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SUMMARY

This study explores how uncertainty in time-varying parameter estimates obtained using nonlinear
filtering algorithms with parameter tracking affects corresponding model output predictions. Results
are demonstrated on a numerical example estimating the time-varying external voltage parameter in
the FitzHugh-Nagumo system for modeling the spiking dynamics of neurons.

Key words: time-varying parameter estimation, parameter uncertainty, nonlinear filtering

1 INTRODUCTION

Many applications in modern-day science involve system parameters that are unknown and must be
estimated using little to no prior information. The problem of estimating and quantifying uncertainty
in such parameters remains a big challenge in computational and applied mathematics. A subset of
these parameter estimation problems involve system parameters that change with time but do not
have known evolution models. One example includes the external voltage parameter in modeling the
spiking dynamics of neurons [1], which may exhibit periodic behavior.

This study explores the effects of uncertainty in time-varying parameter estimates obtained using
nonlinear filtering algorithms with parameter tracking, with particular focus on how uncertainty in
the parameter estimates affect corresponding model output predictions. As will be demonstrated on a
numerical example estimating the time-varying external voltage parameter in the FitzHugh-Nagumo
model, uncertainty in this setting results from the choice of the drift variance in the parameter tracking
algorithm, along with the inability of parameter tracking to maintain the structural characteristics
(such as periodicity) of the parameter. Results show how parameter uncertainties have a noticeable
effect on the corresponding FitzHugh-Nagumo model predictions.

2 METHODOLOGY
2.1 The Parameter Estimation Inverse Problem

The parameter estimation inverse problem is to estimate the unknown (or poorly known) parameters
of a system given noisy, sometimes partial observations of the system states (or some function of
the system states). More specifically, assume the system dynamics are described by an ordinary

differential equation model

dx

E = f(t,I,H), m(O) = To, (1)

where © = z(t) € R? is the vector of model states, # € RP? is the vector of unknown parameters,
f R x R? x R? — R is the known model function, and x is the vector of initial values (which
may also be unknown or poorly known). Further assume discrete, noisy observations

yk:g(x(tk),e)—l-wk, O<ti<ta<...<tp )
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where g : R? x RP — R™, m < d, is the known observation function and wy, represents the
observation error. The inverse problem is therefore to estimate the parameters # and model states x(t)
at given times from the observations yy.

2.2 Parameter Tracking via Nonlinear Filtering

While there are many approaches to solving the classic parameter estimation inverse problem as
posed, nonlinear filtering algorithms provide a natural framework for estimating time-varying pa-
rameters given time series data, as considered in this study. Nonlinear filtering methods fall under
the category of Bayesian approaches to solving the inverse problem, where the model states  and
parameters 6 are treated as random variables with probability distributions, and their joint posterior
density is assembled using Bayes’ theorem

m(x,0 | y) < 7(y | z,0)7(x,0) 3)

with likelihood function 7(y | z, ) and prior distribution 7(z, #). Nonlinear filters (also known as
sequential Monte Carlo methods) rely on the use of discrete-time stochastic equations describing the
model states and observations to sequentially update the joint posterior density 7 (z, 6 | y). Denoting
by D; the accumulated observations up to time t;, the posterior distribution 7(z;, 6 | D;) is updated
sequentially using a two-step, predictor-corrector-type scheme:

m(xj,0 | Dj) — m(xj41,0 | Dj) — m(2j41,0 | Djy1). “)

The first step (the prediction step) uses the state evolution model to predict the values of the states
at time ?; 1 without knowledge of the data, while the second step (the analysis step or observation
update) uses the observation equation to correct that prediction by taking into account the data at ¢ 1.
Starting with a prior density 7(zo,6 | Do), Do = 0, this updating scheme is repeated until the final
joint posterior density is obtained when j = T'.

Various nonlinear filtering algorithms exist in the literature, including particle filters [4, 5, 6] and en-
semble Kalman filters (EnKFs) [7, 8, 9]. In standard formulations of these algorithms, the parameters
6 are assumed to be static, i.e., df/dt = 0, and are artificially evolved over time. However, in cases
where the parameter values change slowly over time, a drift can be added to the parameters in the
prediction step in order to track the change in the parameters over time, modeling the change as a
random walk

Ojr1="0; + &1, &t ~ N(0,Ej1). ©)

The covariance E ;11 of the drift term, typically modeled as Ej 1 = agl with drift variance U?, must be

carefully chosen a priori for each application considered in order to avoid filter divergence and obtain
a useful parameter estimate. The choice of ag has a direct effect on the amount of uncertainty in the
resulting parameter estimate. Parameter tracking also does not guarantee that structural characteristics
(such as periodicity) are maintained, introducing additional uncertainty into the parameter estimate.

3 NUMERICAL RESULTS

To explore the effects of uncertainty in the parameter tracking estimates of time-varying parame-
ters, consider the following numerical example of estimating the external voltage parameter in the
FitzHugh-Nagumo model [2], which is commonly used as a simplified version of the Hodgkin-Huxley
model [3] for studying the spiking dynamics of neurons. The FitzHugh-Nagumo system is given by

3
% = c(xg +a;— % + v(t)) 6)
d.%'z o 1
W = —E(.Tfl — a+b$2> (7)

where x; describes the measurable membrane potential of the neuron and x5 is an unobservable
combined effect of different ionic currents. While the parameters a, b, and c are typically assigned as
some known constants, the time-varying external voltage parameter v(t) is unknown.
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Figure 1: States and external voltage parameter of the FitzHugh-Nagumo system. Noisy observations of
21 (top, blue markers) of the FitzHugh-Nagumo system (6)—(7), along with the unobserved state x5 (bottom,
solid black) and external voltage parameter v(t) (bottom, dashed black).

Figure 2: Parameter tracking estimates of the external voltage parameter. EnKF with parameter tracking
estimates of the voltage parameter v(t) in the FitzHugh-Nagumo system (6)—(7). The estimated EnKF mean is
plotted in solid red, and the 42 standard deviation curves are plotted in blue and green, respectively. The true
sinusoidal voltage function used to generate the synthetic data is plotted in black.

Figure 1 shows synthetic data generated from the system (6)—(7) with initial conditions 1 (0) = 1 and
x2(0) = 0.5, fixed parameters a = 0.7, b = 0.8, and ¢ = 3, and modeling the time-varying external
voltage parameter as a periodic, sinusoidal function v(¢) = 0.5sin(wt + 7/2) — 1 with frequency
w = 0.1, varying more slowly than the system dynamics; a similar example was considered in [1, 10].
Data was generated by taking measurements of 7 at 1571 equidistant time instances over the interval
from ¢ = 0 to ¢t = 314, which covers five periods of v(t). Observations were corrupted with zero-
mean Gaussian noise with standard deviation assigned to be 20% of the standard deviation of ;.

Figure 2 shows the resulting mean and +2 standard deviation curves estimating v(t) via parameter
tracking with an augmented EnKF in the style of [9, 10] using n = 15 ensemble members and drift
standard deviation o¢ = 0.01. While the resulting curves are able to track the general shape of the
underlying sinusoidal function, periodicity is not maintained. Further, model predictions using these
curves result in widely different time series estimates of x; and x9, shown in Figure 3.

4 CONCLUSIONS

The results shown in Figure 3 demonstrate the sensitivity of the FitzZHugh-Nagumo system (6)—(7)
to uncertainty in the estimate of the external voltage parameter v(¢). While the parameter tracking
approach is able to capture the general behavior of the parameter over time, it is not able to maintain
the periodicity intrinsic to the parameter. Uncertainty in the external voltage parameter estimates
result in model predictions that are unable to capture fully the true underlying model states and differ
significantly between the mean estimate and 12 standard deviation curves. This motivates future work
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Figure 3: Model predictions using parameter tracking estimates of the external voltage parameter.

Model predictions obtained using the parameter tracking estimates of the external voltage parameter v(¢) in the
FitzHugh-Nagumo system (6)—(7). Predictions of the model states x; and x5 using the EnKF mean estimate
are plotted in solid red (middle), while the £2 standard deviation curves are plotted in blue (top) and green
(bottom), respectively. The true model states used to generate the synthetic data are plotted in dashed black.

to develop parameter tracking algorithms that are able to better maintain structural characteristics
while estimating time-varying parameters.
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