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Abstract—Continuum (continuous backbone) robots are 

suitable for operation in unstructured environments thanks to 

their inherent compliance. They can adjust their shape to navigate 

through complex environments and grasp a wide variety of 

payloads with their compliant backbones. However, controller 

design for continuum robots is challenging due to their complex 

dynamics. In this paper, we introduce a new and novel strategy for 

trajectory control of continuum robot sections. The approach is 

based on a virtual discrete-jointed robot whose degrees of freedom 

are directly mapped to those of a continuum robot section. A 

conventional control strategy is developed for the virtual robot, for 

which inverse kinematics and dynamic equations are formulated 

and exploited, with appropriate transformations developed for 

implementation on the continuum robot. Simulations of the virtual 

robot computed torque control were executed and results indicate 

that the control method has good trajectory tracking performance. 

The control algorithm was implemented on a three degree of 

freedom section of the OctArm continuum manipulator, with 

decent tracking performance (steady state tracking error of 

merely 3mm during extension). 

 
Index Terms—Continuum Robot, Control, Kinematics. 

 

I. INTRODUCTION 

ontinuum or hyper-redundant manipulators belong to a 

special class of robotic manipulators, which are designed 

to exhibit behavior similar to biological trunks, tentacles, or 

snakes [1]. Unlike traditional rigid-link robot manipulators, 

continuum robot manipulators do not have rigid joints and have 

many degrees of freedom, and this enables continuum 

manipulators to have some very useful properties. Continuum 

manipulators can be compliant, extremely dexterous, flexible, 

and capable of dynamic adaptive manipulation in highly 

unstructured environments. These properties of compliant 

continuum robot manipulators make them uniquely suited for 

many applications, including search and rescue, underwater 

operations, and space exploration [2].  

Although continuum robots have been prevalent in research 

for many years [1-3], the development of high-performance 

control algorithms for these manipulators remains a significant 

challenge, due to both the complexity and the high degree of 

uncertainty in their dynamic models. There have been 

numerous approaches in which researchers have studied various 

formulations for the control of continuum robot manipulators 

[4]. Xu et al. [5] developed a computationally efficient 

torsionally compliant kinematic model of a concentric tube 

continuum robot. Using this computationally fast technique and 

deriving the robot’s Jacobian, a new position control approach 

is proposed. Chikhaoui et al. [6] describes theoretical 

investigations on automation of dual-arm robots constituted of 

two concentric tube continuum manipulators using motion 

coordination control. An optimization algorithm is developed 

to improve triangulation ability of the robot and thus enhance 

the arms’ collaborative operation. Falkenhahn et al. [7] 

developed a model-based MIMO controller in actuator space, 

that is based on a spatial dynamic model with one mass point 

per section. Gravagne et al. [8] discussed the dynamics of a 

planar continuum backbone section, incorporating a large-

deflection dynamic model, formulated a vibration-damping set-

point controller, and included experimental results to illustrate 

the efficacy of the proposed controller. Li et al. [9] developed a 

model-free method based on an adaptive Kalman filter to 

accomplish path tracking for a continuum robot using only 

input pressures and tip position. However, a common element 

in all these approaches is computational complexity. 

 
Fig. 1. Block Diagram for Continuum robot control based on virtual robot 

models 

The novel approach to continuum robot control introduced in 

this paper is motivated by reducing computational complexity. 

The key innovation is to formulate the overall control strategy 

using a virtual, conventional rigid link robot with discrete 

joints. The control strategy is developed in the virtual robot 

coordinates, taking advantage of the well-understood nature of 

conventional robot dynamics. The virtual robot is selected such 

that its degrees of freedom are directly mapped to those of the 

real continuum robot for which control is desired. 
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Transformations from the desired continuum robot trajectory to 

the virtual robot, and from the virtual robot control variables to 

the continuum robot inputs, are developed. This is a completely 

new approach to the control of continuum robots, to the best of 

our knowledge. Virtual rigid link robot models have been used 

to model continuum robot kinematics [10], but this concept has 

not been extended to controller development previously. 

Specifically, in this paper we demonstrate the above 

approach, from model development to hardware 

implementation, for control of a single section of a planar 

continuum robot. The virtual robot used is a serial rigid-link 

Revolute-Prismatic-Revolute (RPR) joint planar robot with two 

in-plane rotations and a translation in the same plane. A detailed 

high-level overview of major system components of this 

approach is described in Figure 1. First, the desired arc length 

𝑠 and curvature 𝑘 is fed to continuum robot forward kinematics 

for desired Euclidean coordinates. Then these desired 

coordinates are adopted in the virtual RPR robot and controller 

to acquire the torques and force that brings the continuum robot 

to a desired coordinate set point. The torques and force are then 

converted to pneumatic pressure which is directly applied on 

the continuous backbone of the continuum robot. For modeling, 

the revolute and prismatic joints are replaced by torsion and 

extension springs; see Figure 2. The kinematics, dynamics, and 

controller development established in the following sections are 

based on this virtual RPR robot and its dynamic behavior. 

 
Fig. 2. Continuum robot CAD schematic 

In the following sections, first the continuum robot 

kinematics and necessary transformations, including forward 

and inverse kinematics, are modeled, referencing the RPR 

virtual robot. The dynamic model of the virtual robot is 

established in Section III. Then, based on the dynamic system 

model, a closed loop computed torque control for the virtual 

robot is introduced in Section IV. Finally, simulation (Section 

V) and experimental results (Section VI) are presented, along 

with related discussion. Conclusions are given in Section VII. 

II. ROBOT KINEMATICS 

Since continuum robots can change their shape at any point 

along their structure, their models necessarily differ 

significantly from those of conventional rigid-link robots, 

where configuration changes can occur only at a finite number 

of fixed locations along their structure (the joints between the 

rigid-links). In the following, we review the kinematics of a 

basic continuum robot element (section) in the plane and relate 

it to those for the selected virtual robot. 

A. Continuum Robot Forward Kinematics 

The first (and the most inspired by hardware) approach to 

continuum robot kinematics strongly exploits the constant 

curvature sections feature possessed by almost all continuum 

robots to date [11]. In the plane, a “virtual” three joint rigid-link 

manipulator, with identical (i.e., coupled) rotations as its first 

and third joints and a prismatic joint in the middle, can be used 

to model the kinematic transformation along any constant 

curvature planar backbone section [10]. Consequently, it is 

possible to find the corresponding kinematic model, using the 

conventional Denavit-Hartenberg (D-H) approach [10], for the 

virtual robot in (1) 
 

 

( ) ( )

( ) ( )
1 3 1 3 2 1

0 1 3 1 3 2 1

3

cos sin 0 sin

sin cos 0 cos

0 0 1 0

0 0 0 1

d

d
H

    

    

+ − + − 
 

+ +   =   
 
 

  (1) 

 

The model (1) describes, within the 4 by 4 homogeneous 

transformation matrix [H], the forward kinematic relationship 

(3 by 3 orientation, top left of (1), and 3 by 1 translation, top 

right) between the kinematic variables for the virtual robot (two 

angles and one length) and task space. 

Continuum robot kinematics can now be developed by noting 

and substituting in the virtual robot kinematics, relationships 

between the joint variables for the virtual robot and 

corresponding configuration space variables for the continuous 

curve. Specifically, ([10], see Figure 3): 

 
Fig. 3. Geometry of constant curvature section in plane [10] 
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Substituting (3) and (4) into the model (1) and simplifying gives 
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The model (5) describes the forward kinematic relationship 

(3 by 3 orientation, top left of (5), and 3 by 1 translation, top 

right) between continuum curve shape (arc length and 

curvature) and task space. 

B. Virtual Robot Inverse Kinematics 

The inverse kinematics of the continuum robot can be 

approximated by that of the planar RPR virtual robot. After the 

continuum robot end-effector’s cartesian coordinates are 

derived from the forward kinematics in (2), the 𝑥  and 𝑦 

coordinate can then be substituted into the inverse kinematics 

of the RPR robot to obtain the desired matrix 𝑞𝑑 =
[𝜃1 𝑑2 𝜃3]𝑇. The inverse kinematics of the RPR robot can 

be represented as 
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III. VIRTUAL ROBOT DYNAMICS MODEL 

Consider the virtual Revolute-Prismatic-Revolute (RPR) 

manipulator shown in Figure 4. 

 
Fig. 4. 3-DoF Revolute-Prismatic-Revolute (RPR) virtual planar robot arm 

Let the coordinate system of the base frame (frame 0) be such 

that 𝑧0 is pointing out of the page and 𝑥0 is pointing to the right. 

Then, 𝑦0  is pointing towards top in the figure. The joint 

variables are 𝑞1 = 𝜃1, 𝑞2 = 𝑑2, and 𝑞3 = 𝜃3. Let the masses of 

the three links be 𝑚1 , 𝑚2 , and 𝑚3 . Since this is a planar 

manipulator and rotation is only about the 𝑧0  axis, only the 

inertia around the vertical axis is relevant; let 𝐼1,𝑧, 𝐼2,𝑧, and 𝐼3,𝑧 

denote the moments of inertia of links 1, 2, and 3, respectively, 

around the axis pointing out of the page (for each link, the 

moments of inertia are defined relative to a coordinate frame 

with origin at the center of mass of the link). 

If the planar motion of the manipulator is in the horizontal 

plane, then gravity terms are not relevant. If the planar motion 

of the manipulator is in the vertical plane, then gravity terms 

need to be considered. 

Let gravity be in the downward direction in the figure (i.e., 

in the −𝑦0 direction). Let 𝑙𝑐1  denote the distance from the base 

(origin of frame 0) to the center of mass of link 1. Let 𝑙1 be the 

length of link 1. Then, the combined length of links 1 and 2 is 

𝑙1 + 𝑞2. Also, assume that the linkage between links 1 and 2 is 

such that when joint 2 actuates, it shifts the center of mass of 

link 2 by distance 𝑞2. Let the distance from the point where 

links 2 and 3 meet to the center of mass of link 3 be 𝑙𝑐3. 

 The Euler-Lagrange formulation can be used to find the 

dynamics of this virtual manipulator. The angular velocity 

related Jacobian matrices for the three links are: 
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The linear velocity related Jacobian matrices for the three 

links are: 
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where 𝑠1 = sin(𝑞1), 𝑐1 = cos(𝑞1),  𝑠13 = sin(𝑞1 + 𝑞3), and, 

 𝑐13 = cos(𝑞1 + 𝑞3). Hence, the matrix 𝐷(𝑞) is given by: 
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where  
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As described above, since the rotation of all the links is only 

about the 𝑧0 axis, only the moments of inertia about the axis 

pointing out of the page are relevant (i.e., 𝐼1,𝑧, 𝐼2,𝑧, 𝐼3,𝑧). 

 The Christoffel symbols 𝑐𝑖𝑗𝑘  become 
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For 𝑖 = 1,2,3; 𝑗 = 1,2,3; 𝑘 = 1,2,3 , and writing the matrix 
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The potential energy of the manipulator is given by: 
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The dynamic equations of the manipulator are given by: 
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where 𝜏1 is the applied torque at the first joint (revolute), 𝑓2 is 

the applied force at the second joint (prismatic), and 𝜏3 is the 

applied torque at the third joint (revolute). 

IV. OVERALL CONTROL METHOD 

We seek and exploit simple, relatively computationally 

inexpensive control methods used in (rigid-link) robot control 

systems [12] to design the controller in the virtual robot 

coordinates.. Classical control and intelligent control methods 

are widely used in the robot industry. Each control method has 

advantages and disadvantages. However, the main aim for the 

system is to provide robustness, stability and high frequency 

updates. In this work, we adopt the computed torque (feedback 

linearization plus PD control, see Figure 5) approach for the 

virtual robot, with the sensing and actuation transformed from 

and to the continuum robot, respectively. 

 
Fig. 5. Classical control block diagram of the robot arm 

Conventional PD control [13] is the most popular core 

control method in many robot implementations because of its 

steady state and transient response performance in time-

invariant systems. In classical pure PD control, the chosen 

parameters, 𝐾𝑝  and 𝐾𝑑  remain constant during the process. 

Therefore, such a controller is inefficient because the controller 

contains ambiguity when environmental conditions or 

dynamics change. In addition, it is inefficient because of time 

delays and nonlinearity conditions. Hence, we include the 

dynamics to linearize prior to the PD control. 

The dynamic model of the virtual robot arm is given in (33), 

In this equation, 𝜏, 𝐷(𝑞), 𝐶(𝑞, 𝑞̇), 𝐺(𝑞), and 𝑛 are expressions 

for the 𝑛 × 1  dimensional joint torque, 𝑛 × 𝑛  dimensional 

inertia matrix, 𝑛 × 1   dimensional Coriolis and centrifugal 

vector, 𝑛 × 1  dimensional gravity vector, and the degrees of 

freedom of the robot, respectively. The errors of the robot link 

variables are 

 ,  ,  d d de q q e q q e q q= − = − = −   (34) 

where 𝑒, 𝑒̇, 𝑒̈ expresses the position, velocity and acceleration 

error vectors and 𝑞𝑑 , 𝑞𝑑̇ , 𝑞𝑑̈  expresses the desired position, 

velocity and acceleration of the link variables. The torques 

required for each joint of the virtual robot arm are calculated 

from (33) and the errors from (34). The linearization is achieved 

as follows 

 ( )( ) ( ) ( ),dD q q u C q q q g q = − + +   (35) 

The control signal that is obtained from (35) is expressed as 

follows 

 ( ) ( ) ( )1 ,du q D q C q q q g q −= + + −     (36) 

If the signal u is selected as the PD feedback controller, the 

torque value of each joint will be obtained from (37) and (38). 
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where 𝐾𝑑 is the derivative gain and 𝐾𝑝 is the proportional gain. 

The overall controller of the virtual robot is shown in Figure 

5. The PD coefficients of the system were tuned experimentally, 

and the ideal gain values were used. The input desired trajectory 

was represented in terms of Cartesian coordinates 𝑥 and 𝑦, and 

was calculated from the continuum robot arc length 𝑠  and 
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curvature 𝑘 using the forward kinematics discussed in section 

II. Subsequently the virtual robot variables: rotation 𝜃1, 𝜃3 and 

translation 𝑑2  were derived from the inverse kinematics in 

section II and fed into the control system as a desired reference 

input signal. Their derivatives and double derivatives were 

calculated and input to the controller. The output of the 

controller, 𝑢, is then used to establish the torque signal along 

with systems 𝐷(𝑞), 𝐶(𝑞, 𝑞̇), and 𝑔(𝑞) matrix. The torque was 

then converted and applied to the physical robot system which 

feeds back the current continuum robot shape, subsequently 

converted to virtual robot rotation and translation signals input 

to the PD controller to form the error and drive the control 

action. 

V. SIMULATION RESULTS 

Simulations of the virtual robot computed torque control 

were executed in the Simulink environment given the input of 

the system is a reference signal of the arc length 𝑠 and curvature 

𝑘 . Feeding into the forward kinematics to form Cartesian 

coordinates 𝑥 and 𝑦, the reference signal illustrated here is a 

chirp signal in which the frequency increases with time shown 

in Figure. 6.  

 

 

The resulting output torque for the virtual robot is illustrated 

in Figure. 7. The first and third subplots are the rotational torque 

of the first and last virtual torsion springs 𝜏1 and 𝜏3 while the 

second plot is for the translation force 𝑓2 of the virtual extension 

spring located in between the two virtual torsion springs. The 

torsion coefficient can be calculated by selecting a torque of a 

given time and identifying the twist angle 

 
tk




= −   (39) 

The spring constant of the extension spring can be calculated 

using the same method: 

 2

2

e

f
k

d
= −   (40) 

where 𝑓2 is the force exerted by extension spring illustrated in 

Figure 7 and 𝑑2 is the elongation of the virtual spring. 

The comparison between desired and actual 𝑥  and 𝑦 

coordinates of the continuum robot end effector is depicted in 

Figure 8. There is a large overshoot observed when the end 

effector is attempting to reach the first desired 𝑥 location, but 

then the system becomes stabilized. The overshoot of the 𝑦 

coordinate is zero and it also become stable after the first chirp 

signal peak. 

The desired and actual  𝜃1, 𝜃̇1, 𝑑2, 𝑑̇2, 𝜃3, 𝜃̇3 of the virtual 

robot can be observed in Figure. 9. All signals eventually reach 

a high tracking precision, indicating that the controller 

accomplished its task of bringing the extension and torsion 

springs to the desired position and velocity. The derivative 

terms all have overshoot issues that can be neglected in the 

practical implementation (see next section). 

Fig. 6. Desired continuum robot arc length s and curvature k input to the 

simulation of the virtual robot computed torque control 

Fig. 7. Torques and force applied to the springs: (a) torque applied to torsion 

spring 𝜏1 , (b) force applied to extension spring 𝑓
2
, (c) torque applied to 

torsion spring 𝜏3 

Fig. 8. Desired and actual continuum robot end-effector X and Y coordinate to 

the simulation of the virtual robot computed torque control 
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VI. EXPERIMENTAL RESULTS 

1The controller was implemented on the tip section of the 

OctArm continuum manipulator [14]. The OctArm, pictured in 

Figure 10, is a pneumatically actuated, three section, nine 

degree of freedom (DoF) continuum manipulator. Each section 

is capable of bending in any direction (curvature k and direction 

φ) and extending (arc length s), providing three DoF for each 

section. The tip section of the device (the right-most section in 

Figure 10) is comprised of three McKibben extension muscles 

[15] arranged radially at 120° intervals.  

A set of experiments utilizing the OctArm and the described 

model were implemented. The model and controller were 

implemented in MATLAB/Simulink [16]. Interfacing with the 

OctArm was accomplished using two Quanser Q8-usb data 

acquisition boards [17]. State estimation of the system was 

provided through internal measurements of the OctArm via a 

series of string encoders that run along the length of each 

section muscle. After controller output torques and force are 

calculated, they are converted to pneumatic pressure in voltage 

form which then can be applied onto the three McKibben 

extension muscles at the tip section.  

A. Extension  

The first experiment is pure extension of the OctArm 

continuum manipulator. In this experiment, the system is fed 

with arc length 𝑠 being a sinusoid with an amplitude 0.03m of 

and a frequency of 0.08Hz and curvature 𝑘 being 0m-1. For the 

extension experiment, the calculated extension force 𝑓2  that 

results from the model is equally applied to the three muscles 

to achieve balanced pure extending movement. The section 

desired and actual arc length are presented in Figure 11. During 

the experiment, the OctArm initiated from its natural 

unpressurized length of 0.34m and immediately converged to 

the desired arc length with minor error in the crest of the sine 

wave. The actual arc length settles relatively fast and no 

obvious overshoot or oscillations are detected. The arc length 

error plot illustrated in Figure 12 shows that the control 

algorithm implemented on the extension of OctArm only 

outputs an error of ±3 mm which is considered within a 

reasonable range for this robot. The extension force applied to 

the OctArm through the pneumatic actuators can also be 

observed in Figure 12. If the OctArm is considered as an 

extension spring during this experiment, then the spring 

constant for the spring can be calculated from (40) after 

knowing the extension force amplitude of 28.71N from Figure 

12 and arc length amplitude of 0.03m. The spring constant 𝑘𝑒 

is approximately equal to 957N/m. 

 

B. Bending 

In the second experiment, a bending test on the OctArm is 

carried out. The objective of the experiment is to have the 

OctArm maintain a constant arc length 𝑠  at 0.395m while 

bending the continuum robot section to track a sinusoid 

curvature 𝑘  with an amplitude of 0.2m-1 and frequency of 

0.08Hz. Figure 13 depicts the bending experiment, showing the 

tip section of the OctArm and the travel between the maximum 

and minimum curvature values.  

Fig. 9. Desired and actual robot arm joint variables 𝜃1, 𝜃̇1, 𝑑2, 𝑑̇2, 𝜃3, 𝜃̇3 

Fig. 10. The OctArm Manipulator 
Fig. 11. Desired and actual arc length s during pure extension of the OctArm 

continuum manipulator 

Fig. 12. Arc length s error and PD controller extension force during pure 

extension of the OctArm continuum manipulator 
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To achieve bending, the average of 𝜏1  and 𝜏3 is calculated 

first as 𝛥𝜏. Then the applied pneumatic pressure onto the two 

McKibben extension muscles at the back of the tip section 

(pictured on the right hand side of the OctArm in Figure 13) is 

calculated as 𝑃1 = 𝑘𝑝(𝑓2 + 𝛥𝜏)  and the applied pneumatic 

pressure onto the one extension muscle at the front of the tip 

section (pictured on the left hand side in Figure 13) is calculated 

as 𝑃2 = 𝑘𝑝(𝑓2 − 𝛥𝜏)  where 𝑘𝑝  is the conversion gain from 

torque to pressure. The difference of pressure given to two 

distinct sets of extension muscles at front and back will generate 

a bending effect of constant curvature that matches the 

continuum robot kinematics model.  

The section arc length and curvature are both depicted in 

Figure 14 with the desired and actual values compared. The rise 

time and settling time for the arc length is 64s and 88s 

respectively and no overshoot is observed. The curvature, on 

the other hand, displays a relatively fast response compared to 

arc length, with an overshoot of 8%. The reason for a slower 

response from the arc length is posited to be the following: 

during bending, the continuum robot is attempting to achieve 

the desired sinusoid curvature that could lead to a shrinkage of 

the robot that contradicts and neutralize the extension force. 

The error between desired set-point of arc length and curvature 

and actual values can be observed in Figure 15. 

The comparison between desired and actual 𝑥  and 𝑦 

coordinates of the continuum robot end effector is depicted in 

Figure 16. There is a large undershoot observed when the end 

effector is attempting to reach the desired 𝑥 location, but the 

system ultimately becomes stabilized. The overshoot of the 𝑦 

coordinate is relatively small, and it also becomes stabilized 

after three cycles of the sine wave. 

The desired and actual 𝜃1, 𝑑2, 𝜃3 of the virtual robot model 

can be observed in Figure 17. The values 𝜃1 and 𝜃3 converge to 

the desired set-point successfully thanks to the overwhelming 

tracking performance of the curvature whereas 𝑑2 has inferior 

performance due to the long rise time and settling time of the 

arc length control. The resulting output torques for the virtual 

robot during bending are illustrated in Figure 18. 

After successfully employing the control method of the 

virtual discrete-jointed robot model onto the OctArm, both 

extension and bending tests deliver relatively ideal tracking 

performance. The results from both test procedures show decent 

consistency with the simulation results of computed torque 

Fig. 13. Oscillating curvature experiment 
Fig. 14. Desired and actual arc length s, curvature k of OctArm continuum 

manipulator during oscillating curvature experiment 

Fig. 15. Arc length s and curvature k error of OctArm continuum manipulator 

during oscillating curvature experiment  

Fig. 16. Desired and actual X, Y coordinate of OctArm continuum manipulator 

end-effector during oscillating curvature experiment 
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approach for the virtual robot, and good potential for use in 

continuum controller implementation. 

VII. CONCLUSION 

This paper introduces a new and novel approach to the 

control of continuum robots. The main innovation is the use of 

a virtual, conventional rigid-link robot model, in whose 

coordinates the controller is developed, to generate the real-

time control inputs for the continuum robot. The key advantage 

of the control approach presented in this paper is that it can be 

implemented very efficiently. The proposed controller was 

shown to provide reasonable performance in both simulations 

and experiments, without the need for excessive online or pre-

computation.  
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Fig. 17. Desired and actual 𝜃1, 𝑑2, 𝜃3 of OctArm continuum manipulator 

during oscillating curvature experiment 

 

Fig. 18. Torques and force applied to the OctArm continuum manipulator 

during during oscillating curvature experiment: (a) torque applied to torsion 

spring 𝜏1 , (b) force applied to extension spring 𝑓2, (c) torque applied to torsion 

spring 𝜏3 

 

 


