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Abstract— For many planar bipedal models, each step is
divided into a finite time single support period and an
instantaneous double support period. During single support,
the biped is typically underactuated and thus has limited
ability to reject disturbances. The instantaneous nature of the
double support period prevents control during this period.
However, if the double support period is expanded to finite
time, this introduces an overactuated period into the model
which may improve disturbance rejection capabilities. This
paper derives and compares the performance of two finite-
time double support controllers. The first controller uses time
to drive the progression of the double support period and
controls the joint angles. The second controller uses a time-
invariant phase variable to drive the progression of the dou-
ble support period and controls the joint velocities since it is
not possible to control the joint positions. The disturbance
rejection capabilities of both controllers are then quantified
using simulations. The instantaneous double support model
is also simulated for comparison. The instantaneous double
support model can recover from the largest disturbances but
it requires the greatest number of steps to do. The time-based
double support controller can recover from the smallest
range of disturbances but requires the fewest number of steps
for a given perturbation size.

I. INTRODUCTION

A challenge for bipedal gait is preventing falls after
a disturbance. For bipedal robots, controllers generally
have a low fall risk or are relatively efficient, but not
both [1], [2]. For humans, understanding the aspects of
gait that affect fall risk could improve quality of life for
elderly adults by reducing injuries due to falls [3].

The efficient but less robust planar biped models typi-
cally divide the step into a finite-time single support (SS)
period and an instantaneous double support (DS) period
(e.g. [4]–[6]). Because the DS period is instantaneous, it
is also uncontrolled. These models typically have N rigid
links connected by N − 1 revolute joints with actuators
at each joint. They typically have point [4] or curved [5]
feet, so the foot cannot apply a moment to the ground.
The model has N degrees of freedom (DOF) during SS,
and N − 2 DOF during DS due to the additional foot
contact. As a result, the SS period is underactuated while
the DS period would be overactuated. During SS, these
bipeds cannot directly control their global orientation,
which limits their ability to reject disturbances. Steps
are typically parameterized using a phase variable, which
measures step progression as a function of global orien-
tation. These models are typically controlled using hybrid
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zero dynamics (HZD) [4], [6]. Under HZD control, a nom-
inal output function parameterized by a phase variable
is tracked using input-output linearization. If the biped
is perturbed forward (or backward), the phase variable
increases (or decreases) and speeds up (or slows down)
the rest of the gait cycle while keeping the coordination
between joints consistent with an unperturbed step [7].

Because both feet must be on the ground during DS,
keeping the joint coordination consistent is equivalent
to ensuring that the total configuration of the biped
is consistent at the start of every DS period. In con-
trast, it does not ensure that the velocity of the biped
is consistent. Incorrect velocity often causes falls. One
method to correct velocity disturbances is to adjust the
SS controller based on error in the unactuated velocity
[8]. An alternative approach is to take advantage of the
overactuation during a finite-time DS. Overactuation is
useful because it provides an infinite number of ways to
accomplish the same task, so a secondary goal can also
be achieved. As a result, the biped can both generate a
desired motion and reject disturbances during DS. While
there has been limited work comparing the disturbance
rejection capabilities of bipeds with uncontrolled vs.
controlled DS periods, it does appear that a controlled
DS period may be advantageous. For very simple models
with variability, a flat-foot model with finite-time DS
periods [9] was able to walk with much higher levels of
variability than a passive point-foot model [10]. Further,
it appears that lengthening the DS period in human
gait (typically by walking more slowly) may improve
stability [11]. Recent work has also shown that humans
struggle to voluntarily lengthen DS duration when forced
to maintain a constant walking speed, suggesting that
they use the longest possible DS duration for a given
speed [12]. This may suggest that a long DS duration
increases stability.

Given that a controlled, finite-time DS period may
increase disturbance rejection, this motivates developing
such a controller. Several controllers have been pro-
posed but the disturbance rejections capabilities of each
have yet to be quantified. Existing DS controllers can
be broadly divided into time-based and phase-based
controllers. For the time-based controllers, the desired
motion during DS is parameterized as a function of
time (e.g. [13]–[17]). In most cases, the desired motion
is specified using joint angles. The required joint torques
can be partially determined using input-output lineariza-
tion [13]. Because the system is overactuated, additional



conditions such as tracking a ground reaction force (GRF)
must be specified to uniquely define the joint torques.
However, it may be unnecessary to directly control the
GRF as long as the resulting GRF keep the feet firmly
planted on the ground. Thus, another option is to use the
overatuation to minimize the norm of the joint torques
to reduce energy expenditure. The main disadvantage of
a time-based controller for an HZD-based model is that
it switches between a time-invariant and a time-variant
control paradigm between step periods.

Phase-based DS controllers are less studied. The sim-
plest option is to simply ignore the overactuation and
not control the position of one DOF so that the biped
behaves as if it were underactuated even during the DS
period [18], [19]. This allows the same control method
to be used for both SS and DS. While this is appealing
from a consistency standpoint, it does not take advan-
tage of the overactuation. A more sophisticated version
controls both N − 3 joint positions plus the velocity of
the phase variable [20]. This approach uses the same
theoretical framework for both gait periods and utilizes
the overactuation in the DS period. However, we opted to
investigate the novel approach of controlling the velocity
of the DS period rather than the position. This may work
well because the SS controller handles position control
well but not velocity control. By controlling the velocity
during DS, the biped ends DS at (or closer to) the desired
velocity.

To evaluate the effect of the DS controller on distur-
bance rejection, three DS controllers are derived and
tested in simulation. The first “controller” is simply an
instantaneous and unactuated DS period as is com-
mon for HZD-based bipeds. The second controller is a
time-based position controller that specifies the desired
configuration throughout the DS period as a function
of time. The third controller is a phase-based velocity
controller that specifies the desired velocity throughout
the DS period as a function of a phase variable. In
contrast to much of the previous work on finite-time
DS controllers, we chose to deal with the overactuation
by minimizing the norm of the joint torques rather
than controlling one of the GRF. Minimizing only the
joint torques is not trivial because they are derived as a
function of the GRF, which are dependent on the joint
torques. For all three DS scenarios, phase-based HZD
control is used for SS. To test the disturbance rejection
capabilities, velocity disturbances are applied to each of
the three models and the system response is quantified.

II. MODEL DEVELOPMENT

As is typical, the planar biped model consists of N
rigid links with N − 1 revolute joints (Fig. 1) [4], [5]. It
has either point or curved feet. Several assumptions are
made that simplify the actuation and the description of
motion of the biped:

M1. Without loss of generality, angle q1 is unactuated
and measured relative to the inertial frame;

M2. angles q2 . . . qN are actuated relative joint angles;
M3. the actuators are ideal and have no losses;
M4. the motion is only in the sagittal plane; and
M5. when in contact with the ground, the feet do not

slip or lift up except at the end of the stance phase.

A full step consists of four parts—a SS period, an
instantaneous, impulsive transition to DS, a DS period,
and an instantaneous, smooth transition to SS. The SS
period, when only one foot is in contact with the ground,
is always finite time. The DS period, when both feet are
in contact with the ground, is either instantaneous or
finite time. When the DS period is instantaneous, the
transitions into and out of DS occur at the same instant
as the DS period itself. The SS period ends and the DS
period begins when the swing foot impacts the ground. If
the other foot does not immediately lift up, the DS period
is finite time. This adds another assumption about the
biped motion.

M6. The SS period is followed immediately by a transi-
tion to the DS period, and the DS period is followed
immediately by a transition to the SS period.

The dynamic motion of the model is described with
the equation of motion (EOM)

D(q)q̈+C(q, q̇)q̇+G(q) =Bu+A(q)T λ, (1)

where q =
�

q1 . . . qN xh yh

�T
is the extended gen-

eralized coordinates, xh and yh are the horizontal and
vertical position of the hip, u =

�

u2 . . . uN

�T
is the joint

torques, and λ is the set of Lagrangian constraint forces
corresponding to the GRF. The matrices D ∈R(N+2)×(N+2)

is the inertia matrix, C ∈R(N+2)×(N+2) contains the Coriolis
and centripetal force terms, G ∈ R(N+2)×1 is the gravity
vector, B ∈ R(N+2)×(N−1) maps the control inputs to joint
torques, and A is the Jacobian constraint matrix. During
SS, the biped only has one foot on the ground, so there
is one GRF with two components, λ ∈R2. During DS, the
biped has both feet on the ground, so there are two GRF
with a total of four components, λ ∈ R4. During SS, A
∈R(N+2)×2 is found via A= ∂ p

∂ q , where p is the position of
the stance foot with respect to the hip, accounting for
any curved foot roll [5]. During DS, A ∈R(N+2)×4 is found
via A =
�

A` At

�T
, where A` =

∂ p`
∂ q , At =

∂ pt
∂ q , p` is the

position of the leading foot, and pt is the position of the
trailing foot, both with respect to the hip and accounting
for any curved foot roll.

Eq. 1 can also be written

q̈=D−1
�

AT λ−Cq̇−G
�

+D−1Bu, (2)

or as a first order system

ẋ=

�

q̇
D−1
�

AT λ−Cq̇−G
�

�

+

�

0
D−1B

�

·u

= f(x,λ) +g(x) ·u,

(3)

where x=
�

qT q̇T
�T

.
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Fig. 1. A diagram of the four link biped model. The unactuated angle
is q1 and the actuated angles are q2, q3, and q4.

The constraint equation Aq̇= 0 ensures that the biped
is correctly attached to the ground in the extended coor-
dinate system. The validity of this constraint is verified
later by checking that the vertical ground reaction force
is positive and that the horizontal ground reaction force
is within the cone of friction. If the constraint forces
violate these assumptions, the step has failed. To use
the constraint equation with the EOM, it is differentiated
once

Aq̈=−Ȧq̇. (4)

When the constraint equation (4) is combined with the
EOM (2), the system has N DOF during SS and N − 2
DOF during DS. Because the number of actuators (N −1)
remains constant, the biped is underactuated during SS
and overactuated during DS.

Both a SS and DS controller are required to actu-
ate a single step. Three different DS scenarios will be
compared, an instantaneous impact with no controller,
a time-based finite-time controller, and a phase-based
finite-time controller. The following sections will de-
rive each controller and outline the differences between
them.

A. Single Support

For all DS scenarios, the same SS controller is used.
This controller uses input-output linearization and is
identical to the controller given by [4], [5]. A brief
derivation is included for completeness and to aid in
comparisons with DS controllers. The desired angles are
parameterized as a function of a phase variable, θ [4]:

θ (q) = cq, (5)

where c ∈ R1×N+2. For this work, θ is the linearized
progression of the hip. θ is then normalized to lie
between 0 and 1 for a nominal step.

s =
(θ (q)−θ +)
(θ −−θ +)

, (6)

where θ + and θ − are the values of θ at the beginning
and end of the nominal step, respectively.

The following assumptions must hold during the SS
period to ensure that the gait is valid:

S1. The swing leg begins behind the hip and ends in
front of the hip;

S2. the SS phase ends when the swing foot makes
contact with the ground; and

S3. the phase variable is strictly monotonic and uncon-
trolled.

The control input of the system is solved via input-
output linearization [21]. The output function describes
the desired position of the actuated joints. This output
function will be zero when the motion of the biped
follows the desired trajectories, leading to the following
error equation for the system’s output.

y= h(q) =H0q−hd(s (q)), (7)

where H0 ∈ RN−1×N+2 maps the generalized coordinates
to the controlled DOF and hd is the desired joint trajec-
tories, given as a function of step progression. To drive
the output to zero, the output function is differentiated
twice, and the EOM (2) is substituted into the equation,
resulting in

ÿ=L 2
f h+LgL f h ·u, (8)

where L 2
f h ¬ ∂

∂ x

�

∂ h
∂ x f
�

f and LgL f h ¬ ∂
∂ x

�

∂ h
∂ x f
�

g are Lie
derivatives [21]. To zero any errors, set ÿ= v, where v
is a stabilizing controller such as v = kp y + kv ẏ (a PD
controller) and solve for u. This gives

u=LgL f h−1(v−L 2
f h) (9)

=
�

∂ h
∂ q D−1B
�−1 �

v− ∂
2hd
∂ θ 2 (cq̇)2− ∂ h

∂ q D−1
�

AT λ−G−Cq̇
�

�

.

Because u= u(q, q̇,λ), (2), (4), and (9) need to be solved
concurrently to find the acceleration q̈, input u, and
Lagrangian constraints λ.

B. Instantaneous Impact

The transition to DS always begins when the swing
foot impacts the ground. This section derives the impact
mapping, which is essentially equivalent to the models
given by [4], [5]. For the time- and phase-based con-
trollers, the impact is followed by a finite-time DS period.
For the scenario with no DS controller, the swing foot
just before impact becomes the new stance foot and
the stance foot just before impact immediately lifts and
becomes the new swing foot. The impact must satisfy
the following assumptions:

I1. The transition to the DS period occurs instanta-
neously via an impact of the swing foot;

I2. the stance foot does not slip or lift up after impact;
I3. joint torques do not apply impulsive actuation; and
I4. the biped position does not change during impact.

During the instantaneous impact, the heelstrike of
the swing foot causes the velocity of the hip to change
direction. The EOM of the impact event is still given by
(1). To determine the change in velocities and the GRF,
(1) is integrated over the duration of the impact. This is
then simplified using the assumptions to give

D(q)q̇+−D(q)q̇− =AT fλ, (10)



where fλ are the integrated impulsive GRF, and q̇− and q̇+

are the joint velocities just before and just after impact,
respectively. The assumption of no slip or rebound leads
to the following constraint equation

Aq̇+ = 0, (11)

where A is given in Section II. For the instantaneous DS
case, A is used from the SS model, and for a finite-time
DS, A is taken from the DS model. The velocity after
impact q̇+ and the impulse on the foot (or feet) fλ can be
found by solving (10) and (11). At the end of the impact,
the coordinates are relabeled so that the leading leg is
the stance leg and the trailing leg is the swing leg.

C. Double Support - Time

For the next two scenarios, the DS period is finite
time. The derivation of these controllers differs from the
SS controller due to the overactuation. As a result, the
output function can only define the trajectory of N − 2
coordinates independently. The remaining 2 coordinates
are defined by assumption M5. Given that there are
N − 1 actuators, the equations must be manipulated to
minimize the norm of u. This section will derive the time-
based DS controller.

Instead of the time-invariant phase variable used in
the SS controller, the time-based DS controller simply
uses normalized time to measure the progression of the
biped through DS.

s =
(t − t f )

(t f )
, (12)

where t is the current time and t f is the planned
duration of the DS period, defined a priori. The time
t is always set to 0 at the beginning of DS.

The controller is found via input-output linearization.
The output function defines the desired motion of N −2
joint angles. The process to determine the control input
is analogous to that of the SS control model, but the
output function is different.

y= h(q, t ) =H0,DSq−hd(s (t )), (13)

where H0,DS ∈ R(N−2)×(N+2) is the mapping between the
extended coordinate system and the controlled joint tra-
jectories. The output (13) is differentiated twice, the EOM
(2) is substituted into the equation, and the acceleration
of the output is replaced with the feedback controller.
The result has the same form as (9), but because the
output (13) is different, the final result becomes

u=
�

H0,DSD−1B
�−1 �

v+H0,DSD−1
�

Cq̇+G−AT λ
�

− d2hd
dt 2

�

,
(14)

where v= kp y+kd ẏ is the PD controller and
�

H0,DSD−1B
�

∈
R(N−2)×(N−1). While (14) gives an equation for u, it can-
not be used directly because λ is unknown. Finding
the solution would be straightforward if we wanted to
minimize the norm of all of the unknowns. However, we
wish to minimize only the norm of u, so an equation for

u without any unknowns must be found. To do so, we
substitute (2) into (4) and solve for λ

λ=
�

AD−1AT
�−1 �

AD−1 (Cq̇+G)− Ȧq̇
�

︸ ︷︷ ︸

λ1(q,q̇)

−
�

AD−1AT
�−1

AD−1B
︸ ︷︷ ︸

λ2(q)

·u.

(15)
This is then substituted into (2) to give

q̈= f∗(q, q̇) +g∗(q)u

=D−1
�

AT λ1−Cq̇−G
�

+D−1
�

B+AT λ2

�

u.
(16)

Finally, (16) can be used in the input-output linearization
to calculate an alternate form of (14).

u=
�

H0,DSg∗
�−1 �

v+ d2hd
dt2 −H0,Tf∗
�

, (17)

where
�

H0,DSg∗
�

∈R(N−2)×(N−1), so a pseudoinverse is used
to solve for u. To find the remaining unknowns, u is then
substituted back into (15) and (16).

D. Double Support - Phase

The final scenario uses a phase-based DS controller. In
contrast to the other controllers, this controller specifies
joint velocities instead of joint angles. As described later,
it is not possible to directly control the joint angles with
this formulation, even if desired.

Because this is a phase-based controller, a phase
variable is used to measure the step progression. Due
to the overactuation during DS, the phase variable is
different than the one used during SS. During SS, one
of the DOF is unactuated and the progression of this
unactuated DOF serves as a measure of step progression.
The phase variable must be uncontrolled; otherwise
the phase variable does not evolve independent of the
control effort. During DS, all of the system’s DOF are
directly controllable, so the phase variable was chosen
to be the momentum conjugate to the absolute angle
[20].

θ (q, q̇) =D1(q)q̇, (18)

where D1(q) is the first row of the inertia matrix. This can
be thought of as the whole body momentum and was
chosen because it is monotonic, uncontrollable, and a
measure of the biped state in an inertial frame. The step
progression s is normalized as in (6).

The phase-based DS controller is found via input-
output linearization. Unlike the other controllers, the
output function defines the desired velocity of N − 2
joints,

y= h(q, q̇) =H0,DSq̇−hd(s (q, q̇)). (19)

To calculate u, the output (19) is differentiated, the
EOM (2) is substituted into the equation, and the acceler-
ation of the output is replaced with a feedback controller.

u=Lg h−1
�

v−L f h
�

=
��

H0,DS+
∂ hd
∂ θ

∂ θ
∂ q̇

�

D−1B
�−1�

v+ ∂ hd
∂ θ

∂ θ
∂ q q̇−

�

H0,DS−
∂ hd
∂ θ

∂ θ
∂ q̇

�

�

AT λ−Cq̇−G
� �

,

(20)



where v = kp y is the proportional controller, L f h ¬ ∂ h
∂ x f

and Lg h ¬ ∂ h
∂ x g. Lg h ∈ R(N−2)×(N−1) matrix is inverted

using a pseudoinverse. Because the output is a function
of q̇, and thus relative degree one, it is only differentiated
once.

If the output function defined the desired joint angles,
then the inverted matrix Lg h would be singular, because
y would be given by H0,DSq−hd(s (q, q̇)) and Lg h =
∂ hd
∂ θ

∂ θ
∂ q̇ g. To see why this is a singular matrix, we will

consider the rank of the first two terms. ∂ hd
∂ θ ∈R(N−2)×1 is

rank 1 and ∂ θ
∂ q̇ ∈R1×(N+2) is rank 1. Therefore, the resulting

product is at most rank 1 [22]. Because 1 < (N − 2)
it is not possible to invert this matrix, even using the
pseudoinverse. On the other hand, because y is defined
as in (17), Lg h =

�

H0,DS+
∂ hd
∂ θ

∂ θ
∂ q̇

�

g. While ∂ hd
∂ θ

∂ θ
∂ q̇ is still

rank 1, it is added to H0,DS with rank N − 2. So the
resulting sum and its product with g has rank N − 2.
Therefore, this can be inverted using a pseudoinverse.

As with the time-based DS controller, (2), (4), and (20)
are manipulated to minimize the norm of u without
minimizing q̈ or λ. Briefly, we write the EOM as in
(16) and substitute it into the input-output feedback
linearization equation (20) to obtain

u=
��

H0,DS+
∂ hd
∂ θ

∂ θ
∂ q̇

�

g∗
�−1 �

v+ ∂ hd
∂ θ

∂ θ
∂ q −
�

H0,DS−
∂ hd
∂ θ

∂ θ
∂ q̇

�

f∗
�

,
(21)

where
��

H0,DS+
∂ hd
∂ θ

∂ θ
∂ q̇

�

g∗
�

∈ R(N−2)×(N−1), so a pseudoin-
verse is used to solve for u.

E. Transition to SS

The transition to SS always begins at the end of the
DS period. For the instantaneous DS model, this occurs
simultaneously with the instantaneous transition into
DS. For the finite-time DS models, the transition occurs
when the vertical GRF for the trailing leg equals 0. The
transition to SS is smooth and instantaneous, and is
defined by the mapping

�

q+ q̇+
�T
=
�

q− q̇−
�T

, (22)

where the superscripts + and − indicate the instances just
after and before the transition, respectively.

III. SIMULATIONS

A. Simulation Generation

For the simulations, the model has four links, point
feet, and a point mass at the hip (Fig. 1, Table I). The
joint angle or velocity trajectories are parameterized by
Bezier polynomials with order 5 for SS and order 3 for
DS. For the finite-time DS controllers, the knee joints
q3 and q4 were directly controlled using (17) or (21).
To find the gaits, the Bezier polynomials were found
using simulated annealing. This technique searched for
a set of polynomial coefficients and initial conditions
that minimized the objective function and satisfied all of
the constraints. The objective function was an integrated
torque-squared based function [5]. To implement the

TABLE I

PARAMETERS. THE VALUES ARE THE SAME FOR BOTH LEGS.

Parameter Value Description

L s 0.433 Shank Length (m)
L t 0.431 Thigh Length (m)

Lc ,s 0.177 Shank COM Distance (m)
Lc ,t 0.185 Thigh COM Distance (m)
Ms 4.07 Shank Mass (kg)
Mt 10.43 Thigh Mass (kg)
Mh 53.81 Hip Mass (kg)

Js 0.175 Shank Moment of Inertia (kg·m2)
Jt 0.106 Thigh Moment of Inertia (kg·m2)

kp 100 Proportional Control Gain
kd 10 Derivative Control Gain

constraints, exponential barrier functions were used [23].
These functions were added to the objective function to
penalize constraint violations. The primary constraints
were that the GRF meet assumption M5 (no slipping and
no flying) and that the gait was periodic (the positions
and velocities at the beginning of the step were equal to
those at the beginning of the following step). Additional
constraints, such as limiting joint angles to normal hu-
man motion and limiting walking speed and step length
to a set range prevented the optimization from exploiting
the objective function.

Because the structure of a step is fundamentally dif-
ferent for the instantaneous DS model compared to
the finite-time DS models, the gaits were chosen to be
temporally similar. To help ensure this, the optimal gait
for the phase-based model was used as the basis for
the other two models. For the time-based DS model,
the phase-based DS polynomials were transformed into
time-based polynomials by simulating the step using the
phase-based DS controller, and then fitting the resulting
DS position trajectories in the time domain. For the
instantaneous DS model, the gait was transformed by
simulating the step using the phase-based DS controller,
and then fitting the entire resulting step position trajec-
tories in the phase domain, using the SS phase variable
(5). Each of the transformed gaits were then optimized to
minimize torque squared and meet the step constraints
as before. The step lengths and walking speed constraints
were very tight to ensure that those key parameters
matched very closely for all three scenarios. The resulting
gaits for the finite-time DS scenarios were kinematically
similar, but the gait for the instantaneous DS scenario
was significantly different than the other two as expected
(Fig. 2). Despite the differences in the joint angles, step
length and walking speed was very similar for all three
scenarios, with step length ranging from 0.224 m to 0.230
m and speed ranging from 0.711 m/s to 0.748 m/s.

To allow improved disturbance rejection capabilities, a
correction polynomial was added to the nominal Bezier
polynomial during DS [24]. This correction polynomial
was defined at the start of each DS period to exactly
account for the position and velocity errors at the start
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Fig. 2. Joint angles during an unperturbed step from heelstrike
to the next heelstrike. The time- and phase-based DS conditions
have very similar joint angles, while the instantaneous DS condition
has significantly different joint angles. This is due to the differences
between the different types of gaits.

of the period and smoothly converge to zero at the end of
the nominal period. Because the actual DS period was
sometimes shorter than the nominal DS period, errors
were not always corrected within one step. Without the
correction polynomial, there were often large velocity
errors at the start of the DS period that the stabilizing
P or PD controller attempted to zero quickly. The more
quickly the errors were zeroed, the more likely it was that
the feet would slip or lift up. The correction polynomial
allowed the errors to be zeroed more evenly across
the period and thus increased the disturbance rejection
capabilities.

The models were tested to find which controller was
more equipped to handle disturbances. Disturbances
were created by instantaneously changing the velocities
just after the transition to DS, which simulates a horizon-
tal impulsive push on the hip. Two tests were performed.
The first test generated a single perturbation for one
step, and the number of steps until the gait returned to
the nominal gait was recorded. This return was defined
as when the horizontal hip velocity at the end of DS
was within 0.025% of the nominal value. This value was
chosen so that the smallest non-zero perturbation took
at least 1 step to recover. Multiple simulations were
run, with increasing perturbation magnitude until the
biped was unable to recover. Both positive and negative
perturbations were tested. The second test introduced a
random perturbation every step and the number of steps
until the biped fails was recorded. The maximum mag-
nitude of the perturbation increased as the step number
increased. 10 different sets of random perturbations were
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Fig. 3. Ability to recover from perturbations. The horizontal axis
indicates the size of the perturbation while the vertical axis indicates
the number of steps to return to the nominal periodic gait, plotted
on a logarithmic scale. As indicated by the much wider spread of
the data, the instantaneous DS model is able to recover from much
larger perturbations than either of the finite-time DS controllers. The
instantaneous scenario can recover from perturbations larger than
indicated here, to at least −0.5 m/s and 0.4 m/s. For the perturbations
from which it is able to recover, the time-based controller can recover
in the fewest steps.

generated, resulting in 10 trials for each model. The same
vector of perturbations was used for all models.

B. Simulation Results

In the single perturbation trials, the phase-based DS
model could recover from larger perturbations than the
time-based DS model (Fig. 3). The instantaneous im-
pact model could recover from perturbations even larger
than the phase-based DS controller model. However, for
the perturbations from which the model was able to
recover, the time-based controller recovered faster than
the phase-based controller, which was able to recover
faster than the instantaneous impact model (Figs. 3, 4).
This is likely because the instantaneous DS model is
unable to control the velocities during the DS instant,
and the impulsive impact tends to exaggerate velocity
errors. In contrast, the finite-time DS models are able to
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Fig. 4. Typical recovery from a single perturbation. Each controller was
perturbed twice, once forward and once backward, and the horizontal
hip velocity at the end of DS is shown with markers. The absolute
magnitude of the perturbation was the same for all controllers. The
phase-based controller requires more steps to recover than the time-
based controller and the scenario with an instantaneous DS period
takes the largest number of steps to recover.



TABLE II

NUMBER OF STEPS TO FAILURE WITH RANDOM GROWING PERTURBATIONS.

10 TRIALS ARE USED FOR EACH DS CONTROLLERS.

Instantaneous Time Phase

Mean 157.6 7.2 16.3
Max 189 10 26
Min 112 4 10

Standard Deviation 28.8 1.99 4.81

control the velocity of the biped during DS and reduce
the velocity error. Despite this, the instantaneous impact
model is able to reject much larger perturbations. These
results are consistent with the random perturbation trials
(Table II). For all 10 random perturbation vectors used,
the instantaneous DS controller could walk the longest
and the time-based DS controller always failed in the
fewest number of steps.

The primary mode of failure for the finite-time DS
models was invalid GRF during DS, i.e. the feet would
slip or the front foot would lift up. This may be due
to the specific four-link biped model used, and a biped
with telescopic legs or a kneed biped with six links
may be better suited to a finite-time DS period. With a
four-link kneed biped, the knees need to travel through
a large range of motion to transport the hip through
DS and to end with the correct velocity to initiate SS.
This requires large horizontal GRF with limited ability
to control the direction of the GRF due to the small
number of DOF. As a result, it can be difficult to prevent
slipping during DS. In contrast, a four-link biped with
telescopic legs generates more vertical GRF, so slipping
is less likely. A kneed biped with six links has more
DOF and can thus better modulate the direction of the
GRF to prevent slipping. To address this issue without
changing the biped, it may be beneficial to saturate the
joint torques. Ideally, this would be done in an adaptive
manner such that the maximum joint torque is just below
the value that would generate invalid GRF [15]. This is
left for future work.

There appears to be an inverse relationship between
maximum perturbation size and time to recovery. This
is not surprising because faster recovery requires greater
GRF to accelerate the biped back to the nominal gait.
Larger horizontal GRF also make the biped more likely
to slip. Since recovery from large perturbations is likely
more important than a quick recovery in most situations,
the phase-based DS controller is likely better than the
time-based DS controller.
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