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Abstract—Continuum (continuous backbone) robots are
suitable for operation in unstructured environments thanks to
their inherent compliance. They can adjust their shape to navigate
through complex environments and grasp a wide variety of
payloads with their compliant backbones. However, controller
design for continuum robots is challenging due to their complex
dynamics. In this paper, we introduce a new and novel strategy for
trajectory control of continuum robot sections. The approach is
based on a virtual discrete-jointed robot whose degrees of freedom
are directly mapped to those of a continuum robot section. A
conventional control strategy is developed for the virtual robot, for
which inverse kinematics and dynamic equations are formulated
and exploited, with appropriate transformations developed for
implementation on the continuum robot. Simulations of the virtual
robot computed torque control were executed and results indicate
that the control method has good trajectory tracking performance.
The control algorithm was implemented on a three degree of
freedom section of the OctArm continuum manipulator, with
decent tracking performance (steady state tracking error of
merely 3mm during extension).

Index Terms—Continuum Robot, Control, Kinematics.

I. INTRODUCTION

C ontinuum or hyper-redundant manipulators belong to a
special class of robotic manipulators, which are designed
to exhibit behavior similar to biological trunks, tentacles, or
snakes [1]. Unlike traditional rigid-link robot manipulators,
continuum robot manipulators do not have rigid joints and have
many degrees of freedom, and this enables continuum
manipulators to have some very useful properties. Continuum
manipulators can be compliant, extremely dexterous, flexible,
and capable of dynamic adaptive manipulation in highly
unstructured environments. These properties of compliant
continuum robot manipulators make them uniquely suited for
many applications, including search and rescue, underwater
operations, and space exploration [2].

Although continuum robots have been prevalent in research
for many years [1-3], the development of high-performance
control algorithms for these manipulators remains a significant
challenge, due to both the complexity and the high degree of
uncertainty in their dynamic models. There have been
numerous approaches in which researchers have studied various
formulations for the control of continuum robot manipulators
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[4]. Xu et al. [5] developed a computationally efficient
torsionally compliant kinematic model of a concentric tube
continuum robot. Using this computationally fast technique and
deriving the robot’s Jacobian, a new position control approach
is proposed. Chikhaoui et al. [6] describes theoretical
investigations on automation of dual-arm robots constituted of
two concentric tube continuum manipulators using motion
coordination control. An optimization algorithm is developed
to improve triangulation ability of the robot and thus enhance
the arms’ collaborative operation. Falkenhahn et al. [7]
developed a model-based MIMO controller in actuator space,
that is based on a spatial dynamic model with one mass point
per section. Gravagne et al. [8] discussed the dynamics of a
planar continuum backbone section, incorporating a large-
deflection dynamic model, formulated a vibration-damping set-
point controller, and included experimental results to illustrate
the efficacy of the proposed controller. Li et al. [9] developed a
model-free method based on an adaptive Kalman filter to
accomplish path tracking for a continuum robot using only
input pressures and tip position. However, a common element
in all these approaches is computational complexity.
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Fig. 1. Block Diagram for Continuum robot control based on virtual robot
models

The novel approach to continuum robot control introduced in
this paper is motivated by reducing computational complexity.
The key innovation is to formulate the overall control strategy
using a virtual, conventional rigid link robot with discrete
joints. The control strategy is developed in the virtual robot
coordinates, taking advantage of the well-understood nature of
conventional robot dynamics. The virtual robot is selected such
that its degrees of freedom are directly mapped to those of the
real continuum robot for which control 1is desired.



Transformations from the desired continuum robot trajectory to
the virtual robot, and from the virtual robot control variables to
the continuum robot inputs, are developed. This is a completely
new approach to the control of continuum robots, to the best of
our knowledge. Virtual rigid link robot models have been used
to model continuum robot kinematics [10], but this concept has
not been extended to controller development previously.
Specifically, in this paper we demonstrate the above
approach, from model development to  hardware
implementation, for control of a single section of a planar
continuum robot. The virtual robot used is a serial rigid-link
Revolute-Prismatic-Revolute (RPR) joint planar robot with two
in-plane rotations and a translation in the same plane. A detailed
high-level overview of major system components of this
approach is described in Figure 1. First, the desired arc length
s and curvature k is fed to continuum robot forward kinematics
for desired Euclidean coordinates. Then these desired
coordinates are adopted in the virtual RPR robot and controller
to acquire the torques and force that brings the continuum robot
to a desired coordinate set point. The torques and force are then
converted to pneumatic pressure which is directly applied on
the continuous backbone of the continuum robot. For modeling,
the revolute and prismatic joints are replaced by torsion and
extension springs; see Figure 2. The kinematics, dynamics, and
controller development established in the following sections are
based on this virtual RPR robot and its q?lnamic behavior.
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Fig. 2. Continuum robot CAD schematic

In the following sections, first the continuum robot
kinematics and necessary transformations, including forward
and inverse kinematics, are modeled, referencing the RPR
virtual robot. The dynamic model of the virtual robot is
established in Section III. Then, based on the dynamic system
model, a closed loop computed torque control for the virtual
robot is introduced in Section IV. Finally, simulation (Section
V) and experimental results (Section VI) are presented, along
with related discussion. Conclusions are given in Section VII.

II. ROBOT KINEMATICS

Since continuum robots can change their shape at any point
along their structure, their models necessarily differ
significantly from those of conventional rigid-link robots,
where configuration changes can occur only at a finite number
of fixed locations along their structure (the joints between the
rigid-links). In the following, we review the kinematics of a

basic continuum robot element (section) in the plane and relate
it to those for the selected virtual robot.

A. Continuum Robot Forward Kinematics

The first (and the most inspired by hardware) approach to
continuum robot kinematics strongly exploits the constant
curvature sections feature possessed by almost all continuum
robots to date [11]. In the plane, a “virtual” three joint rigid-link
manipulator, with identical (i.e., coupled) rotations as its first
and third joints and a prismatic joint in the middle, can be used
to model the kinematic transformation along any constant
curvature planar backbone section [10]. Consequently, it is
possible to find the corresponding kinematic model, using the
conventional Denavit-Hartenberg (D-H) approach [10], for the
virtual robot in (1)

cos(6,+6,) —sin(6,+6,) 0 —-d,sin6,

[H;’Jz sin(6,+6,) cos(6,+6,) 0 d,cosf O
0 0 1 0
0 0 0o 1

The model (1) describes, within the 4 by 4 homogeneous
transformation matrix [H], the forward kinematic relationship
(3 by 3 orientation, top left of (1), and 3 by 1 translation, top
right) between the kinematic variables for the virtual robot (two
angles and one length) and task space.

Continuum robot kinematics can now be developed by noting
and substituting in the virtual robot kinematics, relationships
between the joint variables for the virtual robot and
corresponding configuration space variables for the continuous
curve. Specifically, ([10], see Figure 3):

Fig. 3. Geometry of constant curvature section in plane [10]
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Substituting (3) and (4) into the model (1) and simplifying gives



cos(sk) —sin(sk) 0 %(cos(sk)—l)
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The model (5) describes the forward kinematic relationship
(3 by 3 orientation, top left of (5), and 3 by 1 translation, top
right) between continuum curve shape (arc length and
curvature) and task space.

B. Virtual Robot Inverse Kinematics

The inverse kinematics of the continuum robot can be
approximated by that of the planar RPR virtual robot. After the
continuum robot end-effector’s cartesian coordinates are
derived from the forward kinematics in (2), the x and y
coordinate can then be substituted into the inverse kinematics
of the RPR robot to obtain the desired matrix g4 =
[6; d, 065]7. The inverse kinematics of the RPR robot can
be represented as

6, =tan™' (ijé?},dz =x’ +y’ (6)
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III. VIRTUAL ROBOT DYNAMICS MODEL

Consider the virtual Revolute-Prismatic-Revolute (RPR)
manipulator shown in Figure 4.
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Fig. 4. 3-DoF Revolute-Prismatic-Revolute (RPR) virtual planar robot arm

Let the coordinate system of the base frame (frame 0) be such
that z, is pointing out of the page and x, is pointing to the right.
Then, y, is pointing towards top in the figure. The joint
variables are q; = 84, g, = d,, and q; = 0. Let the masses of
the three links be m;, m,, and m;. Since this is a planar
manipulator and rotation is only about the z, axis, only the
inertia around the vertical axis is relevant; let I, ,, I, ,, and I3,
denote the moments of inertia of links 1, 2, and 3, respectively,
around the axis pointing out of the page (for each link, the
moments of inertia are defined relative to a coordinate frame
with origin at the center of mass of the link).

If the planar motion of the manipulator is in the horizontal
plane, then gravity terms are not relevant. If the planar motion
of the manipulator is in the vertical plane, then gravity terms
need to be considered.

Let gravity be in the downward direction in the figure (i.e.,
in the —y, direction). Let [.; denote the distance from the base
(origin of frame 0) to the center of mass of link 1. Let [; be the

length of link 1. Then, the combined length of links 1 and 2 is
l; + g,. Also, assume that the linkage between links 1 and 2 is
such that when joint 2 actuates, it shifts the center of mass of
link 2 by distance q,. Let the distance from the point where
links 2 and 3 meet to the center of mass of link 3 be ;.

The Euler-Lagrange formulation can be used to find the
dynamics of this virtual manipulator. The angular velocity
related Jacobian matrices for the three links are:

00 000
2 = 0 0/,J,,=|0 0 O @)
00 1 01

The linear velocity related Jacobian matrices for the three
links are:

_—lclsl 00 —(l1 +qz)s1 ¢q 0
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where s; = sin(qy), ¢; = cos(qy), s13 = sin(q; + ¢3), and,
¢13 = cos(q, + q3). Hence, the matrix D(q) is given by:
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As described above, since the rotation of all the links is only
about the z, axis, only the moments of inertia about the axis
pointing out of the page are relevant (i.e., 1 5, I, 5, I3 7).

The Christoffel symbols c;j; become

1)0d, od, 0d;
Cip =5 —+ T
© 2| 9q, Oq; Oq,

For i =1,2,3;j =1,2,3;k = 1,2,3, and writing the matrix
C(q, ¢) with its (k, j)*" element being

(16)



ckacijk (q)‘ 17
i=1
we obtain
[Ciled, Lo LD
C(q.¢ e ;o as)
Culec,
where
] ) (Lm. +1m, + m,q, + myq,
Cll(q,“, .
\ +,3m5 cos(gs;)
~Lam _(h+4,)
(19)
(Im. +lm, +m
Colgue, - T J 20)
\ +msq, +13m, cos(q;)
Cola:c, . .. ., ., @y
c ) ) (lm.+Lm. +m.a. +m.a.) )
21 (qa{/ A.k+lc3m3cos(q3) J o o-o
(22)
Cy (%‘:, (23)
C23(Qs‘.., . \-J,\..‘ - (24)
G, (Cb‘_./ ol . . .- -z) (25)
G, (‘Ia‘.., . - (26)
G (%‘../ (27)
The potential energy of the manipulator is given by:
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The dynamic equations of the manipulator are given by:
z-l

S

7

D(q)| "~ 33)

- - -, -

where 7, is the applied torque at the first joint (revolute), f, is
the applied force at the second joint (prismatic), and t5 is the
applied torque at the third joint (revolute).

IV. OVERALL CONTROL METHOD

We seek and exploit simple, relatively computationally
inexpensive control methods used in (rigid-link) robot control

systems [12] to design the controller in the virtual robot
coordinates.. Classical control and intelligent control methods
are widely used in the robot industry. Each control method has
advantages and disadvantages. However, the main aim for the
system is to provide robustness, stability and high frequency
updates. In this work, we adopt the computed torque (feedback
linearization plus PD control, see Figure 5) approach for the
virtual robot, with the sensing and actuation transformed from
and to the continuum robot, respectively.
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Fig. 5. Classical control block diagram of the robot arm

Conventional PD control [13] is the most popular core
control method in many robot implementations because of its
steady state and transient response performance in time-
invariant systems. In classical pure PD control, the chosen
parameters, K, and K; remain constant during the process.
Therefore, such a controller is inefficient because the controller
contains ambiguity when environmental conditions or
dynamics change. In addition, it is inefficient because of time
delays and nonlinearity conditions. Hence, we include the
dynamics to linearize prior to the PD control.

The dynamic model of the virtual robot arm is given in (33),
In this equation, 7, D(q), C(q, ¢), G(q), and n are expressions
for the n X 1 dimensional joint torque, n X n dimensional
inertia matrix, n X 1 dimensional Coriolis and centrifugal
vector, n X 1 dimensional gravity vector, and the degrees of
freedom of the robot, respectively. The errors of the robot link
variables are

e=q,~¢q, . 7 7 (34
where e, é, € expresses the position, velocity and acceleration
error vectors and g4, G4, G4 expresses the desired position,
velocity and acceleration of the link variables. The torques
required for each joint of the virtual robot arm are calculated
from (33) and the errors from (34). The linearization is achieved
as follows

t=D(q)(". (35)
The control signal that is obtained from (35) is expressed as

follows
w="" ] (36)

If the signal u is selected as the PD feedback controller, the
torque value of each joint will be obtained from (37) and (38).
u= _Kdt. P (37)

r=D(g)(". L, (38)

where K is the derivative gain and K, is the proportional gain.
The overall controller of the virtual robot is shown in Figure

5. The PD coefficients of the system were tuned experimentally,
and the ideal gain values were used. The input desired trajectory
was represented in terms of Cartesian coordinates x and y, and
was calculated from the continuum robot arc length s and

- -, - -



curvature k using the forward kinematics discussed in section
II. Subsequently the virtual robot variables: rotation 8,, 85 and
translation d, were derived from the inverse kinematics in
section II and fed into the control system as a desired reference
input signal. Their derivatives and double derivatives were
calculated and input to the controller. The output of the
controller, u, is then used to establish the torque signal along
with systems D(q), C(q, q), and g(q) matrix. The torque was
then converted and applied to the physical robot system which
feeds back the current continuum robot shape, subsequently
converted to virtual robot rotation and translation signals input
to the PD controller to form the error and drive the control
action.

V. SIMULATION RESULTS

Simulations of the virtual robot computed torque control
were executed in the Simulink environment given the input of
the system is a reference signal of the arc length s and curvature
k. Feeding into the forward kinematics to form Cartesian
coordinates x and y, the reference signal illustrated here is a
chirp signal in which the frequency increases with time shown
in Figure. 6.

The resulting output torque for the virtual robot is illustrated
in Figure. 7. The first and third subplots are the rotational torque
of the first and last virtual torsion springs 7; and 75 while the
second plot is for the translation force f, of the virtual extension
spring located in between the two virtual torsion springs. The
torsion coefficient can be calculated by selecting a torque of a
given time and identifying the twist angle

k=-<
7
The spring constant of the extension spring can be calculated
using the same method:

(39

(40)

where f, is the force exerted by extension spring illustrated in
Figure 7 and d, is the elongation of the virtual spring.

The comparison between desired and actual x and y
coordinates of the continuum robot end effector is depicted in
Figure 8. There is a large overshoot observed when the end
effector is attempting to reach the first desired x location, but
then the system becomes stabilized. The overshoot of the y
coordinate is zero and it also become stable after the first chirp
signal peak.

The desired and actual 6, 6, d, d,, 85, 85 of the virtual
robot can be observed in Figure. 9. All signals eventually reach
a high tracking precision, indicating that the controller
accomplished its task of bringing the extension and torsion
springs to the desired position and velocity. The derivative
terms all have overshoot issues that can be neglected in the
practical implementation (see next section).
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VI. EXPERIMENTAL RESULTS

1The controller was implemented on the tip section of the
OctArm continuum manipulator [14]. The OctArm, pictured in
Figure 10, is a pneumatically actuated, three section, nine
degree of freedom (DoF) continuum manipulator. Each section
is capable of bending in any direction (curvature k and direction
¢) and extending (arc length s), providing three DoF for each
section. The tip section of the device (the right-most section in
Figure 10) is comprised of three McKibben extension muscles
[15] arranged radially at 120° intervals.

Fig. 10. The OctArm Manipulator

A set of experiments utilizing the OctArm and the described
model were implemented. The model and controller were
implemented in MATLAB/Simulink [16]. Interfacing with the
OctArm was accomplished using two Quanser Q8-usb data
acquisition boards [17]. State estimation of the system was
provided through internal measurements of the OctArm via a
series of string encoders that run along the length of each
section muscle. After controller output torques and force are
calculated, they are converted to pneumatic pressure in voltage
form which then can be applied onto the three McKibben
extension muscles at the tip section.

A. Extension

The first experiment is pure extension of the OctArm
continuum manipulator. In this experiment, the system is fed
with arc length s being a sinusoid with an amplitude 0.03m of
and a frequency of 0.08Hz and curvature k being Om™'. For the
extension experiment, the calculated extension force f, that

results from the model is equally applied to the three muscles
to achieve balanced pure extending movement. The section
desired and actual arc length are presented in Figure 11. During
the experiment, the OctArm initiated from its natural
unpressurized length of 0.34m and immediately converged to
the desired arc length with minor error in the crest of the sine
wave. The actual arc length settles relatively fast and no
obvious overshoot or oscillations are detected. The arc length
error plot illustrated in Figure 12 shows that the control
algorithm implemented on the extension of OctArm only
outputs an error of 3 mm which is considered within a
reasonable range for this robot. The extension force applied to
the OctArm through the pneumatic actuators can also be
observed in Figure 12. If the OctArm is considered as an
extension spring during this experiment, then the spring
constant for the spring can be calculated from (40) after
knowing the extension force amplitude of 28.71N from Figure
12 and arc length amplitude of 0.03m. The spring constant k,
is approximately equal to 957N/m.

B. Bending

In the second experiment, a bending test on the OctArm is
carried out. The objective of the experiment is to have the
OctArm maintain a constant arc length s at 0.395m while
bending the continuum robot section to track a sinusoid
curvature k with an amplitude of 0.2m™ and frequency of
0.08Hz. Figure 13 depicts the bending experiment, showing the
tip section of the OctArm and the travel between the maximum

and minimum curvature values.
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Fig. 13. Oscillating curvature experiment

To achieve bending, the average of 7; and 75 is calculated
first as A7. Then the applied pneumatic pressure onto the two
McKibben extension muscles at the back of the tip section
(pictured on the right hand side of the OctArm in Figure 13) is
calculated as P; = k,(f; + A7) and the applied pneumatic
pressure onto the one extension muscle at the front of the tip
section (pictured on the left hand side in Figure 13) is calculated
as P, = ky(f; — A1) where k, is the conversion gain from
torque to pressure. The difference of pressure given to two
distinct sets of extension muscles at front and back will generate
a bending effect of constant curvature that matches the
continuum robot kinematics model.

The section arc length and curvature are both depicted in
Figure 14 with the desired and actual values compared. The rise
time and settling time for the arc length is 64s and 88s
respectively and no overshoot is observed. The curvature, on
the other hand, displays a relatively fast response compared to
arc length, with an overshoot of 8%. The reason for a slower
response from the arc length is posited to be the following:
during bending, the continuum robot is attempting to achieve
the desired sinusoid curvature that could lead to a shrinkage of
the robot that contradicts and neutralize the extension force.
The error between desired set-point of arc length and curvature
and actual values can be observed in Figure 15.

The comparison between desired and actual x and y
coordinates of the continuum robot end effector is depicted in
Figure 16. There is a large undershoot observed when the end
effector is attempting to reach the desired x location, but the
system ultimately becomes stabilized. The overshoot of the y
coordinate is relatively small, and it also becomes stabilized
after three cycles of the sine wave.

The desired and actual 6, d,, 85 of the virtual robot model
can be observed in Figure 17. The values 6, and 65 converge to
the desired set-point successfully thanks to the overwhelming
tracking performance of the curvature whereas d, has inferior
performance due to the long rise time and settling time of the
arc length control. The resulting output torques for the virtual
robot during bending are illustrated in Figure 18.

After successfully employing the control method of the
virtual discrete-jointed robot model onto the OctArm, both
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end-effector during oscillating curvature experiment
extension and bending tests deliver relatively ideal tracking
performance. The results from both test procedures show decent
consistency with the simulation results of computed torque




approach for the virtual robot, and good potential for use in
continuum controller implementation.
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Fig. 17. Desired and actual 6,, d,, 85 of OctArm continuum manipulator
during oscillating curvature experiment
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Fig. 18. Torques and force applied to the OctArm continuum manipulator
during during oscillating curvature experiment: (a) torque applied to torsion
spring T, , (b) force applied to extension spring f, (c) torque applied to torsion
spring s

VII. CONCLUSION

This paper introduces a new and novel approach to the
control of continuum robots. The main innovation is the use of
a virtual, conventional rigid-link robot model, in whose
coordinates the controller is developed, to generate the real-
time control inputs for the continuum robot. The key advantage
of the control approach presented in this paper is that it can be
implemented very efficiently. The proposed controller was
shown to provide reasonable performance in both simulations
and experiments, without the need for excessive online or pre-
computation.
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