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Abstract

We develop differentially private methods for esti-

mating various distributional properties. Given a

sample from a discrete distribution p, some func-

tional f , and accuracy and privacy parameters α
and ε, the goal is to estimate f(p) up to accu-

racy α, while maintaining ε-differential privacy

of the sample. We prove almost-tight bounds on

the sample size required for this problem for sev-

eral functionals of interest, including support size,

support coverage, and entropy. We show that the

cost of privacy is negligible in a variety of set-

tings, both theoretically and experimentally. Our

methods are based on a sensitivity analysis of sev-

eral state-of-the-art methods for estimating these

properties with sublinear sample complexities.

1. Introduction

How can we infer a distribution given a sample from it?

If data is in abundance, the solution may be simple – the

empirical distribution will approximate the true distribution.

However, challenges arise when data is scarce in compari-

son to the size of the domain, and especially when we wish

to quantify “rare events.” This is frequently the case: for

example, it has recently been observed that there are several

very rare genetic mutations which occur in humans, and we

wish to know how many such mutations exist (Keinan &

Clark, 2012; Tennessen et al., 2012; Nelson et al., 2012).

Many of these mutations have only been seen once, and we

can infer that there are many which have not been seen at all.

Over the last decade, a large body of work has focused on

developing theoretically sound and effective tools for such

settings (Orlitsky et al., 2016) and references therein, includ-

ing the problem of estimating the frequency distribution of
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rare genetic variations (Zou et al., 2016).

However, in many settings where one wishes to perform

statistical inference, data may contain sensitive information

about individuals. For example, in medical studies, where

the data may contain individuals’ health records and whether

they carry some disease which bears a social stigma. Alter-

natively, one can consider a map application which suggests

routes based on aggregate positions of individuals, which

contains delicate information including users’ residence

data. In these settings, it is critical that our methods protect

sensitive information contained in the dataset. This does not

preclude our overall goals of statistical analysis, as we are

trying to infer properties of the population p, and not the

samples which are drawn from said population.

That said, without careful experimental design, published

statistical findings may be prone to leaking sensitive infor-

mation about the sample. As a notable example, it was

recently shown that one can determine the identity of some

individuals who participated in genome-wide association

studies (Homer et al., 2008). This realization has motivated

a surge of interest in developing data sharing techniques with

an explicit focus on maintaining privacy of the data (John-

son & Shmatikov, 2013; Uhler et al., 2013; Yu et al., 2014;

Simmons et al., 2016).

Privacy-preserving computation has enjoyed significant

study in a number of fields, including statistics and almost

every branch of computer science, including cryptography,

machine learning, algorithms, and database theory – see,

e.g., (Dalenius, 1977; Adam & Worthmann, 1989; Agrawal

& Aggarwal, 2001; Dinur & Nissim, 2003; Dwork, 2008;

Dwork & Roth, 2014) and references therein. Perhaps the

most celebrated notion of privacy, proposed by theoretical

computer scientists, is differential privacy (Dwork et al.,

2006). Informally, an algorithm is differentially private if

its outputs on neighboring datasets (differing in a single

element) are statistically close (for a more precise defini-

tion, see Section 2). Differential privacy has become the

standard for theoretically-sound data privacy, leading to its

adoption by several large technology companies, includ-

ing Google and Apple (Erlingsson et al., 2014; Differential

Privacy Team, Apple, 2017).

Our focus in this paper is to develop tools for privately

performing several distribution property estimation tasks. In



INSPECTRE: Privately Estimating the Unseen

particular, we study the tradeoff between statistical accuracy,

privacy, and error rate in the sample size. Our model is

that we are given sample access to some unknown discrete

distribution p, over a domain of size k, which is possibly

unknown in some tasks. We wish to estimate the following

properties:

• Support Coverage: If we take m samples from the

distribution, what is the expected number of unique

elements we expect to see?

• Support Size: How many elements of the support have

non-zero probability?

• Entropy: What is the Shannon entropy of the distribu-

tion?

For more formal statements of these problems, see Sec-

tion 2.1. We require that our output is α-accurate, satisfies

(ε, 0)-differential privacy, and is correct with probability

1−β. The goal is to give an algorithm with minimal sample

complexity n, while simultaneously being computationally

efficient.

Theoretical Results. Our main results show that privacy

can be achieved for all these problems at a very low cost.

For example, if one wishes to privately estimate entropy, this

incurs an additional additive cost in the sample complexity

which is very close to linear in 1/αε. We draw attention to

two features of this bound. First, this is independent of k.

All the problems we consider have complexity Θ(k/ log k),

so in the primary regime of study where k � 1/αε, this

small additive cost is dwarfed by the inherent sample com-

plexity of the non-private problem. Second, the bound is

almost linear in 1/αε. We note that performing even the

most basic statistical task privately, estimating the bias of a

coin, incurs this linear dependence. Surprisingly, we show

that much more sophisticated inference tasks can be pri-

vatized at almost no cost. In particular, these properties

imply that the additive cost of privacy is o(1) in the most

studied regime where the support size is large. In general,

this is not true – for many other problems, including dis-

tribution estimation and hypothesis testing, the additional

cost of privacy depends significantly on the support size

or dimension (Diakonikolas et al., 2015; Cai et al., 2017;

Acharya et al., 2017c; Aliakbarpour et al., 2017). We also

provide lower bounds, showing that our upper bounds are

almost tight. A more formal statement of our results appears

in Section 3.

Experimental Results. We demonstrate the efficacy of our

method with experimental evaluations. As a baseline, we

compare with the non-private algorithms of (Orlitsky et al.,

2016) and (Wu & Yang, 2018). Overall, we find that our

algorithms’ performance is nearly identical, showing that,

in many cases, privacy comes (essentially) for free. We

begin with an evaluation on synthetic data. Then, inspired

by (Valiant & Valiant, 2013; Orlitsky et al., 2016), we ana-

lyze text corpus consisting of words from Hamlet, in order to

estimate the number of unique words which occur. Finally,

we investigate name frequencies in the US census data. This

setting has been previously considered by (Orlitsky et al.,

2016), but we emphasize that this is an application where

private statistical analysis is critical. This is proven by ef-

forts of the US Census Bureau to incorporate differential

privacy into the 2020 US census (Dajani et al., 2017).

Techniques. Our approach works by choosing statistics

for these tasks which possess bounded sensitivity, which is

well-known to imply privacy under the Laplace or Gaussian

mechanism. We note that bounded sensitivity of statistics is

not always something that can be taken for granted. Indeed,

for many fundamental tasks, optimal algorithms for the non-

private setting may be highly sensitive, thus necessitating

crucial modifications to obtain differential privacy (Acharya

et al., 2015; Cai et al., 2017). Thus, careful choice and

design of statistics must be a priority when performing

inference with privacy considerations.

To this end, we leverage recent results of (Acharya et al.,

2017a), which studies estimators for non-private versions of

the problems we consider. The main technical work in their

paper exploits bounded sensitivity to show sharp cutoff-style

concentration bounds for certain estimators, which operate

using the principle of best-polynomial approximation. They

use these results to show that a single algorithm, the Pro-

file Maximum Likelihood (PML), can estimate all these

properties simultaneously. On the other hand, we consider

the sensitivity of these estimators for purposes of privacy

– the same property is utilized by both works for very dif-

ferent purposes, a connection which may be of independent

interest.

We note that bounded sensitivity of a statistic may be ex-

ploited for purposes other than privacy. For instance, by

McDiarmid’s inequality, any such statistic also enjoys very

sharp concentration of measure, implying that one can boost

the success probability of the test at an additive cost which

is logarithmic in the inverse of the failure probability. One

may naturally conjecture that, if a statistical task is based

on a primitive which concentrates in this sense, then it may

also be privatized at a low cost. However, this is not true

– estimating a discrete distribution in `1 distance is such a

task, but the cost of privatization depends significantly on

the support size (Diakonikolas et al., 2015).

One can observe that, algorithmically, our method is quite

simple: compute the non-private statistic, and add a rela-

tively small amount of Laplace noise. The non-private statis-

tics have recently been demonstrated to be practical (Orlit-

sky et al., 2016; Wu & Yang, 2018), and the additional cost

of the Laplace mechanism is minimal. This is in contrast to

several differentially private algorithms which invoke sig-

nificant overhead in the quest for privacy. Our algorithms
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attain almost-optimal rates (which are optimal up to constant

factors for most parameter regimes of interest), while simul-

taneously operating effectively in practice, as demonstrated

in our experimental results.

Related Work. Over the last decade, there have been a

flurry of works on the problems we study in this paper by

the computer science and information theory communities,

including Shannon and Rényi entropy estimation (Paninski,

2003; Valiant & Valiant, 2017; Jiao et al., 2017; Acharya

et al., 2017b; Obremski & Skorski, 2017; Wu & Yang, 2018),

support coverage and support size estimation (Orlitsky et al.,

2016; Wu & Yang, 2018). A recent paper studies the gen-

eral problem of estimating functionals of discrete distribu-

tion from samples in terms of the smoothness of the func-

tional (Fukuchi & Sakuma, 2017). These have culminated in

a nearly-complete understanding of the sample complexity

of these properties, with optimal sample complexities (up

to constant factors) for most parameter regimes.

Recently, there has been significant interest in performing

statistical tasks under differential privacy constraints. Per-

haps most relevant to this work are (Cai et al., 2017; Acharya

et al., 2017c; Aliakbarpour et al., 2017), which study the

sample complexity of differentialy privately performing clas-

sical distribution testing problems, including identity and

closeness testing. Other works investigating private hypothe-

sis testing include (Wang et al., 2015a; Gaboardi et al., 2016;

Kifer & Rogers, 2017; Kakizaki et al., 2017; Rogers, 2017;

Gaboardi & Rogers, 2017), which focus less on characteriz-

ing the finite-sample guarantees of such tests, and more on

understanding their asymptotic properties and applications

to computing p-values. There has also been study on private

distribution learning (Diakonikolas et al., 2015; Duchi et al.,

2017; Karwa & Vadhan, 2018; Acharya et al., 2018; Kamath

et al., 2018), in which we wish to estimate parameters of the

distribution, rather than just a particular property of interest.

A number of other problems have been studied with privacy

requirements, including clustering (Wang et al., 2015b; Bal-

can et al., 2017), principal component analysis (Chaudhuri

et al., 2013; Kapralov & Talwar, 2013; Hardt & Price, 2014),

ordinary least squares (Sheffet, 2017), and much more.

2. Preliminaries

We will start with some definitions.

Let ∆
def
= {(p(1), . . . , p(k)) : p(i) ≥ 0,

∑k
i=1 p(i) =

1, 1 ≤ k ≤ ∞} be the set of discrete distributions over

a countable support. Let ∆k be the set of distributions in ∆
with at most k non-zero probability values. A property f(p)
is a mapping from ∆ → R. We now describe the classical

distribution property estimation problem, and then state the

problem under differential privacy.

Property Estimation. Given α, β, f , and independent

samples Xn
1 from an unknown distribution p, design an

estimator f̂ : Xn
1 → R such that with probability at least

1 − β,

∣

∣

∣
f̂(Xn

1 ) − f(p)
∣

∣

∣
< α. The sample complexity of f̂ ,

Cf̂ (f, α, β)
def
= min{n : Pr

(
∣

∣

∣
f̂(Xn

1 ) − f(p)
∣

∣

∣
> α

)

< β}

is the smallest number of samples to estimate f to accu-

racy α, and error β. We study the problem for β = 1/3,

and by the median trick, we can boost the success proba-

bility to 1 − β with an additional multiplicative log(1/β)
more samples. Therefore, focusing on β = 1/3, we define

Cf̂ (f, α)
def
= Cf̂ (f, α, 1/3). The sample complexity of esti-

mating a property f(p) is the minimum sample complexity

over all estimators: C(f, α) = minf̂ Cf̂ (f, α).

An estimator f̂ is ε-differentially private (DP) (Dwork et al.,

2006) if for any Xn
1 and Y n

1 , with dham(Xn
1 , Y n

1 ) ≤ 1,
Pr (f(Xn

1
)∈S)

Pr (f(Y n

1
)∈S)

≤ eε, for all measurable S.

Private Property Estimation. Given α, ε, β, f , and inde-

pendent samples Xn
1 from an unknown distribution p, de-

sign an ε-differentially private estimator f̂ : Xn
1 → R such

that with probability at least 1 − β,

∣

∣

∣
f̂(Xn

1 ) − f(p)
∣

∣

∣
< α.

Similar to the non-private setting, the sample complexity of

ε-differentially private estimation problem is C(f, α, ε) =
minf̂ :f̂ is ε-DP

Cf̂ (f, α, 1/3), the smallest number of samples

n for which there exists such an ε-DP ±α estimator with

error probability at most 1/3.

In their original paper (Dwork et al., 2006) provides a

scheme for differential privacy, known as the Laplace mech-

anism. This method adds Laplace noise to a non-private

scheme in order to make it private. We first define the sen-

sitivity of an estimator, and then state their result in our

setting.

Definition 1. The sensitivity of an estimator f̂ : [k]n →

R is ∆n,f̂

def
= maxdham(Xn

1
,Y n

1
)≤1

∣

∣

∣
f̂(Xn

1 ) − f̂(Y n
1 )
∣

∣

∣
. Let

Df̂ (α, ε) = min{n : ∆n,f̂ ≤ αε}.

Lemma 1.

C(f, α, ε) = O

(

min
f̂

{

Cf̂ (f, α/2) + Df̂

(α

4
, ε
)}

)

.

Proof. (Dwork et al., 2006) showed that for a function with

sensitivity ∆n,f̂ , adding Laplace noise X ∼ Lap(∆n,f̂ /ε)
makes the output ε-differentially private. By the definition

of Df̂ ( α
4 , ε), the Laplace noise we add has parameter at

most α
4 . Recall that the probability density function of

Lap(b) is 1
2b e−

|x|
b , hence we have Pr (|X| > α/2) < 1

e2 .

By the union bound, we get an additive error larger than

α = α
2 + α

2 with probability at most 1/3+ 1
e2 < 0.5. Hence,

with the median trick, we can boost the error probability
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to 1/3, at the cost of a constant factor in the number of

samples.

To prove sample complexity lower bounds for differentially

private estimators, we observe that the estimator can be

used to test between two distributions with distinct property

values, hence is a harder problem. For lower bounds on

differentially private testing, (Acharya et al., 2017c) gives

the following argument based on coupling:

Lemma 2. Suppose there is a coupling between distribu-

tions p and q over X n, such that E [dham(Xn
1 , Y n

1 )] ≤ D.

Then, any ε-differentially private algorithm that distin-

guishes between p and q with error probability at most

1/3 must satisfy D = Ω
(

1
ε

)

.

2.1. Problems of Interest

Support Size. The support size of a distribution p is

S(p) = |{x : p(x) > 0}|, the number of symbols with non-

zero probability values. However, notice that estimating

S(p) from samples can be hard due to the presence of sym-

bols with negligible, yet non-zero probabilities. To circum-

vent this issue, (Raskhodnikova et al., 2009) proposed to

study the problem when the smallest probability is bounded.

Let ∆≥ 1

k

def
= {p ∈ ∆ : p(x) ∈ {0} ∪ [1/k, 1]} be the set of

all distributions where all non-zero probabilities have value

at least 1/k. For p ∈ ∆≥ 1

k

, our goal is to estimate S(p) up

to ±αk with the least number of samples from p.

Support Coverage. For a distribution p, and an integer m,

let Sm(p) =
∑

x(1−(1−p(x))m), be the expected number

of symbols that appear when we obtain m independent

samples from the distribution p. The objective is to find the

least number of samples n in order to estimate Sm(p) to an

additive ±αm.

Support coverage arises in many ecological and biological

studies (Colwell et al., 2012) to quantify the number of new

elements (gene mutations, species, words, etc) that can be

expected to be seen in the future. Good and Toulmin (Good

& Toulmin, 1956) proposed an estimator that for any con-

stant α, requires m/2 samples to estimate Sm(p).

Entropy. The Shannon entropy of a distribution p is

H(p) =
∑

x p(x) log 1
p(x) , H(p) is a central object in in-

formation theory (Cover & Thomas, 2006), and also arises

in many fields such as machine learning (Nowozin, 2012),

neuroscience (Berry et al., 1997; Nemenman et al., 2004),

and others. Estimating H(p) is hard with any finite number

of samples due to the possibility of infinite support. To cir-

cumvent this, a natural approach is to consider distributions

in ∆k. The goal is to estimate the entropy of a distribution in

∆k to an additive ±α, where ∆k is all discrete distributions

over at most k symbols.

3. Statement of Results

Our theoretical results for estimating support coverage, sup-

port size, and entropy are given below. Algorithms for these

problems and proofs of these statements are provided in Sec-

tion 4. Our experimental results are described and discussed

in Section 5.

Theorem 1. The sample complexity of support coverage

estimation C(Sm, α, ε) is















O
(

m log(1/α)
log m + m log(1/α)

log(2+εm)

)

, when m ≥ 1
αε

O
(

1
α2 + 1

αε

)

, when 1
α ≤ m ≤ 1

αε

O
(

m2 + m
ε

)

. when m ≤ 1
α

Furthermore,

C(Sm, α, ε) = Ω

(

m log(1/α)

log m
+

1

αε

)

.

Theorem 2. The sample complexity of support size estima-

tion C(S, α, ε) is















O
(

k log2(1/α)
log k + k log2(1/α)

log(2+εk)

)

, when k ≥ 1
αε

O
(

k log(1/α) + 1
αε

)

, when 1
α ≤ k ≤ 1

αε

O
(

k log k + k
ε

)

. when k ≤ 1
α

Furthermore,

C(S, α, ε) =

{

Ω
(

k log2(1/α)
log k + 1

αε

)

, when k ≥ 1
α

Ω
(

k log k + k
ε

)

. when k ≤ 1
α

Theorem 3. Let λ > 0 be any small fixed constant. For

instance, λ can be chosen to be any constant between 0.01
and 1. We have the following upper bounds on the sample

complexity of entropy estimation C(H, α, ε):

O

(

k

α
+

log2(min{k, n})

α2
+

1

αε
log

(

1

αε

))

and

O

(

k

λ2α log k
+

log2(min{k, n})

α2
+

(

1

αε

)1+λ
)

.

Furthermore,

C(H, α, ε) = Ω

(

k

α log k
+

log2(min{k, n})

α2
+

log k

αε

)

.

We provide some discussion of our results. At a high level,

we wish to emphasize the following two points:
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1. Our upper bounds show that the cost of privacy in these

settings is often negligible compared to the sample

complexity of the non-private statistical task, especially

when we are dealing with distributions over a large

support. Furthermore, our upper bounds are almost

tight in all parameters.

2. The algorithmic complexity introduced by the require-

ment of privacy is minimal, consisting only of a single

step which noises the output of an estimator. In other

words, our methods are realizable in practice, and we

demonstrate the effectiveness on several synthetic and

real-data examples.

Before we continue, we emphasize that, in Theorems 1

and 2, we consider the “sublinear” regime to be of primary

interest (when m ≥ 1
αε or k ≥ 1

αε , respectively), both

technically, and in terms of parameter regimes which may

be of greatest interest in practice. We include results for

other regimes mostly for completeness.

First, we examine our results on support coverage and sup-

port size estimation in the sublinear regime, when m ≥ 1
αε

(focusing on support coverage for simplicity, but support

size is similar). In this regime, if ε = Ω(mγ/m) for any

constant γ > 0, then up to constant factors, our upper bound

is within a constant factor of the optimal sample complex-

ity without privacy constratints. In other words, for most

meaningful values of ε, privacy comes for free. In the non-

sublinear regime for these problems, we provide upper and

lower bounds which match in a number of cases. We note

that in this regime, the cost of privacy may not be a lower

order term – however, this regime only occurs when one

requires very high accuracy, or unreasonably large privacy,

which we consider to be of somewhat lesser interest.

Next, we turn our attention to entropy estimation. We note

that the second upper bound in Theorem 3 has a parameter λ
that indicates a tradeoff between the sample complexity in-

curred in the first and third term. This parameter determines

the degree of a polynomial to be used for entropy estima-

tion. As the degree becomes smaller (corresponding to a

large λ), accuracy of the polynomial estimator decreases,

however, at the same time, low-degree polynomials have a

small sensitivity, allowing us to privatize the outcome.

In terms of our theoretical results, one can think of λ = 0.01.

With this parameter setting, it can be observed that our upper

bounds are almost tight. For example, one can see that the

upper and lower bounds match to either logarithmic factors

(when looking at the first upper bound), or a very small

polynomial factor in 1/αε (when looking at the second up-

per bound). For our experimental results, we empirically

determined an effective value for the parameter λ on a single

synthetic instance. We then show that this choice of param-

eter generalizes, giving highly-accurate private estimation

in other instances, on both synthetic and real-world data.

4. Algorithms and Analysis

We now prove our results for support coverage estimation,

Theorem 1, while support size and entropy estimation ap-

pear in the supplementary material. We first describe and

analyze our algorithms, and then go on to describe and an-

alyze a lower bound construction, showing that our upper

bounds are almost tight.

All our algorithms fall into the following simple framework:

1. Compute a non-private estimate of the property;

2. Privatize this estimate by adding Laplace noise, where

the parameter is determined through analysis of the es-

timator and potentially computation of the estimator’s

sensitivity.

4.1. Support Coverage Estimation

4.1.1. UPPER BOUND FOR SUPPORT COVERAGE

ESTIMATION

We split the analysis into two regimes. First, we focus on

the case where m ≤ 1
αε , and we prove the upper bound

O
(

1
α2 + 1

αε

)

. Note that the problem is identical for any

α < 1
m , since this corresponds to estimating the sup-

port coverage exactly, and the above bound simplifies to

O
(

m2 + m
ε

)

. The algorithm in this case is simple: since

n = Ω(m), we group the dataset into n/m batches of size

m. Let Yj be the number of unique symbols observed in

batch j. Our estimator is Ŝm(Xn
1 ) = m

n

∑n/m
j=1 Yj . Ob-

serve that E [Yj ] = Sm(p), and that Var[Yj ] ≤ m. The

latter can be seen by observing that Yj is the sum of m
negatively correlated indicator random variables, each one

being the indicator of whether that sample in the batch

is the first time the symbol is observed. This gives that

Ŝm(Xn
1 ) is an unbiased estimator of Sm(p), with variance

O(m2/n). By Chebyshev’s inequality, since we want an

estimate which is accurate up to ±αm, this gives us that

CŜm
(Sm(p), α/2) = O

(

1
α2

)

. Furthermore, we can see that

the sensitivity of Ŝm(Xn
1 ) is at most 2m/n. By Lemma 1,

there is a private algorithm for support coverage estima-

tion as long as ∆
(

Ŝm(Xn

1
)

m

)

≤ αε. With the above bound

on sensitivity, this is true with n = O(1/αε), giving the

desired upper bound.

Now, we turn our attention to the case where m ≥ 1
αε ,

and we prove the upper bound O
(

m log(1/α)
log m + m log(1/α)

log(2+εm)

)

.

Let ϕi be the number of symbols that appear i times in Xn
1 .

We will use the following non-private support coverage

estimator from (Orlitsky et al., 2016):

Ŝm(Xn
1 ) =

n
∑

i=1

ϕi

(

1 − (−t)i · Pr (Z ≥ i)
)

,

where Z is a Poisson random variable with mean r (which
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is a parameter to be instantiated later), and t = (m − n)/n.

Our private estimator of support coverage is derived by

adding Laplace noise to this non-private estimator with the

appropriate noise parameter, and thus the performance of

our private estimator, is analyzed by bounding the sensitiv-

ity and the bias of this non-private estimator according to

Lemma 1.

The sensitivity and bias of this estimator is bounded in the

following lemmas.

Lemma 3. Suppose m > 2n, then the maximum coefficient

of ϕi in Ŝm(p) is at most 1 + er(t−1).

Proof. By the definition of Z, we know Pr (Z ≥ i) =
∑∞

k=i e−r rk

k! , hence we have: |1 + (−t)i · Pr (Z ≥ i)| ≤

1 + ti
∑∞

k=i e−r rk

k! ≤ 1 + e−r
∑∞

k=i
(rt)k

k! ≤ 1 +

e−r
∑∞

k=0
(rt)k

k! = 1 + er(t−1).

The bias of the estimator is bounded in Lemma 4

of (Acharya et al., 2017a):

Lemma 4. If m > 2n, then

∣

∣

∣
E

[

Ŝm(Xn
1 )
]

− Sm(p)
∣

∣

∣
≤

2 + 2er(t−1) + min(m, S(p)) · e−r.

Using these results, letting r = log(1/α), (Orlitsky et al.,

2016) showed that there is a constant C, such that with

n = C m
log m log(1/α) samples, with probability at least 0.9,

∣

∣

∣

Ŝm(Xn

1
)

m − Sm(p)
m

∣

∣

∣
≤ α.

Our upper bound in Theorem 1 is derived by the follow-

ing analysis of the sensitivity of
Ŝm(Xn

1
)

m . If we change

one sample in Xn
1 , at most two of the ϕj’s change.

Hence by Lemma 3, the sensitivity of the estimator sat-

isfies ∆
(

Ŝm(Xn

1
)

m

)

≤ 2
m ·

(

1 + er(t−1)
)

. By Lemma 1,

there is a private algorithm for support coverage estima-

tion as long as ∆
(

Ŝm(Xn

1
)

m

)

≤ αε, which, by the in-

equality above, holds if 2(1 + exp(r(t − 1))) ≤ αεm.
Let r = log(3/α), note that t − 1 = m

n − 2. Sup-

pose αεm > 2, then, the condition above reduces to

log
(

3
α

)

·
(

m
n − 2

)

≤ log
(

1
2 αεm − 1

)

. This is equivalent

to n ≥ m log(3/α)

log( 1

2
αεm−1)+2 log(3/α)

= m log(3/α)

log( 3

2
εm−3/α)+log(3/α)

.

Suppose αεm > 2, then the condition above reduces to the

requirement that n = Ω
(

m log(1/α)
log(2+εm)

)

.

4.1.2. LOWER BOUND FOR SUPPORT COVERAGE

ESTIMATION

We now prove the lower bound described in Theorem 1.

Note that the first term in the lower bound is the sample com-

plexity of non-private support coverage estimation, shown

in (Orlitsky et al., 2016). Therefore, we turn our attention

to prove the last term in the sample complexity.

Consider the following two distributions. u1 is uniform

over [m(1 + α)]. u2 is distributed over m + 1 elements

[m] ∪ {4} where u2[i] = 1
m(1+α) ∀i ∈ [m] and u2[4] =

α
1+α . Moreover, 4 /∈ [m(1 + α)]. Then, Sm(u1) =

m(1 + α) ·
(

1 −
(

1 − 1
m(1+α)

)m)

, and Sm(u2) = m ·
(

1 −
(

1 − 1
m(1+α)

)m)

+
(

1 −
(

1 − α
1+α

)m)

. Therefore,

Sm(u2) − Sm(u1) = mα ·
(

1 −
(

1 − 1
m(1+α)

)m)

−
(

1 −
(

1 − α
1+α

)m)

= Ω(αm).

Hence we know there support coverage differs by Ω(αm).

Moreover, their total variation distance is α
1+α . The follow-

ing lemma is folklore, based on the coupling interpretation

of total variation distance, and the fact that total variation

distance is subadditive for product measures.

Lemma 5. For any two distributions p, and q, there is a

coupling between n i.i.d. samples from the two distributions

with an expected Hamming distance of dTV(p, q) · n.

Using Lemma 5 and dTV(u1, u2) = α
1+α , we have

Lemma 6. Suppose u1 and u2 are as defined before, there

is a coupling between un
1 and un

2 with expected Hamming

distance equal to α
1+α n.

Moreover, given n samples, we must be able to privately dis-

tinguish between u1 and u2 given an α accurate estimator of

support coverage with privacy considerations. Thus, accord-

ing to Lemma 2 and 6, we have α
1+α n ≥ 1

ε ⇒ n = Ω
(

1
εα

)

.

5. Experiments

We evaluated our methods for entropy estimation and sup-

port coverage on both synthetic and real data. Overall, we

found that privacy is quite cheap: private estimators achieve

accuracy which is comparable or near-indistinguishable to

non-private estimators in many settings. Our results on en-

tropy estimation and support coverage appear in Sections 5.1

and 5.2, respectively. Code of our implementation is

available at https://github.com/HuanyuZhang/

INSPECTRE.

5.1. Entropy

We compare the performance of our entropy estimator with

a number of alternatives, both private and non-private. Non-

private algorithms considered include the plug-in estima-

tor (plug-in), the Miller-Madow Estimator (MM) (Miller,

1955), the sample optimal polynomial approximation es-

timator (poly) of (Wu & Yang, 2016). We analyze the

privatized versions of plug-in, and poly in the supplemen-

tary material. The implementation of the latter is based on
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code from the authors of (Wu & Yang, 2016)1. We compare

performance on different distributions including uniform,

a distribution with two steps, Zipf(1/2), a distribution with

Dirichlet-1 prior, and a distribution with Dirichlet-1/2 prior,

and over varying support sizes.

While plug-in, and MM are parameter free, poly (and

its private counterpart) have to choose the degree L of the

polynomial to use, which manifests in the parameter λ in

the statement of Theorem 3. (Wu & Yang, 2016) suggests

the value of L = 1.6 log k in their experiments. How-

ever, since we add further noise, we choose a single L
as follows: (i) Run privatized poly for different L val-

ues and distributions for k = 2000, ε = 1, (b) Choose

the value of L that performs well across different distri-

butions (See Figure 1). We choose L = 1.2 · log k from

this, and use it for all other experiments. To evaluate the

sensitivity of poly, we computed the estimator’s value at

all possible input values, computed the sensitivity, (namely,

∆ = maxdham(Xn

1
,Y n

1
)≤1 |poly(Xn

1 ) − poly(Y n
1 )|), and

added noise distributed as Lap
(

0, ∆
ε

)

.

The RMSE of various estimators for k = 1000, and ε = 1
for various distributions are illustrated in Figure 2. The

RMSE is averaged over 100 iterations in the plots.

We observe that the performance of our private-poly is

near-indistinguishable from the non-private poly, particu-

larly as the number of samples increases. It also performs

significantly better than all other alternatives, including the

non-private Miller-Madow and the plug-in estimator. The

cost of privacy is minimal for several other settings of k
and ε, additional experiments appear in the supplementary

material.

5.2. Support Coverage

We investigate the cost of privacy for the problem of support

coverage. We provide a comparison between the Smoothed

Good-Toulmin estimator (SGT) of (Orlitsky et al., 2016)

and our algorithm, which is a privatized version of their

statistic (see Section 4.1.1). Our implementation is based on

code provided by the authors of (Orlitsky et al., 2016). As

shown in our theoretical results, the sensitivity of SGT is at

most 2(1 + er(t − 1)), necessitating the addition of Laplace

noise with parameter 2(1 + er(t−1))/ε. Note that while the

theory suggests we select the parameter r = log(1/α), α is

unknown. We instead set r = 1
2t loge

n(t+1)2

t−1 , as previously

done in (Orlitsky et al., 2016).

1See https://github.com/Albuso0/entropy for
their code for entropy estimation.

5.2.1. EVALUATION ON SYNTHETIC DATA

In our synthetic experiments, we consider different distribu-

tions over different support sizes k. We generate n = k/2
samples, and then estimate the support coverage at m = n·t.
For large t, estimation is harder. Some results of our evalua-

tion on synthetic are displayed in Figure 3. We compare the

performance of SGT, and privatized versions of SGT with

parameters ε = 1, 2, and 10. For this instance, we fixed

the domain size k = 20000. We ran the methods described

above with n = k/2 samples, and estimated the support

coverage at m = nt, for t ranging from 1 to 10. The perfor-

mance of the estimators is measured in terms of RMSE over

1000 iterations.

We observe that, in this setting, the cost of privacy is rela-

tively small for reasonable values of ε. This is as predicted

by our theoretical results, where unless ε is extremely small

(less than 1/k) the non-private sample complexity domi-

nates the privacy requirement. However, we found that for

smaller support sizes (as shown in the supplementary ma-

terial), the cost of privacy can be significant. We provide

an intuitive explanation for why no private estimator can

perform well on such instances. To minimize the number

of parameters, we instead argue about the related problem

of support-size estimation. Suppose we are trying to dis-

tinguish between distributions which are uniform over sup-

ports of size 100 and 200. We note that, if we draw n = 50
samples, the “profile” of the samples (i.e., the histogram

of the histogram) will be very similar for the two distribu-

tions. In particular, if one modifies only a few samples (say,

five or six), one could convert one profile into the other.

In other words, these two profiles are almost-neighboring

datasets, but simultaneously correspond to very different

support sizes. This pits the two goals of privacy and accu-

racy at odds with each other, thus resulting in a degradation

in accuracy.

5.2.2. EVALUATION ON CENSUS DATA AND HAMLET

We conclude with experiments for support coverage on two

real-world datasets, the 2000 US Census data and the text

of Shakespeare’s play Hamlet, inspired by investigations

in (Orlitsky et al., 2016) and (Valiant & Valiant, 2017). Our

investigation on US Census data is also inspired by the fact

that this is a setting where privacy is of practical importance,

evidenced by the proposed adoption of differential privacy

in the 2020 US Census (Dajani et al., 2017).

The Census dataset contains a list of last names that appear

at least 100 times. Since the dataset is so oversampled,

even a small fraction of the data is likely to contain almost

all the names. As such, we make the task non-trivial by

subsampling mtotal = 86080 individuals from the data,

obtaining 20412 distinct last names. We then sample n of

the mtotal individuals without replacement and attempt to
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