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Abstract— Individual soft actuators have been developed for
elongation, contraction, bending and twist, but these actuators
and their combinations have yet to demonstrate the range
and flexibility of motion seen in common sources of biolog-
ical inspiration, such as cephalopods. This paper presents a
method for torsion control via sets of opposing contracting
actuators wound helically around a cylindrical structure. By
shortening one set of actuators, twist is developed, similar
to the oblique muscles within octopus arms. The addition of
helical actuators to systems with longitudinal and transverse
actuators will enable control over orientation of the arm and
antagonistic stiffening. A geometric model is used to quantify
best-case developed twist, representing application to a constant
dimension cylinder. This model is validated experimentally
using a cable-driven prototype on a rigid cylinder with no
torsional stiffness. To evaluate the interaction with a system of
actuators, a mechanics model of the torsion actuators wrapped
around a deformable center is proposed. This model is used to
extend the solution given by W.M. Kier [Zoological Journal of
the Linnean Society, Vol. 83, No. 4, 307-324, 1985], and shows
that while significant twist can be lost to deformations of the
internal structure, those with a Poisson’s ratio approaching
v = 0.5 mitigate this loss. Finally, the feasibility of the concept
is demonstrated with McKibben actuators wound around foam.

I. INTRODUCTION

Soft actuators, whether alone or as a part of a system, have
yet to achieve the dynamic capabilities of biological analogs
like cephalopod arms. Whether pneumatically powered, elec-
troactive, or cable-driven, these actuators have individually
shown the ability to elongate, contract, bend, and twist —
motions that are dictated by the organization of elements
within them, and are not commonly actively reconfigurable.
Biological systems, in contrast, use simple — and similar —
constituents to form complex systems capable of combined
motions and dynamic forces beyond those of the original
components.

Cephalopod arms and tentacles are composed of groups
of muscles oriented in three directions: oblique (or helical),
transverse, and longitudinal. Each muscle group can contract
actively, extend passively, and maintains an approximately
constant volume at physiological pressures. Kier determined
that the tentacles’ extraordinary range of motion and control
over orientation comes from their morphology: the noted
muscle groups actuate together and against each other to
affect motion [1], [2]. Consider the example of the squid
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tentacle in Figure 1 [1]. The longitudinal muscles contract
directly, while the transverse muscles tighten their cross
section to force extension. Bending is created by joint
activation of transverse and longitudinal muscles. Torsion is
controlled by the helical muscles that wrap in both directions
around the outside. The exact arrangement and size of each

Fig. 1. Diagram of a left tentacular stalk of a loliginid squid [1], above, and
a depiction of the helically wound actuator concept, below, around a possible
soft robotic arm. In the upper, LM and SLM indicate longitudinal muscles,
while CM, TR and TM indicate transverse muscles. HM indicates helical
or oblique muscles, which are present in opposing pairs. The remaining
indications are non-muscular anatomical features, such as connective and
nervous tissue. In the lower, HM indicates the helically wrapped actuators
studied here. LM and TM represent a possible system of soft actuators to
create other motions, but are not studied here.



muscle group has been shown to vary by creature (e.g.
elephant trunk, octopus arm, cuttlefish tentacle) and even by
arm or tentacle within the same creature, according to their
biological requirements [1].

Previous attempts to replicate the abilities of cephalopods,
though numerous, have achieved only a subset of nature’s
capabilities. A simple approach is a tentacle that uses cables
to drive bending and shortening, in a loose replication of
longitudinal muscles [3]. A more common approach is to
place in parallel three lines of extensile actuators, generating
bending, and in some cases extension, by selectively activat-
ing actuator lines. This approach is used in Festo’s Bionic
Handling Assistant [4], in a serial pneumatic actuator arm
developed in [5] and in the OCTARM developed in [6]. In
both the Bionic Handling Assistant and OCTARM, though,
the orientation of the gripper is controlled through a rigid
rotary mechanism. Of those listed here, only the SPAM arm,
which does not extend or twist, is completely soft.

Fewer systems have analogs to two or all three muscle
groups. In [7] - [8], shape memory alloy actuators were
connected to a braided structure to transform contraction into
extension, while in [9] and [10], the transverse muscles were
mimicked by pneumatic actuators placed orthogonally. All
three muscle groups are replicated in [11] (though extension
is not demonstrated), including bio-inspired soft torsional
actuators, but the work does not examine actuator placement,
geometry, expected performance or system interaction.

Soft actuator systems suffer the same limitations in robots
not inspired by cephalopods. A variable stiffness gripper
was developed using parallel actuators in [12], but it lacks
independent orientation control. In [13] individual fiber-
reinforced actuators, including a torsional actuator, were
examined for serial combination, but this method has an in-
herently low mechanical advantage. In [14], helical actuators
were antagonistically activated for joint stiffness modulation,
but were not examined for torsion control.

This paper proposes a method of twist actuation and
torsional stiffening directly inspired by the oblique muscles
of cephalopod arms and investigates the interaction with a
system of soft actuators. Current literature neglects soft twist
actuation or focuses on individual fiber-reinforced actuators
with limited twist and torque. The closest work, [11], does
not explore system morphology. This paper examines the
benefits and requirements of torsion actuators and presents
the concept in Section II. The mathematical foundations of
helically wound actuators around a constant dimension cylin-
der are presented as a geometric model in Section III, which
is used to quantify best case performance. A mechanics
model is then developed to explore the interaction between
helical actuators and a deformable internal media, such as
other soft actuators. This model is used to extend a solution
presented by Kier that neglects twist [2]. Two prototypes are
developed in Section IV. The first implements the concept
with cables around a rigid cylinder and is used to validate
the geometric model. In the second a pneumatic actuator is
wound around foam to demonstrate concept feasibility in soft
systems. The paper is concluded in Section V.

II. CONCEPT AND REQUIREMENTS OF
TORSIONAL MUSCLES

Twisting actuators on a soft robot arm provide orientation
control. The orientation of the distal tip can be controlled
with two opposing helical actuators, while opposing actuators
in series allow continuum control. Suckers on cephalopod
arms cover only part of the exterior surface, so torsion
control is required to orient them to the target. Antagonistic
activation increases the torsional stiffness of the arm, im-
proving the ability of capturing tentacles to restrain prey [1].
Twist can be developed in an individual pneumatic actuator
wrapped by an inextensible fiber, and it can be combined
with bending by wrapping two inextensible fibers at different
angles [15], [16]. However, these actuators are difficult to
integrate into systems, and lack mechanical advantage. Our
identified requirements and concept are presented to address
these challenges.

A. Requirements of Torsional Muscles

When used alone, torsional actuators must twist with
enough torque to move themselves and the desired load.
When used in conjunction with other actuators, the system
imposes additional requirements. Though not comprehensive,
the following are proposed to frame further examination of
the concept:

o Develop the desired twist. For an end effector to have

a complete orientation range, only 180° of twist in
each direction is required. However, tasks like matching
sucker position to objects could require more than
180° of twist in a given direction. This concept’s twist
performance is examined in depth in this paper.

o Generate enough torque to overcome system stiffness
and carry the desired load. The actuator torque is
specific to the type and design, but multiple actuators
could be placed in parallel for a higher total. The
actuators are expected to gain mechanical advantage
from exterior placement, and to modulate stiffness, as
in [14]. This is not examined in detail in this work.

o Allow other motions. In a complete arm, the torsional
actuators must be compliant enough to allow contrac-
tion, elongation and bending. Helical structures can
accommodate height change with little strain, and the
demonstrations in [14] suggest they can also accommo-
date bending. This is not studied in detail in this work.

B. Concept Description

In this concept, two sets of contracting actuators are
wound helically up a cylindrical structure — whether rigid or
compliant - in opposite directions. This is a close replication
of cephalopod arms (see Figure 1). The origin of paired
actuators is identical and fixed, while the termination point
is connected to the distal end of the structure or segment.
When the actuators contract, they are assumed to maintain
a helical shape and remain on the cylindrical surface. The
number of turns in the active helix reduces as the length
does, developing twist in the encapsulated structure in the
direction of the contraction. This is illustrated in Figure 2.
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Fig. 2.  Demonstration of helical actuators developing twist in a structure. The actuators start with one turn each. The blue actuator shortens, developing
45° of twist in the structure between each frame (denoted by ¢). The red actuator passively lengthens to remain connected to the same termination point.

Though Figures 1 and 2 show the concept as though it
were implemented with pneumatic actuators, a particular
actuator is deliberately not selected. The concept is appli-
cable to any contracting actuator, such as cables, McKibben
actuators, or inverse pneumatic artificial muscles [17].

III. ANALYTICAL MODEL OF HELICAL
ACTUATORS

While finite element models can provide high fidelity
output (given high fidelity input), simpler (and less accurate)
analytical models often provide more physical insight. Two
models were developed to evaluate twist performance of
helical actuators: a geometric model and a mechanics model.

The geometric model, given in Section III-A, assumes the
internal cylinder to be of constant dimension. This idealized
condition is more appropriate to traditional robotics, but it
establishes a best-case performance, and the model can be
used to explore the effect of varying helix parameters. This
model relates contraction to twist, irrespective of materials.

The mechanics model, presented in Section III-B, allows
the height and radius of the internal cylinder to change as
it twists. The defining challenge of wholly soft actuator sys-
tems is their inherent compliance — unlike traditional robots,
which can actuate without changing any dimensions other
than the intended one, extension or contraction in soft arms
can significantly change the cross-sectional dimensions and
stiffness. The actuators within and connected to the structure
must accommodate these changes, and their performance
evaluated within that context. Though the internal structure is
not known, the proposed solution models it as a set of springs
with known stiffness. This technique allows the actuator
groups to be modeled separately, while still examining their
interconnectedness.

A. Geometric Model

Consider a single helix wound 7 times about a cylinder of
height 4 and radius r, with parameters as defined in Figure 3.
A helix is simply a straight line wrapped up the surface of the
cylinder at a constant pitch, and so the length of the helix is
the hypotenuse of the triangle formed by the cylinder height

and length of the circumferential wrap. Helices may be fully
described by three independent parameters, generally some
combination of height, radius, angle, length and number of
turns. In this case, it is initially convenient to define the
length in terms of height, radius and number of turns, and
solve for helix angle 6 separately.

1 =\/(21rn)2 + h2 (1

2
tanf = T

@)

Twist in the structure, as shown in Figure 2, is developed
as the helix arc length shortens. To evaluate the amount of
twist ¢, the actuator is assumed to remain helical and bound
to a cylindrical surface of constant height hy and radius 7.
In all cases, the subscript 0 refers to the initial configuration,
c refers to the contracted configuration, and e refers to the
elongated configuration. Contraction is defined in Eq. 3 as
a ratio of lengths. The origin of the helix, at the base of
the cylinder, is assumed to be fixed. The amount of twist,
then, is given by the angular difference between the initial
and final helix termination points, which can be written as a
difference in the number of turns.
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Fig. 3. Definition of helix parameters as they are used within this paper.
The helix angle 0 is defined from the longitudinal axis, while the height
and radius are identical to that of the cylinder wrapped by the helix. The
number of turns is given by 7, and the developed twist by ¢.
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Note 7)., the number of turns after contraction, is assumed
to be less than 7, and so Eq. 4 is written such that
¢ is positive. Eq. 1 can be rewritten for the contracted
configuration, and Eq. 4 and Eq. 1 substituted to produce a
relation between the initial helix parameters, the contraction
ratio and the twist.
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This result can be simplified by redefining the helix in
terms of the initial angle 6y and substituting, to produce a
relationship between the developed twist, contraction and the
initial helix angle and number of turns. The height and radius
are then defined implicitly, but Eq. 7 can be rewritten in terms
of a cylinder aspect ratio instead of the number of turns.
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Eq. 7 suggests that developed twist is nearly linear with
contraction. The idealized behavior can be further explored
using Eq. 7 and Eq. 8 by varying initial helix geometry. In
Figure 4, helices are defined by the initial angle and number
of turns, and the contraction required to produce 180° of
twist, calculated from Eq. 7, is plotted.
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Fig. 4. The contraction ratio required to produce 180° of twist for a given
initial helix angle, plotted for one, two and three turns () initially. Twisting
180° is equivalent to unwinding half a turn, so the higher the initial turns,
the less contraction is needed at all angles to produce the same twist.

The contraction required to reach 180° decreases for a
given helix angle as the number of turns increases, while
lower helix angles require less contraction to achieve the
same twist. The first observation is explained by noting that
the number of turns lost to produce 180° of twist is one
half-turn regardless of the initial number of turns, so the
ratio approaches unity as 7 increases. The second observation
identifies a weakness in the model: it imposes a contraction
regardless of whether it can be physically accomplished. At
low helix angles, small length changes produce large twists,
but the actuator force — directed along the helix — is nearly
perpendicular to the desired direction of motion.

In Figure 5, the same exploration is done with helices
defined by the cylinder aspect ratio. This solution can be
more helpful in imagining an arm of a certain size wrapped
at a particular angle. Because the number of turns is defined
implicitly, it is possible for low angle helices to be too short
to produce 180° of twist. The set of valid solutions can be
found by writing an inequality between the cylinder height
and the contracted arc length, as the helix length cannot
shorten beyond the height. This gives the maximum valid
contraction for a given initial helix angle (note: the contrac-
tion ratio decreases as amount of contraction increases).

loae > ho )

e > cos b (10)

Figure 5 identifies two regions of good performance but
practical challenges: very low helix angles, which misdirect
the force, and very high helix angles, which require very
long actuators. It also identifies, in the approximate middle of
each curve, a set of solutions that require large contractions,
suggesting the ideal solution may be in the first or fourth
quartile.

An identical second helix, wound opposite to the first with
the same origin and termination points, can be added to the
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Fig. 5. The contraction ratio required to twist 180° for a given initial

helix angle, plotted for three aspect ratios and truncated to include only
valid solutions per Eq. 10. At low angles, small contractions produce large
twists, while at high angles, the greater number of turns drives % to one.



model. As the active helix contracts, the passive helix must
extend. A similar approach can be taken to find the required
extension, by assuming an expansion ratio «, and relating the
increased number of turns 7. to the previously determined
twist ¢.

o = (11)
lo
Ne = Mo + E (12)
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Note that 7. has been assumed to be greater than 7y, and
Eq. 12 written to match the previously assumed sign of devel-

oped twist. Following the method presented previously and
solving for a, yields a result in terms of helix parameters.

Qe =

4tan? 0,

_— 13
a6+tan290+1 (13)

The net length change in active contraction, then, is
not necessarily equal to the net length change in passive
extension (i.e. a. = 0.75, a, is not guaranteed to be 1.25).
Experimental results shown in Section IV suggest that as
the number of turns increases, the length changes approach
equality.

B. Mechanics Model

The weakness of the geometric model is that it ignores
the mechanics of both the helical actuators and the internal
cylinder. As the actuators contract, they tighten radially
around the structure, and exert a torque and a downward
force, with the fraction of the force to each dependent on
the changing helix angle. For an encapsulated deformable
cylinder, this could reasonably be expected to change its
height and radius. In cephalopod arms, the muscles undergo
drastic dimensional changes. Kier derived the relation in
Eq. 14, with parameters as defined in Figure 6, to quantify
the deformation of the arm when the oblique muscles were
activated [2]. The volume V is constant, but by neglecting
7, this solution presumes the number of turns to also be
constant and singular, and thus no twist is developed.

D— N . SWV
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Once deformation and twist are allowed, the system cannot
be fully defined geometrically. This was also noted by G.
Krishnan, who found a deformable cylinder defined by a
single helix was geometrically underconstrained [15]. As
the helix shortens, the internal cylinder can shorten, widen
or twist to resolve the length change. The inclusion of
deformation in a model is complicated by the unknown
internal structure. Selecting a particular structure would
severely limit the applicability of the model, and prevent
later co-optimization of actuator groups. Instead, a solution
form is proposed from a combination of three equations: a

(14)

geometric constraint, minimization of potential energy, and
a third closing equation derived from system knowledge.

The solution is developed in three steps, ending in an ex-
tension of Kier’s original solution. In every step a contraction
a. 1s imposed, and, and is presumed to generate a twist ¢, a
change in radius Ar, and a change in height Ah. Assuming
that the internal cylinder remains cylindrical (thus assuming
that no buckling occurs) and the actuators remains helical,
Eq. 1 can be used to write a geometric constraint.

2
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The total potential energy of the deformable media will
tend to a minimum, which can be used to relate the de-
formations. This approach is, in some ways, the inverse of
the approach in [18], in which an energy model is used to
determine load from deformation. To solve Eq. 16 as written,
Ar and Ah must be described in terms of ¢.

dE(¢, Ar, Ah)
do

First, consider a simpler case, where the height is fixed
(Ah = 0). To solve Eq. 16, the system energy must

=0 (16)
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Fig. 6. Definition and result of oblique muscle model as presented by Kier,
reproduced exactly from the original source [2]. Kier defines the length of
the helix by cylinder radius and height, neglecting the number of turns and
thus assuming it to be constant and singular. The solution assumes constant
volume, and models the length and radius change of the oblique muscles
without twist. This represents antagonistic activation.



be described in terms of the deformation. The cylindrical
structure is therefore modeled as two springs: a radial spring,
with stiffness k,., and a torsion spring, with stiffness k. In
this work, both stiffnesses are assumed to be constant. The
energy of the system can then be written as the sum of two
spring energies, and solved with just the geometric constraint
in Eq. 15.

1
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To identify the effect of the ratio of torsional and radial
stiffness, the result is plotted in Figure 7 for a sample helix,
using the same contraction that produced 180° according to
the geometric model. When the radial stiffness is high, the
result approaches that of the geometric model. When the
radial stiffness is low in comparison to the torsional stiffness,
though, developed twist vanishes.

The solution can then be extended to allow height change.
The spring model can be similarly extended to include
a vertical spring with stiffness k;, and Eq. 16 rewritten
accordingly. This third deformation, though, requires a third
constraining relation to solve. Most soft robotic systems are
not truly constant volume, nor do many exhibit a constant
Poisson’s ratio. Initially, therefore, the system will be closed
with a force and moment balance between the contracting
actuator and the internal cylinder.

Ez%@AM+&Aﬁ+m&) (20)

The actuator force is assumed to act down its length, and
the vertical component of that force can be equated to the
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Fig. 7. Developed twist ¢ and radial change as the stiffness ratio IZ—T varies,

plotted against a logarithmic scale. This result is for a helix of initial height
150 mm, radius 30 mm, and single turn at angle 51.5°. The contraction
ratio e = 0.74, which produced 180° of twist in the geometric model.

return force generated by the vertical spring. This introduces
an actuator force F,, an additional unknown. Assuming a
force profile and applying that with the contraction would
over-define the system, and thus a moment balance is used
to equate spring torque to actuator torque.

F,cos6 = k,Ah 21

F,sinf(ro — Ar) = k. ¢ (22)

Eq. 21 and 22 can then be solved to eliminate the actuator
force, and be written in terms of height, radius and twist
instead of helix angle.

B hok-+¢
ke d+ kn(r — Ar)2(2mn0 — ¢)

The dependency between Ar and Ah creates an implicit
relationship in both the geometric constraint and the energy
minimization, so the system of equations was solved numer-
ically. The results are plotted in Figure 8 against a varying
vertical spring stiffness for two different sets of radial and
torsional spring stiffnesses. The same sample helix used in
Figure 7 was used for this study.

As the vertical spring stiffness increases, the result natu-
rally approaches the solution in Eq. 19, where Ah = 0. How-
ever, when the internal cylinder is both radially and vertically
compliant in comparison to torsional stiffness, twist again
diminishes to almost nothing. Note two assumptions within
this model: (1) though Ah and Ar are loosely interrelated,
the structure may decrease size in both directions, which is
representative of collapsing hollow structures, and (2) this
model assumes constant stiffness for solution ease.

Using the above framework, the energy minimization
approach can be used to extend Kier’s derivation. The force
and moment balance are replaced with a constant volume
assumption, enforcing a Poisson’s ratio of 0.5. Note that,

Ah (23)
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Fig. 8. Twist ¢ and height change as kj, varies, plotted against a logarithmic
scale. Radius changes are omitted for figure clarity. This result is for the
same sample helix used in Figure 7. Two cases are plotted: first, a ratio of
k'—: = 5F — 5 and second, a ratio of :—: =5F —T.
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despite this, all deformations are defined as decreases for
notation consistency.

(ro — Ar)2(hg — Ah) = r2h3 (24)

As before, the set of equations is solved numerically. The
deformations for the sample helix are plotted in Figure 9, for
two ratios of torsional to radial stiffness, though the vertical
stiffness is constant between them.

The results show that, for compliant structures, signifi-
cantly more twist is developed for a given contraction around
a constant volume structure (v = 0.5) than around a structure
with no Poisson’s ratio. This is due to the inverse propor-
tional relationship between AR and Ar, which forces an
increase in one dimension with the perpendicular dimension
decreases. Note that even when the ratio between k, and &,
increased (which had previously greatly diminished twist),
the change in developed twist was small.

IV. PROTOTYPE AND TESTING

To validate the concept and the geometric model, helical
actuators were implemented with both cables and pneumatic
actuators. The cable-driven actuator was used to validate
the geometric model, while the pneumatic actuator was
successfully used as a qualitative proof of concept.

A. Prototype Construction

The cable-driven prototype consists of a rigid cylinder with
a rotary joint at the top, with cables wound in both directions.
The rigidity of the model preserves the dimensions, while the
rotary joint allows for twisting without significant torsional
resistance. This implementation is shown in Figure 10.

In the pneumatic version, an actuator was wrapped around
a cylindrical foam core, which serves as the deformable
media. A single McKibben actuator was used, tied to 3D
printed caps adhered to the foam. This implementation is
shown in Figure 11.

Fig. 10. A cable-driven rigid mechanism prototype, also used for the results
in Figure 13. As the contracting side shortens, twist is developed, and the
opposing helix lengthens. In this picture, the top has twisted ~ 115°.

Fig. 11. A pneumatic prototype with a single McKibben actuator. As the
actuator pressurizes and shortens, it places a concentrated load on the foam
core. At maximum contraction, the core twisted ~ 60°.

Construction of the prototypes validated the need for the
mechanics model, and demonstrated another challenge. The
contraction of McKibben actuator changed the height of the
foam, but as a tilt in the top, not a uniform decrease. The
same concentrated loading was apparent radially as well,
locally indenting the foam. This spot loading was a result of
using only one actuator; a more distributed set of actuators
might produce more even loading. This need for distributed
forces may be one reason for the apparent redundancy in
cephalopod arms.

B. Testing

The cable-driven prototype was also used to validate the
geometric model, as it is constant dimension. Twist was
measured via marks in the rotary joint, and the length of
the contracting and extending cables were measured and
compared to theory. The test set-up is shown in Figure 12.

The results for three initial helix angles are shown in
Figure 13, though six were tested. In all cases the data
was close to theory. The slight differences are likely due
to measurement resolution and cable variation from a helix.
Retaining a helical form is assumed in all presented models,
but the experiment showed that low stiffness actuators with
large numbers of turns drifted away due to gravity. However,
even this produced little numerical error.



Fig. 12.  Geometric model validation test set-up. The length change of the
cables was measured with a ruler. Twist was measured via indentations in
the rotary joint placed every 5° on both the base and top.
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Fig. 13. Comparison between measured contraction (points) and theory
(solid lines), plotted for three different initial number of turns.

V. CONCLUSIONS

This paper has presented and analyzed a biologically
inspired method of torsion control via helically wound actu-
ators, which exists as a gap in the literature today. Though
commonly neglected or solved with traditional rotary joints,
twisting actuators allow for control of end effector orientation
and antagonistic stiffening. In octopuses, torsion control is
required to orient suckers to targeted surfaces.

The presented models provide an analytical foundation for
estimating twist performance alone and in a larger system.
The geometric model gives a theoretical maximum twist, and
has been validated for cylindrical structures with constant
dimensions. The mechanics model connects the developed
twist to the stiffness of an internal deformable media, and
proposes a stiffness representation of internal actuator groups
to allow for independent study and later co-optimization. The
model finds that in unrestrained media the ratio of torsional
stiffness to vertical and radial stiffness determines the amount
of twist lost to other deformations, and predicts that twist will
vanish in vertically and radially soft media. Internal media
with a constant volume (v = 0.5), like cephalopod muscle,
do not show this same sensitivity to stiffness ratios. This
extends Kier’s original torsion solution, which was valid only
for deformation change due to antagonistic stiffening (no
twist developed) [2]. This model could be used to design
for combined twisting and extension or contraction, repli-

cating nature’s ability to use self-interference, which might
otherwise be considered problematic, to produce complex
motions.

This work has laid the foundations for a system integration
with other actuators, and future work will focus on expanding
the models to include more detailed stiffness representations,
such as varying and interdependent spring stiffnesses. This
model could then be validated with a distributed system of
actuators, progressing towards a more capable soft robot arm.
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