2, ℎ2), given the observed rod and handle of 
person 1’s tool (𝑟1, ℎ1) and the observed rod and handle of 
person 2’s tool (𝑟2, ℎ2). Taking only the case of a rod being 
copied, and assuming copying judgments depend only on the 
rod and handle being identical or different (e.g., a binary 
notion of similarity), the posterior on copying is: 

𝑃(𝑐 ∣ 𝑟1, 𝑟2) =
𝑃(𝑐𝑟) 𝑃(𝑟2 == 𝑟1 ∣ 𝑐)

𝑃(𝑟2 == 𝑟1)
 

    This is the probability that copying has occurred, given 
your prior likelihood on copying and the relative likelihoods 
that such an overlapping design would be generated under 
each of the possible mechanisms (copying, c, vs. independent 
creation, ¬𝑐), where: 

𝑃(𝑟2 == 𝑟1) = 𝑃(𝑐𝑟) 𝑃( 𝑟2 == 𝑟1 ∣∣ 𝑐 )

+ (1 − 𝑃(𝑐𝑟)) ( 𝑟2 == 𝑟1 ∣∣ ¬𝑐 ) 
     In the current task this depends not only on the rod but on 
both the rod and handle, such that, when the rod is identical 
but the handle is not identical, this posterior on copying 
depends on 𝑃(𝑟2 == 𝑟1 ∣ 𝑐, 𝑟1), 𝑃( 𝑟2 == 𝑟1 ∣∣ ¬𝑐 ), 
𝑃( ℎ2 ≠ ℎ1 ∣∣ 𝑐 ), and 𝑃( ℎ2 ≠ ℎ1 ∣∣ ¬𝑐 ). This has the 
structure of a Bayes net, including the key concept of 
explaining away: A given aspect of the design can be 
generated either via copying or independently, and evidence 
for one provides evidence against the other. Thus, if two 
people create identical tool designs, but this design is also 
likely to be created independently (due to either availability 
constraints or functional constraints), this provides weak 
evidence of copying despite the identical tools. 
    To make this model concrete, we need to specify 5 things:  
      (1) 𝑃(𝑐𝑟), 𝑃(𝑐ℎ)  - the a priori estimate of how likely 
person 2 was to have copied either the rod or handle 
(unconditional on the data; i.e. before we see either of the 
built objects). This depends for example on how close or 
distant the two people are from one another (Schachner et al., 
2018). We assume the chance of copying is identical and 
independent for both rods and handles, e.g. 𝑃(𝑐𝑟) == 𝑃(𝑐ℎ), 
and refer to this as 𝑃(𝑐), the prior on copying. 
      (2) 𝑃( 𝑟2 == 𝑟1 ∣∣ 𝑐 ) - the likelihood of the particular rod 
being used by person 2 matching that of person 1, given that 
person 2 was in fact copying from person 1’s object. We 
formalize this as perfect copying plus a small error rate term, 
e, to account for the rate at which an individual might intend 
to copy but ultimately select a different rod:  𝑃(𝑟2 == 𝑟1 ∣
𝑐) = 1 − 𝑒. Therefore 𝑃( 𝑟2≠𝑟1 ∣∣ 𝑐 ) = 𝑒. 
     (3) 𝑃( 𝑟2 == 𝑟1 ∣∣ ¬𝑐 ) - the likelihood of rod 𝑟2 being the 
same as 𝑟1, given that person 2 was NOT copying from 
person 1’s object, and independently generated the object 
with no reliance on 𝑟1. When all pieces would function, this 
is simply 1/R, where R is the total number of rod choices 
available. However, functional constraints also affect this 

factor: When only a subset of pieces will function, this 
effectively reduces the number of reasonable options. 
Accordingly, in the context of a functional constraint, the 
model treats only the functional pieces as options, reducing 
the value of R to the number of functional options (if only 
one rod functions, R=1). 
     4) 𝑃( ℎ2 == ℎ1 ∣∣ 𝑐 ) - the likelihood of the particular 
handle being generated by person 2, given that person 2 was 
in fact copying from person 1’s object, and given ℎ1. This 
again is based on the same error rate e. 
      (5) 𝑃( ℎ2 == ℎ1 ∣∣ ¬𝑐 ) - the likelihood of handle ℎ2 
being the same as ℎ1, given that person 2 was NOT copying 
from person 1’s object, and independently generated the 
object with no reliance on ℎ1. In contrast to the rods above, 
the handles differ only in color rather than shape; thus, all 
handles function equally well in both the unconstrained 
(circle box) condition, and the functionally constrained (star 
box) condition. This is therefore simply 1/H, where H is the 
number of handle options. 

Comparing to Simpler Alternatives  
This model of inference as inverse planning posits that people 
consider both the number of available options and the 
functional constraint of the puzzle box when judging whether 
copying occurred. To test whether each of these components 
are needed to predict participants’ judgments, we compared 
this model to three simpler models. 
     These models followed a 2x2 structure, either taking into 
account or not taking into account the availability constraints 
(+/- availability) or the functional constraints (+/- 
functional).  For example, the model that considers 
availability constraints but ignores functional constraints 
does not take into consideration the functional constraint of 
the star box, e.g., assumes people choose among all rods even 
in the star box condition. The model which ignored 
availability constraints did not take into account the number 
of pieces available in a flexible way. Instead, this model 
posited that people had a fixed a-priori idea of the number of 
pieces available to choose from, and that this number did not 
change based on the situation presented. Thus, rather than 
choose a rod with 1/R, where R is the number of options, a 
parameter N quantified this fixed number of imagined 
choices (e.g., regardless of how many were present). This 
model did take into account the functional constraint of the 
star box (assuming people only choose the star rod in this 
case). A final simplified model ignored both functional and 
availability constraints, and thus effectively instantiated a 
simple perceptual similarity heuristic. This model only took 
into account the extent to which the pieces were similar, 
without taking into consideration either functional constraints 
or availability constraints. 

Testing the Models’ Predictions  
These models make quantitative predictions about the 
likelihood of copying for any given pair of tool designs, in a 
wide range of contexts. We next aimed to test how well the 
various models predict human behavior. The inverse 



planning model predicts that for two identical tools, people 
will infer that copying is more likely to have occurred when 
(a) there were more pieces available as options to build with, 
thus creating more of a suspicious coincidence that the same 
piece was chosen twice; (b) there were no functional 
constraints on which pieces would work or not work, thus 
allowing all of the available pieces to serve as equally good 
options. By contrast, the simplest perceptual similarity model 
predicts that any identical objects will lead people to infer 
copying. Thus, we focused our data collection on these and 
other particularly informative trials.  

Method 
Full study design/analysis plan including model code was 
preregistered on the Open Science Framework (OSF), and is 
available at https://osf.io/y8u7t.  

Participants 
Using a pre-registered design, N=108 adults from the U.S. 
(57 male, 50 female, 1 other gender identity; M age=37.9, 
SD=10.9, range=20-72) were recruited through Amazon’s 
Mechanical Turk. Sample size was preregistered and 
determined from power analysis of a pilot dataset with a 
slightly different design (N=20; tested a subset of the current 
test trials; with each subject completing all trials). The R 
“pwr” package was used to conduct a paired t-test power 
calculation on participant-level BICs with the goal of 90% 
power (Champely et al., 2018). Based on pre-registered 
exclusion criteria, additional participants were excluded due 
to: 1. Appearing to be non-native English speakers or a bot 
(n=13; determined by 2 independent coders’ rating of free-
response text answers) 2.  Incorrectly answering any memory 
check question (n=49) 3. Incorrectly answering 50% or more 
of the attention check questions (n=12). The number of 
participants failing the preregistered memory check questions 
was higher than expected, thus we reanalyzed the data with 
these participants included, and found that our model results 
and conclusions remain unchanged in this case (see Results). 

Design 
Participants were shown tools that two target individuals 
designed, and were asked to judge whether or not one of those 
individuals copied the other’s tool. Across trials 
we manipulated (1) the number of rod options available (2 
versus 10); (2) the number of handle options available (2 
versus 10); (3) The presence or absence of a functional 
constraint, i.e. whether they were trying to solve the circle or 
star puzzle box; (4) The extent of similarity of the two tools 
that were built (both rod and handle identical, one part 
identical and one part different, or both rod and handle 
different). As all designers were assumed to have 
successfully solved the puzzle, we did not include trials in the 
star box condition which had different rods, as this would 
involve building a tool that would not function. Thus in total 
there were 24 unique test trials. Because of the possibility of 
demand characteristics if all participants saw the full design, 
each participant completed only a randomly-selected subset 

of 4 trials, resulting in 18 unique participants completing each 
trial.  

Procedure 
Participants first received instructions regarding the puzzle-
box task, and that they would see pairs of tools that people 
had built to reach the button. Instructions described an 
ambiguous situation, where copying may or may not have 
occurred (“While designing the tools the people were in the 
same room, facing away from each other”). They were 
instructed that different pairs of people had different numbers 
of handles and rods to choose from (10 or 2), received either 
the circle box or star box to solve, and that only one of the 
rod pieces could fit into the star-shaped opening.   
     On each trial, participants saw (1) the two tools that the 
two people had built; (2) which puzzle box the people were 
trying to solve; (3) the materials they had available to build 
with. Participants were asked to judge as a 2-alternative 
forced choice: Do you think someone copied, or they made 
them independently?  
     After each trial, an attention check question asked either 
what puzzle box was present, the number of rod options, or 
number of handle options. At the end of the task, memory 
check questions asked participants to select which rods would 
work, and which handles would work, to successfully solve 
each of the two puzzle boxes. Lastly, participants were asked 
to describe what they did in the experiment and guess the 
point of the study in free-response format, and complete 
demographics questions. 

Analysis Plan 
For each model, the best fitting parameters and likelihood of 
our data given those parameters were assessed via maximum 
likelihood estimation (MLE). We decided a priori that the 
prior on copying (range:  0-1) and number of imagined 
choices (for models that do not use the real number that 
participants were presented with; range 0-infinity) should be 
fully free to vary, while the copying error rate e was bounded 
from 0 to a maximum of 0.1. For all models, using this a priori 
specification, the MLE-derived value for the copying error 
rate was at max (0.1). To make sure this boundedness was not 
responsible for our findings, we also reran analyses letting the 
error rate parameter vary (0-1), and found the same results for 
comparative model fits in this case. To compare models, we 
use BIC (Schwarz, 1978), which penalizes models for 
complexity according to their number of parameters. We used 
bootstrapping to calculate standard errors (SEs) for each BIC. 

Results 
We first checked that participants took into account the 
perceptual similarity of designs in their assessments of 
copying, as predicted by all four models. As expected, 
participants inferred copying most often when the two tool 
designs were identical (M=51.4%, SEM=9.8%), and least 
often when the two tools were most different (M=5.6%, 
SEM=2.3%; p<.01).  
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Table 1: Maximum likelihood parameters for each model 
 

Model Copying 
Prior, p(c) 

Error 
Rate 

Imagined 
# Options 

+Availability +Functional 0.09 0.10  
+Availability -Functional 0.06 0.10  
-Availability +Functional 0.09 0.10 5.31 
-Availability -Functional 0.11 0.10 2.76 

 
We next compared the fit of the four alternative models. 

The full model out-performed all competing models, with a 
difference in BIC of 35 (∓ SEM: 11-25) in comparison to the 
next-best-fit model and >400 to the other models (Table 2). 
Approximately the same results held when including 
individuals who failed the memory check: difference in BIC 
of 38 to next-best-fit model and >700 to the other models. In 
addition, the full model provided a good overall fit to 
participants’ responses across trials (R2= 0.75, Fig. 2A). 
   Note that while the model is relatively straightforward to 
specify, the predictions it makes are quite nuanced: because 
the model weighs and combines several factors, it predicts a 
continuous gradient of how likely copying should be, rather 
than simply saying people should never assume copying took 
place if there is any alternative explanation. The model thus 
goes well beyond verbal theories.  

Use of Availability Constraints 
Participants’ judgements showed sensitivity to availability 
constraints (i.e. the number of pieces available to build with), 
and the use of availability constraints as an alternative 
explanation for similarity. For example, on trials where two 
people made identical tools and no functional constraint was 
present, participants judged copying more likely as the 
number of available options increased (circle box condition: 
2 rods; 2 handles: 33% judged copied; 2 rods, 10 handles: 
72%; 10 rods, 2 handles: 72%; 10 rods, 10 handles: 83%). 

Use of Functional Constraints 
Participants also showed sensitivity to functional constraints, 
and used functional constraints as an alternative explanation 
for similarity. In particular, on trials where two people used 
identical rods, participants judged copying less likely on 
trials where they were solving the star box (which added a 
functional constraint; Mean copied=21.5%), vs. when they 
were solving the circle box (Mean copied=52.8%, p=0.02, 2 
tailed t-test). In contrast, on trials where two people used 
identical handles, participants’ judgements did not differ for 
the star vs. circle box (Star box: Mean copied=36.8%, Circle 
Box: Mean copied=37.5%; p=0.97, 2 tailed t-test), as 
predicted since all handle pieces would function equally well 
for both puzzle boxes. Although the model without functional 
constraints did not perform that poorly as measured by BIC, 
it did systematically miss this aspect of the data (see also 
deviations of this model in Figure 2). 

 
Figure 2: Fit of models’ predictions to participants’ ratings 

of whether copying occurred; each point represents one trial. 
The full inverse planning model appears top left; other plots 
show three simpler alternative models that do not consider 

either the availability constraints (-availability) or the 
functional constraints (-functional). 

 
Table 2: Difference in BIC from best fitting model 

(higher BIC indicates worse fit) 
 

Model BIC Δ to 
full model 

∓ SEM 

+Availability -Functional 35 11 - 25 
-Availability +Functional 467 422 - 490 
-Availability -Functional 491 468 - 512 

 
Participants’ judgments deviated slightly from the full 

model’s predictions in one regard: Participants appeared to 
under-weight the similarity of the handles, relative to the 
rods. For instance, the largest deviations between 
participants’ judgements and the full model’s predictions 
came on trials when the tools had different rods, but the same 
handle. To demonstrate this differential weighing of the rod 
vs. handle, consider trials where there are an equal number of 
rod and handle options, no functional constraint, and the built 
tools had only one similar piece. On these trials, people were 
considerably more likely to say the design was copied if the 
rod was similar than if the handle was (2 options: 0% vs.17%; 
10 options: 17% vs. 56%).  Thus, participants seemed to 
overweight evidence from the functionally-relevant 
component of the tool, even when functional constraints were 
not present.  

Overall, however, the good fit of the inverse planning 
model – and the continuous range of predictions it makes – 



supports the idea that participants use an inverse planning 
strategy in judging copying from artifacts. 

Discussion 
We find strong evidence that when reasoning about artifacts, 
people use a rich, flexible system of explanation-based 
reasoning to infer whether a design idea was copied or 
generated independently. We formalized such reasoning in a 
Bayesian model as a form of inverse planning. We compared 
this model to three simpler alternatives in a task where 
participants had to judge whether a pair of artifacts was 
copied or designed independently, to test whether each 
component of the full model was needed to predict 
judgments. 
     We found that the full inverse planning model best 
predicted participants’ judgments of whether copying had 
occurred. In line with the model, we found that people 
considered two broad classes of alternative explanations for 
artifacts’ similarity: the range of materials available to build 
with (availability constraints), and which of these materials 
would work to solve the problem (functional constraints). 
Both of these constraints ‘explained away’ similarity, making 
similarity weaker evidence of copying. This pattern of 
responses is the signature pattern of a Bayesian reasoner, in 
which a design can have different alternative explanations, 
and evidence for one provides evidence against the other 
(e.g., Gopnik et al. 2004).  
     The success of this model suggests people use a process 
of inverse planning to infer the source of design ideas from 
artifacts’ features. In other words, people consider the 
generative processes involved in building the artifacts, 
including what the goal would be, what constraints they 
would be subject to, and what (as a result) they would be 
likely to build. By inverting this generative process, people 
rationally infer the source of other people’s design ideas, 
taking into account goals and multiple kinds of constraints. 
    These findings show that inferences about the source of 
design ideas do not boil down to various simpler heuristics, 
or more limited systems of reasoning. First, copying 
judgments are not just based on the extent of perceptual 
similarity of the two objects, but take into account rational 
explanations for this similarity. This has implications for 
understanding how laypeople detect plagiarism in court 
cases, which has been previously formalized as a process of 
simple similarity detection (Savage et al., 2018). 
    Second, we show that this system of reasoning goes 
beyond efficiency: People can take into account multiple 
types of constraints as explanations for similarity, and are not 
limited only to reasoning about design efficiency as the only, 
privileged type of alternative explanation. This simpler 
efficiency-only account was consistent with previous 
findings, and plausible given the foundational role of 
efficiency in reasoning about intentional action (Schachner et 
al., 2018). The current data falsify this simpler account, 
showing that people flexibly take into account the materials 
available and the functional constraints of the puzzle boxes, 

which do not map to an efficiency metric (e.g. the length of a 
train track from A to B, used in Schachner et al., 2018).  
     More broadly, we provide evidence for a novel theoretical 
and formal framework for artifact cognition, as a form of 
inverse planning. Previous work has shown that people use 
inverse planning to understand the causal processes 
underlying others’ actions (Baker et al., 2009; Liu et al. 
2018). The current work extends this framework by 
conceptualizing artifacts as the products of intentional action. 
We suggest that people use fundamentally the same inverse 
planning process to understand artifacts as they do to 
understand actions themselves. Specifically, they rationally 
take into account people’s goals and constraints not only 
when observing actions, but also when observing artifacts 
generated by these actions – even when the actions 
themselves are not observed. This work thus links together 
artifact cognition and theories of action understanding in a 
new way, points to a deep connection between reasoning 
about actions and artifacts, and provides a foundation for 
formalizing the processes underlying a domain of ‘intuitive 
archeology’ – social-causal reasoning about artifacts, as 
products of intentional action. 
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