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Definition

Brain-machine interfaces (BMIs) refer to com-
munication systems between the brain and an ex-
ternal device. Desired properties of BMIs include
bidirectionality, high spatial and temporal resolu-
tion, low invasiveness, accuracy, and robustness.
In this paper, the different types of BMIs, the state
of the art, and the future directions are discussed,
in addition to highlighting their key applications.

Historical Background

For many decades, the interaction between hu-
mans and machines has been restricted to the
exchange of visual, auditory, and tactile infor-
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mation. A conceptual analysis of the existing
human-machine interfaces (HMI) reveals that the
amount of useful information that can be ex-
changed between humans and machines is not
limited by the capabilities of the human brain
or those of the machine processor, but by the
interfaces between them. Simply stated, from an
engineering perspective, the human being can be
modeled as a macro-system with a processing
powerhouse, i.e., the brain, and a collection of
peripherals, i.e., the sense organs. All the periph-
erals have their own latency limitations, which
mainly arise from the fact that they convert a
collection of nano-/micro-events, i.e., neuronal
activity in the form of action potential signals,
into a macro-sized effect, e.g., moving the fingers
to touch a display or type some characters in
order to control an external machine or, recip-
rocally, convert a macro-size effects, e.g., an
auditive or visual command, into a a collection
of nano-/micro-events in the brain.

In order to overcome the limitations of the
peripheral system, direct communication with the
brain is needed. This form of interaction is known
as a brain-machine interface (BMI). Over the
years, numerous applications have resulted from
these two-way interactions, where compensations
are made between the computational capabilities
of both systems. Such compensations can be in
the form of either the computing system analyz-
ing the brain signals and adapting the computing
environment or the computing system provid-
ing added computing power to compensate for
shortcomings of the brain. In the first case, brain
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signals are used to understand the user’s context
which is then used to control machines, such as
controlling the vehicle. In the second case, this
could come in the form of computing systems
controlling neuroprosthetic devices for disabled
patients.

Electrical Brain-Machine Interfaces

The most common to date BMIs rely on the col-
lection and excitation of electrical signals from
the brain. Electroencephalogram (EEG) signals
have been successfully utilized to directly con-
trol machines without the need of the sense or-
gans (Millan et al. 2004). EEG signals can be
collected in a noninvasive way, i.e., from outside
the brain, and support high-temporal resolution,
i.e., down to the sub-millisecond scale, but have
limited spatial resolution, i.e., cannot be utilized
to read the action potential signal from a single
neuron at a time, and are vulnerable to electrical
artifact sources. Besides EEG-based BMIs, there
are other more invasive mechanisms that could
be utilized to enable more robust electrical BMIs,
such as intracranial EEG (Leuthardt et al. 2006),
which is also known as electrocorticogram, and
microelectrode arrays, which are placed directly
on the exposed surface of the brain (Hochberg
et al. 2006). However, besides their invasiveness,
they suffer from several limitations, such as com-
plex application or unsuitability for long-term
use.

Optical Brain-Machine Interfaces

In parallel to the development of the aforemen-
tioned approaches, the field of optogenetics, i.e.,
the use of light to interact with genetically modi-
fied neurons in the brain (Zemelman et al. 2002;
Deisseroth 2011; Zhang et al. 2007), has experi-
enced a major revolution in the last decade. Op-
tical neural stimulation is considered to be more
beneficial than electrical neural stimulation, be-
cause it permits activation or inhibition of specific
types of neurons with sub-millisecond temporal
precision and eliminates electrical artifacts. Cur-
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rent approaches to optogenetic neural interfaces
include the use of optical fibers coupled to lasers
or light-emitting diodes (LEDs) (Zorzos et al.
2010) and micro-LED arrays (McGovern et al.
2010). Moreover, optogenetics enables bidirec-
tional interfaces, as light can be utilized both to
control and to measure neuronal activity (Kwon
et al. 2014). However, the size of existing optical
devices makes them invasive, difficult to contact
to individual neurons, and, ultimately, not suit-
able for chronic BMIs (Marblestone et al. 2013).

Wireless Brain-Machine Interfaces

In order to overcome the limitations of tradi-
tional electrical and optical BMIs, wireless BMIs
are being developed. In Seo et al. (2013), the
concept of neural dust was introduced for the
first time. In the envision architecture, miniature
electronic devices or dust motes are implanted
in the cortex. These devices, which integrate
piezoelectric energy harvesting systems powered
by ultrasounds, record the neural activity from the
cortex and transmit the information to a subdural
transceiver mounted under the skull. This device
is in charge of controlling the neural dust and
to communicate with the external head-mounted
transceiver, where the data is collected. Despite
the advantages of this wireless architecture, the
fact that it relies on the principles of electrical
BMIs limits its applications.

Recently, in Wirdatmadja et al. (2017), the
first wireless BMI based on wireless optogenetic
nanonetworking devices (WiOptNDs) was
proposed (Fig. 1). WiOptND enables accurate,
robust, high-throughput, and minimally invasive
BMIs by leveraging the state of the art in
nanophotonics, nanoelectronics, and wireless
communication. The fundamental idea is to
replace existing micro-LED arrays and micro-
photodetector arrays used in optical BMIs by
a network of coordinated nano-devices, which
are able both to excite individual neurons and
to measure their activity. In this application, a
network of collaborative WiOptNDs is utilized
both to excite multiple neurons according to
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Brain-Machine Interfaces, Fig. 1 The WiOptND archi-
tecture consists of (i) a network of coordinated nano-
devices able to optogenetically excite and measure the
response of neurons; (ii) an intermediate transceiver in
charge of both controlling the nano-devices in order

incoming commands and to collect, process, and
transmit accurate neuronal activity in real time.
Each nano-device is equipped with an optical
nano-transceiver (Feng et al. 2014) and nano-
antenna (Nafari and Jornet 2017), which is able
to both emit and detect optical radiation at a
pre-established frequency or wavelength. As
in Seo et al. (2013), WiOptNDs are acoustically
powered and remotely controlled through the
subdural transceiver (Fig. 1).

Many benefits in this approach exist. First, the
very small size of optical nano-antennas (Dorf-
muller et al. 2010; Nafari and Jornet 2017), below
1 micrometer in the largest dimension, enables
the possibility to measure the neuronal activ-
ity in a single neuron, with very high accu-
racy. Moreover, the total size of each individual
nano-device, up to a few cubic micrometers at
most (Akyildiz and Jornet 2010), minimizes the
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to generate different neuron excitation patterns as well
as acoustically powering them; and (iii) an external
transceiver in charge of acoustically powering the inter-
mediate transceiver and interfacing it with the actual BMI
user

invasiveness of this approach when compared to
existing optogenetic approaches, which require
bulky lasers or optical fibers. Moreover, by op-
erating at optical frequencies, much higher tem-
poral resolution than traditional electrical BMIs
can be achieved. For example, while the main
features of action potential signals are in the mil-
lisecond scale, the possibility to measure those
signals with much higher temporal resolution,
such as a few microseconds or even less, may
unveil new high-frequency time transients in the
action potential signal propagation, which could
shine new light into the exploration of neuronal
pathways. This also enables potentially much
faster BMIs. For the time being, however, electri-
cal and optogenetic BMIs are at an early stage, in
which some of the system components have been
developed and tested, but a fully functional BMI
has not been realized.



Future Directions

To enable practical long-term implantable wire-
less BMISs, there are several bottlenecks that need
to be overcome.

From the hardware perspective, the major
challenges are in terms of the miniaturiza-
tion of the neural dust motes. Nano-lasers,
nano-antennas, and nano-photodetectors are
needed to excite and monitor neural activity
through optogenetics. For the time being, the
smallest laser, experimentally demonstrated to
date (Feng et al. 2014), is a micro-ring laser
with 10 um in diameter. Given the average size
of a neuron cell body, tens of micrometers,
current nano-lasers should be able to achieve
single neuron resolution, provided that they
are near it (otherwise, light spreading would
result into the illumination of multiple neu-
rons). Optical nano-antennas can be utilized
to then overcome this problem. Besides the
optics, piezoelectric energy harvesting nano-
systems (Wang 2008; Wang et al. 2017) and
minimal computational and data storage capa-
bilities are needed.

From the communications perspective,
effective communication protocols to operate
the WiOptNDs are needed. Addressing of
individual nano-devices, precise triggering
of the optical stimulation, and accurate
collection of information are crucial tasks
to be performed reliably and with energy
efficiency in mind. When developing such
protocols, the physics of the intra-body
channel, which affects the propagation of
optical signals for optogenetic excitation and
measurement (Wirdatmadja et al. 2018) as
well as of the acoustic signals required to
power the nano-devices (Donohoe et al. 2016),
need to be taken into account. As important as
their impact on the signal power, their impact
on time distortion and synchronization needs
to be studied (Noel et al. 2018).

In all cases, human factors need to be taken
into account. For the time being, the advanced
BMIs (i.e., anything beyond EEG signal col-
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lection from over the skull) have been pri-
marily tested in vitro cell cultures or animals.
One of the promising approaches relies on
the use of cerebral organoids, i.e., artificially
grown, in vitro, miniature organs resembling
the brain. These organoids reproduce the ex-
act behavior of the brain and are the basis
of recent breakthroughs in neuroscience (Sta-
chowiak et al. 2017). Beyond in vitro testing,
the implantation of the devices needs to be op-
timized. Beyond surgery, the combination of
nasal injection and self-assembly techniques
for nano-devices is being considered.

Key Applications

BMIs can significantly improve the quality of
life of people with disabilities, by providing
them a transformative way to interact with the
environment and restoring functional abilities
and even cognition. For example, the direct
control of machines from the brain can help
to overcome the limitations in the “interfaces"
between them, namely, the sensor organs or
locomotion apparatus.

BMIs can help to broaden the understanding
of the developmental- and aging-related dis-
eases, such as schizophrenia or Alzheimer,
whose origin lies at communication problems
between consecutive neurons, and, ultimately,
enable transformative treatments.

BMISs can help to control specific types of neu-
rological disorders, which to date have been a
major challenge. A good example is epilepsy.
The development toward using miniaturized
neural dust motes that can be implanted deep
into the brain, coupled with optogenetics, can
provide a mechanism of controlling neurons
at a single cell level. This means that by
understanding the source of the epilepsy, con-
trols can be developed to suppress the seizure
signaling.

BMIs can help to augment people’s brain
power going into the future. New concepts
such as Targeted Neuroplasticity Training can
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emerge, whereby the computing power capa-
bilities are augmented with the brain’s training
process. This could enhance the brain with
new skills and also provide people the abilities
to acquire new skills where they previously
lacked.
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