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HIGHLIGHTS

® Conventional SEM estimators perform poorly in small to moderate samples.

® Bias corrected estimators offer a simple and robust alternative.

® We outline the method with an applied example and R code.

® Results demonstrate the proposed estimator is largely unbiased and more efficient.

ABSTRACT

Structural equation modeling with full information maximum likelihood estimation is the predominant method to empirically assess complex theories involving
multiple latent variables in addiction research. Although full information estimators have many desirable properties including consistency, a major limitation in
structural equation models is that they often sustain significant bias when implemented in small to moderate size studies (e.g., fewer than 100 or 200). Recent
literature has developed a limited information estimator designed to address this limitation—conceptually implemented through a bias-corrected factor score path
analysis approach—that has been shown to produce unbiased and efficient estimates in small to moderate sample settings. Despite its theoretical and empirical
merits, literature has suggested that the method is underused because of three primary reasons—the methods are unfamiliar to applied researchers, there is a lack of
practical and accessible guidance and software available for applied researchers, and comparisons against full information methods that are grounded in discipline-
specific examples are lacking. In this study, I delineate this method through a step-by-step analysis of a sequential mediation case study involving internet addiction. I
provide example R code using the lavaan package and data based on a hypothetical study of addiction. I examine the differences between the full and limited
information estimators within the example data and subsequently probe the extent to which these differences are indicative of a consistent divergence between the
estimators using a simulation study. The results suggest that the limited information estimator outperforms the conventional full information maximum likelihood
estimator in small to moderate sample sizes in terms of bias, efficiency, and power.

1. Introduction sample bias associated with full information estimators—e.g., bias for both
the structural path coefficients and their standard errors—can be sensitive
to the balance between model complexity and sample size because the core

properties of full information estimators (e.g., consistency) lean heavily on

The use of latent variables to operationalize substantive theories of
behavior traverses most areas of addiction research. One of the most

common methods to empirically assess the relationships of latent
variables is structural equation modeling. Structural equation models
(SEMs) assess underlying theories by estimating measurement models
that track differences among individuals on the latent variables using
observable indicators and then connect these latent variables through
structural models to quantify their relationships.

Conventionally, the measurement and structural parameters in a SEM
have been estimated concurrently using full information maximum like-
lihood. Theoretical research has demonstrated that full information esti-
mation of measurement and structural parameters produces unbiased
parameter estimates in large samples (e.g., Gagne & Hancock, 2006;
Kmenta, 1971). However, this research has also shown that the finite-
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large sample or asymptotic theory that may not even approximately apply
in finite samples (e.g., Gagne & Hancock, 2006; Li & Beretvas, 2013). For
instance, within the context of SEM, samples of 100 to 200 are often con-
sidered a minimum in order to produce stable unbiased estimates while
samples of less than 100 cases are often classified as untenable (e.g., Kline,
2011). More carefully, sample size recommendations in past research have
often indicated that at least 10 to 20 cases per parameter will be needed to
provide a minimal basis for unbiased estimation and inference (e.g., Wolf,
Harrington, Clark, & Miller, 2013). However, even these minimal require-
ments can be contingent upon, for example, the presence of moderate to
high magnitudes of factor loadings and latent variable associations (e.g.,
Wolf et al., 2013).
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Yet, many studies in addiction research draw on sophisticated the-
ories involving multiple latent variables with samples of less than 100
(e.g., Bledsoe, 2006; Mirhashem et al., 2017), samples between 100 and
200 (e.g., Kelly, Masterman, & Young, 2011; Miranda, Treloar-
Padovano, Gray, Wemm, & Blanchard, in press; Spada, Nikcevic,
Moneta, & Wells, 2007), or models whose complexity outpaces the 10
to 20 cases per parameter minimum (e.g., Coriale et al., 2012). This
limitation is not unique to the field of addiction research—past surveys
that traverse disciplines have also widely reported the regular use of
SEM in small to moderate samples (e.g., MacCallum & Austin, 2000).

In this study, I introduce a little-known robust alternative for esti-
mating SEMs—bias-corrected factor score path analysis (BCFSPA).
BCFSPA is a limited information maximum likelihood estimator that
addresses several key limitations of full information methods in SEMs
while improving upon conventional limited information methods.
Recent research has shown that BCFSPA methods tend to perform
well—both in an absolute sense and relative to full information meth-
ods—in a variety of highly practical and relevant settings including
small to moderate sample sizes, multilevel settings, and with non-
normal variables (e.g., Devlieger & Rosseel, 2017; Devlieger, Mayer, &
Rosseel, 2016; Kelcey, Cox, & Dong, n.d.).

Below, I provide an accessible illustration of the method through an
example that maps the potential processes and predecessors of internet
addiction using sequential mediation. I first provide a brief conceptual
outline of the BCFSPA method and follow with an illustrative analysis (with
data and in R in appendix). I then conduct a simulation study to probe its
performance in data with non-normal error distributions and illuminate the
differences between the BCFSPA method and the conventional full in-
formation method in terms of coefficient bias, efficiency, standard error
bias, and statistical power. I finish with a discussion.

2. Bias-corrected factor score path analysis
2.1. Factor score path analysis

I begin with an outline of a historical alternative to full information
parameter estimation in SEMs—factor score path analysis (FSPA; e.g.,
Lu, Kwan, Thomas, & Cedzynski, 2011). The FSPA approach breaks
down the system of equations operationalizing a theory using two
primary steps: (a) estimate separate measurement models for each la-
tent variable and (b) estimate a path analysis using the factor scores
predicted by the resulting measurement models.

Prior research has shown that FSPA is often a practical and valuable
approach for two primary reasons. First, the piecewise estimation of the
components of the SEM reduces the model complexity for each stage, thus
improving estimation stability and solution admissibility. These benefits are
particularly pronounced in analyses of small to moderate samples and in
analyses considering complex models because full information estimation of
SEM parameters can often lead to improper solutions or a failure to con-
verge (e.g., Gagne & Hancock, 2006). A second commonly cited benefit is
that piecewise estimation can constrain the effects of model misspecification
such that its influence does not bias unrelated structural or measurement
components (e.g., Bollen, 1996; Devlieger & Rosseel, 2017). Full informa-
tion estimation of parameters in SEMs typically does not yield this prop-
erty—model misspecification in any part of the SEM can propagate sub-
stantial bias to other unrelated parts of the model.

Despite these benefits and the conceptual simplicity of FSPA, a well-
known and significant drawback to the method is that the parameter esti-
mates are biased because the method does not fully incorporate the un-
certainty and indeterminancy inherent in factor scores (e.g., Skrondal &
Laake, 2001). More specifically, in order to connect latent variables across
measurement models, FSPA methods first directly predict the unobserved
values of the latent variables and treat them as known in the subsequent
path analyses. However, factor scores are not uniquely determined by the
measurement models and thus a critical limitation of any factor scoring
method is that it ignores this essential uncertainty. The implication of this
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limitation in practice is that the method produces structural path coefficient
estimates that are biased proportional to the degrees of indeterminancy
present in the latent variables.

2.2. Bias-corrected factor score path analysis

Recent theoretical developments in estimation have, however,
shown that the nature of the bias arising in the structural path coeffi-
cients in FSPA can be tracked as a function of the measurement model
parameters (Croon, 2002). Recent literature has derived bias-corrected
limited information estimators that refine the FSPA approach so that it
yields unbiased estimates of structural path coefficient estimates
(Devlieger & Rosseel, 2017; Kelcey et al., 2018). Several studies have
provided initial evidence of the promise of BCFSPA and have identified
it as a robust alternative to full information estimation in SEMs. For
instance, research has compared the robustness and performance of
BCFSPA relative to full information methods in small sample sizes and
with moderate model complexity (Lu et al., 2011), with non-normal
indicators in simple regression (Devlieger et al., 2016), with measure-
ment model misspecifications (Devlieger & Rosseel, 2017), and with
multilevel or clustered settings (Kelcey et al., 2018).

Despite the demonstrated potential of this method, few empirical
studies in addiction research have employed the method. More broadly,
recent reviews have suggested that the underuse of the method may be
due to three reasons—the methods are unfamiliar to applied re-
searchers, there is a lack of practical and accessible guidance and
software available for applied researchers, and comparisons against full
information methods that are grounded in discipline-specific examples
are lacking (Lu et al., 2011). I address these limitations by providing an
example analysis grounded in addiction research along with code im-
plementing the analysis. I also contribute to the research base of the
BCFSPA method by assessing the estimator against a full information
estimator within a case study of sequential mediation using small to
moderate samples and multiple non-normal error distributions.

3. Illustration

I outline the BCFSPA estimator by developing a hypothetical ex-
ample regarding internet addiction. Our implementation focuses on one
common type of structural equation model—sequential mediation—to
examine the extent to which social support influences internet usage
and addiction through emotion dysregulation (e.g., Mo, Chan, Chan, &
Lau, 2018). A conceptual diagram of the theory and the corresponding
SEM is presented in Fig. 1.

Our illustrative example draws on three latent variables: social support
(S), emotion dysregulation (D), internet addiction (A); each latent variable is
represented as a circle in Fig. 1. In addition, I consider one observed var-
iable—internet usage (U)—that is standardized to have a variance of one
and is represented as a square in Fig. 1. In our particular application, I focus
on the sequential mediation pathway that details the extent to which the
influence of social support on internet addiction operates through emotion
dysregulation and then internet usage. Statistically, I summarize this se-
quential mediation process as the product of relationships between social
support and emotion dysregulation (path labeled a in Fig. 1), emotion
dysregulation and internet usage (path labeled e in Fig. 1), and internet
usage and internet addiction (path labeled f in Fig. 1).

For the purposes of our illustration, I simulated data based on a
sample of 100 cases (I explore a broader range of sample sizes in the
next section; see Appendix for data generation and code). In this il-
lustration I consider normally distributed error terms for each of the
indicators. However, because addiction research often calls on variables
with non-normal distributions that are not directly reproduced by
correlation matrices, our subsequent Monte Carlo simulation com-
paring the limited and full information estimators purposefully con-
siders several different types of non-normal error distributions and the
robustness of the estimators to these types of violations.
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social
Support (S)

internet
Addiction (A

internet
Usage (U)

Fig. 1. Conceptual diagram of example structural equation model for sequential
mediation (quantified by aef) with path labels.

Note. S refers to social support (with S;, S, and S; as indicators), D refers to
emotion dysregulation (with D;, Dy, D3, D4, and Ds as indicators), A refers to
internet addiction (with A;, A,, As and A, as indicators), and U refers to in-
ternet usage.

Note. a refers to the Support-Emotion path; b refers to the Support-Addiction
path; c refers to the Support-Usage path; d refers to the Emotion-Addiction path;
e refers to the Emotion-Usage path; and f refers to the Usage-Addiction path.

3.1. Implementation

The BCFSPA estimator parallels the conventional FSPA estimator
but differs in one key way—the conventional FSPA estimator uses the
factor score variance-covariance matrix to estimate structural re-
lationships whereas the bias-corrected approach introduces measure-
ment model-based adjustments to correct the factor score variance-
covariance matrix and thereby provide an unbiased estimate of the true
variance-covariance matrix. Below I conceptually outline an im-
plementation of the method and provide step-by-step R code in the
supplemental material using the lavaan package (Rosseel, 2012).

3.1.1. Step a

To implement the BCFSPA estimator, I first separately estimate
confirmatory factor models for each latent variable (see example code
in supplemental material). In our illustration, I estimate individual
factor models for each of three latent factors: (a) social support using
three indicators, (b) emotion dysregulation using five indicators, and
(c) internet addiction using four indicators (see Fig. 1). Having fit the
models, we can assess the adequacy of each one using the typical model
fit indices (e.g., chi-square test of model fit). The resulting factor
loadings for the example data for each factor under the BCFSPA and full

Table 1
Measurement and structural model results for illustrative analysis.
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information estimators are presented in Table 1.

3.1.2. Step b

We must now forge structural connections among the variables to es-
timate path coefficients. With the BCFSPA estimator, we first predict factor
scores for each latent variable using, for example, the regression method.
Subsequently, we estimate the variance-covariance matrix of the factor
scores along with any observed variables (e.g., internet usage). That is, al-
though we conceptually predict factor scores, we do not use them at the
individual-level but rather employ them in a limited fashion only to obtain
an initial estimate of the variance-covariance matrix. The covariance matrix
(2) of factor scores for the example dataset is

U A S D

1
=] .38 .39

—-.03 —-20 .85

A5 42 —-28 9 6
3.1.3. Step ¢

Next, we correct the covariance matrix to obtain an estimate of the
true covariances. I consider standardized solutions with the scale of
each latent variable identified by setting the variance of that variable to
unity in the measurement model. Alternative approaches such as fixing
the loading of the first indicator to one can also be used (e.g., Devlieger
et al., 2016). To implement these corrections with regression-based
factor scores, we divide the covariance between each set of scores (as
outlined in Eq. (1)) by the respective products of the factor score and
loading matrices (see worked example for the covariance between so-
cial support and emotion dysregulation below and in appendix code).

Conceptually, these corrections parallel the classical test theory
disattenuation corrections for a correlation between to unreliably
measured constructs because the BCFSPA corrections principally
leverage the unreliabilities of the latent variables to remove the at-
tenuating effects of measurement error on the covariances of factor
scores (Spearman, 1904). More specifically, the historical correction
associated with classical test theory disattenuates an observed corre-
lation by dividing it by the square root of the product of the latent
variable reliabilities. This approach presumes a classical test theory
measurement model (tau equivalence) is appropriate and assumes large
sample or known reliabilities for the factors. In SEM, however, more
complex measurement models are accommodated, the reliabilities of
factors are unknown, and the associated indicator properties (e.g.,

Parameter Indicator Emotion dysregulation (D) Internet addiction (A) Social support (S)
SEM BCFSPA SEM BCFSPA SEM BCFSPA
Measurement model Factor loadings 1 0.69 0.75 0.61 0.78 0.82 0.87
2 0.76 0.81 0.66 0.85 0.88 0.84
3 0.74 0.81 0.57 0.74 0.42 0.42
4 0.79 0.84 0.65 0.85 - -
5 0.64 0.69 - - -
Parameter (true) SEM BCFSPA
Estimate SE(M) SE(B) Estimate SE(B)
Structural model a(= -0.30) —0.40 0.13 0.16 -0.37 0.12
b (= —0.10) —-0.14 0.13 0.16 -0.10 0.11
c(= —0.04) 0.05 0.12 0.12 0.03 0.11
d (= 0.40) 0.51 0.14 0.18 0.43 0.12
e (= 0.15) 0.17 0.11 0.11 0.17 0.12
f(= 0.33) 0.46 0.12 0.16 0.35 0.11
Mediation effect aef (= —0.01) —-0.03 - 0.03 —-0.02 0.02

Note. SE(M) is model-based standard errors and SE(B) is bootstrapped standard errors. SEM is full information estimation. BCFSPA is the limited information bias

corrected factor score path analysis.
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factor loadings, error variance) are unknown and estimated from the
data. These critical differences impede the use of the classical test
theory disattenuation adjustment in SEM. The BCFSPA approach
bridges this gap by mapping out the working relationship between
factor covariances and factor score covariances and developing cor-
rections on the basis of these relationships.

As an example, let us consider how to obtain an unbiased estimate
of the true covariance between the latent constructs of social support
(ns) and emotion dysregulation (#p). Croon (2002) showed that having
estimated the measurement models, a corrected covariance can be ob-
tained by dividing the covariance between the factor scores of social
support (fs) and emotion dysregulation (fp) by the products of their
factor score (As and Ap) and loading matrices (Ags and Ap)

cov(fs.fp)

cov(ne,n,) =
(2s:7p) AsAsALA) 2

The key insight conceptually linking the classical test theory dis-
attenuation correction and the Croon (2002) correction is to recognize
that matrix multiplications in the denominator of Eq. (2) produce the
product of the construct reliabilities. That is, each matrix multiplication
of the individual factor score and loading matrices (e.g., AsAs) produces
an empirical estimate of its construct reliability on the basis of the
measurement model properties. The net result is that a disattenuated
estimate of the true covariance between, for example, social support
and emotion dysregulation (cov(ys,7p)) can be obtained by dividing
their observed factor score covariance by the product of the empirical
reliability of the social support (AsAs) and the empirical reliability of
emotion dysregulation (ApAp).

Next we correct the variances of the latent variables. To correct
these variances, we simply set each term corresponding to a latent
variable on the diagonal of the covariance matrix to one. The resulting
corrected covariance matrix (£) becomes

U A S D
5 1
=] 4 1

—04 —27 1

16 .52 —37 1 3)
3.1.4. Step d

Having obtained an unbiased estimate of the true covariance matrix,
we now draw on a typical path analysis to obtain unbiased estimates of
the true structural path coefficients. Specifically, we conduct a path
analysis with the corrected covariance matrix as the sample covariance
matrix input and sample size equal to the number of cases on our da-
taset (see supplemental material for example code).

3.1.5. Uncertainty

Once we have obtained BCFSPA estimates of the path coefficients,
we can estimate the sampling variability of those estimates using, for
example, a non-parametric bootstrap estimator. We estimate the sam-
pling distribution of each path coefficient by sampling cases with re-
placement to create bootstrap replicates. With a sufficient number of
replications, we can then estimate, for example, the standard errors as
the standard deviation of the bootstrapped estimates for each path or
confidence intervals based on percentiles of the bootstrapped estimates.
For illustration, I use a sample of 500 bootstrap replications but larger
samples of 1000 or 5000 are common. I implement a similar bootstrap
approach for the full information estimator and also the conventional
model-based standard errors based on large-sample theory.

3.1.6. Results

The resulting full information estimates and the BCFSPA estimates are
presented in Table 1. Comparisons of the estimates for each path coefficient
suggested two core differences. The first difference has been demonstrated
in other studies but with different models and under different settings—the

Addictive Behaviors xxx (XXXX) XXX—XXX

BCFSPA coefficient estimates were nearly unbiased in each instance and
uniformly demonstrated less bias than their full information counterparts.
For the focal sequential mediation process, the BCFSPA estimates for the
sequential mediation effect and each principal path (i.e., a, e, and f) were
closer to the true parameter value than its full information counterpart
(Table 1). The second difference was that the BCFSPA estimates tended to
have less sampling variability—the standard errors of the BCFSPA (and
confidence intervals) are smaller than their full information counterparts
(see standard errors in Table 1).

Although this example was purposefully chosen to illustrate the ex-
pected differences between the estimators, the discrepancies in terms of bias
align well with past research. Furthermore, the discrepancies in terms of
uncertainty suggest that the BCFSPA estimator is more efficient—a result
that has not been well-documented and completely investigated. In the next
section, I probe the extent to which the observed disparities in both bias and
sampling variability owe to consistent differences between the estimators in
the context of our sequential mediation example.

4. Simulation

To further delineate the differences and provide a more formal com-
parison between the methods in terms of their expected performance, I
conducted a Monte Carlo simulation study using the parameters values from
the empirical example. Within the context of our sequential mediation ex-
ample, our comparisons varied the sample size, factor loadings, error dis-
tribution, and the magnitude of the error variance. I considered sample sizes
of 50, 100, 200, and 300 and factor loadings ranging from 0.4 to 0.85. In
terms of errors, I considered the following distributions: chi-squared,
normal, ¢, log-uniform, and exponential-normal. For the magnitudes of the
error variances, I considered high and low coefficient of determination
conditions for each of the distributions and sample sizes. I evaluated the
absolute and relative performances of these methods using four criteria:
path coefficient relative bias, standard error relative bias, magnitude of
standard errors, and power.

4.1. Results

4.1.1. Bias in coefficients

The results of our simulation in terms of the relative bias of path coef-
ficients are outlined in Fig. 2 by path coefficient, sample size, and method.
The results strongly suggested that the BCFSPA estimator consistently re-
turns estimates that incur minimal to no bias even in samples as small as 50
or 100. In contrast, the full information estimator demonstrated significant
bias for most path coefficients with samples less than about 200. Collec-
tively, the results strongly suggested that the differences in path coefficient
estimates we observed in our illustration (i.e., in Table 1) are indicative of
true differences between the estimators.

4.1.2. Standard errors

I next compared the extent to which model-based and bootstrapped
standard errors accurately tracked the variability of point estimates across
samples as well as the relative magnitude of the sampling variability of the
two estimators. In addition to the bootstrap, our analyses considered con-
ventional model-based estimates of standard errors for the full information
method. These model-based standard errors draw on the asymptotic nor-
mality of the path coefficient estimates and are the standard errors reported
by default in most software (e.g., Rosseel, 2012). Fig. 3 reports the relative
bias of the standard errors, Fig. 4 provides an example of the distributions of
the coefficient estimates by estimator and path, and Fig. 5 compares the
magnitudes of the true variability across samples.

With regard to the bias of the estimated standard errors, our ana-
lyses returned two primary results (Fig. 3). First, the non-parametric
bootstrap approach was able to very accurately track the standard er-
rors, even in samples of 50. In contrast, full information estimator, the
bootstrap approach typically returned highly biased estimates of the
sampling variability for most paths. The conventional model-based
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Fig. 2. Average relative bias of coefficients across error distributions by path, sample size, and method (lower case is BCFSPA, uppercase is full information
parameter estimation).
Note. A and a refer to the Support-Emotion path; B and b refer to the Support-Addiction path; C and c refer to the Support-Usage path; D and d refer to the Emotion-
Addiction path; E and e refer to the Emotion-Usage path; and F and f refer to the Usage-Addiction path; See Fig. 1 for more details.
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Fig. 3. Average relative bias of standard errors across error distributions by path, sample size, and method (lower case is BCFSPA, uppercase is full information with
bootstrap-based standard errors, and * is full information with model-based standard errors).
Note. A and a refer to the Support-Emotion path; B and b refer to the Support-Addiction path; C and c refer to the Support-Usage path; D and d refer to the Emotion-
Addiction path; E and e refer to the Emotion-Usage path; and F and f refer to the Usage-Addiction path; See Fig. 1 for more details.

standard errors tended to be more accurate for the full information
estimator but even then their relative bias only approached zero in
samples greater than 100 (Fig. 3).

To compare the magnitudes of the true sampling variability across
estimators, I drew on the standard deviation of each path coefficient

across samples. In large samples, full information estimators are more
efficient than their limited information counterparts. However, this
need not be the case in finite samples. In this way, an important and
open question with regard to the performance of the BCFSPA estimator
is its efficiency relative to the full information estimator.
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The results of our study consistently reported that the BCFSPA estimator
was much more efficient and maintained distributions that were much more
concentrated around the true path coefficients than the full information
estimator. As an example, Fig. 4 outlines the comparative distributions of

the estimators by path for the first simulation condition. For each path, the
empirical distribution of estimates was more dispersed under the full
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information estimator than the BCFSPA estimator. Collectively, the results
indicated that the BCFSPA estimator had lower sampling variability than
the full information estimator when samples were less than about 200 and
similar sampling variability with sample sizes of about 200 (Fig. 5).
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Fig. 6. Average power across error distributions by path, sample size, and method (lower case is BCFSPA, uppercase is full information with model-based standard

errors, and * is full information with bootstrap-based standard errors).

Note. A and a refer to the Support-Emotion path; B and b refer to the Support-Addiction path; C and c refer to the Support-Usage path; D and d refer to the Emotion-
Addiction path; E and e refer to the Emotion-Usage path; and F and f refer to the Usage-Addiction path; See Fig. 1 for more details.

4.1.3. Power

Last I examined the power with which each estimator could detect
non-zero path coefficients using standard Wald tests for each parameter
(Fig. 6). Comparisons of power between estimators are complicated by
differences in bias across the methods—BCFSPA produced largely un-
biased estimates whereas the full information estimator routinely de-
monstrated upward bias. The implication is that the tests of path
coefficients under the full information estimator with model-based or
bootstrap-based standard errors practically reduce to how well each can
detect an incorrect and inflated effect—this critical limitation that ob-
scures the basis for inference and comparison. Despite this critical
limitation, our analyses compared the power of the BCFSPA estimator
with bootstrapped standard errors to the full information estimator
with model-based and bootstrap-based standard errors in order to
benchmark the performance of the BCFSPA.

The results for power were more equivocal than those under the pre-
vious criteria and depend to some extent on whether the bootstrap- or
model-based standard errors are used (see Fig. 6). For the downstream
paths—paths d, e and f—the BCFSPA estimator was more powerful across
all sample sizes regardless of the method used to obtain full information
standard errors. For the a and b paths, the estimators had similar power but
the full information bootstrap-based approach tended to underperform. The
results of the ¢ path briefly touch upon the type one error rate and suggested
that all the approaches reasonably maintain the nominal error rate. Overall,
the results suggested that on average the BCFSPA estimator offered a small
to moderate advantage in terms of power over the full information esti-
mator. Moreover, when viewed alongside the performances on the other
criteria, the results strongly suggest the BCFSPA estimator would be pre-
ferred because it returns virtually unbiased estimates and can detect them
with power that is similar to or greater than that of the full information
estimator.

5. Discussion

Applied literature has recognized that the benefits of empirical studies of
behavioral theories and processes are not limited to only large scale

studies—small to moderate scale studies can also offer critical contributions
to theory and practice when they are well executed (e.g., Bodner & Bliese,
2017; Walton, 2014). At the same time, many studies in addictive behavior
that draw on small to moderate samples also draw on sophisticated theories
that require SEMs. This combination—small to moderate sample sizes
coupled with sophisticated SEMs—poses significant challenges for full in-
formation estimation methods because stable and unbiased estimates under
this method demand a large sample-to-parameter ratio.

In this study, I outlined an attractive alternative approach and
estimator—BCFSPA. The results of our study coupled with those of other
studies suggested that with samples of about 200 to 300 or less (depending
on model complexity and factor indeterminacies), the limited information
BCFSPA estimator is likely to outperform the conventional full information
estimator in terms of bias, error variance, and power. The results also
suggested the efficacy of the BCFSPA estimator may not be sensitive to the
types of non-normal indicator error distributions addiction researchers often
face when tracking latent variables.

Although the BCFSPA estimator performed very well in the current
and in past studies, it also has some current limitations. First, estima-
tion of individual factor models requires at least three indicators per
construct or with fewer indicators additional factor loading constraints
(i.e., equal loadings). Second, implementation of the method becomes
more complicated when there is within indicator multidimensionality
(e.g., cross loadings) because rather than estimate individual factor
models we must estimate factor models that correctly and judiciously
apportion the system in ways that are faithful to the original SEM but
also favorable for estimation. Third, BCFSPA currently lacks model fit
statistics. For instance, a common diagnostic tool for assessing the fit of
a SEM under full information estimation is the chi-square test of model
fit. Although such tests are available for the individual factor models,
such global tests for the overall SEM are not currently available.

In conclusion, the results suggest that BCFSPA addresses the sample
size limitation associated with full information estimation for many
types of SEMs. A major obstacle to implementing the BCFSPA estimator
has been its accessibility and its practical implementation in software.
In an effort to facilitate and encourage the consideration and use of this
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approach, I have included example R syntax in the appendix. Contributors
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Appendix A. Results of simulation

Table Al
Relative bias of path coefficients.

Condition n Error distribution a=-0.21 b= -0.10 c=—-0.01 d=0.33 e=0.17 f=0.25

BC Full BC Full BC Full BC Full BC Full BC Full
1 50 x> -0.27 0 —0.24 6.62 0.02 0.49 —0.03 —0.32 —0.04 —0.05 0 0.05
2 X12/2 —0.04 0.07 -0.07 0.17 0 —0.03 0 0.17 —-0.03 —0.05 0.01 0.22
3 N(0,3) —0.46 0.01 —0.36 19.94 0.07 —-0.92 —0.09 5.55 —0.09 —0.09 —0.03 1.67
4 N(0,1) —-0.13 0.04 —-0.14 0.15 0.06 0.11 0 0.19 —0.02 —0.04 —0.01 0.2
5 t(3) —0.42 —-0.01 -0.3 5.13 —-0.34 202.91 —-0.05 1.67 —-0.04 0.03 —-0.01 2.12
6 t(3)/2 -0.1 0.02 —0.08 0.2 -0.13 —0.05 0 0.17 —-0.02 —0.05 0.01 0.22
7 In(unif(1100)) -0.09 0.04 —0.09 0.15 0.07 0.17 —0.01 0.16 —0.03 —0.05 0.02 0.22
8 2In(unif(1100)) —0.47 -0.11 —0.44 25.36 —0.83 0.92 —0.08 4.59 —0.05 —0.05 —0.03 6.07
9 Exp(norm(0,1)) —0.54 0.16 -0.5 14.84 -0.21 —199.64 -0.11 18.6 -0.09 0.08 —0.04 9.63
10 Exp(norm(0,0.5%)) -0.15 0.03 -0.1 0.22 —0.05 -0.12 —0.02 0.16 —0.01 —0.04 0 0.21
Absolute average 0.27 0.05 0.23 7.28 0.18 40.54 0.04 3.16 0.04 0.05 0.02 2.06
1 100 x> -0.16 0 -0.13 0.16 -0.23 -0.27 —0.01 0.15 —0.02 —0.04 0.01 0.2
2 x%/2 —0.02 0.05 —0.01 0.19 0.03 0.04 0.01 0.15 —0.01 -0.03 0 0.16
3 N(0,3) —0.26 —0.03 -0.3 4.9 0.08 —-0.31 —0.01 0.06 —0.04 —0.05 0 1.09
4 N(0,1) —0.06 0.04 —-0.05 0.16 0 0 0 0.14 —0.01 —0.04 0.01 0.18
5 t(3) -0.26 —0.06 —-0.2 0.15 —-0.43 —0.65 —0.01 0.19 —0.01 —0.02 0 0.19
6 t(3)/2 —0.04 0.04 —0.05 0.14 0.07 0.04 0 0.13 0 —0.03 0.01 0.18
7 In(unif(1100)) —0.04 0.04 —0.06 0.14 —-0.01 —-0.03 —-0.01 0.13 —-0.01 —-0.03 0 0.16
8 2In(unif(1100)) -0.3 —0.05 -0.26 6.18 —0.06 -0.13 —0.03 0.52 —0.04 —0.04 0 0.03
9 Exp(norm(0,1)) -0.4 —0.03 -0.3 0.09 -0.07 0.02 —0.05 1.47 —0.02 —0.03 —0.03 6.05
10 Exp(norm(0,0.5-%)) —0.06 0.03 —0.03 0.19 —-0.23 -0.27 —0.01 0.13 0 —0.02 0.01 0.18
Absolute average 0.16 0.04 0.14 1.23 0.12 0.18 0.01 0.31 0.02 0.03 0.01 0.84
1 200 x> —0.06 0.04 -0.09 0.12 0.16 0.2 0 0.13 —0.02 —0.04 0 0.16
2 x1%/2 —0.01 0.03 —0.02 0.14 0.02 0.04 0 0.12 0 —0.03 0 0.15
3 N(0,3) —0.16 —-0.01 -0.11 0.18 0.02 0.12 0 0.15 —0.01 —-0.03 0 0.16
4 N(0,1) —0.03 0.03 —0.03 0.15 —0.05 -0.11 0 0.13 0 —0.02 0 0.15
5 t(3) —-0.14 0.02 -0.1 0.17 0.06 0.08 —0.01 0.13 —0.01 —0.03 —0.02 0.14
6 t(3)/2 —0.02 0.03 —0.02 0.14 0.08 0.11 0 0.12 —0.01 —0.03 0.01 0.16
7 In(unif(1100)) —0.02 0.03 —0.02 0.15 0.07 0.08 0 0.12 —0.01 —0.03 0 0.15
8 2In(unif(1100)) -0.18 —0.05 -0.11 0.13 0.02 0.18 0.01 0.17 —0.03 —0.04 —0.02 0.15
9 Exp(norm(0,1)) -0.29 —0.02 —0.25 0.05 —0.08 —0.24 —0.01 0.17 0 0 —0.02 0.15
10 EXp(norm(0,0.S's)) —0.03 0.03 —0.03 0.14 0.04 0.06 0 0.13 0 —0.02 0 0.15
Absolute average 0.09 0.03 0.08 0.14 0.06 0.12 0 0.14 0.01 0.03 0.01 0.15
1 300 x2 —0.06 0.02 —0.01 0.18 —0.09 —0.07 0 0.12 0 —0.02 0 0.15
2 X12/2 —0.01 0.03 —-0.01 0.14 —0.01 —0.01 0 0.12 0 —0.03 0 0.14
3 N(0,3) -0.1 0.02 -0.11 0.1 —0.01 0 0 0.13 —0.01 —-0.03 0 0.16
4 N(0,1) —0.02 0.02 —0.03 0.14 —0.03 0 0 0.11 0 —0.03 0 0.15
5 t(3) -0.1 0.01 —-0.08 0.14 -0.2 —-0.16 0.01 0.14 0 —0.02 —0.01 0.14
6 t(3)/2 —0.01 0.03 —0.01 0.15 —0.08 —0.08 0 0.12 0 —0.02 0 0.15
7 In(unif(1100)) —-0.02 0.03 0 0.16 —0.02 —0.01 0 0.13 0 —0.03 0 0.15
8 2In(unif(1100)) —-0.12 0 —0.06 0.18 —-0.18 —0.18 0 0.13 0 —0.02 0 0.16
9 Exp(norm(0,1)) -0.26 0 —-0.22 0.14 -0.33 0.04 —0.01 0.14 —0.01 —-0.03 -0.01 0.15
10 Exp(norm(0,0.5%)) —0.02 0.03 —0.03 0.14 -0.13 -0.15 0 0.12 0 —0.02 0 0.15
Absolute average 0.07 0.02 0.06 0.15 0.11 0.07 0 0.13 0 0.02 0 0.15
Overall absolute average 0.15 0.03 0.13 2.2 0.12 10.23 0.01 0.93 0.02 0.03 0.01 0.8

Note. BC indicates BCFSPA and Full indicates full information.

Note. X12 refers to the chi-squared distribution with one degree of freedom, N(0,1) refers to the standard normal distribution, t(3) refers to the t-distribution with 3
degrees of freedom, In(unif(1100)) refers to a log-uniform distribution with bounds of 1 and 100, and Exp(normal(0,1) refers to the exponential of the standard
normal distribution.

Table A2
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Condition Error distribution a b c d e f
BC Full BC Full BC Full BC Full BC Full BC Full
n =50 Xlz 0.16 0.34 0.15 15.05 0.15 0.30 0.16 4.43 0.15 0.16 0.15 4.94
x%/2 0.14 0.16 0.14 0.18 0.15 0.16 0.13 0.18 0.15 0.14 0.13 0.17
N(0,3) 0.19 0.52 0.20 63.52 0.16 0.22 0.19 24.96 0.17 0.18 0.16 25.91
N(0,1) 0.15 0.19 0.16 0.22 0.15 0.16 0.15 0.20 0.15 0.15 0.14 0.19
t(3) 0.18 1.51 0.17 19.21 0.15 25.05 0.18 7.19 0.17 0.74 0.15 9.14
t(3)/2 0.15 0.17 0.14 0.18 0.15 0.16 0.14 0.19 0.14 0.14 0.14 0.18
In(unif(1100)) 0.15 0.18 0.14 0.19 0.14 0.15 0.14 0.19 0.15 0.15 0.14 0.18
2In(unif(1100)) 0.18 0.47 0.17 55.75 0.16 0.36 0.18 24.37 0.17 0.19 0.16 32.02
Exp(norm(0,1)) 0.18 1.95 0.19 120.31 0.16 40.83 0.19 63.73 0.18 1.24 0.16 45.18
Exp(norm(0,0.5-%)) 0.16 0.20 0.15 0.20 0.15 0.17 0.15 0.20 0.15 0.15 0.14 0.18
Average 0.16 0.57 0.16 27.48 0.15 6.76 0.16 12.56 0.16 0.32 0.15 11.81
n =100 x> 0.12 0.15 0.12 0.16 0.11 0.12 0.11 0.15 0.11 0.11 0.10 0.13
XIZ/Z 0.10 0.11 0.10 0.12 0.10 0.11 0.10 0.12 0.10 0.10 0.09 0.11
N(0,3) 0.15 0.20 0.12 20.84 0.12 0.15 0.13 3.96 0.13 0.13 0.11 8.09
N(0,1) 0.11 0.12 0.11 0.13 0.11 0.12 0.10 0.13 0.11 0.10 0.10 0.12
t(3) 0.14 0.17 0.13 0.19 0.11 0.13 0.12 0.18 0.12 0.12 0.10 0.13
t(3)/2 0.10 0.12 0.11 0.13 0.11 0.11 0.10 0.12 0.11 0.10 0.10 0.12
In(unif(1100)) 0.11 0.12 0.11 0.13 0.11 0.11 0.10 0.12 0.11 0.10 0.09 0.12
2In(unif(1100)) 0.14 0.18 0.13 19.56 0.11 0.13 0.13 3.46 0.12 0.12 0.11 1.25
Exp(norm(0,1)) 0.16 0.23 0.15 38.56 0.12 0.17 0.15 14.01 0.13 0.14 0.12 22.12
Exp(norm(0,0.5-%)) 0.11 0.13 0.11 0.13 0.11 0.11 0.10 0.13 0.11 0.11 0.09 0.12
Average 0.12 0.15 0.12 8.00 0.11 0.13 0.11 2.24 0.12 0.11 0.10 3.23
n = 200 x> 0.10 0.11 0.09 0.11 0.08 0.09 0.08 0.11 0.08 0.08 0.07 0.09
x12/2 0.07 0.08 0.07 0.08 0.08 0.08 0.07 0.08 0.07 0.07 0.06 0.08
N(0,3) 0.10 0.12 0.10 0.13 0.09 0.10 0.09 0.12 0.09 0.09 0.08 0.10
N(0,1) 0.08 0.09 0.08 0.09 0.08 0.08 0.07 0.09 0.07 0.07 0.07 0.08
t(3) 0.11 0.12 0.10 0.12 0.09 0.09 0.09 0.12 0.09 0.09 0.08 0.10
t(3)/2 0.08 0.08 0.07 0.09 0.08 0.08 0.07 0.09 0.08 0.07 0.06 0.08
In(unif(1100)) 0.08 0.09 0.07 0.08 0.08 0.08 0.07 0.09 0.08 0.07 0.06 0.08
2In(unif(1100)) 0.11 0.12 0.10 0.13 0.09 0.10 0.09 0.12 0.08 0.08 0.08 0.10
Exp(norm(0,1)) 0.13 0.16 0.10 0.15 0.09 0.10 0.10 0.14 0.09 0.09 0.08 0.10
Exp(norm(0,0.5-%)) 0.08 0.09 0.08 0.09 0.08 0.08 0.07 0.09 0.08 0.08 0.07 0.08
Average 0.09 0.11 0.09 0.11 0.08 0.09 0.08 0.11 0.08 0.08 0.07 0.09
n = 300 x12 0.08 0.08 0.07 0.08 0.07 0.07 0.07 0.08 0.07 0.06 0.06 0.07
x%/2 0.06 0.07 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.05 0.07
N(0,3) 0.09 0.10 0.08 0.10 0.07 0.08 0.07 0.09 0.07 0.07 0.06 0.07
N(0,1) 0.07 0.07 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.05 0.07
t(3) 0.09 0.10 0.08 0.10 0.07 0.08 0.07 0.09 0.07 0.07 0.06 0.07
t(3)/2 0.06 0.07 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.05 0.06
In(unif(1100)) 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.06 0.06 0.07
2In(unif(1100)) 0.09 0.10 0.08 0.10 0.07 0.08 0.08 0.10 0.07 0.07 0.06 0.08
Exp(norm(0,1)) 0.13 0.12 0.10 0.12 0.08 0.09 0.09 0.11 0.07 0.07 0.06 0.08
Exp(norm(0,0.5%)) 0.07 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.06 0.06 0.07
Average 0.08 0.09 0.07 0.09 0.07 0.07 0.07 0.08 0.07 0.06 0.06 0.07
Overall average 0.12 0.23 0.11 9.12 0.10 1.80 0.11 3.83 0.11 0.15 0.09 3.89

Note. ;2 refers to the chi-squared distribution with one degree of freedom, N(0,1) refers to the standard normal distribution, t(3) refers to the t-distribution with 3
degrees of freedom, In(unif(1100)) refers to a log-uniform distribution with bounds of 1 and 100, and Exp(normal(0,1) refers to the exponential of the standard

normal distribution.

Table A3
Relative bias of path coefficient standard errors.
n Error dist a b c
BC Full BC Full BC Full
B M B M B M B M B M B
50 X12 0.01 -0.15 18.93 3.12 0.04 —-0.18 4.43 3.85 0 0.08 18.59
x%/2 -0.01 —0.03 0.09 —0.06 —0.02 -0.07 1.98 -0.09 —-0.03 0.11 0.71
N(0,3) —0.06 —-0.28 66.89 1.99 —-0.01 —-0.34 3.79 -0.9 0.03 0.01 186.42
N(0,1) 0 -0.12 3.37 —-0.11 —0.04 -0.18 29.09 —-0.18 —-0.02 0.1 2.94
t(3) —0.05 —0.24 4.89 5.6 0.07 —-0.24 11.09 0.39 0.02 0.06 -0.23
t(3)/2 —0.02 —0.08 0.09 —0.08 0.01 —0.08 9.24 -0.1 —-0.03 0.11 0.66
In(unif (1100)) -0.01 -0.1 0.06 -0.12 0.02 -0.1 6.74 -0.1 0.03 0.17 0.07
2In(unif (1100)) —-0.04 —-0.26 36.47 0.21 0.12 —-0.24 4.82 6.83 0.05 0.04 61.82
Exp(norm (0,1)) —0.04 —0.24 10.9 18.3 0.02 -0.31 3.05 0.11 0.03 0.01 -0.23
Exp(norm —0.06 -0.16 0.2 -0.17 —0.02 -0.14 43.45 -0.14 —0.05 0.07 11.79
0,0.5))
Absolute average 0.03 0.17 14.19 2.98 0.04 0.19 11.77 1.27 0.03 0.08 28.35
100 x:2 0.04 -0.21 10.35 —-0.04 0.01 —-0.23 138.04 —-0.08 0.02 0.03 8.26
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x0%/2 0 —0.06 0.03 —-0.03 —-0.01 —-0.09 0.03 —-0.06 —-0.01 0.1 0.01
N(0,3) —-0.02 -0.36 4.93 -0.15 0.13 -0.27 0.49 -0.99 0.01 —-0.07 23.1
N(0,1) 0.04 —-0.11 0.09 —0.04 0 —-0.15 0.07 —0.07 —-0.02 0.04 0
t(3) —-0.01 -0.3 10.36 —-0.07 0.01 —-0.31 193.31 -0.12 0.01 —0.02 15.48
t(3)/2 0.02 —-0.06 0.06 —0.02 —0.03 -0.14 0.39 -0.1 —-0.04 0.05 —0.02
In(unif (1100)) —0.02 —-0.12 0.03 -0.07 —0.02 -0.14 0.04 -0.09 —-0.03 0.04 —0.01
2In(unif (1100)) 0.06 -0.3 1.55 —0.08 0.08 —-0.31 1.09 —0.99 0.08 0.01 30.96
Exp(norm (0,1)) -0.11 —0.41 8.72 -0.14 0 —-0.38 2.55 -0.99 0.02 —0.08 53.86
Exp(norm 0.01 —-0.12 0.11 —-0.05 —0.02 -0.16 2.15 —0.08 0.01 0.08 0.73
0,0.5)
Absolute average 0.03 0.21 3.62 0.07 0.03 0.22 33.82 0.36 0.03 0.05 13.24
200 x> —-0.03 -0.29 0.02 -0.10 0.01 —-0.25 1.89 —0.04 —-0.01 —-0.03 0.02
X12/2 —0.02 —-0.07 —-0.01 —-0.03 0.00 —-0.08 0.02 —0.02 —0.03 0.05 —0.02
N(0,3) 0.11 —0.34 0.36 —-0.01 —0.01 -0.39 10.71 -0.11 —-0.05 -0.15 2.44
N(0,1) 0.03 —-0.12 0.05 —-0.01 0.00 -0.16 0.03 —0.04 —-0.01 0.02 0.02
t(3) 0.01 —-0.36 0.18 —0.06 0.01 —-0.33 22.27 —0.06 0.01 —-0.07 1.94
t(3)/2 —-0.02 —-0.10 0.00 —-0.03 —0.04 -0.14 —0.01 —0.06 —-0.04 0.02 —0.02
In(unif (1100)) —-0.03 -0.13 —-0.01 —-0.05 0.02 -0.10 0.06 0.00 —-0.02 0.04 0.00
2In(unif (1100)) 0.08 —-0.35 0.28 —-0.05 0.01 —-0.38 14.88 —0.08 —-0.01 -0.12 1.94
Exp(norm (0,1)) —-0.07 —-0.49 0.89 -0.13 0.05 —0.40 122.16 —-0.07 0.03 -0.11 13.40
Exp(norm 0.01 -0.13 0.04 —-0.02 —0.02 -0.17 0.01 —-0.05 —-0.04 —0.02 —0.02
(0,0.5)
Absolute average 0.04 0.24 0.18 0.05 0.02 0.24 17.20 0.05 0.03 0.06 1.98
300 x> 0.02 —-0.25 0.06 —-0.02 0.01 —-0.26 0.05 —-0.03 —-0.05 -0.10 —0.02
x1%/2 —-0.02 —-0.08 —-0.01 —-0.03 —0.01 —-0.08 0.00 —0.02 —-0.03 0.04 —0.02
N(0,3) 0.10 —-0.35 0.09 —0.06 0.04 —-0.35 1.76 —0.02 —0.02 -0.13 0.02
N(0,1) —-0.01 -0.15 0.01 —-0.03 —0.02 —-0.18 0.00 —0.05 0.04 0.06 0.06
t(3) 0.02 -0.37 0.05 —-0.08 —0.03 -0.37 0.70 -0.10 —-0.02 -0.11 0.01
o sn nnan non A Ana non A1 nnn ANl Ana Ana Ann
In(unit (1100)) —0.01 —0.12 0.00 —0.03 0.04 —-0.09 0.06 0.02 —0.04 0.00 —0.03
2In(unif (1100)) 0.10 —-0.34 0.12 —-0.03 0.01 —-0.37 4.44 —-0.09 0.00 -0.11 0.02
Exp(norm (0,1)) -0.15 -0.57 0.47 -0.07 —0.05 —0.48 45.94 —-0.07 —-0.05 -0.22 5.41
Exp(norm 0.00 —-0.15 0.01 —0.02 —0.02 -0.17 0.00 —0.04 —-0.01 0.01 0.01
(0,0.5)
Absolute average 0.04 0.25 0.08 0.04 0.02 0.25 5.30 0.05 0.03 0.08 0.56
Overall absolute average 0.04 0.21 4.52 0.78 0.03 0.22 17.02 0.43 0.03 0.07 11.03
n c d e f
Full BC Full BC Full BC Full
M B M B M B M B M B M B M
50 7.14 0.04 —-0.18 8.8 11 0.01 0.05 0.89 0.9 —0.01 —-0.09 5.5 1
—0.08 0 —-0.01 0.71 —0.08 -0.01 0.12 0.01 —-0.01 0.02 0.05 1.49 -0.07
0.72 0.07 -0.3 6.12 —0.96 0.06 —-0.02 3.72 —0.02 0.07 —-0.14 4.97 —-0.98
—-0.09 0.02 —0.08 12.94 —-0.09 0.01 0.09 0.07 —0.02 0.02 0 11.24 -0.11
6.02 0.05 —0.24 16.23 -0.35 —-0.02 —-0.04 —-0.18 3.29 0.1 —-0.05 12.63 —0.47
—-0.07 —0.02 —-0.05 3.32 —-0.09 0.02 0.13 0.06 0.01 —0.02 0 3.39 -0.1
—-0.02 0.02 —0.06 2.85 —-0.05 —-0.01 0.07 —0.02 —0.04 0.02 0.03 2.86 —0.08
1.02 0.13 -0.25 7.83 2.32 0 —-0.07 2.9 0.13 0.08 -0.12 6.74 1.21
7.27 0.05 -0.27 3.62 0.19 —-0.05 —-0.09 —-0.25 5.34 0.11 —-0.09 5.51 1.03
-0.1 0.01 —0.08 12.9 -0.1 0.01 0.09 0.21 —0.01 0.03 0.03 17.78 —0.08
Absolute average 2.25 0.04 0.15 7.53 0.53 0.02 0.08 0.83 0.98 0.05 0.06 7.21 0.51
100 —-0.04 0.04 —-0.15 47.8 —-0.03 0.05 0.06 0.36 0.03 0.01 —-0.05 37.54 —0.04
—0.03 —0.03 —0.02 0 —0.04 0.05 0.17 0.05 0.06 0.01 0.06 0.03 —0.03
—-0.11 0.03 -0.29 2.39 —-0.96 —-0.02 —-0.11 0.78 —-0.08 0.07 -0.1 0.51 —-0.98
—-0.06 0.01 —-0.07 0.04 —-0.04 0.01 0.08 0.02 0.01 0.01 0.01 0.05 —0.04
—0.04 0.03 —-0.23 67.41 —-0.09 0 —0.04 0.7 —-0.03 0.07 —0.06 76.72 —-0.01
—-0.06 0.01 —0.01 0.21 —-0.01 —-0.01 0.08 —0.01 0 —0.04 —-0.01 0.22 —-0.09
—-0.06 0.04 —0.02 0.07 0 0 0.07 0 0 0 0.02 0.03 —0.04
0.01 0.1 —-0.24 3.9 —-0.95 -0.01 —-0.09 1.31 —-0.05 0.03 -0.13 16.17 -0.89
—-0.12 0.02 —-0.34 2.73 —0.99 —0.04 —-0.13 1.94 -0.1 0.01 -0.17 1.95 -0.99
—-0.02 0 —-0.07 0.55 —-0.04 —-0.02 0.04 —-0.01 —-0.03 0.02 0.02 0.99 —-0.03
Absolute average 0.06 0.03 0.14 12,51 0.32 0.02 0.09 0.52 0.04 0.03 0.06 13.42 0.31
200 —0.04 —0.03 —-0.20 0.38 —-0.07 0.04 0.03 0.04 0.03 —-0.03 —-0.09 0.42 —0.06
—-0.03 0.01 0.02 0.01 0.00 —-0.01 0.08 —-0.01 0.00 0.00 0.04 0.01 —0.02
-0.11 0.02 -0.27 4.49 —-0.03 —-0.04 -0.10 0.08 —-0.05 0.01 -0.12 4.63 —0.04
—0.02 —-0.01 —-0.07 0.01 —0.03 0.05 0.11 0.05 0.05 —0.01 —-0.01 —-0.01 —-0.05
—-0.03 0.00 —0.24 6.42 —-0.04 —-0.03 —-0.07 0.08 —0.04 —0.03 —-0.13 9.32 —0.06
—0.04 0.00 —0.02 0.02 —-0.01 —-0.02 0.06 —0.02 —-0.01 0.01 0.04 0.03 0.00
—-0.03 —-0.02 —-0.05 0.00 —-0.03 0.00 0.06 0.00 0.00 0.02 0.04 0.02 —-0.01
—0.06 0.05 —-0.25 5.44 —-0.01 0.07 —-0.01 0.17 0.05 0.01 -0.13 5.89 —0.03
—-0.01 —-0.01 —0.34 55.04 —-0.06 —-0.02 -0.13 0.61 —-0.03 0.04 —-0.14 57.32 0.00
—-0.05 —0.04 -0.10 —0.03 —-0.06 —-0.01 0.04 —-0.01 —-0.01 0.02 0.03 0.04 0.01
Absolute average 0.04 0.02 0.16 7.18 0.03 0.03 0.07 0.11 0.03 0.02 0.08 7.77 0.03
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300 —-0.07
-0.03
—0.05
0.03
—-0.05
—0.02
—-0.05
—-0.05
—0.04
—-0.02

Absolute average 0.04

Overall absolute average 0.60

0.01
—0.03
0.04
0.02
—0.01
—0.01
—0.01
0.01
—0.01
—0.01
0.02
0.03

—0.16
—0.02
—0.24
—0.05
—0.25
—0.03
—0.04
—0.27
—0.36
—0.07
0.15

0.15

0.04
—0.02
0.72
0.03
0.30
—0.01
—0.01
1.27
18.24
—0.01
2.07
7.32

0.00
—0.03
0.01
0.00
—0.04
—0.02
—0.02
—0.04
—0.08
-0.03
0.03
0.23

0.01
0.04
—0.01
0.01
—0.02
0.04
0.00
0.02
0.01
0.00
0.02
0.02

0.00
0.13
—0.08
0.05
-0.07
0.11
0.06
—0.06
-0.11
0.05
0.07
0.08

0.02
0.04
—0.01
0.01
—0.02
0.04
0.00
0.03
0.45
0.00
0.06
0.38

0.01
0.05
—0.03
0.01
—0.03
0.04
0.00
0.00
0.01
0.00
0.02
0.27
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0.00
—0.03
0.03
0.00
0.01
—0.01
—0.05
—0.02
0.06
—0.02
0.02
0.03

—0.06
0.02
-0.10
0.01
-0.10
0.02
—0.02
-0.15
-0.14
-0.01
0.06
0.07

0.02
—0.03
1.09
0.01
0.14
0.00
—0.04
1.57
26.89
—0.01
2.98
7.85

—0.01
—0.05
0.01
—0.01
—0.01
—0.02
—0.06
—0.06
0.01
—0.03
0.03
0.22

Note. B indicates bootstrap and M indicates model-based standard errors.
Note. X12 refers to the chi-squared distribution with one degree of freedom, N(0,1) refers to the standard normal distribution, t(3) refers to the t-distribution with 3
degrees of freedom, In(unif(1100)) refers to a log-uniform distribution with bounds of 1 and 100, and Exp(normal(0,1) refers to the exponential of the standard

normal distribution.

Table A4
Power to detect path coefficients under bootstrap-based approaches.
n Error dist a b c d E f
BC Full BC Full BC Full BC Full BC Full BC Full
1 50 x12 0.12 0.02 0.05 0 0.04 0.02 0.48 0.1 0.22 0.17 0.38 0.09
2 X12/2 0.32 0.2 0.12 0.06 0.06 0.06 0.64 0.5 0.25 0.24 0.48 0.37
3 N(0,3) 0.07 0 0.04 0 0.02 0.01 0.31 0 0.13 0.08 0.26 0
4 N(0,1) 0.2 0.09 0.08 0.02 0.06 0.05 0.56 0.32 0.24 0.23 0.39 0.22
5 t(3) 0.08 0.01 0.04 0 0.03 0.02 0.37 0.01 0.19 0.13 0.32 0.02
6 t(3)/2 0.28 0.18 0.11 0.05 0.06 0.05 0.62 0.46 0.22 0.22 0.43 0.32
7 In(unif(1100)) 0.24 0.14 0.08 0.04 0.05 0.04 0.58 0.39 0.23 0.23 0.45 0.32
8 2In(unif(1100)) 0.08 0 0.01 0 0.02 0 0.31 0 0.16 0.08 0.28 0.01
9 Exp(norm(0,1)) 0.06 0.01 0.04 0 0.02 0.01 0.3 0.01 0.18 0.08 0.28 0.01
10 Exp(norm 0.19 0.1 0.1 0.03 0.05 0.05 0.57 0.34 0.23 0.2 0.42 0.26
(0,0.5°)
Average 0.16 0.08 0.07 0.02 0.04 0.03 0.47 0.21 0.21 0.17 0.37 0.16
1 100 x> 0.25 0.15 0.09 0.04 0.04 0.03 0.78 0.58 0.33 0.3 0.68 0.51
2 xlz/Z 0.52 0.45 0.17 0.14 0.05 0.05 0.9 0.86 0.42 0.42 0.74 0.69
3 N(0,3) 0.13 0.04 0.02 0 0.02 0.01 0.63 0.22 0.28 0.23 0.57 0.25
4 N(0,1) 0.4 0.33 0.14 0.09 0.06 0.06 0.84 0.78 0.38 0.37 0.69 0.63
5 t(3) 0.17 0.07 0.07 0.02 0.03 0.02 0.7 0.34 0.34 0.3 0.63 0.32
6 t(3)/2 0.47 0.4 0.16 0.12 0.07 0.07 0.88 0.83 0.41 0.41 0.72 0.67
7 In(unif(1100)) 0.45 0.37 0.16 0.12 0.06 0.06 0.87 0.83 0.38 0.38 0.7 0.65
8 2In(unif(1100)) 0.1 0.03 0.04 0.01 0.01 0.01 0.62 0.18 0.3 0.23 0.56 0.23
9 Exp(norm(0,1)) 0.13 0.03 0.05 0.01 0.02 0.01 0.58 0.1 0.28 0.21 0.54 0.15
10 Exp(norm 0.4 0.33 0.16 0.12 0.04 0.04 0.84 0.78 0.37 0.37 0.71 0.64
0,0.5%)
Average 0.30 0.22 0.11 0.07 0.04 0.04 0.76 0.55 0.35 0.32 0.65 0.47
1 200 Xlz 0.55 0.5 0.17 0.14 0.04 0.04 0.96 0.94 0.58 0.56 0.91 0.89
2 X12/2 0.78 0.75 0.28 0.26 0.06 0.06 1 0.99 0.68 0.68 0.95 0.95
3 N(0,3) 0.3 0.25 0.1 0.06 0.04 0.04 0.93 0.83 0.53 0.51 0.87 0.81
4 N(0,1) 0.71 0.69 0.26 0.23 0.06 0.05 0.99 0.99 0.67 0.67 0.93 0.93
5 t(3) 0.41 0.36 0.13 0.09 0.03 0.04 0.92 0.85 0.58 0.54 0.88 0.82
6 t(3)/2 0.76 0.74 0.29 0.26 0.07 0.06 1 1 0.63 0.62 0.95 0.94
7 In(unif(1100)) 0.76 0.73 0.26 0.24 0.06 0.05 0.99 0.99 0.66 0.65 0.95 0.94
8 2In(unif(1100)) 0.26 0.21 0.1 0.06 0.03 0.03 0.94 0.85 0.52 0.49 0.86 0.75
9 Exp(norm(0,1)) 0.2 0.16 0.07 0.04 0.02 0.02 0.89 0.56 0.49 0.43 0.85 0.56
10 Exp(norm 0.72 0.68 0.25 0.21 0.07 0.06 0.99 0.99 0.64 0.64 0.94 0.93
(0,0.5%)
Average 0.55 0.51 0.19 0.16 0.05 0.05 0.96 0.90 0.60 0.58 0.91 0.85
1 300 xlz 0.74 0.71 0.27 0.24 0.06 0.06 1 1 0.76 0.76 0.98 0.98
2 x1%/2 0.91 0.91 0.43 0.4 0.07 0.07 1 1 0.83 0.83 0.99 0.99
3 N(0,3) 0.51 0.48 0.15 0.12 0.04 0.05 0.99 0.97 0.67 0.66 0.97 0.96
4 N(0,1) 0.86 0.85 0.35 0.32 0.06 0.05 1 1 0.8 0.8 0.99 0.99
5 t(3) 0.57 0.55 0.18 0.16 0.05 0.05 0.99 0.98 0.75 0.74 0.97 0.96
6 t(3)/2 0.9 0.89 0.4 0.38 0.05 0.05 1 1 0.84 0.83 1 0.99
7 In(unif(1100)) 0.88 0.87 0.39 0.36 0.07 0.07 1 1 0.8 0.8 0.99 0.99
8 2In(unif(1100)) 0.5 0.47 0.17 0.14 0.04 0.04 0.98 0.96 0.72 0.7 0.96 0.95
9 Exp(norm(0,1)) 0.3 0.32 0.11 0.07 0.02 0.03 0.97 0.83 0.65 0.59 0.96 0.84
10 Exp(norm 0.87 0.84 0.37 0.33 0.06 0.06 1 1 0.79 0.79 0.99 0.99
(0,0.5°)
Average 0.70 0.69 0.28 0.25 0.05 0.05 0.99 0.97 0.76 0.75 0.98 0.96
Overall average 0.43 0.37 0.16 0.12 0.05 0.04 0.80 0.66 0.48 0.45 0.73 0.61

Note. X12 refers to the chi-squared distribution with one degree of freedom, N(0,1) refers to the standard normal distribution, t(3) refers to the t-distribution with 3
degrees of freedom, In(unif(1100)) refers to a log-uniform distribution with bounds of 1 and 100, and Exp(normal(0,1)) refers to the exponential of the standard

normal distribution.
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library (MASS)
library(lavaan)

## Example Correlation/covariance matrix for variables

sigma<-matrix (c(
1, .31,-.05, .18,
.31, 1,-.18, .39,
-.05,-.18, 1,-.21,
.18, .39,-.21, 1
),c(4,4))

##number of bootstrap replications
nboot<-500

##sample size for illustration
n<-100

##set seed to reproduce example dataset
set.seed(914)

##generate latent variables based on correlation and assumption of normality
d<-data.frame (mvrnorm(n=n,mu=c(0,0,0,0),Sigma=sigma))

##standardize data and apply variable names
d<-data.frame (apply(d, 2, scale))
names (d) <-c ("usage", "addiction", "support", "dysreg")

##generate observed indicators of latent variables
d$al<-scale (l1*dSaddiction+rnorm(n))
d$a2<-scale(l.82*d$addiction+rnorm(n))
d$a3<-scale(l.25*d$Saddiction+rnorm(n))
dSad<-scale(1l.85*dSaddiction+rnorm(n))

d$dl<-scale (1*d$dysreg+rnorm(n))
d$d2<-scale (1.37*dsdysreg+rnorm (
d$d3<-scale (1.27*dSdysreg+rnorm (
d$d4<-scale (1.49*dSdysreg+rnorm (
dSdb<-scale ( n

n))
n))
n))

.86*dS$dysreg+rnorm(n))

d$sl<-scale (1*d$support+rnorm(n))
d$s2<-scale(1.82*dSsupport+rnorm(n))
d$s3<-scale(.5*dS$Ssupport+rnorm(n))

FHEFHFH AR A A A AR A A SRS

##true relationships among latent variables
truesem<- '
addiction~ usage+dysreg+support
usage~ dysregtsupport
dysreg~support
]
tsem<- sem(truesem,data=d, std.ov=T)
summary (tsem)
##true sequential mediation effect S-D-U-A
coef (tsem) ["dysreg~support"]*coef (tsem) ["usage~dysreg"] *coef (tsem) ["addiction
~usage"]

##specify SEM

12



B. Kelcey Addictive Behaviors xxx (XXXX) XXX—XXX

semodel<- '
fa=~ NA*al+a2+a3+a4
fa ~~ 1*fa

fd=~ NA*d1+d2+d3+d4+d5
fd ~~1*fd

fs=~ NA*sl+s2+s3
fs ~~1*fs

fu=~ l*usage

fa~ fu+fd+fs
fu~ fd+fs
fd~fs

##estimate SEM with typical concurrent estimation of parameters
seml<-sem (semodel, d)
summary (seml)

##sequential mediation effect S-D-U-A under full info SEM
coef (seml) ["fd~fs" ] *coef (seml) ["fu~fd"] *coef (seml) ["fa~fu"]

$###H#####4H4 estimate SEM with BCFEFSPA

##step a--estimate individual measurement models
cfa a<-cfa( 'fa=~ NA*al+a2+a3+ad
fa ~~ 1xfa',d)
summary (cfa_ a)

cfa s<-cfa( 'fs=~ NA*sl+s2+s3
fs ~~ 1*fs',d)
summary (cfa_s)
cfa d<-cfa( 'fd=~ NA*dl+d2+d3+d4+d5
fd ~~ 1*fd',d)
summary (cfa d)

##step b--estimate factor scores and covariance

fs _a<-lavPredict (cfa a,method="regression")

fs s<-lavPredict (cfa s,method="regression")

fs d<-lavPredict (cfa d,method="regression")
fscov<—((n—l)/n)*cov(data.frame(fs_a,fs_d,fs_s,d$u))
##step c--estimate corrected covariance
bcfscov<-fscov

#divide covariances by factor score and loading matrices
bcfscov[l, ]<-bcfscov[,1]<-

bcfscov[l, ]/ (attr(lavPredict (cfa a,method="regression", fsm=T),"fsm") [[1]] %*%
lavInspect (cfa a,what="est")$lambda)

bcfscov[2, ]<-bcfscov[,2]<-

bcfscov[2,]/ (attr(lavPredict (cfa d,method="regression", fsm=T),"fsm") [[1]] %*%
lavInspect(cfa_d,what:"est")$lambda)

bcfscov[3, ]<-bcfscov[,3]<-

bcfscov[3,]1/ (attr (lavPredict (cfa s,method="regression", fsm=T),"fsm") [[1]] %*%

lavInspect (cfa s,what="est") $lambda)
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# correct variances (fixed to one in standardized approach)
diag(bcfscov)<-1

##step d--estimate path model with corrected covariance
pathmodel<- '

fa~ d.utfd+fs

d.u~ fd+fs

fd~fs

A}

bcfspal<-sem(pathmodel, sample.cov=bcfscov, sample.nobs=n)
summary (bcfspal)

##sequential mediation effect S-D-U-A under BCFSPA
coef (bcfspal) ["fd~fs"] *coef (bcfspal) ["d.u~fd"] *coef (bcfspal) ["fa~d.u"]

##differences among sequential mediation estimates

#Full info SEM

(coef (seml) ["fd~fs"] *coef (seml) ["fu~fd"]*coef (seml) ["fa~fu"]-

(coef (tsem) ["dysreg~support"] *coef (tsem) ["usage~dysreg"] *coef (tsem) ["addictio
n~usage"]))/

(coef (tsem) ["dysreg~support"]*coef (tsem) ["usage~dysreg"] *coef (tsem) ["addictio
n~usage"])

- -

#BCFSPA

(coef (bcfspal) ["fd~fs"] *coef (bcfspal) ["d.u~fd"] *coef (bcfspal) ["fa~d.u"]-
(coef (tsem) ["dysreg~support"] *coef (tsem) ["usage~dysreg"] *coef (tsem) ["addictio
n~usage"]))/

(coef (tsem) ["dysreg~support"] *coef (tsem) ["usage~dysreg"] *coef (tsem) ["addictio
n~usage"])

FHEH A A A R A R R R A R R A R R R R S
##

## call function from lavaan to implement each of these steps

fsrl<-fsr(semodel,d, fsr.method = "Croon", fs.method = "Regression")
fsrl

#+

FHAf AR A AR

FHAFFHH AR
##bootstrap

#initalize vectors for each path

semaboot<-NULL
sembboot<-NULL
semcboot<-NULL
semdboot<-NULL
semeboot<-NULL
semfboot<-NULL
semMedboot<-NULL

fsraboot<-NULL
fsrbboot<-NULL
fsrcboot<-NULL
fsrdboot<-NULL
fsreboot<-NULL
fsrfboot<-NULL
fsrMedboot<-NULL
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#bootstrap
for ( boot in 1l:nboot) {

#sample with replacement and reestimate models
dboot<-d[sample(l:n,n,replace=T), ]
semlboot<-try (sem(semodel,dboot),silent=T)
fsrlboot<-try (fsr (semodel,dboot, fsr.method = "Croon", fs.method =
"Regression"),silent=T)

#Save results for each replication

semaboot<-c (semaboot,ifelse(class (semlboot) [1]=="try-
error",NA, parameterEstimates (semlboot) [22,"est"]))
sembboot<-c (sembboot, ifelse (class (semlboot) [1]=="try-
error",NA,parameterEstimates (semlboot) [19,"est"]))
semcboot<-c (semcboot,ifelse(class (semlboot) [1]=="try-
error",NA, parameterEstimates (semlboot) [21,"est"]))
semdboot<-c (semdboot, ifelse(class (semlboot) [1]=="try-
error",NA,parameterEstimates (semlboot) [18,"est"]))
semeboot<-c (semeboot,ifelse(class (semlboot) [1]=="try-
error",NA, parameterEstimates (semlboot) [20,"est"]))
semfboot<-c (semfboot,ifelse(class (semlboot) [1]=="try-
error",NA, parameterEstimates (semlboot) [17,"est"]))
semMedboot<-c (semMedboot,ifelse(class (semlboot) [1]=="try-error", NA,

parameterEstimates (semlboot) [22, "est" ] *parameterkEstimates (semlboot) [20,
"est"]*parameterEstimates (semlboot) [17,"est"]

))

fsraboot<-c (fsraboot,ifelse(class (fsrlboot) [1]=="try-
error",NA, fsrlboot$PESest[6]))

fsrbboot<-c (fsrbboot,ifelse(class (fsrlboot) [1]=="try-
error",NA, fsrlboot$PESest [3]))

fsrcboot<-c (fsrcboot,ifelse(class (fsrlboot) [1]=="try-
error",NA, fsrlboot$SPESest[5]))

fsrdboot<-c (fsrdboot,ifelse(class (fsrlboot) [1]=="try-
error",NA, fsrlboot$PESest[2]))

fsreboot<-c (fsreboot,ifelse(class (fsrlboot) [1]=="try-
error",NA, fsrlboot$PESest[4]))

fsrfboot<-c (fsrfboot,ifelse(class (fsrlboot) [1]=="try-

error",NA, fsrlboot$PESest[1]))

fsrMedboot<-c (fsrMedboot,ifelse(class (fsrlboot) [1]=="try-error",6 NA,
fsrlboot$PESest[6] *fsrlboot$SPESest[4] *fsrlboot$SPESest[1]
))

}

##estimated standard error for each path

sd (semaboot, na.rm=T)
sd (sembboot, na.rm=T)
sd (semcboot, na.rm=T)
sd (semdboot, na.rm=T)
sd (semeboot, na.rm=T)
sd (semfboot, na.rm=T)
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sd
sd
sd
sd
sd
sd

fsraboot,na.rm=T)
fsrbboot,na.rm=T)
fsrcboot,na.rm=T)
fsrdboot, na.rm=T)
fsreboot,na.rm=T)
fsrfboot,na.rm=T)

~ e~~~ ~ —~
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##estimated standard error for sequential mediation effect

sd (semaboot*semeboot*semfboot, na.rm=T)
sd (fsraboot*fsreboot*fsrfboot,na.rm=T)

##estimated 95% bootstrapped confidence intervals for each path

quantile (semaboot, probs=c(.

025,.975))

quantile (sembboot, probs=c (.025,.975))
quantile (semcboot, probs=c(.025,.975))
quantile (semdboot, probs=c (.025,.975))
quantile (semeboot, probs=c (.025,.975))
quantile (semfboot, probs=c(.025,.975))

quantile (fsraboot, probs=c
quantile (fsrbboot, probs=c

quantile (fsrdboot, probs=c
quantile (fsreboot, probs=c

025,.975
025,.975

025,.975
025,.975

( (. ))
( (. ))
quantile (fsrcboot, probs=c (.025,.975))
( (. ))
( (. ))
( (. ))

quantile (fsrfboot, probs=c(.025, .975

##estimated 95% bootstrapped confidence intervals for sequential mediation

effect

quantile (semaboot*semeboot*semfboot, probs=c(.025,.975))
quantile (fsraboot*fsreboot*fsrfboot,probs=c(.025,.975))

Appendix B. Example R code with generated data
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