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Abstract—Cooperative computation is a promising approach
for localized data processing at the edge, e.g., for Internet of
Things (IoT). Cooperative computation advocates that compu-
tationally intensive tasks in a device could be divided into sub-
tasks, and offloaded to other devices or servers in close proximity.
However, exploiting the potential of cooperative computation is
challenging mainly due to the heterogeneous and time-varying
nature of edge devices. Coded computation, which advocates
mixing data in sub-tasks by employing erasure codes and offload-
ing these sub-tasks to other devices for computation, is recently
gaining interest, thanks to its higher reliability, smaller delay, and
lower communication costs. In this paper, we develop a coded
cooperative computation framework, which we name Coded
Cooperative Computation Protocol (C3P), by taking into account
the heterogeneous resources of edge devices. C3P dynamically
offloads coded sub-tasks to helpers and is adaptive to time-
varying resources. We show that (i) task completion delay of C3P
is very close to optimal coded cooperative computation solutions,
(ii) the efficiency of C3P in terms of resource utilization is higher
than 99%, (iii) C3P improves task completion delay significantly
as compared to baselines via both simulations and in a testbed
consisting of real Android-based smartphones.

I. INTRODUCTION

Data processing is crucial for many applications at the
edge including Internet of Things (IoT), but it could be
computationally intensive and not doable if devices operate
individually. One of the promising solutions to handle com-
putationally intensive tasks is computation offloading, which
advocates offloading tasks to remote servers or cloud. Yet,
offloading tasks to remote servers or cloud could be luxury that
cannot be afforded by most of the edge applications, where
connectivity to remote servers can be lost or compromised,
which makes localized processing crucial.

Cooperative computation is a promising approach for edge
computing, where computationally intensive tasks in a device
(collector device) could be offloaded to other devices (helpers)
in close proximity as illustrated in Fig. 1. These devices
could be other IoT or mobile devices, local servers, or fog
at the edge of the network [1], [2]. However, exploiting the
potential of cooperative computation is challenging mainly due
to the heterogeneous and time-varying nature of the devices at
the edge. Indeed, these devices may have different and time-
varying computing power and energy resources, and could be
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(a) Offloading sub-tasks from a
collector to helpers

Fig. 1. Cooperative computation to compute y = Ax. (a) Matrix A is
divided into sub-matrices A1, Az, ..., Ax. Each sub-matrix along with the
vector X is transmitted from the collector to one of the helpers. (b) Each
helper computes the multiplication of its received sub-matrix with vector x
and sends the computed value back to the collector.

(b) Helpers send computed sub-tasks
back to the collector

mobile. Thus, our goal is to develop a dynamic, adaptive, and
heterogeneity-aware cooperative computation framework by
taking into account the heterogeneity and time-varying nature
of devices at the edge.

We focus on the computation of linear functions. In partic-
ular, we assume that the collector’s data is represented by a
large matrix A and it wishes to compute the product y = Ax,
for a given vector x, Fig. 1. In fact, matrix multiplication
forms the atomic function computed over many iterations of
several signal processing, machine learning, and optimization
algorithms, such as gradient descent based algorithms, classi-
fication algorithms, etc. [3], [4], [5], [6].

In cooperative computation setup, matrix A is divided into
sub-matrices Ay, As, ..., Ay and each sub-matrix along with
the vector x is transmitted from the collector to one of the
helpers, Fig. 1(a). Helper n computes A,x, and transmits
the computed result back to the collector, Fig. 1(b), who can
process all returned computations to obtain the result of its
original task; i.e., the calculation of y = Ax.

Coding in computation systems is recently gaining inter-
est in large scale computing environments, and it advocates
higher reliability and smaller delay [3]. In particular, coded
computation (e.g., by employing erasure codes) mixes data in
sub-tasks and offloads these coded sub-tasks for computation,
which improves delay and reliability. The following canonical
example inspired from [3] demonstrates the effectiveness of
coded computation.

Example 1: Let us consider that a collector device would
like to calculate y = Ax with the help of three helper devices



(helper 1, helper 2, and helper 3), where the number of rows
in A is 6. Let us assume that each helper has a different
runtime; helper 1 computes each row in 1 unit time, while
the second and the third helpers require 2 and 10 units of
time for computing one row, respectively. Assuming that these
runtimes are random and not known a priori, one may divide
A to three sub-matrices; A1, Ao, and As; each with 2 rows.
Thus, the completion time of these sub-matrices becomes 2, 4,
and 20 at helpers 1, 2, and 3, respectively. Since the collector
should receive all the calculated sub-matrices to compute its
original task; ie, y = Ax, the total task completion delay
becomes max(2,4,20) = 20.

As seen, helper 3 becomes a bottleneck in this scenario,
which can be addressed using coding. In particular, A could
be divided into two sub-matrices A and As; each with 3 rows.
Then, A; and A, could be offloaded to helpers 1 and 2, and
A1+ Aj could be offloaded to helper 3. In this setup, runtimes
become 3, 6, and 30 at helpers 1, 2, and 3, respectively.
However, since the collector requires reply from only two
helpers to compute y = Ax thanks to coding, the total task
completion delay becomes max(3,6) = 6. As seen, the task
completion delay reduces to 6 from 20 with the help of coding.
O

The above example demonstrates the benefit of coding
for cooperative computation. However, offloading sub-tasks
with equal sizes to all helpers, without considering their
heterogeneous resources is inefficient. Let us consider the
same setup in Example 1. If A; with 4 rows and Ay with
2 rows are offloaded to helper 1 and helper 2, respectively,
and helper 3 is not used, the task completion delay becomes
max(4,4) = 4, which is the smallest possible delay in
this example. Furthermore, the resources of helper 3 are not
wasted, which is another advantage of taking into account the
heterogeneity as compared to the above example. As seen, it
is crucial to divide and offload matrix A to helpers by taking
into account the heterogeneity of resources.

Indeed, a code design mechanism under such a heteroge-
neous setup is developed in [7], where matrix A is divided,
coded, and offloaded to helpers by taking into account hetero-
geneity of resources. However, available resources at helpers
are generally not known by the collector a priori and may
vary over time, which is not taken into account in [7]. For
example, the runtime of helper 1 in Example 1 may increase
from 1 to 20 while computing (e.g., it may start running
another computationally intensive task), which would increase
the total task completion delay. Thus, it is crucial to design a
coded cooperation framework, which is dynamic and adaptive
to heterogeneous and time-varying resources, which is the goal
of this paper.

In this paper, we design a coded cooperative computation
framework for edge computing. In particular, we design a
Coded Cooperative Computation Protocol (C3P), which pack-
etizes rows of matrix A into packets, codes these packets using
Fountain codes, and determines how many coded packets each
helper should compute dynamically over time. We provide
theoretical analysis of C3P’s task completion delay and effi-

ciency, and evaluate its performance via simulations as well as
in a testbed consisting of real Android-based smartphones as
compared to baselines. The following are the key contributions
of this work:

o We formulate the coded cooperative computation problem
as an optimization problem. We investigate the non-
ergodic and static solutions of this problem. As a dynamic
solution to the optimization problem, we develop a coded
cooperative computation protocol (C3P), which is based
on Automatic Repeat reQuest (ARQ) mechanism. In
particular, a collector device offloads coded sub-tasks to
helpers gradually, and receives Acknowledgment (ACK)
after each sub-task is computed. Depending on the time
difference between offloading a sub-task to a helper
and its ACK, the collector estimates the runtime of the
helpers, and offloads more/less tasks accordingly. This
makes C3P dynamic and adaptive to heterogeneous and
time-varying resources at helpers.

o We characterize the performance of C3P as compared to
the non-ergodic and static solutions, and show that (i)
the gap between the task completion delays of C3P and
the non-ergodic solution is finite even for large number of
sub-tasks, i.e., R — 0o, and (ii) the task completion delay
of C3P is approximately equal to the static solution for
large numbers of sub-tasks. We also analyze the efficiency
of C3P in each helper in closed form, where the efficiency
metric represents the effective utilization of resources at
each helper.

o We evaluate C3P via simulations as well as in a testbed
consisting of real Android-based smartphones and show
that (i) C3P improves task completion delay significantly
as compared to baselines, and (ii) the efficiency of C3P
in terms of resource utilization is higher than 99%.

The structure of the rest of this paper is as follows. Section
IT presents the coded cooperative computation problem for-
mulation. Section III presents the ergodic and static solutions
to coded cooperative computation problem and the design of
C3P. Section IV provides the performance analysis of C3P.
Section V presents the performance evaluation of C3P. Section
VI presents related work. Section VII concludes the paper.

II. PROBLEM FORMULATION

Setup. We consider a setup shown in Fig. 1, where the
collector device offloads its task to helpers in the set N (where
N = |N]) via device-to-device (D2D) links such as Wi-
Fi Direct and/or Bluetooth. In this setup, all devices could
potentially be mobile, so the encounter time of the collector
with helpers varies over time. Ie., the collector can connect
to less than IV helpers at a time.

Application. As we described in Section I, we focus on
computation of linear functions; i.e.,, the collector wishes
to compute y = Ax where A = (a;;) € RF*E| and
x = (z;;) € RF*! Our goal is to determine sub-matrix
A, = (a;;) € R™*E that will be offloaded to helper n,
where r,, is an integer.



Coding Approach. We use Fountain codes [8], [9], which
are ideal in our dynamic coded cooperation framework thanks
to their rateless property, low encoding and decoding com-
plexity, and low overhead. In particular, the encoding and
decoding complexity of Fountain codes could be as low as
O(Rlog(R)) for LT codes and O(R) for Raptor codes and
the overhead, i.e., K, could be as low as 5% [10]. We note
that Fountain codes perform better than (i) repetition codes
thanks to randomization of sub-tasks by mixing them, (ii)
maximum distance separable (MDS) codes as MDS codes
require a priori task allocation (due to their block coding
nature) and are not suitable for the dynamic and adaptive
framework that we would like to develop, and (iii) network
coding as the decoding complexity of network coding is too
high [11], which introduces too much computation overhead
at the collector which obsoletes the computation offloading
benefit.

Packetization. In particular, we packetize each row of A into
a packet and create R packets; I' = {p1, po,...,pr}. These
packets are used to create Fountain coded packets, where v;
is the ith coded packet. The coded packet v; is transmitted
to a helper, where the helper computes the multiplication of
v;x and sends the result back to the collector. R + K coded
computed packets are required at the collector to decode the
coded packets, where K is the coding overhead. Let p,, ; be
the jth coded packet generated by the collector and the ith
coded packet transmitted to helper n; p,; = v;,j > i.

Delay Model. Each transmitted packet p, ; experiences
transmission delay between the collector and helper n as well
as computing delay at helper n. Also, the computed packet
Dn,iX experiences transmission delay while transmitted from
helper n to the collector. The average round trip time (RTT)
of sending a packet to helper n and receiving the computed
packet, is characterized as RT'T3. The runtime of packet p,, ;
at helper n is a random variable denoted by 3, ;.! Assuming
that r,, packets are offloaded to helper n, the total task comple-
tion delay for helper n to receive r, coded packets, compute
them, and send the results back to the collector becomes D,,,
which is expressed as D, = RTT3* + 5" 3, ;. Note that
RTT% in this formulation is due to transmitting the first
packet p, 1 and receiving the last computed packet p,, , x
The other packets can be transmitted while helpers are busy
with processing packets; it is why we do not sum RT7T9%@
across packets.

Problem Formulation. Our goal is to determine the task
offloading set R = {r1,...,ry} that minimizes the total task
completion delay, i.e., we would like to dynamically determine
‘R that solves the following optimization problem:

minmax D,,
R neN

'Our framework is compatible with any delay distribution, but for the
sake of characterizing the efficiency of our algorithm, and simulating its task
completion delay, we use shifted exponential distribution in Sections IV-D
and V.

N
subject to Z rn =R,r, eN,Yn e N. (1)
n=1
The objective of the optimization problem in (1) is to minimize
the maximum of per helper task completion delays, which
is equal to max,cn Dy, as helpers compute their tasks in
parallel. The constraint in (1) is a task conservation constraint
that guarantees that resources of helpers are not wasted, i.e.,
the sum of the received computed tasks from all helpers is
equal to the number of rows of matrix A. Note that this con-
straint is possible thanks to coding.> As we mentioned earlier,
R+ K coded computed packets are required at the collector to
decode the coded packets when we use Fountain codes. The
constraint in (1) guarantees this requirement in an idealized
scenario assuming that &' = 0. The constraint r,, € N makes
sure that the number of tasks r, is an integer. The solution
of (1) is challenging as (i) D, = RTT%@ + Sty By is
a random variable and not known a priori, and (ii) it is an
integer programming problem.

III. PROBLEM SOLUTION & C3P DESIGN

In this section, we investigate the solution of (1) for non-
ergodic, static, and dynamic setups.

A. Non-Ergodic Solution

Let us assume that the solution of (1) is

,rbesl

Tbest _ maj\}[{ (RTTdata + Z Bn 1) )

ne,

where 2% = argmin, cymax,en (RTTda‘a +> ﬂmg.
We note that (2) is a non-ergodic solution as it requires the
perfect knowledge of 3,, ; a priori. Although we do not have a
compact solution of T, the solution in (2) will behave as a
performance benchmark for our dynamic and adaptive coded
cooperative computation framework in Section IV-A.

B. Static Solution

We assume that RTT9 becomes negligible as compared
to Y :" B, This assumption holds in practical scenarios
with large R, and/or when transmission delay is smaller
than processing delay. Then, D, can be approximated as
>i" . Bn,i, and the optimization problem in (1) becomes

mln max Z Bni
N
subject to Z rn=R,r, €N,Yn e N. 3)
n=1

As a static solution, we solve the expected value of the
objective function in (3) by relaxing the integer constraint, i.e.,

2We note that the optimal computation offloading problem, when coding is
not employed is formulated as minr, max, e (RTTH® + Z‘F ol Bn.i)
subject to u —1I'n = I’ where I', C T is the set of packets ofﬂoaded
to helper n. As seen, the optimization problem in (1) is more tractable as
compared to this problem thanks to employing Fountain codes.



r, € N. The expected value of the objective function of (3) is
expressed as E[max,en iy Bn,i], which is greater than or
equal to max,en Yoy EBn,i] = max,en 7, E[By,i] (noting
that max(.) is a convex function, so E[max(.)] > max(E[.])),
where expectation is across the packets. Assuming that the av-
erage task completion delay is 7' = E[max,en Y ioq Bnil >
maxpen Tn F[Bn,], (3) is converted to

min 1T
R
subject to 1, E[B,.i] < T,¥Yn € N
N
> =R 4)
n=1

We solve (4) using Lagrange relaxation (we omit the steps
of the solution as it is straightforward); the optimal task
offloading policy becomes

static R

s _ , 5)
ElBni] Yon_1 57

and the optimal task completion delay becomes 7€ —
R . Although the solution in (5) is an optimal

N 1
n=1 B[y ;]

solution of (4), the algorithm that offloads S sub-tasks
to helper n a priori (static allocation) loses optimality as it
is not adaptive to the time-varying nature of resources (i.e.,
Bn,i)- Next, we introduce our Coded Cooperative Computation
Protocol (C3P) that is dynamic and adaptive to time-varying
resources and approaches to the optimal solution in (5) with
increasing R.

C. Dynamic Solution: C3P

We consider the system setup in Fig. 1, where the collector
connects to NN helpers. In this setup, the collector device
offloads coded packets gradually to helpers, and receives two
ACKs for each packet; one confirming the receipt of the
packet by the helper, and the second one (piggybacked to the
computed packet p,, ;x) showing that the packet is computed
by the helper. Inspired by ARQ mechanisms [12], the collector
transmits more/less coded packets based on the frequency of
the received ACKs.

In particular, we define the transmission time interval
TTI, ; as the time interval between sending two consecutive
packets, p, ; and p, ;11, to helper n by the collector. The goal
of our mechanism is to determine the best 71'I,, ; that reduces
the task completion delay and increases helper efficiency
(i.e., exploiting the full potential of the helpers while not
overloading them).

TTI, ; in an ideal scenario. Let T'x,, ; be the time that p,, ;
is transmitted from the collector to helper n, T'c,, ; be the time
that helper n finishes computing p,, ;, and T'r,, ; be the time
that the computed packet (i.e., by abusing the notation p,, ;x)
is received by the collector from helper n. We assume that
the time of transmitting the first packet to each helper, i.e.,
Pn,Vn € N, is zero; ie., Tx, 1 =0, Vn € N.

Let us first consider the ideal scenario, Fig. 2(a), where
TTI, ; is equal to B, ; for all packets that are transmitted

to helper n. Indeed, if TT1,; > [, Fig. 2(b), helper n
stays idle, which reduces the efficient utilization of resources
and increases the task completion delay. On the other hand,
if TTI,; < Bn; Fig. 2(c), packets are queued at helper
n. This congested (overloaded) scenario is not ideal, because
the collector can receive enough number of packets before
all queued packets in helpers are processed, which wastes
resources.

Determining TT1, ; in practice. Now that we know that
TTI,; = Bpn,; should be satisfied for the best system effi-
ciency and smallest task completion delay, the collector can
set TT1, ; to B, ;. However, the collector does not know f3,, ;
a priori as it is the computation runtime of packet p,; at
helper n. Thus, we should determine T"T'I,, ; without explicit
knowledge of 3, ;.

Our approach in C3P is to estimate 5, ; as E[8, ], where
expectation is taken over packets. We will explain how to
calculate E[f, ;] later in this section, but before that let us
explain how to use estimated E[f,, ;] for setting TT'L, ;. It is
obvious that if the computed packet p,, ;x is received at the
collector before packet p,, ;41 is transmitted from the collector
to helper n, the helper will be idle until it receives packet
Dn,i+1. Therefore, to better utilize resources at helper n, the
collector should offload a new packet before or immediately
after receiving the computed value of the previous packet,
ie, TTI,; < Tr,; — Tx,,; should be satisfied as in
Fig. 2. Therefore, if the calculated E[3, ;] is larger than
Try; —Txy,;, then we set TT1, ; as T'ry, ; — T'xy ; to satisfy
this condition. In other words, TTI,, ; is set to

TTI,; = min(Try,; — Txp i, E]Bn.il)- (6)

Calculation of E[B,;]. In C3P, E[f, ;] is estimated using
runtimes of previous packets:
m
" B
B[]~ 20 M

My

where m,, is the number of computed packets received at
the collector from helper n before sending packet p,, ;4.
In order to calculate (7), the collector device should have
Bn,i values from the previous offloaded packets. A straight-
forward approach would be putting timestamps on sub-tasks
to directly access the runtimes (3, ; at the collector. However,
this approach introduces overhead on sub-tasks. Thus, we also
developed a mechanism, where the collector device infers f3,, ;
by taking into account transmission and ACK times of sub-
tasks. The details of this approach is provided in Appendix A
of [13].

C3P in a nutshell. The main goal of C3P is to determine
packet transmission intervals, TT'I,, ;, according to (6), which
is summarized in Algorithm 1. Note that Algorithm 1 has
also a timeout value defined in line 7, which is needed for
unresponsive helpers. If helper n is not responsive, 1711, ; is
quickly increased as shown in line 6 so that fewer and fewer
packets could be offloaded to that helper. In particular, C3P
doubles TT'I,, ; when the timeout for receiving ACK occurs.
This is inspired by additive increase multiplicative decrease
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Fig. 2. Different states of the system: (a) ideal case, (b) underutilized case, and (c) congested case.
Algorithm 1 C3P algorithm at the collector e
ST data
1: Initialize: TO,, = oo, ¥n € N. — nax (RTT + Z B z)
2: while R + K calculated packets have not been received
d() Thes&
. . . . dat:
3:  if Calculated packet p, ;x is received before timeout < max (RTT an g Z Bn,i + Ty, 1))
expires then i=1
4: Calculate TT'I,, ; according to (7) and (6) e
5 else —Iax (RTTdata +) Bn z)
6: TTI,; =2 xTTI, ;. i=1
7:

Update timeout as T'0,, = 2771, ;

strategy of TCP, where the number of transmitted packets are
halved to backoff quickly when the system is not responding.

After TT1I,; is updated when a transmitted packet is
ACKed or timeout occurs, this interval is used to determine
the transmission times of the next coded packets. In particular,
coded packets are generated and transmitted one by one to all
helpers with intervals T7'I,, ; until (i) TT'I,, ; is updated with
a new ACK packet or when timeout occurs, or (ii) the collector
collects R + K computed packets. Next, we characterize the
performance of C3P.

IV. PERFORMANCE ANALYSIS OF C3P
A. Performance of C3P w.rt. the Non-Ergodic Solution

In this section, we analyze the gap between C3P and the
non-ergodic solution characterized in Section III-A. Let us first
characterize the task completion delay of C3P as

C3P

C3P __ dat.
T Lne%i(RTT”—i-z; ﬂnl—l—Tu,”))

= argmin, max,ey (RTTﬁa‘a + 3 (B +

Tup;) ), and Tu, ; is per packet under-utilization time at
helper n, which occurs as C3P does not have a priori knowl-
edge of (3, ;, but it estimates (3, ; and accordingly determines
packet transmission times TT'[,, ; according to (6). The gap
between 7% and 7! in (2) is upper bounded by:

®)

where r53®

c3p
T‘VL

Tbest _ 1ax (RTTdata + Z(ﬂnﬂ + Tun,i))

neN

TC3P

< m (RTTddtd + Z B 1) + max Z Ty,

i=1
Tbcxl
— max (RTTd‘““ +3 8. z)
i=1
besl
= max Z Tuy,;, )]
where the first inequality comes from 75 = argmin,.

max, e\’ (RTTg‘“‘Il + >0 (Bnyi + Tup,;) ) and the second
inequality comes from the fact that max(f(z) + g(z)) <
(max(f(z)) + max(g(x))).> As seen, the gap between C3P
and the non-ergodic solution is bounded with the sum of
Tuy, ;. The next theorem characterizes T'uy, ;.

Theorem 1: T'u,, ; is monotonically decreasing with increas-
ing number of sub-tasks, and lim;_, . Pr(Tu,; > 0) — 0.
Proof: Let us first consider the following that identifies the
conditions for positive Ty, j41.

Lemma 2: The necessary and sufficient conditions to satisfy
Tum-_H > 0 are

S By <kE[B Vk=1,2,....0  (10)
j=itl—k
Proof: The proof is provided in Appendix B of [13]. (]

According to the conditions given in Lemma 2, the proba-

3Note that in (9), we assume that the runtime of packet i at helper 7 is the
same both in the non-ergodic solution and C3P, which is necessary for fair
comparison.



bility of T'u,; > 0 is calculated as:
E[Bn,i] [2E[Bn,i]l—z:
Pr(Tu,,; > 0) :/ /
0 0

,Ii)dl’l N dl‘i,

/iE[ﬁn,i]z;z Ba,

0
(11
fﬁn,l-,-uﬁn,i(xh s
where fg, . ..g,.(x1,...,2;) is the joint probability den-
sity function of (Sp1,...,0n,:). With the assumption that
Bnjsj =1,2,...,1 is from an i.i.d distribution, the joint prob-
ability distribution function of 3, 1,..., B, is the product of
1 probability distribution functions:

ElBn,i] [2B[Bn,i]—x; PE[Bn ] =g @
Pr(Tuy,,; > 0) :/ / /
0 0 0

(12)

E[Bn,i] 2E[Bn,i]—x:
:/o fﬁn,i(xi)/(; fﬁn,,;(xz'—ﬂ

(ifl)E[ﬁn,i]fzj‘:s Tj
- Fona2)
0
BB il =35
/ fﬁﬂl ("El)dxld$2d1'1
0

13)
E[Bn,i] 2E[ﬂn,’t]7wi
< / fou (1) / fou (2io)
0 0

(i—=1)E[Bn, |- g x;
h / fﬁn,i(xQ)d‘rQ«udl'i

(14)

0

E[Bn,i]
/ fpoi(Tiz1)
0

2E([Bn,i]—xi—1
/ fﬂn,i (xi_Q)"'
0

(i-1)E[Bni]- 312} 2
/ f,an (xl)dxl...d;v,;_l,
0

5)
where the last inequality comes from the fact that
fSE[ﬁn’i]_ze “ fg, .(w1)day is less than 1, because the

probability density function is integrated over a finite range
of variable x;, and the last equality comes from a change of
variables in the integrals. (15) is equal to Pr(Tu,;—1 > 0)
and thus Pr(Tu,; > 0) < Pr(Tup,—1 > 0). Similarly, we
can show that:

Pr(Tup; > 0) < Pr(Tu, 1 >0),Yj =2,3,...,i (16)

From the above equation, we can conclude that as i
gets larger and larger, Pr(Tu,,; > 0) gets smaller, and
lim; oo Pr(Tu,,; > 0) — 0 is satisfied. This concludes the
proof. |

We can conclude from Theorem 1 that the rate of the
increase in the gap between C3P and the non-ergodic solu-
tion decreases with increasing the number of sub-tasks and

eventually the rate becomes zero for R — oo. Therefore, the
~gap becomes finite even for R — oo.

J

B. Performance of C3P w.r.t the Static Solution

In this section, we analyze the performance of C3P as
compared to the static solution characterized in Section III-B.
The next theorem characterizes the task completion delay of
C3P as well as the optimal task offloading policy.

Theorem 3: The task completion delay of C3P approaches
to

R+ K
N )
Zn:l E[,Blnl}

with increasing R and the number of offloaded tasks to helper
n is approximated as

TC3P ~

7)

R+ K
roP ~ —- (18)
EBnil Y ono1 w5
Proof: Proof is provided in Appendix C of [13]. (]

Theorem 3 shows that the task completion delay of C3P
is getting close to the static solution 7" characterized in
Section III-B with increasing R. The gap between T*%i¢ and
TC3® is K which is due to the coding overhead of

N 1
Fountain codes, which becomes negligible for large R.

n=1 E[B,, ;]

C. Performance of C3P w.r.t. Repetition Codes

In this section, we demonstrate the performance of C3P
as compared to repetition coding with Round-robin (RR)
scheduling through an illustrative example. Repetition codes
with RR scheduling works as follows. Uncoded packets from
the set I' = {p1,p2,...,pr} is offloaded to helpers one by
one (in round robin manner) depending on their sequence in
T". For example, p; is offloaded to helper 1, ps is offloaded to
helper 2, and so on. When all the packets are offloaded from
T', we start again from the first packet in the set (so it is a
repetition coding). Note that whenever a packet is computed
and a corresponding ACK is received, the packet is removed
from I'. Thus, this RR scheduling continues until I becomes
an empty set. We use 111, ; in (6) to determine the next
scheduling time for helper n. The next example demonstrates
the benefit of C3P as compared to this repetition coding
mechanism with RR scheduling.

Example 2: We consider the same setup in Example 1.

We assume that per-packet runtimes are 811 = 1,812 =
1,13 =0.5,614 = 1,615 = 1.5, fo.1 = 1.5,022 = 3.5,
and 331 = 3,832 = 2.5, and the transmission times of

packets are negligible.

As seen in Fig. 3(a), RR scheduler sends p;, p2, and p3
to helpers 1, 2, and 3, respectively at time ¢ = 0. At time
t = 1, the computed packet pix is received at the collector,
and p4, which is the next packet selected by RR scheduler,
is transmitted to helper 1. Similarly, at time ¢ = 1.5, pax
is received at the collector, and ps is transmitted to helper
2. Similarly, the next packets are transmitted to helpers until
the result of all packets are received at the collector, which
is achieved at time ¢ = 5. As seen, the resources of helper 1



is wasted while computing ps, because those resources could
have been used for computing a new packet. C3P addresses
this problem thanks to employing Fountain codes.

In particular, at time ¢ = 0, three Fountain coded packets of
V1, Vs, v are created and transmitted to the three helpers, i.e.,
D11 = V1,P21 = V2,p3,1 = V3. At time ¢t = 1, a new coded
packet of v4 is created and transmitted as a second packet
to helper 1, i.e., p1,2 = v4. This continues until 6 computed
coded packets (assuming that the overhead of Fountain codes,
i.e., K is zero) are received at the collector, which is achieved
at time ¢t = 3.5. O

Example 2 shows that the task completion delay is reduced
from 5 to 3.5 when we use Fountain codes, which is signifi-
cant. Section V shows extensive simulation results to support
this illustrative example.

D. Efficiency of C3P

In this section, we characterize the efficiency of C3P in
the worst case scenario when per task runtimes follow the
shifted exponential distribution. We call it the worst case
efficiency, because we take into account per packet under-
utilization T'u,; in efficiency calculation, but the fact that
T'u,, ; is monotonically decreasing, which is stated in Theorem
1 is not used.

Theorem 4: Assume that the runtime of each packet, i.e.,
Bn,i» is a random variable according to an i.i.d shifted expo-
nential distribution of

Fg, ,(t) = Pr(Bn; <t)=1—¢ F(=a) (19)

with mean a,, + 1/, and shifted value of a,,. The expected
value of the duration that helper n is underutilized per packet
is characterized as:

(ein) <1 _ e(NnRTT:ium)) + RTT’rLfaTu7

E[Tun;] = if RTTd < -1 (20)
) otherwise.
Proof: The proof is provided in Appendix D of [13]. (]

We define the efficiency of helper n in the worst case
as v, = 1 — E[Tuy;]/E[Bn,]. Note that E[Tu, ] is the
expected time that helper n is underutilized per packet in the
worst case, while E[f3, ;] is the expected runtime duration,
i.e., the expected time that helper n works per packet. Thus,
E[Tuy ]/ E|Bn,:) becomes the under-utilization ratio of helper
n in the worst case, s0 v, = 1 — E[Tuy, ;] / E[By ] becomes
the worst case efficiency. From (20) and replacing E[3,, ;] with
apn, + 1/, v is expressed as the following:

1@ pn —pin RTTE —1 /edexp(pun RTTY —1)

14+anpn ’
if RTT% < 1/p, (1)

otherwise.

Tn =

e(l+anpn)—1
e(l+anpn)
We show through simulations (in Section V) that, (i) 7, in
(21) is larger than 99%, which is significant as (21) is the
worst case efficiency, and (ii) C3P’s efficiency is even larger
than +,, as 7, in (21) is the efficiency in the worst case, where

the under-utilization time period has the maximum value.

V. PERFORMANCE EVALUATION OF C3P

In this section, we evaluate the performance of our algo-
rithm; Coded Cooperative Computation Protocol (C3P) via
simulations and using real Android-based smartphones.

A. Simulation Results

We consider two scenarios: (i) Scenario 1, where the system
resources for each helper vary over time. In this scenario, the
runtime for computing each packet p,, ;, Vi at each helper n
is an i.i.d. shifted exponential random variable with shifted
value a,, and mean a,, + 1/, and (ii) Scenario 2, where the
runtime for computing packets in helper n does not change
over time, i.e, B,; = [n,Vi, and §,,Yn € N is a shifted
exponential random variable with shifted value a,, and mean
an + 1/ .

In our simulations, each simulated point is obtained by
averaging over 200 iterations for N = 100 helpers. The
transmission rate for sending each packet from the collector to
each helper n and from helper n to the collector is a Poisson
random variable with the average selected uniformly between
10 Mbps and 20 Mbps for each helper n. The size of a
transmitted packet p,, ; is set to B, = 8 bits, where R is
the number of rows of matrix A, and it varies from 500 to
20,000 in our simulations. The sizes of a computed packet
pn,i%x and an acknowledgement packet are set to I3, = 8 bits
and B, = 1 bit, respectively. These are the parameters that
are used for creating all plots unless otherwise is stated.

Task Completion Delay vs. Number of Rows: We evaluate
C3P for Scenarios 1 and 2 and compare its task completion
delay with: (i) Static solution, which is the task completion
delay characterized in Section III-B for both Scenarios 1 and
2. (ii) Non-ergodic solution, which is a realization of the non-
ergodic problem characterized in Section III-A by knowing
Bn,i a priori at the collector and setting 171, ; as B3, ;. (iii)
Uncoded: r,, packets without coding are assigned to each
helper n, and the collector waits to receive computed values
from all helpers. The number of assigned packets to each
helper n is inversely proportional to the mean of 3, ;, i.e.,
T X m (iv) HCMM: Coded cooperative framework
developed in [7] using block codes. We introduce 5% coding
overhead for C3P, static, and non-ergodic solutions.

Fig. 4(a) shows completion delay versus number of rows for
Scenario 1, where the runtime for computing each packet by
helper n, 3, ;, Vi, is a shifted exponential random variable with
shifted value of a,, = 0.5 and mean of a,, + 1/, wWhere p,
is selected uniformly from {1,2,4}. As seen, C3P performs
close to the static and non-ergodic solutions. This shows the
effectiveness of our proposed algorithm. In addition, C3P
performs better than the baselines. In particular, in average,
30% and 24% improvement is obtained by C3P over HCMM
and no coding, respectively. Fig. 4(b) considers the same setup
but for Scenario 2, where the runtime for computing r,, packets
by helper n is r,03,, where 3, is selected from a shifted
exponential distribution with a,, = 0.5,Vn € N and pu,,
which is selected uniformly from {1,2,4}. As seen, for this
scenario, C3P performs close to the static and non-ergodic
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Fig. 3. Performance of C3P with respective to repetition codes with RR scheduling.
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in, Which is selected uniformly from {1,2,4}.

solutions. C3P performs better than HCMM, and HCMM
performs better than no coding. In particular, in average, 40%
and 69% improvement is obtained by C3P over HCMM and no
coding, respectively. Note that uncoded performs better than
HCMM for Scenario 1, as HCMM is designed for Scenario
2, so it does not work well in Scenario 1. C3P performs well
in both scenarios.

Fig. 5 shows completion delay versus number of rows for
both Scenarios 1 and 2, where the runtime for computing the
rows by each helper n, is from a shifted exponential distri-
bution with p,,n € N selected uniformly from {1,3,9} and
an = 1/, (different shifted values for different helpers). As
seen, C3P performs close to static and non-ergodic solutions
and much better than the baselines. In particular, for Scenario
1, more than 30% and 15% improvement is obtained by C3P
over HCMM and no coding, respectively. Also, for Scenario
2, in average, 42% and 73% improvement is obtained by C3P
over HCMM and no coding, respectively.
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Fig. 5. Task completion delay vs. number of rows/packets for (i) Scenario 1,
and (ii) Scenario 2, where the runtime for computing one row by each helper
n is selected from a shifted exponential distribution with pr,, which is selected
uniformly from {1, 3,9} for different helpers and ap, = 1/pn,Vn € N

Efficiency: We calculated the efficiency of helpers for dif-
ferent simulation setups and compared it with the theoretical
efficiency obtained in (21) for Scenario 1. For all simulation
setups, the average efficiency over all helpers was around 99%
and the theoretical efficiency was a little lower than the simu-
lated efficiency. E.g., for R = 8000 rows, where ji,,,n € N is
selected uniformly from {1, 3,9} and a,, = 1/, the average
of efficiency over all helpers is 99.7072% and the average
of theoretical efficiency is 99.4115%. This is expected as the
theoretical efficiency is calculated for the worst case scenario.

We also calculate the efficiency of helpers for Scenario
2. For all simulation setups, the average efficiency over all
helpers was around 99%, e.g., for R = 8000 rows, where
tn,m € N is selected uniformly from {1,3,9} and a, =
1/, the average of efficiency over all helpers was 99.9267%.
Note that the theoretical efficiency for Scenario 1 is 100%. The
simulated efficiency is lower than the theoretical one, because
the simulation underutilizes the helpers when transmitting
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the very first packet to each helper, i.e., before the collector
estimates the resources of helpers.

C3P as Compared to Repetition Coding and Round Robin
Scheduling: Fig. 6 shows the percentage of improvement of
C3P over repetition coding with RR scheduling in terms of
task completion delay. The number of rows is selected as R =
2000 with 5% overhead for C3P and the number of helpers
varies from N = 100 to N = 600. The transmission rate for
sending each packet from the collector to each helper n and
from helper n to the collector is a Poisson random variable
with the average selected uniformly between 0.1 Mbps and 0.2
Mbps for each helper n. The other parameters are the same
as the parameters used in Fig. 4(a). As seen, by increasing
the number of helpers, more improvement is gained by C3P
compared to the repetition coding with RR scheduling.

B. Evaluation in a Testbed

We implemented a testbed of a collector and multiple
helpers using real mobile devices, specifically Android 6.0.1
based Nexus 6P and Nexus 5 smartphones. All the helpers
are connected to the collector device using Wi-Fi Direct
connections. We conducted our experiments using our testbed
in a lab environment where several other Wi-Fi networks were
operating in the background. We located all the devices in
close proximity of each other (within a few meters distance).

We implemented both C3P and repetition coding with RR
scheduling in our testbed. The collector device would like to
calculate matrix multiplication y = Ax, where A is a 1K x
10K matrix and x is a 10K x 1 vector. Matrix A is divided
into 20 sub-matrices, each of which is a 50 x 10K matrix. A
sub-task to be processed by a helper is the multiplication of
a sub-matrix with vector x. There is collector device (Nexus
5) and varying number of helpers (Nexus 6P).

Fig. 7 shows task completion delay versus number of
helpers for both C3P and repetition codes with RR scheduling.
In this setup, each helper receives a sub-task, processes it,
and waits for a random amount of time (exponential random
variable with mean 10 seconds), which may arise due to
other applications running at smartphones, and then sends
the result back to the collector. As can be seen, the task
completion delay reduces with increasing number of helpers
in both algorithms. When there is one helper C3P performs
worse, which is expected. In particular, C3P introduces coding
overhead, and the number of helpers is very small to see the
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benefit of coding. On the other hand, when the number of
helpers increases, we start seeing the benefit of coding. For
example, when the number of helpers is 5, C3P improves
14% over repetition codes with RR scheduling. This result
confirms our simulation results in Fig. 6 in a testbed with real
Android-based smartphones.

Fig. 8 shows the task completion delay versus per sub-task
random delays at helpers. There are 5 helpers in this scenario.
As can be seen, C3P improves more over repetition codes with
RR scheduling when delay increases as it increases hetero-
geneity, and C3P designed to take into account heterogeneity.

VI. RELATED WORK

Mobile cloud computing is a rapidly growing field with
the goal of providing extensive computational resources to
mobile devices as well as higher quality of experience [14],
[15], [16]. The initial approach to mobile cloud computing
has been to offload resource intensive tasks to remote clouds
by exploiting Internet connectivity of mobile devices. This
approach has received a lot of attention which led to extensive
literature in the area [17], [18], [19], [20], [21]. The feasibility
of computation offloading to remote cloud by mobile devices
[22] as well as energy efficient computation offloading [23],
[24] has been considered in the previous work. As compared
to this line of work, our focus is on edge computing rather
than remote clouds.

There is an increasing interest in edge computing by exploit-
ing connectivity among mobile devices [25]. This approach
suggests that if devices in close proximity are capable of
processing tasks cooperatively, then local area computation
groups could be formed and exploited for computation. Indeed,



cooperative computation mechanisms by exploiting device-to-
device connections of mobile devices in close proximity are
developed in [25] and [26]. A similar approach is considered in
[27] with particular focus on load balancing across workers. As
compared to this line of work, we consider coded cooperative
computation.

Coded cooperative computation is shown to provide higher
reliability, smaller delay, and reduced communication cost in
MapReduce framework [28], where computationally intensive
tasks are offloaded to distributed server clusters [29]. In
[3] and [30], coded computation for matrix multiplication is
considered, where matrix A is divided into sub-matrices and
each sub-matrix is sent from the master node (called collector
in our work) to one of the worker nodes (called helpers
in our work) for matrix multiplication with the assumption
that the helpers are homogeneous. In [3], workload of the
worker nodes is optimized such that the overall runtime is
minimized. Fountain codes are employed in [31] for coded
computation, but for homogeneous resources. In [7], the same
problem is considered, but with the assumption that workers
are heterogeneous in terms of their resources. Compared to
this line of work, we develop C3P, a practical algorithm that
is (i) adaptive to the time-varying resources of helpers, and (ii)
does not require any prior information about the computation
capabilities of the helpers. As shown, our proposed method
reduces the task completion delay significantly as compared
to prior work.

VII. CONCLUSION

In this paper, we designed a Computation Control Protocol
(C3P), where heterogeneous edge devices with computation
capabilities and energy resources are connected to each other.
In C3P, a collector device divides tasks into sub-tasks, offloads
them to helpers by taking into account heterogeneous re-
sources. C3P is (i) a dynamic algorithm that efficiently utilizes
the potential of each helper, (ii) adaptive to the time-varying
resources at helpers. We analyzed the performance of C3P
in terms of task completion delay and efficiency. Simulation
and experiment results in an Android testbed confirm that
C3P reduces the completion delay significantly as compared
to baselines and is efficient.
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